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Abstract

This work introduces a novel framework for dynamic factor model-based group-level anal-
ysis of multiple subjects time series data, called GRoup Integrative DYnamic factor (GRIDY)
models. The framework identifies and characterizes inter-subject similarities and differences be-
tween two pre-determined groups by considering a combination of group spatial information and
individual temporal dynamics. Furthermore, it enables the identification of intra-subject simi-
larities and differences over time by employing different model configurations for each subject.
Methodologically, the framework combines a novel principal angle-based rank selection algo-
rithm and a non-iterative integrative analysis framework. Inspired by simultaneous component
analysis, this approach also reconstructs identifiable latent factor series with flexible covariance
structures. The performance of the GRIDY models is evaluated through simulations conducted
under various scenarios. An application is also presented to compare resting-state functional

MRI data collected from multiple subjects in autism spectrum disorder and control groups.
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1 Introduction

1.1 Statistical analysis of brain connectivity

The analysis of brain connectivity typically focuses on examining the synchronized activity of spa-
tially distinct brain regions. Modeling such interconnected regions includes structural connectivity
(a network of anatomical or structural connections linking distinct units), and functional connectiv-
ity (capturing statistical dependence between distinct units). The units can be individual neurons,
neuronal populations, and anatomical regions of interest (ROIs). In addition to the statistical de-
pendence, one may be interested in causal interactions between these units (effective connectivity)
(see |Sporns; 2007, for further explanation).

To explore functional connectivity, one uses functional magnetic resonance imaging (fMRI) to
capture blood-oxygen-level dependent (BOLD) signals observed over time. Each BOLD signal
is mapped to a pre-specified ROI via a brain atlas. The strength of this signal is regarded as
a proxy for brain activity since the blood oxygenation of the area of interest increases when the
corresponding regions become active. Depending on the research goal, one may focus on establishing
a statistical model to localize brain areas activated by the task, or building a prediction model about
psychological or disease states. For these purposes, task-based fMRI (T-fMRI), a series of BOLD
signals acquired while the subject performs a set of tasks, is often used. In making inferences
about the structure of relationships among brain regions, across time points, and between subjects,
resting-state fMRI (R-fMRI) is another option (e.g., Smith; 2004)). Our motivating application will
focus on R-fMRI.

Two types of questions can be addressed with R-fMRI for statistical brain network analysis.
The first question concerns the construction of a network representation that reveals spatial and
temporal dependences between ROIs. The most active research related to this question involves
identifying commonality and uniqueness in connectivity patterns between (group of) subjects. The
other question is about establishing a mathematical model that describes effective connectivity of
the brain network (e.g., Lindquist} 2008).

One promising statistical tool for addressing the first question is called data integration. In
this context, data integration can be used to study similarities and differences in structures across
subjects. Often, this heterogeneity is due to factors either directly observable (e.g., demographic,
disease status, experiments) or hidden (e.g., causal mediation), which can be revealed through

statistical modeling. The observations for such studies form multi-block (or multi-view) data, and



these data structures naturally motivate the simultaneous exploration of the joint and (group)
individual variations across and within data blocks. However, this approach often discounts tem-
poral dependence and shows limitations in explaining directed connections. On the other hand,
the second question can be dealt with using network modeling. For example, structural equation
modeling (SEM) can be used to test causal relationships between ROIs. Alternatively, statistical
dependence can be formulated through graphical models. However, identifying joint and (group)
individual configurations in this context is less obvious, and the number of such studies is relatively

low (e.g., Lee et al.; [2013, and references therein).

1.2 Contributions

We propose GRoup Integrative DYnamic factor models, which we abbreviate as GRIDY, and their
estimation procedure for multivariate time series data (e.g., R-fMRI) collected on a set of common
variables (e.g., ROIs) across subjects from several predetermined groups. There are several impor-
tant points to note about GRIDY models. First, we can identify model configurations for spatial
and temporal information that is shared or unique among subjects in the groups. Distinguishing
model parameters contributes to explaining inter-subject differences in the measurement and dy-
namics of the time-dependent signals. Second, we allow the factor series to evolve over time. This
is crucial because the model can present dynamic temporal dependencies, thus explaining intra-
subject differences over time. Third, by allowing flexible covariance structures of factor series,
the model can capture the heterogeneity of the subjects through different scales and combinations
of factor series. Last, we illustrate the proposed model with an application to fMRI data from
multiple subjects belonging to autism spectrum disorder and control groups. This work serves to
suggest one possible choice of models to describe both inter-subject and intra-subject similarities

and differences in dynamics of multiple subjects from several groups.

1.3 Related approaches

From a methodological standpoint, two developments are related to our proposed approach. One
is integrative data analysis. It has been employed in various fields such as computational biology,
chemometrics, and some areas of neuroscience. It originated from partial least squares (PLS) or
canonical correlations analysis (CCA) to find the maximum covariance (correlation, respectively)
between sample projections on the canonical loadings and the canonical scores from different sub-

jects (e.g., Witten and Tibshirani; 2009; [Lofstedt et al.; 2013]). A variant of principal component



analysis (PCA) for finding the direction presenting a maximal variation from the center has also
been leveraged for multi-block data (e.g., /Abdi et al.f 2013]).

The data integration approach has been developed to discover common and individual structures
shared across different subjects. The recent development tends to include various block segmen-
tations of multi-block data (e.g., |O’Connell and Lock; [2019; Park and Lock; 2020)). Several data
integration approaches have also been applied to neuroimaging studies. For example, |[Yu et al.
(2017) analyzed CIFTI format imaging data (cortical surface plus subcortical gray matter) and a
set of behavioral measurements from the Human Connectome Project (HCP) 500 subjects to un-
derstand the relationship between brain activity and human function. Murden et al.| (2022) applied
their model to R-fMRI and diffusion MRI (dMRI) to find similarities between functional connec-
tivity and structural connectivity. The approaches above extract common structures from different
datasets, with the heterogeneity arising from the source of data rather than factors uniquely em-
bedded in subjects. These approaches have the limitation of disregarding temporal dependence.

Another related approach is Gaussian graphical models (GGMs). Several recent works on the
joint estimation of these models incorporate temporal dependencies. For example, |Qiu et al.| (2016])
used a kernel-based method to represent smooth changes in dependence over time. Similarly,
Qiao et al. (2019) introduced Gaussian random functions to model temporal dependence, and |Zhu
and Li| (2018) introduced matrix-valued variables to represent spatial and temporal dependence
simultaneously. In contrast, |Fan et al.| (2018) added external covariates to loadings matrices in
factor models to construct graphical models from the residuals. However, it is important to note
that graphical models cannot be used to understand directional (causal) relationships between
variables.

Our modeling approach is also closely related to various group-level analyses. In particular,
a popular model in this framework is the group independent component analysis (GICA). GICA
combines individual ICA models (e.g., Hyvarinen and Ojaj; [2000; Li et al.; [2007), by using either a
temporal or spatial concatenation of data across different subjects (e.g., Guo and Pagnoni; 2008),
or multi-way tensor models maximizing explained variations across temporal, spatial, and subject
dimensions (e.g., Beckmann and Smith; 2005)). A comprehensive survey regarding GICA models
for group-level analysis can be found in (Calhoun et al. (2009). Other group-level analyses also exist
(e.g., population value decomposition in |Crainiceanu et al.f 2011)). Closer to our proposed model,
Maneshi et al. (2016) proposed a GICA model with shared and group specific components, called

shared and specific independent component analysis (SSICA). However, the focus of these methods



is not on factor dynamics over time, and very few approaches go beyond just identifying shared
structures. In particular, the SSICA of Maneshi et al| (2016) involves several whitening/PCA-
reduction steps at the group and aggregation levels on the temporal side whose effects are not easy
to parse out.

Time series models offer an alternative as they easily incorporate directed and lagged relation-
ships. Their usefulness in the analysis of fMRI has been demonstrated (e.g., |(Chen et al.; 2011}
Gates and Molenaarj [2012). Recently, [Skripnikov and Michailidis (2019), Manomaisaowapak and
Songsiri| (2022)) employed combinations of different penalized estimations of vector autoregressive
(VAR) models to represent subject heterogeneity by specifying both joint and individual structures.
However, the joint structures in their works need not be identical, which has a limitation in explain-
ing common dependences. Fisher et al.| (2022, 2023) addressed this issue by imposing additivity on
the transition matrices, ensuring that the model produces identical estimates across subjects while
allowing the rest of the components to be individually specified. However, VAR-based modeling
requires a relatively large computational cost compared to other dimension reduction methods.

We shall employ dynamic factor models (DFMs) within the group-level analysis framework.
DFMs provide low-dimensional dynamic representations that enhance explainability and typically
involve low computational costs in their estimation procedure. Our study extends the application
of DFMs to R-fMRI data from multiple subjects, enabling us to explore both inter- and intra-
subject similarities and differences. Through the reconstruction of latent factor structures, we also
investigate the heterogeneity among subjects. To the best of our knowledge, this work is the first
model, even in terms of methodology, to consider DFMs in the context of multiple subjects and

group-level analysis with shared and group specific structures.

