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Abstract—When selecting test data for subjective tasks, most studies define ground truth labels using aggregation methods such as
the majority or plurality rules. These methods discard data points without consensus, making the test set easier than practical tasks
where a prediction is needed for each sample. However, the discarded data points often express ambiguous cues that elicit coexisting
traits perceived by annotators. This paper addresses the importance of considering all the annotations and samples in the data,
highlighting that only showing the model’s performance on an incomplete test set selected by using the majority or plurality rules can
lead to bias in the models’ performances. We focus on speech-emotion recognition (SER) tasks. We observe that traditional
aggregation rules have a data loss ratio ranging from 5.63% to 89.17%. From this observation, we propose a flexible method named
the all-inclusive aggregation rule to evaluate SER systems on the complete test data. We contrast traditional single-label formulations
with a multi-label formulation to consider the coexistence of emotions. We show that training an SER model with the data selected by
the all-inclusive aggregation rule shows consistently higher macro-F1 scores when tested in the entire test set, including ambiguous

samples without agreement.

Index Terms—Speech Emotion Recognition, Learning from Disagreement, Subjective Perception, Multi-label Emotion Classification

1 INTRODUCTION

RECENT developments in affective computing have at-
tracted increasing attention to human perception sys-
tems. Current systems utilize outputs from ubiquitous
multi-modality sensors (e.g., cameras and audio recording
devices) to recognize states or traits describing human
behaviors. These efforts have resulted in human-centered
solutions for problems such as depression detection [1],
pain recognition [2], deception detection [3], and emotion
recognition [4]. Given the subjective nature of these tasks,
these models are commonly tested with labels derived
from human perceptual evaluations, where each data point
is annotated by multiple raters. The standard practice to
process these annotations and generate the training and
testing sets for these models is to use the majority or
plurality aggregation methods, as illustrated in Figure 1a.
These methods discard annotations that disagree with the
consensus label. However, it is common to have co-existing
emotions in daily interactions [5], so a single label does
not properly describe the emotional perception of a sample.
Also, these methods discard data points without agreement.
The majority rule (MR) discards the data if a class does not
achieve more than 50% of the votes. The plurality rule (PR)
discards the data if one class does not have more votes than
the other classes. The issue with discarding samples without
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consensus is that it reduces the validity of systems intended
for practical applications, as these ambiguous samples are
not considered in the test set. Previous studies have only
focused on how to utilize all existing annotations during
training. For instance, studies have investigated the use of a
soft-label learning strategy to include all the samples during
training [6], [7], [8], [9], [10], [11], [12]. However, the test set
is still simplified by only considering sentences with MR or
PR agreement, discarding complex and ambiguous samples.

We explore an effective formulation that combines an-
notations, using all the annotations provided by subjective
evaluations for both the train and test sets, making systems
more suitable for practical applications. While the formula-
tion is suitable for any problem using labels derived from
perceptual evaluations, we focus on speech emotion recog-
nition (SER), where emotions generally co-occur in daily
interactions. Instead of discarding non-consensus labels, we
include all the data points in the train and test sets, allowing
SER models to use valuable information during training
while being tested on all samples in the test set, even the
data points without consensus agreement. We refer to our
approach as the all-inclusive rule (AR) method. The flexibility
to have co-occurred emotions is critical in our formulation.
Figure 1b compares our all-inclusive aggregation with the
majority and plurality rules generally used in SER tasks for
deciding whether or not to include a data point in the test
set. By using the AR method, we consider all the data in the
test set, which allows us to show the complete performance
of SER systems. The driving questions for our study are as
follows:

e How is the performance of SER systems affected by
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Fig. 1: Overview of the difference between the ground-truth
generated by three rules, majority rule (MR), plurality rule
(PR), and all-inclusive rule (AR). (a) Perceptual evaluation
to obtain ground-truth labels. Each utterance is rated by
several annotators, obtaining the consensus label using ag-
gregation methods. (b) An illustration of how aggregation
methods discard the data depending on the annotation
distribution. The check mark means the data point is kept
and the symbol “x” means the data point is discarded. (c)
A diagram that illustrates how much data is included in
the final test set according to each aggregation method. MR
contains the lowest amount of data, and AR always includes
the entire test set available in the dataset.

using different aggregation methods for the training
set?

e Does training an SER system with data derived from
the all-inclusive rule improve the performance on
ambiguous emotions compared to data using the
majority or plurality rules?

e What is the best label learning strategy for training
SER systems when evaluated on the complete test
set?

