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Abstract

How best to model structurally heterogeneous processes is a foundational question in the
social, health and behavioral sciences. Recently, Fisher et al.| (2022) introduced the
multi-VAR approach for simultaneously estimating multiple-subject multivariate time
series characterized by common and individualizing features using penalized estimation.
This approach differs from many popular modeling approaches for multiple-subject time
series in that qualitative and quantitative differences in a large number of individual
dynamics are well-accommodated. The current work extends the multi-VAR framework to
include new adaptive weighting schemes that greatly improve estimation performance. In a
small set of simulation studies we compare adaptive multi-VAR with these new penalty
weights to common alternative estimators in terms of path recovery and bias. Furthermore,
we provide toy examples and code demonstrating the utility of multi-VAR under different

heterogeneity regimes using the multivar package for R (Fisher et al., [2021)).
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Structured Estimation of Heterogeneous Time Series

Over the last 50 years Peter Molenaar’s work has reimagined the foundation of
scientific psychology with an eye toward the persistent heterogeneity of human behavior.
Peter’s work has shown that even under near-constant genetic and environmental
conditions heterogeneity in behavior persists (Molenaar et al., |1993). Furthermore, this
variability is a fundamental feature of many psychological processes and critical for
accurately characterizing and intervening on human behavior (Molenaar, 2004). Although
Peter’s work helped to disentangle and distill the idiographic and nomothetic perspectives
in psychology, it also firmly located the individual as being critical for a generalizable
science of behavior (Gates and Molenaar, 2012)). In this paper we continue the tradition of
reconciling nomothetic and idiographic orientations and present a novel approach for
modeling time-dependent processes where individuals may differ qualitatively and
quantitatively in terms of their underlying dynamics.

Introduction

It is widely recognized that many behavioral and biological processes are best
understood from a complex systems perspective where numerous factors shape outcomes
across the lifespan. These interdependent factors bridge multiple levels of analysis from the
biological to the behavioral - producing complex, heterogenous interactions that unfold
across time. For many years the data required to support this type of analysis were largely
unavailable. However, technological advances have made the collection of intensive
time-series data easier than ever. This includes sensor-based physiological measurements,
neural activity, health and movement data and measures of emotional states, to name just
a few.

These changes in our data landscape have coincided with an increasing appreciation of
heterogeneity as a ubiquitous and defining feature of human behavior. From treatment
effects (Bryan et al., 2021)), to affective science (Foster and Beltz, [2021) and psychiatric

diagnoses (Nunes et al., 2020), heterogeneity is increasingly seen as a critical ingredient for
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understanding causal mechanisms and developing generalizable treatment protocols.
Broadly understood, heterogeneity can refer to both between-person and within-person
heterogeneity, or the idea that biological and psychological structures underlying an
individual’s functioning may differ, both between individuals, and within the same
individual across time, respectively. In this work we are primarily concerned with how
between-person heterogeneity in dynamic processes is accounted for at the model level, and
the remainder of our discussion reflects this focus.

In the remainder of the introduction we briefly introduce some existing approaches for
handling between-person heterogeneity in time series models. These comparisons are not
meant to be exhaustive, only to highlight in broad strokes how heterogeneity is handled by
popular time series models. We also discuss Group Iterative Multiple Model Estimation
(GIMME; |Gates and Molenaar|, 2012), the inspiration for multi-VAR [Fisher et al.| (2022)),
and provide some insight on how the approaches differ. Finally, we outline the novel
contributions of our current work in extending the multi-VAR framework in a number of

important directions.

Existing Literature

A number of approaches are capable of accounting for heterogeneity in multivariate
time series arising from multiple individuals. Here we briefly highlight a few of these
approaches. In doing so we make a distinction between two types of heterogeneity at the
time series model level: quantitative heterogeneity and qualitative heterogeneity. We say
models allow for quantitative heterogeneity when parameters are allowed to vary in
magnitude across individuals in the sample (typically according to a distribution). On the
other hand, we say models allow for qualitative heterogeneity when the model structure
itself is allowed to vary across individuals. For example, individuals might differ in the lag
order of their model, the direction and sign of directed relations, or the overall pattern of
zero and nonzero parameters. Finally, models may also accommodate both quantitative

and qualitative heterogeneity simultaneously.
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The most popular approaches for modeling multiple-subject time series in
psychological research are designed to accommodate quantitative heterogeneity (e.g.
multilevel time series; [Bringmann et al., [2013; [Epskamp et al.| 2018}, [Lafit et al.l 2021} |Li
et al., [2022). In these approaches parameters in the model are typically treated as being
sampled from a distribution, where fixed and random effects are recovered, and
subsequently used to fashion individual-level models from between-person variation in
parameter estimates. When all individuals in the sample possess homogenous dynamics,
empirical Bayes estimates of the dynamic parameters are generally accurate and reliable
(Liu, 2017, |2018]). Less work has focused on how these estimates perform in situations
where individuals meaningfully vary in their dynamics.

Another group of approaches account for heterogeneity at the subgroup or cluster
level (Bulteel et al., 2016; [Takano et al, 2021} [Park et al., 2022a.b). These approaches
typically allow for groups of individuals to differ qualitatively in terms of their underlying
time series model structure. Approaches vary on whether parameters governing
individual-level models within the same cluster can vary qualitatively. Furthermore, any
model that implies a Gaussian distribution can be used to define the components of a
mixture model. Recently, [Hunter| (2023)) extended this idea to state space models where it
becomes possible to have state space mixtures with qualitatively different
parameterizations across groups, for example.

Another approach, designed to allow for both quantitative and qualitative
heterogeneity across individual time series models, is GIMME (Gates and Molenaar;, 2012).
The GIMME approach is built on the Structural-Vector Autoregressive (S-VAR) model and
uses a stepwise model search algorithm based on modification indices (MI; [Sorbom), [1989))
in conjunction with test statistics developed in the structural equation modeling (SEM)
framework. GIMME is designed to recover both group (generalizable) and individual-level
(idiosyncratic) models from multivariate time series data and is available in a

well-developed R package (Lane et al., 2019). Recently, the GIMME algorithm has been
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extended to accommodate the standard and hybrid VAR (Luo et al., [2022) models, in

addition to the original S-VAR. Although not relevant to the current work, there are

additional capabilities of GIMME worth mentioning, including the ability to model direct

and modulatory effects of tasks (Duffy et al. 2021)), exogenous variables (Arizmendi et al.)

2021)), data-driven (Gates et al. 2017)) and confirmatory (Henry et al.| [2019) subgroups,

multiple solutions (Beltz and Molenaar], [2016) [T and latent variables (Gates et al. [2020).