1.4 Outline of study

The rest of the manuscript is organized as follows. In Section [2, we introduce our model consisting
of joint (shared) and group individual structures. In Section |3 we outline the estimation procedure
first, describe the segmentation of multi-block data and discuss the idenfiability of structures. Then,
we introduce the estimation method for the loadings and factors in our model and the method to
reconstruct the dynamics of factor series. In Section 4] we provide simulation results under various
settings that support the approach empirically. In Section a joint analysis of R-fMRI data
collected from multiple individuals is conducted and leads to the functional connectivity networks

of brain regions. In Section [6, we summarize the results, discuss limitations, and suggest possible



extensions.

2 Proposed model

Assume that we divide all individuals into GG non-overlapping and different groups and assume
there are K1, Ks,..., Kg number of subjects in each group. To simplify the notation and to be
consistent with our application, we consider only two groups, G = 2, and suppose that each group
contains an equal number of subjects, with the first K subjects in the first group and the remaining
K subjects in the second group. It is possible to extend the number of groups to be more than two
and handle an unequal number of subjects in each group.

The observations from the kth subject are as follows. Define the T}, x d dimensional observation
matrix X = (Xf’]:))izl,m,d’ t=1,... T, to represent kth subject and d variables with the observations
collected over T}, times. We assume that the temporal evolution of kth subject observations is ex-
plained by r latent factor series, in the presence of the additive noise Ej, € R7k*? More specifically,
the model is defined as the sum of the signals driven by r latent factors and the additive noise, in

a matrix form,
X, — F:B,+E;,, k=1,... K, 0
F.B, + Ey, k=K+1,...,2K,
where Fj, € RTk*" are factor series of kth subject and the corresponding loadings matrices are
denoted as By, By € R¥" 5o that the components F;B/ and F;BY construct the block signals of
kth subject in each group, respectively.
We are interested in the separation of contributions for explaining the variability of the data

jointly and group individually. Among the block signal of kth subject in gth group Fkaw we

assume that it can be decomposed into the joint components and group individual components,
F.B, = F;B +F;B,, (2)

where B = (B¢7j)i:17_..7d, j=1,..r, is the joint loadings matriz identical to all 2K subjects, Bg =

(BZ-(?)I':L“‘% j=1,...0c» § = 1,2, are group loadings matrices only shared through the subjects within
each group, Fj, € RT-X"7 are joint factor series and f‘k are group indiwidual factor series. We set
r =1y + rg. Note that the ranks of the group individual factor series need not be identical; one
can set the numbers of individual factors for groups 1 and 2 as rg, # rg,. However, to simplify

the model description, we limit these quantities to be identical.



To construct DFMs, for each k, the d—dimensional vector of observation at time ¢, denoted as
Xt(k), is explained by the joint component vector BFt(k) and group individual component vector

Bg Nt(k), g =1,2, where

x = ByRM + B (3)
= (k)
5 o5 ]| (k)
= |B B ~ +FE (4)
[ g [F}’” !
550k | R pk k
= BF® + B, F + EW (5)
= XM+ XP 4 EY g=12 k=1, 2K, (6)

and Et(k) = (Ei(]z))izlw,d is a noise vector with zero mean and variance X ;. To connect f@
with and , we define Xt(k) as being explained by a linear combination of the r j—dimensional
joint factor Ft(k) = (Fj(t)) j=1,....r, and rg—dimensional group individual factor Ft(k) = (FJ(’:)) Gl

In summary, the model is defined as

ka)' ka)’ _Xl(k)’ Eik)’
X, = Dl =X+ X+ Ep=| 0 [+ P |+ (7)
ng)' ng” _ X%z)' Egz)'
Fl(k)’ E%k)’
= BB, +E,=| : ||BY BY'| + : (8)
F}l:)’ E;ﬁ)

where the block signal for kth subject is

- o
BBy = | |5 B+ | c |[BY . BY]=RBEB,
Fj(jf)’ F%k)/

By stacking up all multi-block observations, we have a large matrix of blocks in as follows:

X Y, Eq X X E;
= =]+, (10)

Xok Yox Esx Xok Xox Ea i

where X, refers to the joint component of kth subject and X, refers to the group individual com-
ponent of kth subject, which form the joint structure and group individual structures, respectively.

Each large matrix consists of n = ), T}, samples in time and d variables, usually n > d. Moreover,

7



since the model stacks up the observation blocks X, € R7+*? into a single matrix, unlike the
tensor-based decomposition models where the sample lengths T} for all subjects should be equal,
the sample length T} can be different across subjects. We also note that the way data blocks are
stacked in is not the standard construction seen in the current literature on data integration.
A typical stacking is to have subjects on the horizontal axis and variables across several datasets
(blocks) on the vertical axis. The stacking used here arises because of the time dimension and is
also tied to the model of interest. The number of blocks 2K in is also large, compared to what
is typically considered in the literature on data integration.

To complete the construction of the latent factor series, assume that VAR(p) model governs the

joint factor series, that is,
- =(k _(k _(k
T (L)EY =, {a ) ~ WN0, 3, (1)

where Wy (L) = -y, L—...— W, LP is a rj x 1y operator of finite length p with a lag operator L.
The roots of det(¥(z)) lie outside the unit circle (e.g. Chapter 2.1 in [Liitkepohl; [2005) so that the
series becomes stable. Note that, unlike unspecified properties of the noise at the observation level,
we quantify the noise for latent factor series to be white noise. The analogous VAR assumption is

made for the group individual factor series.

3 Methods

3.1 Overview of GRIDY procedure

We summarize the estimation procedure of GRIDY. In the first step, by assuming that the block
observations X1, ..., Xox can be approximated by rank r block signals as in , we obtain the joint
components X, ..., Xk and two group individual components 5(1, e ,XK and XK+1, e ,XQK
as in f via a principal angle-based block segmentation algorithm. This step is explained in
Section Next, an algorithm that factorizes the obtained block structures into the loadings
matrices B, El, Bg and the factor series Fl, . ,FQK, Fl, . ,FK, and FK+1, cee FQK designed
for multiple subject component models is applied separately to each block structure. Last, we
reestimate the factor series from observation blocks by regression and complete the reconstruction
of factor dynamics by the Yule-Walker equations. The last two steps are explained in Section
In addition, if 7 is not explicitly given, we apply rotational bootstrap to estimate the unknown
rank r of the given block signals, which is described in Section Note that each step of the



proposed procedure can be replaced by some alternative method, some of which are considered in

the simulation experiment in Section

3.2 Segmentation of joint and group individual variation

Joint Individual Variation Explained (JIVE; Lock et al.; [2013) first used the idea of singular
value decomposition (SVD) to segment concatenated block observations into joint and individ-
ual structures using low-rank approximations. In this approach, the desired structures are found
by considering the sums of squared residuals to minimize the unexplained variability. However, a
permutation-based rank selection for the joint structure is not guaranteed to achieve the true rank,
in particular when there is some correlation across individual structures. Common orthogonal basis
extraction (COBE; Zhou et al} |2015) can improve the basis extraction in JIVE in a systematic
way by adding orthogonality constraints for joint and individual loadings. However, the algorithm
is still iterative and the rank selection is not supported theoretically.

Recently, a non-iterative integrative data analysis framework, namely Angle-Based Joint Indi-
vidual Variation Explained (AJIVE; Feng et al.; 2018), was developed. This framework decomposes
multi-block data into the desired structures. Unlike previous works that determine the joint struc-
ture by enforcing orthogonality between the joint structure and the individual structure, AJIVE
employs the concept of Principal Angle Analysis (PAA). Furthermore, the estimation procedure
is non-iterative, which saves computational cost when the number of blocks is substantial. The
details of the block segmentation algorithm and the identifiability condition of the produced block
structures are presented in Sections and respectively.