To investigate the aforementioned questions, we use
common emotional speech databases generally used in SER
tasks: the MSP-Podcast, USC-IEMOCAP, CREMA-D, and
MSP-IMPROV corpora. Based on our experiments, we find
that SER systems using conventional training strategies (i.e.,
majority or plurality rules) perform worse on the complete
test set than on the incomplete test set. This result shows that
these aggregation methods cannot properly handle ambigu-
ous samples, which are much more difficult to predict. Our
results also show that training with the all-inclusive rule
leads to overall better performances than using the majority
or plurality rule when testing with complete and incomplete
test data. Additionally, we find that soft-label learning is the
best training strategy for building SER systems, even if the
system is evaluated on the complete test set.

2 BACKGROUND AND RELATED WORK

This paper focuses on building categorical speech emotion
recognition (SER) systems. We aim at developing formula-
tions to evaluate the models on the complete test set of
datasets, including the ambiguous samples. This section
describes disagreement between raters and existing aggre-
gation methods used to select the data samples.
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2.1 Disagreement among Raters

In contrast to common classification tasks that have well-
established ‘gold standard,” subjective tasks such as emotion
recognition do not have clear labels, which are often ob-
tained with perceptual evaluations. Researchers frequently
turn to crowd-sourcing platforms like Amazon Mechanical
Turk for rapid and extensive label collection [13]. While
this approach is cost-effective, it invariably leads to a com-
promise in label quality. This trade-off is particularly pro-
nounced in subjective tasks, where the ambiguity inherent
in the task itself compounds the variability in annotations.

Subjective tasks, such as emotion perception [14] or hate
speech tagging [15], present unique challenges due to their
inherently subjective nature. Labels in these tasks are not
straightforward to obtain, as they depend heavily on in-
dividual interpreters. Disagreements among annotators can
arise from various factors [16]: diverse backgrounds leading
to different interpretations, lack of interest in providing
correct labels, emotional priming, and contextual differences
[17]. These variances introduce a significant amount of noise
into the labeling process, which is especially problematic in
crowd-sourced evaluations [18].

Noise in annotations is a critical concern, and various
strategies have been devised to mitigate its impact. In the
context of speech emotion classification tasks, it is impor-
tant to acknowledge that while noise contributes to label
discrepancies, it is not the sole reason for disagreement.
Drawing from the methodologies employed in the MSP-
Podcast corpus [14], several approaches can be effective
in reducing noise. These strategies include filtering out
evaluators with consistently low agreement scores, stopping
crowdsourcing efforts when a threshold of agreement is
not met, and relying on in-house workers, who can receive
targeted training to improve label agreement. However, it
is important to acknowledge that perceptual differences are
not necessarily noisy. They can provide information that a
SER system should leverage.

Our paper aims to demonstrate that traditional methods
of aggregating labels (e.g., majority or plurality voting),
which often overlook the nuanced nature of subjective tasks,
may not be suitable for speech emotion classification. We
propose an alternative aggregation method for the speech
emotion recognition task, moving towards a more compre-
hensive and inclusive approach to label aggregation.

2.2 Existing Aggregation Method Definition
The two most common aggregation rules are:

e Majority Rule (MR): it selects a class only if more
than half of the votes select that class. If the frequency
of any category does not reach half or more of the
votes, the data point is discarded (see illustration in
Figure 1b)

o Plurality Rule (PR): it selects a class if one emotional
class obtains more votes than other classes (i.e., re-
ceives a plurality). This rule does not require that the
selected class has more than half of the votes. Data
points with ties are discarded.

MR and PR assume that the ground truth is a single
class. In reality, emotional classes often co-occur (e.g., ex-
cited+happy, surprised+happy, angry+sad). Therefore, they
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are inadequate to accurately represent real-world emotional
states. We present the all-inclusive rule that is more suitable
for training and evaluating the performance of SER systems
in practical applications where ambiguous expressions are
expected.