The multi-VAR approach originally described in [Fisher et al| (2022), and extended in

the current work, is similar in spirit to GIMME in that both produce group and
individual-level models from qualitatively and quantitatively heterogeneous time series
data. However, beyond this common objective, the approaches share little in common in
their operatlization. For example, GIMME induces sparsity in individual-level models via

forward-selection, a stepwise procedure where paths are freed according to modification

indices until fit indices suggest a well-fitting model has been achieved.Hastie et al.| (2015)

describe a sparse model as having only a small number of nonzero parameters or weights.
In the case of GIMME and multi-VAR we are typically concerned with inducing sparsity in
the dynamic part of the model. Furthermore, in GIMME individual datasets are analyzed
separately and sequentially, and common paths are determined by user-specified
thresholds. The multi-VAR approach induces sparsity in individual-level models via
structured penalization of common and unique dynamics, where all individual-level models
are estimated simultaneously. What constitutes a common and unique path in the
multi-VAR framework is determined using competing penalties in the objective function
and cross-validation. Although additional differences exist, a detailed comparison is beyond

the scope of this work. Readers interested in a more technical comparison should see

! In the original GIMME algorithm each individual begins with a null model (all coefficient values are set
to zero). Modification indices are then used to determine which parameter, if freed, would most improve
model fit. Multiple solutions refers to the instance where multiple parameters would lead to numerically
equivalent improvements in model fit. To address this situation (Beltz and Molenaar, 2016) developed an
algorithm, termed multiple solutions GIMME, that accounts for these equivalent solutions in terms of final
model selection. |
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and Gates| (2017, p. 769-771) for a step-by-step description of the GIMME algorithm and
Fisher et al.| (2022, p. 6-11) for the multi-VAR algorithm, including pseudocode.

Finally, it is also possible to accommodate both quantitative and qualitative
heterogeneity across individual time series model by simply fitting individual-level models
separately. In this way each individual-level model is fit without pooling or sharing any
information across individuals. In fact, individual-level models represent an important
benchmark for any proposed joint-modeling framework. If joint modeling approaches, such
as multi-VAR or GIMME, do not show an advantage over individual-level approaches, then
sharing of information across individuals provides no additional benefit and one should
prefer the most parsimonious modeling approach. For these reasons we also include
popular individual-level modeling approaches as comparisons when evaluating the

performance of the proposed estimators.
Current Work

Fisher et al.| (2022) introduced the multi- VAR framework, a method for estimating
multiple-subject multivariate time series models using structured regularization. The
original proposal contained descriptions of a standard multi- VAR implementation based on
the Least Absolute Shrinkage and Selection Operator (LASSO; [Tibshirani, [1996]) and an
adaptive multi-VAR based on the adaptive LASSO (Zou, |2006). In the remainder of the
paper we use the term multi-VAR to refer to the general modeling framework proposed in
Fisher et al.| (2022), and when relevant for a given context we specifically refer to the
standard or adaptive variants.

In this paper we extend the adaptive multi-VAR framework described by [Fisher et al.
(2022) in a number of meaningful ways. First, we propose new estimation methods for the
adaptive multi-VAR. Specifically, we introduce new methods for computing adaptive
weights and a novel cross-validation procedure for selecting the model hyperparameters.
Second, we evaluate the utility of these newly proposed weighting schemes and

cross-validation procedures in a small simulation study. In this simulation study we
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evaluate the performance of the proposed approach across various levels of heterogeneity,
comparing it to alternative methods, and illustrating its application using an fMRI study
example assessing habitual control. Embedded in the paper are illustrations demonstrating
how the multi-VAR approach handles commonly encountered modeling situations, with

companion code from the multivar package (Fisher et all 2021)).
Vector Autoregressive Model

The VAR model is a natural starting point for analyzing multivariate time-dependent
data. In this section we describe the VAR model as it applies to data collected from a
single individual. Estimation of the VAR model is discussed, as well as methods developed
to address its inherent overparameterization. Following this discussion of the single-subject
VAR we introduce the multi-VAR approach and discuss its advantages when data is

available from multiple subjects.

Single-Subject Vector Autoregressive Model

VAR models are a natural fit for many psychological applications as they allow for the
inclusion of many potentially relevant variables, provide a concise interpretation of lead-lag
relations and can be visualized easily using path or network diagrams. Here we consider a
multivariate time series for a single individual, {X;}ez = {(Xjt)j=1....d}tez, where X,

follows a vector autoregressive model of order p, VAR(p), if

Xt = (plxt—l + oot (ipXt—p + Eta t c Z, (].)

for some d x d matrices ®, ..., ®, and a white noise series {E;}+cz ~ WN(0, Xg)
characterized by E(E,) = 0 and E(E,E}) = 0 for s # t. For simplicity we assume X, is of
zero mean, however, all developments that follow hold for models with a mean. Generally,
a unique stationary solution to can be ensured by satisfying the stability condition
given by det(®(z)) # 0, for 2] <1, z € C, where ®(2) =1, — &1z —--- — P,2P. In
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addition, we can rewrite in more concise notation as

Y =®Z+ U, (2)

where Y is an d x (T' — p) outcome matrix, ® is an d x (dp) transition matrix, Z is an
(dp) x (T — p) design matrix, and U is an d x (T — p) matrix of process noise. In the
remainder of this work we refer only to first order (p = 1) VAR models with no mean
structure, however, as in all arguments can be extended to handle mean structures and
arbitrary lag orders without any loss of generality.

OLS Estimation of the VAR Model. For data from a single individual, ordinary
least-squares (OLS) regression is commonly used to estimate (2). When ® is unrestricted
the OLS estimates are asymptotically equivalent to estimates obtained using Generalized
Least Squares (GLS; Zellner| [1962). Assuming U; ~ N (0, Xy,) are independent across t,
the component-wise OLS estimates are Maximum Likelihood (ML) estimates (Liuitkepohl,
2007)). Under some mild assumptions, these estimators are known to be asymptotically
normal with explicit variance-covariance matrices.

Penalized Estimation of the VAR Model. A drawback of the unrestricted VAR
model is its profligate parameterization (Sims, [1980). Indeed, the number of VAR
parameters grows quadratically with each component series included. As a result a large
number of unknown coefficients must be estimated relative to the information available in
the data, and with typical sample sizes, VAR estimates will lack precision and exhibit poor
forecasting performance (Briggemann, 2012).

To address these dimensionality issues, much work has been devoted to reducing the
number of non-trivial parameters in the VAR model space. One class of approaches
accomplishes this by imposing restrictions on specific VAR coefficients (e.g. ¢13 = ¢y = 0).
For example, |Lutkepohl (2013) discussed top-down and bottom-up sequential search
procedures for identifying parsimonious VAR models, while [Hsu et al.| (2008) proposed

using the least absolute shrinkage and selection operator (Lasso; Tibshirani, [1996) to
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overcome the deficits of sequential specification searches. In terms of the properties of these
approaches, consistency of standard Lasso estimation for single VAR models was
established in the seminal paper by |Basu and Michailidis| (2015ab)), extending results from

the linear regression setting by Loh and Wainwright, (2012a.b)).

The multi-VAR Framework

In this section we extend our discussion of the VAR model to the case where
multivariate time series data is available from multiple subjects. We introduce the
standard multi-VAR proposed by [Fisher et al. (2022) and discuss the general mechanics of
the approach. Examples are provided illustrating these mechanics using the multivar
package for R (Fisher et al., |2021). We discuss some limitations of the standard
implementation and present novel adaptive penalty weights designed to address these
issues. Lastly we introduce a blocked-fold cross-validation approach for identifying the

multi-VAR penalty parameters.