3.2.1 Estimation of block structures

The AJIVE method applied to our problem works as follows. An initial rank estimate 7 of the
signal block Y of X is needed for each k. Let

Y. = UiS, V), (12)

be rank-7; approximation of Y} obtained from the SVD of X, where Uy and V, are T}, x 71, and
d x 74 matrices of orthonormal columns and Sy, is a diagonal matrix with 74 singular values. Note
that V}, can be thought as an approximation of B, under our model . Since we are looking for

a joint structure among 2K subjects, it is natural to consider the following (> ) X d matrix and



its SVD:

J=1| 1 | =08,V (13)
Vi

where, in particular, the diagonal matrix S, consists of singular values ¢;; in decreasing order.
The idea then is to decide on the number 7; of singular values 6;; and take the corresponding

columns of V; to capture a joint structure among 2K subjects.
Two approaches were suggested in [Feng et al.| (2018) for the number of singular values 6; for
a joint structure: the random direction bound approach and the Wedin bound approach. In the
random direction approach, one replaces \2 by randomly generated matrices with orthonormal
columns and computes the largest singular value of the resulting matrix in . The process is
repeated M times and the 5th percentile of the distribution of such largest singular values is taken
as a threshold for ;. In the other approach, the Wedin bound (in the second inequality below

concerning principal angles) is used to show that

2K 2K . A 2
E,V E, U
63, > 2K 3 st (B pn) > 2K — 3 max(||Ex Vi, [|E;Ukll2) | ’ (14)
k=1 k=1 Tmin(Yr)

where omin (Yk) denotes the smallest singular value of Yk in and 0y, », r#, 1s the largest principal
angle between subspaces for Yy and Yj. In practice, |[E; V|2 and ||E,Uy|ls are approximated
by [| X5 Vill2 and || X, Up|la where V}, and Uy, have the same dimensions as and are orthogonal to
V), and Ijk, respectively. Repeating this process L(= M) times, one obtains L approximations of
the lower bound in and takes their 95 percentile as a threshold for the squared singular values
(}?M. The final determination of the joint rank #; is achieved by counting the number of 7 ;; that
exceed both thresholds.

Finally, define the matrix V; by retaining the 7#; columns of Vv . Let Py =V JV& be the
projection matrix onto the estimated joint space. The estimators of X}, the joint structure for
each k, are obtained through X, P . Similarly, the estimation of the individual structure for each
k, denoted as Xy, is estimated by Xk(vk\?;f — Pj). We regard them as the estimators of group

individual structures X in GRIDY model, but taking into account the following remark.

Remark 3.1 We note that the joint structures X, P; = (Xk\_/J)\_ff] are of the factor model form
F.B’ as in @D This is not the case for the group individual structures Xk(\A/'kV;C -P J) where

k=1,...,K for group 1 and k = K + 1,...,2K for group 2. We nevertheless refer to the latter
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as group individual structures, and under our model, fit factor models of the form ]?‘kf’)fq as in
(9 through simultaneous component analysis (SCA) in Section below. The factor model is
also refitted through SCA for the joint structures. We also note that in our simulation study, we
consider the procedure where the joint and group individual structures are identified through double
application of SCA, but this approach performs considerably worse than the suggested method
based on AJIVE. It should also be stressed that only AJIVE can currently produce reasonable

estimates of the various ranks needed for our model. For further discussion, see Section

3.2.2 Identifiability of the block structure

Note that the model ([3)—(6) should ideally satisfy two kinds of identifiability conditions. The first
condition is to ensure that the factor model in can be uniquely decomposed into the joint com-
ponents F.B’ and the group individual components f‘k]élg as in . To distinguish this condition
from the next one, we call it an identifiability condition. Another important condition is to ensure
that the loadings matrices B, By, By and the factor series Ft(k), Ft(k) can also be identified. We will
see that unlike the first condition, these loadings matrices and factor scores are not identifiable until
additional assumptions are imposed. We shall refer to determinacy as the condition for identifying
the loadings and the factor series in the components of our decomposition. This condition will be
discussed in Section [3.3.2

The identification of the first two block structures in can be obtained by checking suit-
able identifiability conditions of AJIVE. The following lemma adapted from [Feng et al.| (2018)) to
our setting shows that under certain conditions, the uniqueness of the decomposed blocks can be
achieved. To discuss the condition below, we define a subspace spanned by joint loadings matrix
as

row(X1) = ... = row(Xs) =: row(X).

Lemma 1 (Feng et al.| (2018))) Given a set {Y1,...,Yax} of matrices, there are unique sets
{Xy,...,Xox} and {Xl, .. ,XQK} of matrices so that

1. Y, =X+ Xy, forallk=1,...,2K.

2. row(Xy) = row(X) C row(Yy) for allk =1,...,2K.
3. row(X) L row(Xy) for allk=1,...,2K.

4o (R, row(Xy,) = {0}

11



Condition 1 corresponds to our setting of interest. Note that each row space row(Xj,) is defined
by the loadings, specifically by the linear combinations of entries of loadings matrices multiplied
by the factor scores. Also, note that the row subspaces of the joint components are spanned by the
same loadings matrix, that is, row(X}) = row(F;B’) = row(B’) = row(X) since the subspace is
represented by a linear combination of basis columns in the loadings matrix, where the coefficients
are the factor scores, which rarely have the same values across different rows. Hence, condition 2
is satisfied assuming X; = F,B’ in our setting. Consider next condition 3. It assumes that for
fixed k, ka(;{ = FkB’BgF; = 07, x7,,, ¢ = 1,2, and is implied by B'B, = B'B, = 0, xry- This
means that all columns in both of group loadings matrices are perpendicular to the corresponding
columns of joint loadings matrix. The easiest way to achieve this condition is when the non-zero
row entries of joint loadings matrix B do not overlap with any other non-zero row entries of both
group loadings matrices Bg, g = 1,2. Interestingly, this condition implies that the rows can be
shared between group loadings matrices. Lastly, condition 4 states that there are no rows shared
by all group loadings matrices. This is implied by our model where row(B}) Nrow(B%) = {0}. That
is, the blocks span different subspaces depending on groups. We thus identified natural condition
on the elements of our model (B, B, ]:3;2) so that its components are the unique components of the
decomposition given in Lemma

We also note that the identifiability condition can be summarized as

BB, = BB Of"xfc . g=1,2.
Orcxr, BBy
As we will discuss in Section consideration of conditions on loadings matrices is not important

to obtain the determinacy of factor series.

3.3 Reconstruction of loadings matrices and factor series

After the segmentation using AJIVE, the remaining task is to reconstruct the factor structure in
. A typical way to ensure the determinacy of the loadings matrices and factor series up to the
transformation with the sign changes of the columns is to assume that the factor covariance is an
identity matrix (e.g., Lam et al.; |2011; |Bai and Ng; 2013)). For fixed k, by assuming we have only
kth subject, the condition implies that the variances within the joint factor series and the group

individual factor series should be identity matrices,

EFME®R —1,  EEWER =1, (15)



The same determinacy condition has been applied for multiple subjects (e.g., [Fan et al.; |2018]) as
well. This condition, however, is quite stringent; it does not allow for the joint or group individual
factor series to be correlated and forces the covariance of factors to be identical across subjects,
which limits the degree of heterogeneity.

To relax the stringent restrictions , we adopt the SCA introduced by [Timmerman and
Kiers| (2003]). SCA was designed for multivariate time series from multiple subjects to study both
intra- and inter-individual differences. We will demonstrate that the factor dynamics can also be
reconstructed using this determinacy condition.

The idea of SCA is not different from PCA but various restrictions on the component factor
scores may be imposed. There are four types of covariance structures suggested in [Timmerman
and Kiers (2003). However, we focus on SCA with PARAFAC2 constraints (SCA-PF2), inspired
by tensor decomposition PARAFAC (e.g., Kiers et al.; [1999). Additionally, we consider a more
restrictive but useful covariance structure, namely SCA with INDSCAL constraints (SCA-IND).
To compare the various covariance structures of the factors, consider the joint factor series. Then,

the two covariance structures mentioned above are

EFVEY = E(CA) (Cpal) Ci, (SCA-PF2) (16)

EFPE® = E <Ck21§’“)> (cmg’@) = C2, (SCA-IND) (17)
where ® = (¢; ;) is a 7y x r; positive definite matrix and Cj, = (C’Z-(f;)) are diagonal matrices. Note
that to identify matrices within their multiplications, we let the diagonal entries of ® be unit-scaled
so that they become correlation matrices of the scaled joint factors fl%k) and the absolute values
of Cj, represent the standard deviations of the joint factors Ft(k). Note also that allows for
correlations across joint factors while does not. Lastly, one can think of as a special case
of by letting ® = I, ;- Obviously, these conditions do not require any restriction on loadings

matrices. The same assumption on the covariance of group individual factors can be applied, which

in turn produces

EEWEW  — E,8€,,
EEWEW — &2,

where ® is rg X rq positive definite and Ck = (C’Z(’;)) are diagonal as similarly defined as above.

The details of the fitting algorithm and the determinacy of the factor series are in Sections [3.3.1

and [3:3.2] respectively.
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Remark 3.2 While the conditions as in f enable the model to have more complex co-
variance structures, one can think that with more restrictions, as in an extreme case, the
model becomes more parsimonious. In the other direction, the most flexible covariance structure
is known as SCA with Invariant Pattern (SCA-P) (see [Timmerman and Kiers; [2003). To our best
knowledge, there are no tests to decide on particular structures. As long as we deal with the latent
factor series and their characteristics are not known in advance, it is beneficial to allow the model
to be as flexible as possible. Therefore, we do not prefer the most restrictive condition . At the
same time, our hope is to incorporate the heterogeneity of subjects without losing identifiability.
However, the SCA-P condition is known not to guarantee such uniqueness. Therefore, we prefer

the SCA-PF2 condition and as a special case, the SCA-IND condition.