2.3 Selection of Test Set for Evaluating SER Systems

Evaluating SER systems on the complete test set is very
important. However, the standard approach to dealing with
samples without consensus is to discard them from the test
set. When collecting the emotional annotations from multi-
ple workers, there is often a high disagreement between the
annotators [19], [20], [21]. Therefore, many previous studies
discarded many data points in the test set. For example, the
IEMOCAP and CREMA-D corpora use MR for constructing
the ground-truth labels [22], [23], [24], discarding approx-
imately 31.37% and 35.8% of the data, respectively. Most
studies using these corpora have followed the same rule
to construct the ground-truth label for testing their models
[25], [26], [27], [28]. The MSP-IMPROV and MSP-Podcast
corpora use PR to annotate primary and secondary emo-
tional labels for each speaking turn [14], [29], and studies
using these corpora have kept this default aggregation rule
to evaluate their models [30], [31], [32].

The studies mentioned in the previous paragraph have
assumed that each speaking turn has only one emotional
category, so the ground-truth category does not reflect sec-
ondary emotions also conveyed in the recordings. However,
real-life emotional states can co-exist in many situations
(e.g., a person can be simultaneously sad and angry) [5].
Therefore, aggregating multiple annotations into a single
class and discarding non-consensus data points of the test
set is not appropriate to accurately evaluate whether the pre-
dictions of SER systems can represent emotional behaviors
observed in daily interactions. Although some studies have
investigated the use of the “multiple-hot” vector to define
SER as a multi-label problem [33], [34], [35], this approach
still cannot determine if some emotions are more dominant
than others. It considers all the annotations provided to the
speaking turn as ground truth, even if a class was only
selected by a single annotator. To the best of our knowledge,
Riera et al. [36] is the only study suggesting that we should
use all test samples to evaluate SER systems, instead of dis-
carding non-consensus data. However, they did not explore
SER systems trained with various label learning methods.
Additionally, they relabeled some of the emotions (e.g., ex-
cited as happy; surprised as “other”), which is an important
limitation. Unlike this study, we use the original emotional
classes in all the datasets, providing empirical experiments
using different label learning methods and various test sets
created by considering different aggregation methods.

2.4 Label Learning Methods for SER

Most SER studies have trained their models by using con-
sensus labels obtained by aggregating individual perceptual
emotional annotations with MR or PR. A common approach
for training an SER model with a single consensus label is to
minimize the cross-entropy (CE) between the prediction and
the one-hot encoding extracted from an aggregated ground-
truth. We refer to this approach as hard-label learning. Due
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to its simple formulation, many studies have used hard-
label learning to train their SER model [25], [26], [27], [28],
[30], [37], [38].

Although the hard-label learning strategy simplifies the
representation of the ground-truth label, it does not take
into account the subjectivity of perceptual evaluations. For
example, the hard-label learning strategy cannot differenti-
ate cases when the consensus label is barely reached (i.e.,
ambiguous cases) from unanimous cases (i.e., clear cases).
To address this problem, some studies have used a soft-
encoding to improve the one-hot vector [6], [7], [8], [9], [10],
[11], [12]. Those studies have used the CE between the pre-
diction and the ground-truth vector formed by estimating
the proportions of annotations assigned to each class. We
refer to this approach as soft-label learning, and we use CE
as the cost function.

Instead of using hard-label and soft-label learning meth-
ods, few studies on SER have regarded the soft-label vector
as a distribution, using the Kullback-Leibler divergence (KLD)
as the objective function to train SER models. We refer to this
approach as distribution-label learning [39], and we use
KLD as the cost function. Those studies represented their
ground-truth emotion with a multi-class soft-label encoding,
training the model to minimize the KLD between the soft-
encoded ground truth and the predicted distributions [40],
[41], [42].

3 METHODOLOGY

We introduce an alternative aggregation rule, named the all-
inclusive rule (AR), to train and evaluate the performance of
SER systems on a complete test set, including data points
without MR or PR consensus. We define this rule and
explain its importance along with directions on how to use
it.