Multiple Subject Vector Autoregressive Model

With data from multiple individuals available we are now interested in estimating the
transition matrices, ®!,..., ®* corresponding to 1, ..., K individuals. The approach

described herein relies on the following decomposition of ®,

SF=T"+T* k=1,... K, (3)

where T € R%™? corresponds to the common effects across K individuals and T'* € Réx¢
corresponds to the effects unique to individual k. That is, each individual’s transition
matrix is the superposition of common effects shared by all individuals, and the unique
effects specific to each individual. Notice there are no distributional assumptions placed on
the common or unique effects, allowing for individual transition matrices to differ
qualitatively and quantitatively across individuals. Specifically, we are interested in the

case where I'’ and T'* are sparse.
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The Standard multi-VAR

Fisher et al.| (2022) described one approach for solving using a modified Lasso

penalty,

argmin > [Y* = (0 + THZF(3 + AT + 3 Ao [T¥s, (4)
r=ror',. rk N k=1 k=1

where ||A||; denotes the ¢; norm of vec(A). Here we induce sparsity in the individual
transition matrices, ®*, through the decomposition of common and unique effects. Sparsity
in the multi-VAR solution is governed by the penalty parameters A; and Ay chosen using
cross-validation. Importantly, heterogeneity of the solution is also determined by the
competition of the two penalty parameters.

Here it is helpful to consider three common situations. First, suppose individuals
share little in common. In this case a sensible approach to estimating K related VAR
models would return essentially independent solutions. Specifically, for large enough values
of A1, = 0, and we obtain <i>k = f‘k Second, suppose there was very little heterogeneity
in a given process across individuals. Here, a sensible approach would pool the time series
and estimate a single transition matrix. In this case, large enough values of Ay will lead to
f‘k = 0, and we will have &Jk - Third, if the heterogeneity in dynamics among the K
individuals is unknown in advance, and both common and unique features are plausible, a
sensible approach would return a model in which the common f‘o and unique effects f‘k are
developed in accordance with how similar the K individuals are.

It is also worth noting that just because a path is shared by a subset of individuals
does not mean the estimated value of the corresponding parameter will be equal across
individuals. In this way multi-VAR accommodates both qualitative and quantitative
heterogeneity. See Figure [1| for a simulated toy example of these three settings (in the
order of the figure, (1) heterogeneous features, (2) homogeneous features, and (3)

heterogeneous and homogenous features) with 7= 100, K = 3 and d = 10. All models
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were estimated using the multivar R package (Fisher et al. 2021)). Code producing these

results is available in the Supplementary Materials.

The Adaptive multi-VAR

It is worth noting the standard Lasso procedure is characterized by some important
limitations, nicely discussed and summarized in a recent review paper by [Freijeiro-Gonzalez
et al.| (2022). First, for consistent path selection by Lasso, the design matrix needs to
satisfy additional assumptions such as the so-called irrepresentable condition (Zhao and
Yu, |2006). These assumptions require the covariates not to be too strongly dependent, and
are difficult to verify in practice. Second, even when the covariates are independent, Lasso
is well-known to suffer from an excessive number of false positives. This is a delicate point
having to do with the shrinkage procedure itself, thought to add pseudo-noise to the model
(see section 2.1.3 in |Freijeiro-Gonzalez et al.| (2022)), and references therein). Moreover, bias
can be a problem with ¢; penalization, primarily resulting from the shrinkage applied to
coefficient estimates corresponding to the true signal (Bithlmann and Van De Geer, [2011)).
In certain cases, the bias associated with large estimates is equivalent to the penalty
parameter used in soft-thresholding. We will revisit this final point in the following section.

Zou| (2006) proposed the adaptive Lasso to overcome some of the limitations associated
with the original Lasso procedure. The adaptive Lasso essentially replaces the ¢ penalty
with a re-weighted version, where the weights are determined by some initial consistent
estimate of the model parameters. This weighting allows for differential penalization across
the model coefficients, such that if an initial coefficient estimate is large, a smaller penalty
is applied. The opposite holds for initial coefficient estimates that are small in magnitude,
where a larger penalty is applied, and a more sparse solution is obtained. Remembering
the bias in the ¢; penalty for large coefficients is often proportional to the penalty
parameter, it is straightforward to see applying a smaller penalty to large coefficients will
reduce the bias of the estimator. Likewise, it is also intuitive that applying larger penalties

to coefficients with small initial estimates will reduce the number of false positives.
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In addition to the standard approach, [Fisher et al.| (2022)) also proposed an adaptive
version of the multi-VAR problem based on a between-person weighting scheme described

by Ollier and Viallon| (2017). The adaptive weights are built using a preliminary estimate

" = (~f ;) according to the following penalty function
d 1 K d 1 .
Pa=M Z ~7Q‘F?,j’ + Z >‘2»k Z Tk i a |Fi,j (5>
1,7=1 ‘(bi,j,median’ k=1 1,7=1 |¢z’,j - ¢i,j,median‘

where F?J corresponds to {i, j}** element of the common effects matrix, T'°, and I' f j
corresponds to the {7, j}** element of the unique effects matrix, I'*. The divisors

~ ~ ~ k ~ ~ ~ .
|¢median‘ = (’¢i,j,median|) and |¢ - q)median| = (‘(ﬁij - (bi,j,medianl) are defined using the

entrywise weighted medians of (<I>1, ce @K) and o > 1.
Extending the multi-VAR Adaptive Weights

In the regression setting, |Zhou et al.| (2009) suggest any initial estimate 0 of 0 with a
small bound on [|§ — 6||. In practice, the choice of initial estimates can have a large
impact on the bias and overall sparsity of the adaptive Lasso solution. |Fisher et al.| (2022)
used the unpenalized MLE of 8" to construct the adaptive weights. However, other initial
estimators have been explored in the literature. For example, |Zoul (2006) suggested ridge
regression and |Zhou et al.| (2009)) suggested the Lasso as promising estimators for
constructing the initial weights needed for the adaptive approach. Indeed the multi-VAR
approach is even more sensitive to the choice of adaptive weights as adjustments are
needed for coefficients not immediately estimable from the data (common and unique
effects). For this reason it is important to look at how these alternative methods for weight

construction impact the adaptive multi-VAR results.
Cross-Validation and Penalty Parameter Selection

The multi-VAR solution quality depends on the selection of the unknown penalty
parameters A\; and Aoy, K =1,..., K. In the multi-VAR setting we construct a grid of

plausible values for these parameters using the approach described in [Fisher et al.| (2022).
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To identify the optimal parameter values from a grid of plausible values we use
cross-validation. [Fisher et al.| (2022) proposed adapting a rolling-window cross-validation
(RWCV) procedure for high-dimensional VAR models (Banbura et al., 2010; Song and
Bickel, 2011)) to the multiple-subject setting. However, this approach relies on 1-step ahead
cross-validation and is computationally expensive. In the current work we propose a
computationally efficient adaptation of traditional fold-based cross-validation using blocked
sampling (BCV) to the multiple-subject time series context. Although the BCV approach
does not preserve the temporal ordering of the component time series (a model can be
tested on data that precedes chronologically the training data), it makes more efficient use
of the available data compared to RWCV, where many timepoints are essentially removed
from testing and training. Numerous authors have found BCV methods work well for
single-subject autoregressive models and stationary time series data (Bulteel et al., 2018}
Bergmeir and Benitez, 2012; |[Bergmeir et al., 2014} 2018)).