Remark 3.3 Among studies related to SCA, using a rotational matrix to make targeted factor
scores (e.g., |Schouteden et al.; 2013| 2014) or particular structural loadings matrices (e.g., Helwig;
2017) has been tried. However, the former requires a known target structure of factor scores
in advance or requires additional steps to determine the target. It also carries relatively large
computational costs since estimation of factor scores and loadings are involved in finding rotational
transformation. Furthermore, the adopted determinacy condition in the approach is SCA-P, which
does not guarantee the identification of factor scores. The latter also demands a pre-specified
structure of loadings matrices in advance. When we do not know the relationship between factors

themselves or desired loadings matrices, this blocking approach has limitations.

We estimate loadings matrices B, Bl,Bg and factor series {Fy, Fk}k:17,,_,2K through a direct
fitting algorithm for SCA-PF2 model, which will be described separately in Section As
the last step of the estimation procedure, we refit the latent factors through subject-wise linear
regressions:

(fk Fk) — argmin | Xy — FyB' — F,B)||%, (18)
Fp=(Fy Fy)

for k=1,...,2K and g = 1,2 accordingly. Although there are alternative ways to refit the model
from SCA, handling F}, and F), together has an advantage over treating them separately. First,
can be solved explicitly. Also, since the VAR in the factor models is latent, other refitting
methods may be difficult to apply. Naturally, the squared error of the fitting becomes smaller
after refitting the factor series by . Then, we compute the empirical covariance matrix for the

joint and group individual factor series, respectively. Finally, by the Yule-Walker equations (e.g.,
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Chapter 11 in Brockwell and Davis; [2009), we estimate the parameters in the model , including

the covariance matrix of noise fln,k. We repeat this process for k =1,...,2K subjects.

3.3.1 Estimation of loadings matrices and factor series

For the algorithm of estimating the joint loadings matrix and joint factor series at the second stage
of our procedure, we use the direct fitting algorithm developed by Kiers et al.| (1999). Direct fitting
means that one estimates components of factor-type models in the least squares sense, by regressing
responses on covariates. It is different from the indirect fitting. |[Harshman| (1970) suggested an
indirect fitting algorithm through alternating least squares (ALS) that can be described on the
joint structure as follows. If we denote the covariance matrix of the joint component X, as 2y, the

model can be estimated by minimizing

2K
_min _ ) |2 - BC,®CB'|7.
B,Ci2k,® —1

Instead, we focus on the direct fitting algorithm. This algorithm has advantages because not only
it has a fast convergence but it also produces the factor scores, which are used for constructing
factor dynamics. Moreover, one can easily incorporate additional constraints such as non-negative
entries in scaler matrices.

We now describe the direct fitting algorithm. From Fj, = A,C} where A, is a T}, x r; matrix

)

consisting of scaled factor series F’t(k , the goal is to solve the following problem:

2K

(A1:2K>CI:2K7B) = arggnin ~ Z ka —AkaB/Hiﬂ’ (19)
Ai0k,Crox,B 1

st.  ALAL=ALAy, kK e{l,... 2K} (20)

The key idea is to convert the problem f into 2K separate orthogonal Procrustes problems,
which have been dealt with in psychometrics (e.g., Green; (1952 Schonemann; 1966)).

Note that the optimal solution (19)-(20) exists when A} Aj = A’A for all k. Then, one can
always find a columnwise orthonormal T}, x r; matrix Pj such that A, = PLA (e.g., Exercise

14.3.13 in [Harville; 2006) so that
ALA, — A'P,P,A — A'A.

This corresponds to the necessary and sufficient conditions for the optimality described in Section
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2 in [Kiers et al| (1999). Thus, the original problem (19)—(20) becomes

2K
: A A 5 . S 5 A~ B2
(Prok, A, Crox,B) = argmin Y [|Xy — PLACB/;, (21)
P12k, ACrox,B 1
st. PPyr=1., k=1,...,2K. (22)

Note that the objective function for fixed k is Tr(X), Xj) —2Tr(X,PrAC;B’') + Tr(BCLA’AC,B'),
where Tr(+) is a trace operator. Hence, a minimizer of (21)—(22)) over P;, for fixed other components
is obtained by

Pj, = argmax Tr(AC,B'X}P}). (23)
P/ Py,

Take the SVD as AC;B'X) = U;S; V), where Uy, and Vj, are ry x ry and r; x T}, matrices with
orthogonal columns and Sy, consists of singular values of ACB’X}. By replacing AC;B’X] with
[_Jkgk\_/';g, the solution of becomes Py, = Vkﬁ%, which can be shown by using Cauchy—Schwarz
inequality. This completes the first step of the direct fitting algorithm. Next, substituting Vﬁgfjk

for Py, in leads to

2K
(A, Ciaxk, B) = argmin Z HP;ch — AC,B’
ACrok B

2
. (24)

The problem can be solved by CANDECOMP /PARAFAC (CP) model as the ALS algorithm
(CP-ALS, see Kiers; 1998, for the details). This completes the second step. The two steps are
repeated until a convergence criterion is satisfied. The same algorithm is applied to the estimates
Aj, Cp, and Bg, with group individual components Xy, k= 1,...,2K, for the corresponding
g=1,2.

3.3.2 Determinacy of loadings matrices and factor series

Determinacy of loadings and factors in SCA was studied by several researchers. [Harshman and
Lundy| (1996) proved the uniqueness of a general form of parameters of multi-view data which led to
the rotational determinacy of SCA-PF2 models. In particular, when the rank r of factors exceeds
2, the estimated components multiplied with some scaling and permutation matrices described
below can be determined if the number of subjects is greater than r(r + 1)(r + 2)(r + 3)/24 for
rank r. So, although the inequality seems to require a quite larger number of subjects to obtain
the determinacy, the computational experiments by ten Berge and Kiers| (1996) suggested that the
determinacy can be achieved even for larger ranks if the number of subjects exceeds 4. However, a

rigorous proof for this or the other minimum number of subjects remains to be found.
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The proved determinacy for SCA-PF2 is as follows. If the SCA-PF2 model can be expressed
through two sets B, AE’“), Cj, and ]§, ZE’“’, (:Jk of joint loadings matrices, scaled joint factor series,
and the diagonal matrices, then

B = BWAB, f_lgk) = ZkAAV_V/AEk), ék = ZkWICkWAC7 (25)

where W is a permutation matrix, z, = —1 or 1, and Az, Ag, Ag are ry X ry non-singular diagonal
scaling matrices satisfying Ay AgAg = I,.,. By convention, one can fix 2, = 1 for all k to overcome

the sign indeterminacy (e.g., Helwig; 2013)). Thus, the joint factors can be related as
P G AP, (26)
and the correlation matrix of the scaled joint factors is of the form ® = A AW/ ®@WA[ so that

EFPEY = C@C), = WO W AL WEW ALIWC,W = GV A8V A IS, (27)
:C;;V :q_)w

where (_JXV is again diagonal with permutated entries. That is, modulo the scaling matrix Ag, one
has the same covariance structure of the factor series up to their rearrangement. Note that from
7, the determinacy can be achieved with the multiplication of the scalers and permutations.
In the sense that although the model still has an issue of scaling, the identification up to the change
of rows and columns of matrices by imposing SCA-PF2 structure is remarkable.

Similar results hold for group individual factor series. For each group g = 1,2, the group
loadings matrices Bg,ég, scaled group individual factors flgk),/igk), and the diagonal matrices

Ck, (:]k are related as
_RBRW A qk) _ o Ak & XA
Bg = BWQABg’ At = Zg,kAAgWgAt s Ck = Zg,ngCngACg'

Here, Wg is a permutation matrix of gth group and z5; = —1 or 1, so we take z,, = 1 for all
cases by convention. Obviously, the index k goes from 1 to K when g =1,and k=K +1,...,2K
are used for ¢ = 2. Finally, A A, AB97 Aég are rg X rg non-singular diagonal matrices such that

A A, ABgACg =1I,,. Accordingly, the group individual factors are related as
B =&,

for corresponding g and k as above, so that the covariance of each group individual factor is

EFMEY = C@C, = W G, W, AW, BW, AW, C W, = chgA;@Wm;c;’%,

= szg :=<i>wg
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where <i>g = AAQW;i)gWgAAg, g=1,2.

In Section [] with simulation results, the determinacy conditions allow us to assess the estimation
performance as follows. We start by permuting the columns of the estimated loadings matrices for
each structure and determine the permutation orders by minimizing the mean squared errors to the

true loadings. Subsequently, we rearrange the factor series in each structure based on these orders.