3.1 Definition of All-inclusive Rule

The AR is an aggregation method that keeps all the anno-
tated samples within a corpus regardless of the frequency
of the votes. Data points are never discarded. In this rule,
the first step is to gather all the classes given to each data
point. At this point, AR generates the ground truth for the
data. When creating the train set, the representation of the
ground truth is defined as a one-hot encoding or as the
distribution of the votes, depending on the desired label
learning strategy. For the hard-label learning strategy, AR
chooses the emotional class that has the highest votes as the
ground truth, similar to the plurality rule. However, if no
plurality is achieved within the votes, we randomly choose
as the ground truth one of the classes that received the most
votes. We illustrate this scenario in Table 1 Case (C1), where
the hard-label can be either (1,0,0,0) or (0,0,1,0). For the soft-
label or distribution-label learning strategy, AR generates
the distributional ground truth based on the frequency of
votes assigned to the emotional classes.

When generating the test set, AR always uses the dis-
tributional ground truth regardless of the label-learning
strategy, shown in the rightmost column of Table 1. This
method ensures that every annotated data point and all
of its annotations are considered for the test set. The all-
inclusive rule provides a label descriptor that better captures
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TABLE 1: Overview of the label vectors for the all-inclusive
rule (AR) with three examples. Each example has five an-
notations. We illustrate the rules with a four-class emotion
classification task. The four emotions include neutral (N),
happiness (H), anger (A), and sadness (S). A label vector is
created as follows: (N,H,A,S). We list three examples. For
instance, (C1) N,N,A,A,S indicates that the five emotional
annotations for Case (C1) selected two votes for neutral, two
votes for anger, and one vote for sadness.

Case Training Set Test Set
Hard-label  Soft-label  Distribution-label Label
(1,0,0,0)

(C1)N,N,AA,S OR (0.4,0.0,0.4,0.2) (0.4,0.0,0.4,0.2) (0.4,0.0,0.4,0.2)
(0,0,1,0)

(CQONNHAS| (1,000 (04020202 (04020202 | (04020202

(CHNNNAS| (1,000 (06000202 (0.6000202) | (0.60.00202)

TABLE 2: Overview of the number of utterances, emotion
classes, and data loss ratio in the datasets. P represents
primary emotion, and S represents secondary emotions.

Database Utterance Emotion Choice MR PR AR
IMPROV (P) 8,438 4 Single  9.20% 5.63% 0%
CREMA-D 7,442 6 Single 35.80% 8.55% 0%
PODCAST (P) 90,978 8 Single 47.78% 18.56% 0%
IEMOCAP 10,039 9 Multiple 31.37% 25.32% 0%
IMPROV (S) 8,438 10 Multiple 54.17% 12.34% 0%
PODCAST (S) 90,978 16 Multiple 89.17% 29.08% 0%

the emotional content of the data points by incorporating
sentences with ambiguous emotions in the test set.

3.2 Usage of All-inclusive Rule for Test Set Preparation

We utilize all data samples and consider every available
emotion as a learning target to incorporate all opinions
collected during the perceptual evaluation. Previous studies
using the IEMOCAP corpus, for example, have aggregated
all the annotated emotions into a 4-class emotion classifi-
cation task (e.g., merging excitement and happiness, and
discarding minor classes such as fearful, surprise, and dis-
gusted). Unlike this approach, we neither ignore other emo-
tional states present in a corpus nor limit the SER models to
be trained or tested only on a few selected emotions.
Additionally, our all-inclusive rule enables SER models
to be tested with the secondary emotions on the whole test
set. The utilization of secondary emotional annotations has
been ignored by previous studies due to the data loss caused
by standard aggregation methods (up to 89.17% in Table 2).
Since our AR utilizes the entire annotated test set, we can
test our SER model with secondary emotions which have
not been studied before. Table 2 illustrates the ratio of data
loss imposed by the different aggregation rules on the four
datasets used in this study for the primary and secondary
emotions. The use of MR and PR discards up to 89.17% and
29.08% of the entire data, respectively. The worst case is
classifying secondary emotions on the MSP-Podcast corpus.
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4 EXPERIMENTAL SETTINGS
4.1 Resources

We check if the all-inclusive aggregation method works well
over four popular databases. We maximize the usage of the
emotional annotations by using the all-inclusive aggregation
rule. Some databases provide the annotators with the option
to select the class “other”, allowing the annotators to type
their own emotional descriptions. In our experiments, we
remove the annotations labeled as “other” except for cases
when they provide descriptions that are equivalent to the
pre-defined emotions (e.g., from “slightly happy” to “hap-
piness”). For these cases, we aggregate the descriptions that
are similar to the pre-defined emotions following one of the
pre-processing steps presented in Chou et al. [41].