Figure |2 provides a visual depiction of the BCV approach. For each value of the \,
and Ay grid we perform the following sequence. First, we split each individual’s times
series into I’ equivalently sized folds. Next, we remove one of the 1,..., F' folds from each
individual’s multivariate time series (marked as the Test block in Figure . Using all
remaining folds (marked as the Train blocks in Figure [2)) we solve the problem in (b)) using
the training blocks from each individual to obtain I and f‘k. Separately for each
individual, these estimates are then used to forecast the testing block and obtain the
MSFE. We continue in this fashion, removing each of the F' folds, forecasting the omitted
test data, and calculating the error, at which time the forecast performance is aggregated
across the K individuals and F' folds for each combination of A; and Ay as in

MSFE —iKlF Y — Y2 6
At A2k — K Z F Z || f f||27 ( )
k=1" f=1

and the values of A\; and Ay, which correspond to the smallest MSFE are chosen for the
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final model.

Although a thorough discussion of solving the multi-VAR optimization problem is
beyond the scope of the current paper interested readers should see [Fisher et al. (2022),
describing a proximal gradient algorithm based on Fast Iterative Shrinkage-Thresholding
Algorithm (FISTA; Beck and Teboulle, [2009). This approach is implemented in the

multivar R package (Fisher et al., 2021)).
Simulation Study

To better understand how the initial adaptive weight estimators impact the overall
performance of the adaptive multi-VAR we conducted a Monte Carlo simulation study. In
doing so we also wanted to contextualize the performance of adaptive multi-VAR with
respect to current approaches for decomposing group and individual-level effects in the
VAR model (e.g. GIMME-VAR), and related K = 1 approaches. The performance of
K =1 approaches were of particular interest because they provide a benchmark for
evaluating whether the recovery of individual-level model parameters is improved by
sharing information across individuals. This question is especially interesting when
considering different levels of heterogeneity, and the current simulations were designed to
reflect a wider range of heterogeneous effects than those examined in [Fisher et al.| (2022)).
Finally, the simulations were broadly designed to provide additional context to results from
the empirical example, an fMRI study assessing habitual control. For this reason the
number of variables and individuals was kept constant at values similar to the empirical
data. However, time series length and other design features were varied to expand the
utility of our simulations. In the remainder of this section, we provide an overview of the

simulation design and results.
Simulation Design

Approaches Considered. In the simulation we compared different approaches for
estimating individual-level transition matrices. For the adaptive multi-VAR we considered

three different estimators for resolving the initial weights, (<i>1, ce CiJK), in (5): (1)
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maximum likelihood, (2) ridge regression and (3) Lasso. Outside of these initial weights the
estimators were identical. To contextualize multi-VAR’s performance we also included a
number of comparison approaches. First, we considered a version of GIMME based on the
VAR(1) model, GIMME-VAR. Second, we considered a number of estimators for the

K =1 VAR model, where data from each individual is treated separately. These
estimators represent some of the most common estimators for estimating K =1 VAR
models: (1) unpenalized maximum likelihood where non-significant paths were set to zero
using an o = 0.05 to achieve sparsity (ML Thresholded), (2) adaptive lasso with maximum
likelihood weights, (3) adaptive lasso with ridge regression weights, (4) adaptive Lasso with
Lasso weights, and (5) a K =1 version of GIMME-VAR where only the individual-level
model search is conducted (see the indSEM() procedure in the gimme R package (Lane

et al., 2019) documentation).

Simulating Heterogeneous Time Series. The proposed simulations were
designed to produce a wider range of heterogeneity across individual dynamics than has
previously been considered. [Fisher et al.| (2022) also considered three heterogeneity
conditions: in the low-heterogeneity condition 2/3 of paths were common to all individuals,
and 1/3 of paths were completely unique to each individual; in the medium heterogeneity
condition 1/2 of each individual’s paths were common and 1/2 were unique; in the
high-heterogeneity condition 1/3 were common and 2/3 were unique. This design produced
considerably more heterogeneity than is typically considered in similar simulations,
however, all paths were either unique to a single individual or shared by everyone. While
this data generation approach is well-suited to multi-VAR (or GIMME-VAR), it is likely
unrealistic for many processes. For example, it may be the case that certain paths are
shared by some individuals and not others. In this simulation we sought to improve upon
previous designs by generating data in a more realistic manner. Below we describe how
data were generated for different heterogeneity conditions in the current simulation.

Consider the general multi-VAR setting, where the possibility of shared model
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structures among the K individuals is allowed. In this setting, the degree of heterogeneity
can vary, ranging from all, to only selected individuals, sharing common non-zero paths.
To systematically investigate this idea we utilized the following procedure to quantify and
generate heterogeneity when choosing paths to share across individuals. First, consider a
multi-VAR model of order p = 1, involving d? possible paths in ®*. Let

mp = (mpi1,...,mpg) and 7y = (711, ..., 71 c) be vectors of proportions in (0, 1] associated
with paths and individuals, respectively, such that 7p; +... + 7p¢ < 1 and
p1>...>7pg. Forg=1,....G, mp, = d,/d?* (with integer d,) refers to the proportion
of paths that will be shared across 77, = k,/K proportion of individuals. The d, paths are
assumed to be selected at random from those not chosen in previous steps 1,...,9 — 1, and
the kg, individuals are selected at random from all K individuals for any g. As illustrated in
the example below, GG represents the number of draws of individuals and paths considered
within a given heterogeneity condition. In the current simulation we considered three
heterogeneity conditions: (1) no heterogeneity where mp = (1/4), 7y = (1), and (2) low
heterogeneity where mp = (1/5,1/10,1/20), 7y = (1,2/3,1/3), and (3) high heterogeneity
where mp = (1/5,1/10,1/20), 7y = (1/3,2/3,1).