3.4 Initial rank selection

As seen in , AJIVE requires an initial guess 7, of the rank ri. This is required not only for
AJIVE but also for other estimation algorithms of reduced-rank models. The rank can be estimated
through various methods. We acknowledge that as the number of subjects increases, deciding on
the initial rank using graphical tools like a scree plot becomes more challenging. Moreover, even
when employing cross-validation-based rank selection algorithms (e.g., Bro and Kiers; [2003), our
model encompasses several distinct structures within the joint and two-group individual structures,
with all structures being interrelated. Furthermore, our application involves a large number of
subjects, making the implementation of cross-validation complex.

Instead, we opt for the rotational bootstrap algorithm developed by [Prothero et al.| (2022]).
While this algorithm was originally designed to identify partially shared structures, it can also be
used to explore the best reduced-rank approximation of the true block signals. This algorithm is
also rooted in PAA, and involves bootstrap to construct an upper bound for the largest principal
angle between the subspace of the unknown signal block and the low-rank approximation of the
observation block. We apply the algorithm to each block observation and simplify notation by
omitting the subscript £ for the subject number.

The first step of the algorithm is to compute shrunk singular values and imputed noise matrices.
Suppose that a data block X =Y + E is given. Consider the SVD X =USV/ , where Ij, V consist
of orthonormal columns U; and Vi, and diagonal matrix S with singular values o1 > ... > ogar,
where d AT is the minimum between the number of variables d and the sample length T for the
subject of interest. Then, the thresholded singular values are &; := &£h*(0;/k), i = 1,...,d AT,
where & = ﬁ for omeq = med(o1,...,0qr7), MP(B)4 is the 100g percentile (hence, the
median for i) of the Marchenko-Pastur distribution with the so-called aspect ratio 5 = ZC—? (e.g.,

Gavish and Donohoj 2014), and the thresholding function used is

%\/a2—5—1+\/(a2—ﬁ—1)2—46, if @ > 14/,
0, if a <1+ +/p.

h*(a) =
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Naturally, the maximal allowable rank 7 is determined by the number of non-zero &;’s. Thus, Sy
represents a 7-dimensional diagonal matrix with entries &, for r = 1,...,7. The estimate E of the

noise matrix E for bootstrapping is computed by

¥ dAT
E= Z RMP(ﬁ)uZUlVZ/ + Z O'iUiVil,
i=1 i=i+1
where uy,...,u; are ii.d. uniform random variables on (0,1). This estimate is thought of as

imputed noise, which is justified in Appendix C in [Prothero et al. (2022).
The rest of the algorithm consists of two nested loops. In the outer loop, obtain T' x 7 and

d x 7 independently generated orthonormal matrices, f)'?(f) and fo), ¢ =1,...,L, and construct

X0 = fjg)sfvg)/ + E. Then, compute matrices with orthonormal columns associated with

largest singular values from the SVD of X®, denoted as IAL(«[) and \71@, r =1,...,7. In the

inner loop, compute the smallest singular values omin(-) from SVDs of ﬁg)/ﬁg) and Vg)’\??@ for
r = 1,...,7 and then, convert them into the largest principal angles HI(JZ)T and 9%2 between ijf)

and ﬂg), and \_fff) and \A/',(ng) by arccos(amin(ﬁg)/ﬂg))) and arccos(omin(\_/’g)

This leads to L x 7 computed principal angles 952 and 9%2 for each of the row and column spaces.

v )), respectively.

After sorting those angles for each r, select the final initial rank estimate # by

7 T
7= min (Zl 1{[95 percentile of Hg)r, =1,...,.L] < &6}’ Zl 1{[95 percentile of Ggﬁ)r, 4=1,...,.L] < 5907\/}) ’
r= r=

Here, 6,7 and 6 v represent the random direction angle bounds for the row and column subspaces
and are computed in parallel in the inner loop of the bootstrapping algorithm. Similarly to AJIVE,
the candidates of the random direction bounds are calculated as the largest principal angles between
ﬁf;m) and ﬁ&m), and between \_/"ﬁm) and \7£m), where ﬁﬁm) and \77(nm) are independently generated
orthonormal matrices of the sizes T'xr and d xr, r = 1,...,7, respectively. The algorithm repeats
this computation m = 1,..., M(= L) times and selects the 5 percentile of all replications. The
tuning parameter £, when multiplied by the bounds, controls the maximum allowed principal angles.
An increase in the value of £ leads to larger angles falling within the criterion, typically resulting
in higher estimated initial ranks. The method for fine-tuning £ may vary depending on the specific
case and remains somewhat unclear. However, it is generally recommended to keep it within the
range of (0,0.5]. In our empirical results in Section and the application illustrated in Section

we set & = 0.5, which has shown reasonable performance. We refer to Algorithm 1 in Section 2.1.3

in Prothero et al.| (2022) for the remaining details.
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In practice, the rotational bootstrap is applied to the block observation of each subject. Then,
the initial rank is finalized by a majority vote, as a mode of 2K number of 7’s. We use this
estimate for selecting the rank of the joint factors 7; produced by AJIVE. Naturally, this leads to
7 = 7 — 7'y. Potentially, one can also take different initial ranks for each group, or even different
initial ranks for each subject, depending on the context. As noted in Section while AJIVE
does not require identical initial ranks across subjects and neither does the rotational bootstrap,
we assume that the initial ranks are identical at least within each group. In order to apply the
factor structure described below for the rest of the procedure, the ranks of the joint and the two
group blocks should be specified. Furthermore, to impose determinacy conditions across subjects
which are described below, it is convenient for the ranks within each group to be identical in
that SCA described below can be employed for both joint and group individual structures. The
identification of factor structure relies on the performance of the initial rank selection from the
rotational bootstrap and the joint rank selection from AJIVE. We will assess the performance of

the initial rank selection in Section [4.3l

4 Illustrative examples

4.1 Simulation design

In this section, we describe the simulation design that is used to assess estimation performance under
different scenarios. The results are reported in Sections [£.2] and [4.3 below. The simulation study
has several settings. First, we vary d, T, and K related to the size of the problem to see whether
the estimators exhibit what one can expect from the standard factor models. Second, for the fixed
size of the problem, inspired by the group-level analysis, we vary the signal-to-noise ratio (SNR) to
check the effect on model recovery. Third, we examine how well the proposed bootstrap procedure
identifies the initial ranks. The R package multiway and other supplementary code of [Helwig and
Snodgress| (2019)), and the R package ajive of |Carmichael (2020) were used in simulations. For
ajive, since the last maintenance was many years ago, we extracted and reorganized the functions
for the estimation.

The data generating processes (DGPs) are as follows.

Z” » ]t +Zrc B (k)+E(t), ith=1,... K,

ox® =
2,0 () (k)
ZTJ _|_ZTG'B + B}y iftk=K+1,...,2K,
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- Among the indices ¢ = 1,...,d, choose 50% at random and make Bm, J=1,...,ry, non-
zero as B; ; i Unif (0,1). Otherwise, B;; = 0 for the non-selected indices i. This ensures

identifiability as discussed in Section [3.2.2]

- Among the non-selected indices ¢ above, half of them are chosen to make Bi(’lj), i=1,...,rq,

2)
. . Z’J ’ - -

Both are generated by BY, @ vid Unif(0,1). Otherwise, let B Bgi) be zero for the

17] ’ /L?] 27‘7 ’ Z7

have non-zero entries. The remaining half are used for B;"/, j = 1,...,rg, to be non-zero.

non-selected indices of 1.

- Foreach k =1,...,2K, generate the series Agk) and fi%k), t=1,...,T, from VAR(1) models,

For simplicity, let of = o = 0¢. Let also assume ¥ and ® = Eﬁgk)ﬁgk)/ have the same

structures as ¥ and ® = EAﬁ’“)Aﬁ’“) , respectively. For stable factor series, the VAR transition

matrices ¥ and W satisfy the following equations,

& = UBY 4o, (28)
® = VBT fol,.. (29)
From the known fact of algebraic Riccati equations, the stable solutions ¥ and ¥ can be
uniquely determined (e.g., [Boyd et al.; [1994). To ensure the stability of the factor series,

we fix ® and ® described below first and solve the equation f to obtain the VAR

transition matrices. Different structures of ® and ® will be referred to as types below.
- Take Ft(k) = (_Jk/_lgk) and Ft(k) = Ckflgk), where Cj, and C}, are diagonal and

Ck = ék: = \/E dlag((4 + 1)7 R (4 + 7")),
where ¢ > 0 is a SNR parameter, r is the number of factor series, r = r for flgk) and r = rg
for Agk)
- EM ~N(0,5pg =0dy) witho. =1, k=1,...,2K.

Note that the necessity condition of the model identifiability in Section [3.2.2] is satisfied by hav-
ing non-overlapping non-zero rows in loadings matrices. In summary, DGP is fully controlled by

type, ¢, o¢) for fixed (d,T, K,rj,7¢). By changing the size of the problem and the parameters, we
3
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vary the generated series to see how the realizations with different characteristics affect estimation
performance.

We assess estimation performance in three ways involving 5 measures of interest. First, we
report R? statistics to measure how much each structure contributes to explain the variability of
X}. For the joint structure, define this measure by

PRI o (1 X - m&)
2K 2= Xz )
where ﬁ‘k is the output from either PARAFAC?2 fitting 7, the subject-wise linear regression
, or the benchmark methods. Replacing fkﬁl and 2K by fk]:3; and K, gives the R? statistics
of the group individual structures for g = 1, 2.

Another measure of the model fit is a root mean squared error (RMSE). RMSE considers the

fitness of both the joint and group individual components to their model counterparts, rather than

the component variability as in R? statistics. For the joint structure, we define

1 2K 1 A
MSE = .| —— —|IX;, — F.B'|2.
RMS QdK;Tk” v — FiB'[|7

Replacing X, f‘kf’:/ and 2K by Xy, f‘kﬁ/g and K, gives the RMSE of the group individual structures
for g =1,2.
Finally, at each component level, we compute three measures of how estimators capture spatial

information and temporal dependence. We introduce the Tucker congruence coefficient (C'Cyy)

defined as

M'M
C’C'M = —
MMV MM

where M is a parameter vector and M corresponds to its estimate. We consider loadings matrices,
factor series, and VAR transition matrices in place of M, with their corresponding performance
measures denoted by CCp, CCp, and CCy, respectively. For loadings matrices, the congruence
coefficients are computed for each column, and their mean is reported. Analogous calculations are
performed on the columns of the factor series, but only the average over all subjects is reported.
Note that C'Cr may inherently vary more, as the measure compares two random processes. Nev-
ertheless, we expect that these CCg scores are still informative. For VAR transition matrices, we
vectorize them to compute C'Cy. The CC scores will be reported for the joint and two groups

separately.
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For each simulation setting, we replicate the data generation and estimation 100 times. For the
first simulation setting, we fix ¢ = 1 and consider type = 1 and 2, where the types are described

below. For the size of the problem, we let (d, T, K) be:
e Growing numbers of variables: Fix T' = 200, K = 50. Take d = 200 and 400.
e Growing observation times: Fix d = 100, K = 50. Take T' = 200 and 400.
e Growing numbers of subjects: Fix d = 100, T' = 200. Take K = 10 and 100.

For each case, we fix the ranks as (rs,7¢) = (2,2) so that, as we can see from the results in Section
the sums of the given ranks are guaranteed to be found through the initial rank selection
algorithm.
For the second setting, we define the SNR, by
SNR — |BC,®C.B’ + Bgékfiléklg'gHF ~ f(o), (30)
IXEeklF

as a function of ¢ = 0.25,0.5,0.75,1.25, 2, and 4 in our simulation. The type refers to the correlation

structure ® and ® between the factor series in each structure. ® and ® for type 1 are

1 -06 03 -0.1

1 —-06 03
. 1 —06 —06 1 —06 03
,d=1, ., |-06 1 —06], , (31
—06 1 03 —-06 1 —06
0.3 —06 1

-0.1 03 -0.6 1

with ¢ = 0.2 and the correlation structures for type 2 are the identity matrices with the corre-
sponding ranks, where o¢ = 0.3.

We consider six other methods as benchmarks for comparison. The first group of alternative
methods consists of replacing the PARAFAC2 fitting for joint and group individual components
at the second stage of GRIDY with another procedure. Here, we use SCA-P and GICA. Note
that SCA-P fitting follows a similar algorithm as PARAFAC2 fitting described in Section [3.3.1]
but with simplified steps since the constraint need not be considered. Once the estimates
are produced, they are refitted by using varimax rotation of Kaiser| (1958). For fitting GICA, we
follow the estimation through the tensor decomposition of Beckmann and Smith| (2005). The R
code is provided in the supplementary material of Helwig and Snodgress| (2019) and the detailed
discussion of the model is included in Helwig| (2013). Another benchmarks are to use the SCA-
PF2 and GICA model at the first two stages of our approach. Consider, for example, PARAFAC2
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fitting. Recall that the first two stages consist of fitting PARAFAC2 models to three factorized data
blocks (joint component block and two group individual component blocks) obtained by AJIVE.
However, motivated by practical considerations, one could fit PARAFAC?2 to the whole data block
first. The extracted signal block naturally becomes the joint structure. Then, for the remainder of
each group (that is, the difference between the data and the joint block), one could fit PARAFAC2
again to obtain the group individual structure. The rest of the steps are the same as GRIDY.
The same approach is possible with the GICA model as well. We refer to these benchmarks as
double-SCA (DSCA) and double-GICA (DGICA), respectively. However, we stress that these types
of approaches have an issue, despite being used by researchers, since in order to fit PARAFAC2
models, one has to know the ranks for the factors in advance. We note that the AJIVE implicitly
selects the joint rank and this joint rank estimation is quite reliable as shown in the literature. For
this comparison, we assume that the joint rank is explicitly known.

Finally, one can directly use the estimated factor series from PARAFAC2 or GICA fitting at the
second stage of our approach. That is, one can omit the refitting of factor series in . We denote
these benchmarks as Unfitted_SCA-PF2 and Unfitted_GICA, respectively. In summary, the first two
benchmarks focus on different factor models. The next two benchmarks concern cases where other
decomposition methods are used, while the models of the factors remain the same. The last two
benchmarks focus on the absence of a refitting step for the same factor models. The similarities and

differences of the estimation procedures are summarized in Table [S1| of the supplemental material.

4.2 Simulation results

We present the simulation results in the order of the settings described in Section All figures
are displayed at the end of this work. Each of the figures consists of 5 rows, each of which represents
R? statistics, RMSEs, and three Tucker congruence coefficients for the loadings (CCp), factor series
(CCF), and VAR transition matrices (CCy). Columns in each figure present the measures for joint,
group individual 1, and group individual 2 structures, respectively.

Figure|l| presents the first simulation setting where correlations between the factor series within
each structure are allowed. Regarding the sizes of problems, either the number of variables d, the
number of samples T', or the number of subjects K varies while the rest among d, 7T, and K are
fixed. As d and T increase, the variabilities of R? statistics and RMSEs tend to decrease, whereas
they increase as K increases. Having more subjects thus makes the analysis more challenging.

Another interesting point is that DSCA and DGICA tend to have slightly higher R? statistics and
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RMSEs for the joint structures. For the group individual structures, on the other hand, both R?
statistics and RMSEs are worse compared to any other benchmarks. Next, for the three congruence
coefficients, GRIDY, DSCA, and Unfitted_SCA-PF2 seem to recover the joint loadings matrices and
joint factor series better compared to other benchmarks, while they are less capable of identifying
group individual loadings and group individual factor series. We conjecture that this phenomenon is
related to the estimation procedure, in that the three methods, including GRIDY, use PARAFAC2
fitting, while the rest rely on SCA-P fitting or its variants. Lastly, most of the methods can identify
the VAR transition matrix of the factor series. However, GRIDY and DSCA show less variability
in the measure.

Figure [2| depicts the simulation results for the same setting as Figure |1} but assuming that
the factor series within structures are uncorrelated. Interestingly, the landscapes of performance
measures from the two figures look quite different. When there are no correlations between the
factors (Figure , the differences between the methods become more pronounced. The current
simulation setting with the rank r = r; + rg = 4 is typical to factor model literature. However,
as we can see in the subfigures for R? statistics and RMSEs, the values for increasing d, T, or K
vary little, unlike what we would expect in standard factor models (e.g., Table 1 in Doz et al.;
2011). Among the methods, DSCA and DGICA seem to struggle to fit the model, while the rest
of the methods tend to perform similarly as in the previous figure. In data applications, where we
cannot assume the correlation structure of the factor series in advance, it would be beneficial to
use GRIDY or other benchmarks that use a similar estimation procedure as GRIDY. Additionally,
it seems advantageous to refit the estimates from PARAFAC2 or GICA when identifying the VAR
transition matrices of the factor series, as seen by the worse performance for CCy in the unfitted
cases. Finally, among GRIDY, SCA-P, and GICA, while the other two show the larger variability
in this type of correlation structure, our proposed method is the most robust in the sense that the
performance is similar across the different types.

The next two figures concern the second simulation setting. Figure [3] presents the results for
SNR parameter ¢ increasing from ¢ = 0.25 to ¢ = 4. Notably, unlike in the previous two simulation
results, R? statistics and RMSEs tend to improve along the increase of the SNR parameter. We
also see that their variabilities are decreasing. However, the congruence coefficients for the loadings
matrices, factor series, and VAR transition matrices seem to be little influenced by the increase in
the strength of the signals. This might be related to the fact that the fitting algorithm factorizes

the estimated blocks, not the (smoothed) raw block observations (e.g., see Figure 3 in Helwig and
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Snodgress; |2019).