Broadly speaking, in the no heterogeneity condition, we have path proportions vector
mp = 1/4 and individual proportions vector m; = 1. So, there is one sampling group
consisting of 100% of all individuals (7; = 1), and 25% of all paths are non-zero in this
group. Although the numeric values of the non-zero paths are distinct across individuals,
the location of the non-zero paths are uniform. In the low heterogeneity condition,
mp = (1/5,1/10,1/20) and 7; = (1,2/3,1/3). The first sampling group consists of 100% of
all individuals and has 20% non-zero paths. The second sampling group — which necessarily
overlaps with the first group — consists of 2/3 of all individuals and adds 10% new non-zero
paths that were previously zero. Finally, the third group — again, which is a subset of the
first group and may also overlap with the second group — consists of 1/3 of all individuals

and adds another 5% new non-zero paths. Just as with the no heterogeneity condition,
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although the locations of non-zero paths may be shared across individuals, the specific
non-zero values are distinct. In the high heterogeneity condition, 7p = (1/5,1/10,1/20)
and 77 = (1/3,2/3,1). The high heterogeneity condition is similar to the low heterogeneity
condition with the most important modification that only 5% of all non-zero paths are
shared across 100% of all individuals, instead of 20% of non-zero paths. Importantly, the
proportion of non-zero paths that is shared across individuals is much lower in the high
heterogeneity condition than in the low heterogeneity condition. Additional clarification on
our heterogeneity design is presented in the appendix, including a step-by-step description

of the algorithm described above for a single heterogeneity condition.
Additional Design Factors

Data was generated according to time series length of 30, 50, and 100 for 15
individuals and 10 variables, in line with our empirical example. Although our empirical
dataset had 100 timepoints per individual, we also considered shorter time series lengths,
as these are also quite common in the literature. Each dataset was then analyzed using the
multi-VAR approach, GIMME-VAR and single-subject (K = 1) methods. The multi-VAR
approaches consisted of adaptive multi-VAR with either maximum likelihood, ridge, or
lasso adaptive weights. The single-subject approaches consisted of unpenalized maximum
likelihood and adaptive Lasso with either maximum likelihood, ridge, or lasso adaptive
weights (labeled as K = 1 approaches in the results). For all penalized approaches we used
blocked cross-validation with 10 equal folds and mean-square forecast error (MSFE)
calculated on each test fold to choose the hyper parameters. We also compared the blocked
cross-validation (BCV) approach described above to the rolling-window cross validation
(RWCV) approach described by [Fisher et al.| (2022)) for the adaptive multi-VAR
approaches. This was done to determine whether the proposed BCV method performs at
least as well as the established method of RWCV. Additional details on these and other
cross-validation procedures for time series can be found in |Cerqueira et al.| (2020)). Finally,

for each cell of the simulation design 750 datasets were generated and analyzed.
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Outcome Measures

To compare the performance of the selected approaches we considered a number of
metrics. To characterize variable selection performance, how well the different approaches
recovered the data generating model, we used Matthew’s correlation coefficient (MCC).
MCC is a robust single-measure summary of path recovery that gives equal weight to
positive and negative cases and incorporates both sensitivity and specificity in its definition
(Chicco et al., 2021} (Chicco and Jurman|, 2020). MCC ranges from perfect disagreement
(MCC = —1) to perfect agreement (MCC = 1), with a value of 0 indicating chance

performance. For each multiple-subject dataset, the mean MCC is calculated as

1 K
Mean MCC = K Z (

TPkXTNk—FPkXFNk 7)
(TBy + FP)(TPE; + FNo) TNy + FE) (TN, + FNy)

where the measure in (7)) is averaged over K individuals and TP is the number of
nonzero-valued parameters in the data generating model correctly recovered as
nonzero-valued in the fitted model, TN is the number of zero-valued parameters in the
data generating model correctly recovered as zero-valued in the fitted model, FP is the
number of zero-valued parameters in the data generating model incorrectly recovered as
nonzero-valued in the fitted model, and F'N is the number of nonzero-valued parameters in
the data generating model incorrectly recovered as zero-valued in the fitted model.

We also looked at the quality and variability of the estimated coefficients using
absolute bias and root means square error (RMSE). For each multiple-subject dataset the

mean absolute bias and RMSE were calculated as

\ -

Mean Absolute Bias =

; 2 19 ®

1

d
7 .Zf hi 9% (9)
1,j=

N\
||MN

L&.

1 K
Root Mean Square Error = 17 E
k=1

where ¢ and ¢ are the (k,4, 7)™ elements of the data generating, and estimated
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transition matrices, respectively, for individual k£ in a given design condition.

Results

Cross-Validation Scheme. Before comprehensively reviewing the simulations we
note there was very little difference in the outcome measures of the adaptive multi-VAR
estimators based on whether a rolling-window or blocked cross-validation procedure was
used. For those interested a direct comparison of the two approaches on all outcome
measures is provided in the Appendix. However, as no meaningful differences were
observed for the simulation conditions considered here all results discussed in the

remainder of this section are based on the BCV procedure.

Model Recovery. Path recovery was evaluated using MCC. Mean MCC values for
each estimator, across simulations conditions, are provided in the first row of Figure 3] In
the No Heterogeneity condition, all individuals shared the same pattern of zero and
nonzero elements (in their transition matrix), however, the data generating values for
nonzero paths differed across individuals. In this condition, the multi-VAR approach with
Lasso penalty weights performed best, with mean MCC values of 0.80, 0.90, and 0.95 for
the T'= 30, T'= 50, and T" = 100 conditions, respectively. It is worth noting these MCC
values correspond to mean sensitivity values of 0.89, 0.98, and 0.98, and mean specificity
values of 0.94, 0.96, and 0.99, for the three time series lengths. In the current context,
sensitivity is a measure of the probability a path is recovered given it was in the data
generating model, and specificity is the probability a path is not recovered given it was not
in the data generating model. Formulas are calculating sensitivity and specificity are given
in the Appendix.

In the Low Heterogeneity condition, individuals had more common paths than unique
paths, and the data generating values of those paths varied across individuals. In this
condition, the multi-VAR approach with Lasso penalty weights performed best, with mean
MCC values of 0.67, 0.80, and 0.86 for T" = 30, T' = 50, and T" = 100, respectively. These

MCC values correspond to mean sensitivity values of 0.73, 0.90, and 0.95, and mean
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specificity values of 0.92, 0.93, and 0.94, for the three time series lengths.

In the High Heterogeneity condition, individuals had more unique paths than common
paths, and again the data generating values of those paths varied across individuals. In
this condition, the multi-VAR approach with Lasso penalty weights performed best for
time series lengths of T'= 30, T' = 50, and comparably to the GIMME-VAR approach for
the largest time series length, T'= 100. The multi-VAR with Lasso penalty weights
resulted in mean MCC values of 0.54, 0.71, and 0.80, while GIMME-VAR resulted in mean
MCC values of 0.44, 0.65, and 0.81, for T"= 30, T'= 50, and T' = 100, respectively.
Consistent with results from the previous two conditions, increasing levels of heterogeneity
tended to coincide with a decrement in path recovery, with those decrements primarily
driven by decreases in sensitivity.

Overall, the multiple-subject approaches (multi-VAR and GIMME-VAR) tended to
outperformed the K = 1 approaches in path recovery performance, even when relatively
few were paths shared by individuals in the sample. For the different multi-VAR
approaches, penalty weights computed with the Lasso were superior across all heterogeneity
conditions. This result was driven by increases in specificity, where the Lasso weights
provided a sparse initial estimate of individual-level transition matrices, <i>k, ce <i>k, which
led to fewer false positives. In general, multi-VAR (Lasso) outperformed all other
approaches in terms of path recovery, except for the high heterogeneity condition, at the
largest time series length, where it performed similarly to GIMME-VAR. The performance
differences between the adaptive multi-VAR (Lasso) and other approaches were most
pronounced at smaller time series lengths and primarily driven by higher specificity values,
meaning the adaptive multi-VAR (Lasso) was less likely to recover false positives than the
other approaches. With increasing heterogeneity levels, all multiple-subject approaches
tended to perform worse in terms of path recovery, becoming less sensitive. Although
sparsity levels (proportion of nonzero elements in an individual’s transition matrix) were

similar across heterogeneity conditions, they did vary, although not systematically. For
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example, mean sparsity was 0.20, 0.28, and 0.18 in the No, Low and High Heterogeneity
conditions, respectively. For this reason some caution is warranted in attributing

performance differences to heterogeneity alone, where sparsity may also be a factor.

Parameter Estimates. We also considered two measures of parameter accuracy,
mean absolute bias and RMSE. Both are measures of parameter accuracy, however, RMSE
also provides information about the variance of the estimates. Overall, the relative pattern
of the two measures was very similar, likely due to the overall sparsity of the recovered
parameter matrices. For the No Heterogeneity condition, and across all time series lengths,
mean absolute bias and RMSE tended to be lowest for the adaptive multi-VAR approaches,
however, these differences were most pronounced at the shorter time series lengths. For the
Low Heterogeneity condition, the multi-VAR approaches with maximum likelihood and
ridge penalty weights tended to exhibit the smallest absolute bias and RMSE, however,
again, this was most visible at the smaller time series lengths. Lastly, for the High
Heterogeneity condition, absolute bias and RMSE followed a similar pattern, except the
differences between the multiple-subject approaches were less pronounced. It is also worth
mentioning the K = 1 adaptive Lasso approach performed as well or better than the
multiple-subject approaches at time series lengths of 7' = 50 and 7" = 100.

In terms of absolute bias and RMSE, we again see the pattern of increasingly similar
performance across all methods as heterogeneity, and time series length, increased. One
interesting finding with regard to the absolute bias and RMSE is that among the adaptive
multi-VAR approaches, the maximum likelihood penalty weights, and to a lesser extent
ridge, tended to outperform the Lasso penalty weights. This was especially true at the

shortest time series length of 7" = 30.

Recommendations. Based on these simulations a few recommendations can be
made in regard to using adaptive multi-VAR in practice. Most importantly, penalty
weights based on the Lasso should be preferred in almost all circumstances for the adaptive

multi-VAR procedure if model recovery is the goal. The adaptive multi-VAR approaches
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appeared to perform particularly well in the shorter time series lengths (7" = 30, T = 50)
compared to alternative approaches. Only in the high heterogeneity condition, at the
shortest time series length of T" = 30, could an argument be made for using the maximum
likelihood or ridge penalty weights, and even here the benefit is questionable. Another
finding from these simulations is that as time series length and heterogeneity levels
increase, the benefits of using adaptive multi-VAR (or any of the multiple-subject
approaches that share information across individual datasets) decreases. Finally, we offer a
word of caution in regard to extrapolating too far beyond the current simulation design.
The current simulations were intended to mimic the empirical example, and only a small
set of plausible data generating conditions were considered, namely VAR(1) models with 15
individuals and 10 variables. As such more work is needed to determine whether these

conclusions generalize to additional contexts.
Empirical Example

Below we show how one might use adaptive multi-VAR to analyze multivariate time
series data from multiple subjects. The goal of this analysis was to better understand the
time-dependent relations underlying brain networks thought to be involved in habitual
control. Empirical data from 12 participants (6 adolescents, ages 15 — 17 years, Moz = 16,
SD,ge = 0.89; 6 adults, ages 25 — 32 years, M,ge = 28.5, SDyee = 2.43) were included in the
analyses. 10 regions of interest (ROIs) were of interest as they represent 3 functional
networks derived from the Power 264 atlas (Power et al., 2011). These networks include
the cingulo-opercular task control network, the fronto-parietal task control network, and
the default mode network (DMN) as they are broadly implicated in habitual control (Fox
et al., 2005 \Uddin et al., [2009). Time series data from each ROI were concatenated across
participants to produce a single matrix with 10 columns representing each ROI and 100

timepoints.

Procedure and Free-operant Task. Participants completed a free-operant task

(Tricomi et al., 2009) during the scan session where they learned to respond to fractal cues
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for food rewards. During the session participants were instructed to earn as many food
rewards as possible, and to respond as often as they wanted. After each response, either a
gray circle appeared for 50 milliseconds, indicating no food reward, or a picture of a food
reward appeared for 1 second, indicating a reward was earned. If participants responded
incorrectly, no display was shown. Food rewards were delivered on a 10-second
variable-interval schedule. After the session, participants were given the amount of food
rewards they earned. The contingencies among fractal images, button presses, and food
rewards remained consistent throughout the training sessions. Block order was

pseudorandomized, with no fractal images repeating throughout the study.

fMRI Data Acquisition and Preprocessing Procedures. Images were acquired
using a 3-T Siemens MAGNETOM Prisma FIT Scanner with a 20-channel head coil at the
Social, Life, And Engineering Sciences Imaging Center at The Pennsylvania State
University. High-resolution T1-weighted structural scans (0.9 x 0.9 x 0.9mm voxels) were
collected. For the free-operant task, T2*-weighted gradient single-shot BOLD echo planar
imaging (EPI) sequence functional images (3 x 3 x 4mm voxels, TR = 2s, TE = 0.025ms,

flip angle = 70°, FoV = 250 x 240, slice gap = Omm) were collected.

Functional images were preprocessed using standard steps in Analysis of Functional
Neurolmages (AFNI) software (Cox, [1996). Structural and functional images were
nonlinearly warped into MNI space. Images were corrected for slice timing effects.
Translational and rotational head motion estimates were calculated. Images were aligned
to the minimum outlier volume using a cost function (Ipc+ZZ). Any movement that
exceeded 0.3mm compared to the previous volume, and TRs with greater than 5% outlier
intensity fraction were censored from deconvolution analysis. Smoothing of functional
images was accomplished by applying a Gaussian filter set at 4.0mm full-width at half
maximum. We then used AFNIs 3dDeconvolve for deconvolution analysis. Motion
estimates, their derivatives, and a fourth-order polynomial function to remove scanner drift

during scans, were included as covariates of no interest. Importantly, no task specific
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regressors were included in the model. The residual time series after deconvolution from

each participants was used for subsequent analyses.

Results. Data were analyzed using the multivar package Fisher et al. (2022) with
the Lasso-based adaptive penalty weights. These weights were chosen because they
resulted in the best path recovery performance for time series length of 7' = 100 in the
simulations. Furthermore, the Lasso-based penalty weights performed similarly to the

other weights at T' = 100 in terms of bias and RMSE.