Finally, Figure [4] presents the same simulation results as in Figure [3] but assuming zero correla-
tions between the factor series in each structure. Generally, the results seemingly exhibit a mixture
effect of the two previous simulation results in Figures [2 and |3} While R? statistics and RMSEs are
increasing along the increase of SNR, the three congruence coefficients tend to remain the same. In
particular, DSCA and DGICA have the same issue as seen in Figure [2, and the benefit of refitting

can be observed again.

4.3 Choice of initial rank selection

We consider several DGPs from Section [4.1] with various ranks and run the bootstrap procedure
in Section to see if it can capture the correct initial ranks. We set the type as 1, and different
sizes (d,T') and SNR parameters ¢ are considered while 2K = 100 is fixed. We do not consider
the case of growing K since the rotational bootstrap is performed for each block, and gathering
multiple data blocks does not help to estimate initial ranks. Then for all SNRs described above,

we generate the DGPs along the combinations of ranks as follows:
R. (TJa TG) = (1) 1)5 (17 2)5 (17 3)’ (25 2)7 (17 4)7 (2’ 3)’ (27 4)7 (37 3)’ (3’ 4)7 (47 4)'

Note that along the increase of r; and rg, the corresponding transition matrices ® and ® are
adjusted by preserving and with ¥ and ¥ in and fixed o¢. Accordingly, we run the
rotational bootstrap to evaluate the performance of the initial rank selection. For the combinations
in R above, the initial ranks are r =75+ rg =2,3,4,4,5,5,6,6,7,8.

Figure [f] shows several interesting results. First of all, the rank combinations used in Section
are purple, orange, and dark brown bars, respectively. These are usually correctly estimated
for (d,T) = (200, 100) or (d,T") = (100,200) when the SNR parameter is 1.25 or higher. This is
also true for the rest of the higher initial ranks when d or T' is increased to 300. This indicates
that the large problem size seems advantageous in the same way the higher dimensions help in the
usual factor models.

Furthermore, for the same initial total ranks, parameters and fixed problem sizes, the case
where the number of joint factor series is equal to the number of group individual factors is more
favorable than the case where the latter is larger. For example, the algorithm is more likely to
choose the correct initial ranks in the case (r7,rg) = (3,3) than the case (r;,7¢) = (2,4). Hence,

larger ranks in the joint structure is favorable for selecting the correct ranks rather than larger

26



ranks in the group individual structures.

5 Data application

5.1 Autism Brain Imaging Data Exchange preprocessed data

In this section, we consider a large pre-processed dataset from the Autism Brain Imaging Data
Exchange (ABIDE preprocessed, e.g., |Craddock et al.; 2013|). ABIDE is an international collection
of R-fMRI data from 20 site locations. The data consists of two different groups. Subjects with
autism spectrum disorder (ASD) are marked as group 1. The rest of the subjects are from the
control group, denoted as group 2. Group 1 consists of 474 males and 65 females and group 2
contains 474 males and 99 females. The average ages for the two groups are 17.01 and 17.08 years,
respectively. The dataset from ABIDE is known to have been preprocessed by five teams with their
preferred methods.

Among 1112 subjects, we work with 505 subjects from the ASD group and 530 subjects from
the control group. We choose only the subjects whose profiles are identifiable from the separate
phenotype file, and the missing observations of the subjects do not occur across all variables.
However, some variables in some subjects still contain missing values. This dataset consists of an
extensive array of BOLD signals. The brain atlas of |Dosenbach et al. (2010) contains 160 ROIs.
The ROIs belong to one of six brain regions, Default network, Frontoparietal network, Cingulo-
Opercular network, Sensorimotor network, Cerebellum, and Occipital lobe. The numbers of ROIs in
each network are 34, 21, 32, 33, 18, and 22, respectively. In our analysis, the average of the sample
lengths over 1035 subjects is 193 time points. Each of 160 ROI labels consists of a combination of
the network and the number. More specifically, the network means the brain region where the ROI
is measured. In the illustration in Section different colors are used for representing the same

unique regions.

5.2 Connection to VAR-type model

In this section, we briefly introduce the network construction by converting DFMs into VAR-
type models. This will be useful in thinking about temporal and contemporaneous effects in the
considered models. Consider the DFM in f. From , we assume that the joint and group

individual latent factor series follow VAR(1), Ft(k) = lilkFt(f)l + ﬁt(k) and F‘t(k) = \ilkFt(f)l + ﬁt(k),
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respectively. Then, one can rewrite the DFM as

(k)
L F
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where Qt(k) is a centered noise with covariance matrix X j, which is given by
EC,k = ((:)k + ék) (Id + EE,k) + BEﬁka’ + BgEﬁkB;, (34)

and ©, = B¥,(B'B)"'B’, 09, = Bg\ilk(B’ng)_lf’)’g. Hence, for each subject k, the dynamics is
defined by the two transition matrices Oy, O in f and the error covariance matrix X j
in (34). The equation is a high-dimensional VAR(1) model. Note that, unlike the high-
dimensional VAR models where the sparsity on the transition matrices is imposed, the matrices
O}, ©;, are not sparse ob jects in general but have reduced rank. The model is akin to reduced-rank
VAR since the rank of the transition matrix constructed by the sum of low-rank matrices cannot
exceed the sum of two ranks. In the network context, the VAR transition matrix and covariance
of the noise are called the directed network and contemporaneous network, respectively. From this
perspective, we examine in the next section the differences between the two groups by comparing

how their model network connectivities differ.

5.3 Application results

In this section, we present estimation results. Some figures discussed below are placed in Section

of the supplemental material. Figure |[S1| presents the results of the initial rank selection. Different
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colors, which are the same as used in quality assessment (QA) measures at the website ABIDE
Preprocessed: Functional Preprocessing | (2016), represent data collected from 20 different sites.
The estimated initial ranks are divided into three regions: the left with lower ranks, the middle
with intermediate ranks, and the right with higher ranks. The distribution of initially estimated
ranks for group 1 closely resembles that of group 2. The data-collecting sites are more influential
to the initial ranks, which suggests preprocessing differences, rather than the group differences. We
expect that GRIDY framework can further facilitate the study of heterogeneity in R-fMRI across
different multi-site differences (e.g., Abraham et al.; 2017; Wang et al.; [2019) in future research.

We exclude data where the initially estimated ranks are zero or exceed 15. As it can be seen
through the gray dashed line in Figure approximately 40% of the subjects are retained for the
remaining analysis. Consequently, the majority of the estimated ranks are 2. Interestingly, although
the AJIVE result for the joint rank selection is 2, the ranks for the remaining individual structures
within each group, as produced by AJIVE, are mostly 1. This indicates that AJIVE detects
systematic variation within each subject even after factoring out the joint structures. Therefore,
for the remaining analysis, we set the joint structure as rank 2 and model the group individual
structures with a rank of 1 for each group. We also exclude subjects whose ranks for the group
individual structures are zero for the rest of the procedure. Thus, 290 subjects are considered for
the rest of the analysis, and each group has 157 and 137 subjects, respectively.

Next, we consider the estimates of the loadings matrices, covariance matrices, and the VAR
transition matrices of the factor series separately. From the simulation in Section [4] the proposed
GRIDY and the two benchmarks SCA-P and GICA have shown better performance than the others,
making it difficult to conclude which method is the best. Hence, we consider these three estimation
methods. Figure displays the estimated loadings matrices from the three methods, with each
method presented in a separate column. All variables are reordered based on their networks, with
each of the 6 networks represented by its own color. The first two rows and the second two rows
represent the joint and group individual structures, respectively. Interestingly, while the landscape
of the estimated loadings matrices in the group individual structures looks similar, one can notice
both similarities and differences in the joint structures. For example, the values of the estimated
loadings from each method in the group individual structures are very similar, except for their signs.
However, while the estimates of the first and second loadings matrices from GRIDY resemble those
of the second and first loadings matrices from GICA, the estimates of the loadings matrices from

SCA-P do not exhibit similar patterns to those from the other methods.
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In terms of the factor series, Figure presents the sample covariances and VAR transition
matrices of the factor series, estimated from the three methods. Interestingly, in the joint struc-
ture, the entries of the sample covariance matrices and the transition matrices exhibit considerable
diversity across the methods. In particular, the off-diagonal entries of the sample covariance, indi-
cating the covariance between the factors, differ noticeably among the methods. This discrepancy
corresponds to the large range of the off-diagonal entries, which are often linked to the existence
of Granger causality (e.g., Chapter 2.3 in [Lutkepohl; [2005)). Notably, from the estimated loadings
in Figure we observed that the two estimated loadings matrices from GRIDY look similar to
those from GICA. The estimates for the factor series from the two methods are also similar to each
other in their absolute scales, except that the orders are switched in the current figure.