In looking at Figure |4| we can see the common and individual-level transition matrices
for all 12 subjects. The common effects matrix shows a general set of dynamics recovered
at the group-level. From the common effects it is clear lead-lag relations are stronger
within each network, compared to the dependence between ROIs from different networks.
Furthermore, average autoregressive path values were similar in magnitude between the
fronto-parietal network (M = 0.44) and default mode network (M = 0.42), compared to
smaller average autoregressive path values in the cingulo-opercular network (M = 0.28).
This suggests the cingulo-opercular network may be better regulated during the prescribed

learning tasks, compared to the other two networks.

The individual-level plots from the adaptive multi-VAR analysis are shown in Figure
[l The unique patterns of brain connectivity illustrated in these plots during the free
operant task may suggest differential susceptibility to form habits. For example, a study
from [Wang et al. (2022) found that changes in connectivity among nodes in the DMN and
cingulo-opercular network were associated with individual differences in habit strength.
Additionally, increased functional connectivity of the frontoparietal network has been
implicated in obsessive compulsive disorder (Stern et al., 2012)), anorexia nervosa (Boehm
et al., [2014), and substance abuse (Zilverstand and Goldstein) 2020). Thus, between-person
heterogeneity in the qualitative structure of networks may serve as one indicator of
maladaptive habit formation. Overall, these exploratory results suggest some interesting

directions for future work looking at the time-dependence among networks implicated in
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habitual control.
Discussion

In a very real sense the study of temporal processes forces us to acknowledge the
variation inherent to many psychological processes. Unfortunately, in the name of tradition
and convenience, this variability is often treated as a vagary of generalizable research. John
Nesselroade, reflecting on the use of time series models for characterizing psychological
phenomena, and referencing Peter Molenaar’s Manifesto on Psychology as Idiographic
Science, once wrote "the place of the individual in a science of behavior aspiring to
establish general lawful relationships is somewhat ambiguous" (Nesselroade| 2007, p. 249)
Over the last 50 years there is perhaps none who have done more to resolve this ambiguity
than Peter Molenaar. Even now, how best to temporally synthesize heterogeneous
dynamics across individuals remains an important question for a generalizable science of
behavior. This is even more true when one is concerned with processes exhibiting
qualitative and quantitative heterogeneity, where individuals may differ in the magnitude
and overall pattern of time-dependent dynamics.

In this work we extended the adaptive multi-VAR approach proposed in [Fisher et al.
(2022) to include new penalty weights and cross-validation schemes, the former of which
dramatically improved path recovery across a variety of commonly encountered data
scenarios. Performance of these new weights was evaluated in a small simulation study, and
the multi-VAR approach with Lasso weights outperformed alternatives across the majority
of simulation conditions. Most remarkably, multi-VAR outperformed K = 1 approaches in
path recovery, even when relatively few paths were shared by individuals in the sample.
Simulation results also showed as heterogeneity levels and time series lengths increased, the
benefits of multi-VAR over K = 1 approaches diminished. Although these limited results
appear promising a number of important questions remain unaddressed. Future work
should consider comparing the multi-VAR approaches to alternative methods for

characterizing heterogeneity in time series models, such as mixture modeling and flexible
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multilevel approaches. Additional work is also needed to disentangle sparsity and
heterogeneity in proposing and evaluating models.

Practically speaking, methods for handling missing data within the multi-VAR
framework are needed. Recent work from |Ji et al.| (2018) considered multiple imputation
(MI) approaches for handling missing data in multivariate time-series models, however,
how best to integrate these approaches with penalized estimation is an open question.
Critical to this endeavor is how to aggregate over imputation iterations when different sets
of variables are retained for each iteration. Another open question relates to the manner in
which the current multi-VAR implementation induces sparsity in individual-level transition
matrices. In the current procedure, the penalization is applied to the common effects and
unique transition matrices, I'° and I'*, respectively. The penalty is not directly applied to
the sum of these matrices (e.g. ®" = I'° + I'*). Thus, sparsity in ®" is encouraged
indirectly, through this sum.

In certain situations this can result in small false positive values when an individual
does not have a group-path in their final model. Lastly, the multi-VAR framework should
be expanded to include additional time-series models, beyond the standard VAR (e.g.
structural, graphical and time-varying VAR). Work addressing these important areas of
development is currently underway. It is our hope the development of multi-VAR and
similar approaches will provide researchers with tools for flexibly addressing

between-person heterogeneity in time series dynamics.
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Appendix
Demo Code from Synthesizing Heterogeneous Dynamics Section

Below we include the code used to generate Figure [I]

28

set.seed (1234)

sim <- multivar::multivar_sim(

k = 3, # number of individuals
d = 10, # number of variables
n = 100, # number of timepoints
prop_fill_com = 0, # proportion of common that are common
prop_fill_ind = 0.1, # proportion of paths that are unique
1b = 0.1, # lower bound on coefficient magnitude
ub = 0.9, # upper bound on coefficient magnitude
sigma = diag(1,10) # noise
)
model <- multivar::constructModel (data = sim$data)

fit <- multivar::cv.multivar (model)

gridExtra::grid.arrange (

plot_transition_mat (sim$mat_com, title = "True Common Effects"),
plot_transition_mat(sim$mat_ind_final [[1]], title = "True Total Effects (k=1)"),
plot_transition_mat(sim$mat_ind_final [[2]], title = "True Total Effects (k=2)"),
plot_transition_mat (sim$mat_ind_final [[3]], title = "True Total Effects (k=3)"),
plot_transition_mat(fit$mats$common, title = "Estimated Common Effects"),
plot_transition_mat(fit$mats$total [[1]], title = "Estimated Total Effects (k=1)"),

plot_transition_mat(fit$mats$total [[2]], title "Estimated Total Effects (k=2)"),

plot_transition_mat (fit$mats$total [[3]1], title "Estimated Total Effects (k=3)"),

ncol = 4, nrow = 2

set.seed (1234)

sim <- multivar::multivar_sim(

k = 3, # number of individuals

d = 10, # number of variables

n = 100, # number of timepoints

prop_fill_com = 0.1, # proportion of common that are common

prop_fill_ind = 0, # proportion of paths that are unique

1b = 0.1, # lower bound on coefficient magnitude
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ub = 0.9, # upper bound on coefficient magnitude
sigma = diag(1,10) # noise,
)
model <- multivar::constructModel (data = sim$data)
fit <- multivar::cv.multivar (model)

gridExtra::grid.arrange (

plot_transition_mat (sim$mat_com, title = "True Common Effects"),
plot_transition_mat(sim$mat_ind_final [[1]], title = "True Total Effects (k=1)"),
plot_transition_mat(sim$mat_ind_final [[2]], title = "True Total Effects (k=2)"),
plot_transition_mat (sim$mat_ind_final [[3]], title = "True Total Effects (k=3)"),
plot_transition_mat (fit$mats$common, title = "Estimated Common Effects"),
plot_transition_mat (fit$mats$total [[1]], title = "Estimated Total Effects (k=1)"),
plot_transition_mat (fit$mats$total [[2]], title = "Estimated Total Effects (k=2)"),
plot_transition_mat (fit$mats$total [[3]], title = "Estimated Total Effects (k=3)"),
ncol = 4, nrow = 2