In Figure @ we present box plots of the R? statistics across ROIs obtained by regressing the
(k)

univariate observations Xif: on a particular factor estimate, as discussed in [Stock and Watson
(2002)) and |Jungbacker and Koopman| (2015), from the three estimation methods. These statistics
indicate how much variability for each variable can be explained by each factor. Interestingly,
between the ASD group (on the left column of each panel) and the control group (on the right
column of each panel), the distributions of R? statistics in each structure are quite similar. More
intriguingly, while we confirmed that the estimated loadings matrices and the estimates for the
factor series in the joint structures from GRIDY and GICA were similar, their R? statistics look
quite different in terms of their vertical scales. In particular, values of R? statistics from SCA-P
and GICA often exceed 1, while the values from GRIDY tend to remain below 1. By the definition
of this statistic, values are allowed to exceed 1. However, if we consider the R? statistics structure-
wise, it is difficult for the value to exceed 1 in general. This implies that the contribution to fitness
from each factor series can be canceled out by the large estimated correlation between the factors.

Finally, the VAR connection explained in Section [5.2]is considered to illustrate network struc-
tures. Figure [7] summarizes the network structures across all subjects. The left panel presents
the averages of the directed networks and the contemporaneous networks for group 1, while the
results for group 2 are displayed in the right panel. The two heatmaps in the top panel represent
the directed networks, and the two in the bottom panel represent contemporaneous networks. The
ROIs in the networks are the same as in the previous figures. We can clearly observe distinct block
structures in both the directed networks and contemporaneous networks. Interestingly, while the
sizes and locations of the identified blocks in the directed networks are quite similar, the subpat-

terns within each block are quite different. Although the scales of the contemporaneous networks
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are relatively larger, they exhibit a similar tendency as the directed networks. On the contrary,
although the contemporaneous network structures for both groups are also different, they exhibit
relatively high similarity. Further study including confirmatory factor analysis is needed to link
these observations with the clinical interpretations of the difference between the ASD group and

the control group (e.g., [Subbaraju et al.; 2017; Easson et al.; [2019).

6 Discussion

In this study, we propose a novel approach for group-level analysis of DFMs where the resulting
integrated model is considered as the summation of joint components, group individual components,
and the observation noise. Each signal structure is further decomposed into loadings matrices and
latent factor series, with these series assumed to follow VAR models. Unlike the standard DFMs,
our model allows different factor series within the same structure to be correlated. To handle
such latent and correlated structures, we employ simultaneous component analysis. We conducted
simulations to compare our modeling approach with several benchmark models suitable for the
considered setting. Using various estimation performance measures, the empirical evidence suggests
that our approach outperforms the considered alternatives. To illustrate the practical application
of our approach, ABIDE preprocessed dataset is used. This demonstrates how our approach can
be employed to compare configurations and network structures between autism spectrum disorder
and control groups.

There are several extensions and limitations of this work that could be addressed in the future.
First, forecasting issues under the proposed model could be considered. In fact, we carried out sim-
ulations to assess forecasting performance, but among the methods considered, neither GRIDY nor
other benchmarks were superior in terms of forecasting accuracy. Another practical issue to address
is the case of missing observations. Indeed, missing values occurred even in our data application,
and corresponding subjects had to be removed from the groups if the degree of missingness was se-
vere. The two recent studies by Bai and Ng| (2021)); Xiong and Pelger| (2023)) proposed ways to deal
with missing data in large factor models that accommodate a range of missing patterns (beyond
missingness at random) by relying on the factor structure. Whether and how those approaches
could be extended to incorporate the dimension of subjects, in addition to the cross-sectional and
temporal dimension, and to allow for both joint and individual factor structure is left for future

work. Improvement of the proposed algorithm is also an interesting direction for future research.
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For example, one could consider adopting a more efficient algorithm for estimating the SCA-PF2
model, as developed by Perros et al.| (2017)). This algorithm would prove indispensable in speeding
up computation and improving memory efficiency, particularly as the number of subjects increases.
Additionally, from the VAR representation discussed earlier, our model bears similarities to the
multi-VAR model of [Fisher et al.| (2022)) albeit with sparse VAR transition matrices. Lastly, a
highly promising avenue for future research involves the consideration of multiple subgroups. In
such cases, incorporating a partially-shared structure (e.g.,|Gaynanova and Li;|2019; |Prothero et al.;
2022) could allow for only some grouped subjects to possess shared structures when the number of

groups exceeds two.
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Figure 1: Box plots of the first result of the first simulation setting as one of the numbers of

variables d, the numbers of samples T', and the numbers of subjects K increases while the other

two are fixed. The correlation type is 1, the ranks used in the simulation are (r;,rg) =

(2,2), and

the SNR parameter is set to be ¢ = 1. Details of the rest of the model parameters are described

in Section 4.1l The leftmost red box for each figure represents GRIDY, while the other six boxes

with abbreviations and different colors in the legend represent benchmarks.
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Figure 2: Box plots of the second result of the first simulation setting as one of the numbers of
variables d, the numbers of samples T', and the numbers of subjects K increases while the other
two are fixed. The correlation type is 2, the ranks used in the simulation are (r;,rg) = (2,2), and
the SNR parameter is set to be ¢ = 1. Details of the rest of the model parameters are described
in Section 4.1l The leftmost red box for each figure represents GRIDY, while the other six boxes

with abbreviations and different colors in the legend represent benchmarks.
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Figure 3: Box plots of the first result of the second simulation setting as SNR parameter c¢ increases
from ¢ = 0.25 to ¢ = 4. The correlation type is 1, the size of problems is fixed by (d,T,K) =
(100,200, 50), and the ranks used in the simulation are (r;,7g) = (2,2), and the SNR is set to be
¢ = 1. Details of the model parameter are described in Section [£.1} The leftmost red box for each
figure represents GRIDY, while the other six boxes with abbreviations and different colors in the

legend represent benchmarks.
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Figure 4: Box plots of the first result of the second simulation setting as SNR parameter c¢ increases
from ¢ = 0.25 to ¢ = 4. The correlation type is 2, the size of problems is fixed by (d,T,K) =
(100,200, 50), and the ranks used in the simulation are (r;,7g) = (2,2), and the SNR is set to be
¢ = 1. Details of the model parameter are described in Section [£.1} The leftmost red box for each
figure represents GRIDY, while the other six boxes while the other six boxes with abbreviations

and different colors in the legend represent benchmarks.
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Figure 7: Heatmaps for the averages of estimated network matrices for the ASD group (left panel)

and control group (right panel). Two plots in the top panel are directed networks and the two

bottom plots are contemporaneous networks. The ROIs are reordered based on the network. Each

color represents the Default network (red), Frontoparietal network (blue), Cingulo-Opercular net-

work (green), Sensorimotor network (purple), Cerebellum (orange), and Occipital lobe (brown),

respectively.
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Supplemental material to
“Group integrative dynamic factor models with
application to multiple subject brain connectivity”

S1 Summary of methods used in Section 4 with illustrative exam-

ples
Estimation procedure
Abbreviation Segmentation of joint and group individual structures Assumed factor models Refitting

GRIDY Using AJIVE PARAFAC?2 Yes
SCA-P Using AJIVE SCA-P Yes
GICA Using AJIVE GICA Yes
DSCA Applying SCA-PF2 model twice PARAFAC2 Yes
DGICA Applying GICA model twice GICA Yes
Unfitted SCA-PF2 Using AJIVE PARAFAC2 No
Unfitted GICA Using AJIVE GICA No

Table S1: Summary of similarities and differences of 7 models used in Section 4 with illustrative
examples. The differences between estimation procedures lie in the choice of segmentation method,

the assumed covariance structure of the factor models, and whether refitting is applied.

S2 Additional figures for Section 5 with data application

The three figures regarding the estimates of initial ranks, loadings matrices, and factor models for the Data

application section (Section 5) are included in this section. The figures are discussed in Section
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Figure S2: The estimated loadings matrices for the joint structures (top 2 rows), for the group
individual structures in group 1 (third row), and for the group individual structures in group 2
(fourth row), estimated from three estimation methods (column-wise). The same colors of the
labels indicate that the corresponding ROIs are known to belong to the same network. The colors
used in the legend represent the Default network (red), Frontoparietal network (blue), Cingulo-
Opercular network (green), Sensorimotor network (purple), Cerebellum (orange), and Occipital

lobe (brown), respectively.
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Figure S3: Estimated covariances of factor series (left) and VAR transition matrices (right) through
the three fitting methods (columns in each panel). For each column, the first two rows concern
the joint factor series and the last two columns concern the group individual factor series, each of
the rows represents the estimates from the factor series belonging to each group. The same colors
with coordinates in the legend are used for the estimates of the model parameters in the same

coordinates.
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