)

set.seed (1234)

sim <- multivar::multivar_sim/(

k = 3, # number of individuals
d = 10, # number of variables
n = 100, # number of timepoints
prop_fill_com = 0.05, # proportion of common that are common
prop_fill_ind = 0.05, # proportion of paths that are unique
1b = 0.1, # lower bound on coefficient magnitude
ub = 0.9, # upper bound on coefficient magnitude
sigma = diag(1,10) # noise,
)
model <- multivar::constructModel(data = sim$data)
fit <- multivar::cv.multivar (model)

gridExtra::grid.arrange (
plot_transition_mat (sim$mat_com, title = "True Common Effects"),

plot_transition_mat (sim$mat_ind_final [[1]], title = "True Total Effects (k=1)"),

plot_transition_mat (sim$mat_ind_final [[2]], title "True Total Effects (k=2)"),
plot_transition_mat (sim$mat_ind_final [[3]], title = "True Total Effects (k=3)"),
plot_transition_mat (fit$mats$common, title = "Estimated Common Effects"),

plot_transition_mat (fit$mats$total [[1]], title = "Estimated Total Effects (k=1)"),

29
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78 plot_transition_mat(fit$mats$total [[2]], title = "Estimated Total Effects (k=2)"),

79 plot_transition_mat (fit$mats$total [[3]], title "Estimated Total Effects (k=3)"),
80 ncol = 4, nrow = 2

81|)

Generating Heterogenous Dynamics

To better illustrate the data generation algorithm presented earlier it may be helpful
to consider a single condition in more detail. Let us supposed a 10-dimensional VAR(1)
model with 15 individuals. Let us also consider the high heterogeneity condition where we
have path proportions vector, 7p = (1/5,1/10,1/20), and individual proportions vector,
mr = (1/3,2/3,1). We will simultaneously iterate through these two vectors in the
following manner to construct the individual transition matrices a given instance of the
high heterogeneity condition.

For iteration 1 we begin by taking the first element from the path proportions vector,
mp1 = 1/5. This number indicates the proportion of nonzero paths that will be shared by
the proportion of individuals in 77 ;. As we have 100 possible nonzero paths in an arbitrary
10 x 10 transition matrix in this example, we randomly select the location of 20 nonzero
elements (rp; = 1/5 = 20/100). We now assign those nonzero paths to 7, = 1/3 of our
sample. As there are 15 individuals in our current example, we randomly select 5
individuals (771 = 1/3 = 5/15) and assign those 5 individuals to the same 20 nonzero
paths. Note, although the location of these 20 non-zero paths are uniform across the 5
individuals selected, the numeric values of the non-zero paths are distinct.

In iteration 2 we take the second element from the path proportions vector,
mpa = 1/10 and the second element from the individual proportions vector 7y = 2/3.
Using these proportions we randomly select 10 new nonzero paths that were not previously
selected in iteration 1 (mp2 = 1/10 = 10/100). We then assign these nonzero paths to 10
randomly selected individuals (772 = 2/3 = 10/15). Note, the randomly selected
individuals from iteration 2 may overlap with the individuals selected in iteration 1.

In iteration 3 we take the third and final element from the path proportions vector,
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mps = 1/20 and the second element from the individual proportions vector ;3 = 1. Using
these proportions we randomly select 5 new nonzero paths (mp3 = 1/20 = 5/100) that were
not previously selected in iteration 1 or 2, and assign them to all 15 individuals in the
sample (773 =1 = 15/15). Again we note that although the location of these non-zero
paths are uniform across the individuals selected, the numeric values of those non-zero
paths are distinct across individuals.

Finally, for all individuals separately, choose parameter values at random from the
uniform distribution U(0.1,0.9) for all nonzero paths identified in the previous iterations
and, if needed, re-scale the resulting transition matrices, ®" to ensure a stable solution.
Using their respective path and individual proportion vectors this exact procedure is then
followed to construct the data generating matrices for each replication of no and low

heterogeneity conditions.
Sensitivity and Specificity

In the paper we occasionally reference sensitivity and specificity when it provides
additional insight into path recovery performance. Sensitivity and specificity are measures
of the probability a path is recovered, given it was in the data generating model, and the
probability a path is not recovered, given it was not in the data generating model,

respectively. Here we show how these measures were calculated,

Mean Sensitivity — — i( Th > (10)
ean Sensitivity = — —_—
YUK EZ\Th+ PN
1 & TN,
Mean Specificity = — () 11
ean Specificity = — k; TN, 1 FD, (11)

where aggregate measures were obtained by averaging across Monte Carlo iterations. Here,
as in the calculation of MCC above, TP is the number of nonzero-valued parameters in the
data generating model correctly recovered as nonzero-valued in the fitted model, T'N is the
number of zero-valued parameters in the data generating model correctly recovered as

zero-valued in the fitted model, FP is the number of zero-valued parameters in the data
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generating model incorrectly recovered as nonzero-valued in the fitted model, and F'N is
the number of nonzero-valued parameters in the data generating model incorrectly
recovered as zero-valued in the fitted model.
Comparison of Cross-Validation Schemes

Simulation results for the adaptive multi-VAR models using both the block and
rolling-window cross-validation approaches are provided in Figure |5 No discernible pattern
of differences emerged across the two cross-validation approaches for the set of simulation

conditions considered.
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Figure 1. Toy Example of Heterogeneity Adjustments
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Case 2: Individuals Share All Dynamics in Common
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Case 3: Individuals Share Some Dynamics in Common (50% Common and 50% Unique)
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Data generating (true) and estimated transition matrices from multi-VAR are presented for
three different cases, each exhibiting a different level of heterogeneity. For all cases,
10-variable first-order VAR models were generated for 3 individuals and 100 timepoints. In
Case 1 data were generated such that all individuals exhibited unique dynamics, no
nonzero elements were shared across individuals. In Case 2 data were generated such that
all individuals showed the same pattern of nonzero elements in their transition matrices. In
Case 3 data were generated such that 50% of an individual’s nonzero paths were common
to all 3 individuals, and 50% were entirely unique to each individual. Elements in the
transition matrices represent parameter values whose magnitude is indicated by the legend.
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Blocked Cross-Validation

Subject Time Fold
1
2
1 :
P
1
2
K :
P

An example of blocked cross-validation for multiple-subject time series data. For any given
fold, blocks marked Train are used to fit the model, and blocks marked Test are used to
evaluate the prediction.
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Figure 3. Simulation Results
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Figure 4. Estimated Dynamics During Free-Operant Task

Group-Level Transition Matrix
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Note. Variables beginning with fp indicate regions of interest (ROIs) in the fronto-parietal

network, variables beginning with dmn indicate ROIs in the default mode network, and
variables beginning with co indicate ROIs in the cingulo-opercular network.
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Figure 5. Simulation-based Comparison of Cross-Validation Schemes
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