4.1.1 The MSP-Podcast Corpus

The MSP-Podcast corpus, referred here to as PODCAST,
contains spontaneous and diverse emotional speech sam-
ples collected from various podcast recordings, which are
split into speaking turns to form a speech repository. Several
SER algorithms are used to retrieve speaking turns that are
expected to be emotional by using the approach presented
in Mariooryad et al. [43]. The annotation process uses a
crowdsourcing protocol inspired by the work of Burmania et
al. [44]. The perceptual evaluation includes the primary emo-
tions (P) and secondary emotions (S). The annotators choose
a single primary emotion, but they can select multiple
secondary emotions for each sample. The primary emotions
contain nine options: anger, sadness, happiness, surprise,
fear, disgust, contempt, neutral, and “other”. The secondary
emotions consist of the primary emotions and eight more
classes: amusement, frustration, depression, concern, disap-
pointment, excitement, confusion, and annoyance (17 op-
tions in total). Each speaking turn is annotated by at least
five different workers. This paper uses version 1.10 of the
corpus, which consists of 104,267 annotated utterances. We
exclude the “Test2” set in this paper, resulting in 90,978
utterances as listed in Table 2.

4.1.2 The USC-IEMOCAP Corpus

The USC-IEMOCAP corpus [23], referred here to as IEMO-
CAP, consists of motion capture, audio, and video record-
ings from five sessions of dyadic conversations collected
from 10 professional actors. The corpus includes scripted
and spontaneous spoken communication scenarios. Each
dyad is provided with selected scripts to elicit emotional
states (e.g., neutral, angry, sad, and happy emotions).
All recorded conversations were manually segmented into
10,039 utterances, and at least three evaluators annotated the
emotional categories of each utterance. The IEMOCAP has
ten different emotion categories (neutral, happiness, sad-
ness, anger, surprise, fear, disgust, frustration, excitement,
and “other”). Each annotator can provide more than one
emotion and/or choose “other,” if none of the classes are
appropriate. If “other” is selected, they can type their own
descriptions.

4.1.3 The CREMA-D Corpus

The CREMA-D corpus, referred here to as CREMA-D, is
an audiovisual dataset containing high-quality recordings
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collected from a racially and ethnically diverse group of
91 professional adult actors. The actors were given a set
of sentences and asked to say every sentence targeting a
specific emotional state. At least seven annotators rated
the emotional labels under different conditions: audio-only,
video-only, and audiovisual recordings. In total, 7,442 clips
were collected and rated by 2,443 raters via a crowdsourcing
platform. We only use the emotional annotations collected
using the voice-only condition, because this paper focuses
on building SER systems. The CREMA-D corpus was anno-
tated with six different emotions (anger, disgust, fear, happy,
neutral, and sad), where each annotator selected only one
emotion. The option “other” was not allowed.

4.1.4 The MSP-IMPROV Corpus

The MSP-IMPROV corpus [29], referred here to as IM-
PROV, includes acted, elicited, and spontaneous emotional
speech to explore the perception of emotion [45]. The MSP-
IMPROV corpus consists of 8,438 utterances in total. Those
recorded samples are annotated with a crowd-sourcing
protocol that tracked the quality of the workers in real-
time, stopping the evaluation when their quality dropped
below an acceptable threshold [44]. Similar to the MSP-
Podcast corpus, it allows annotators to choose a single
primary emotion (P) and multiple secondary emotions (S).
The primary emotions contain five emotion classes: anger,
sadness, happiness, neutral, and “other.” The secondary
emotions included the primary emotions plus six more
emotions: frustration, depression, disgust, excitement, fear,
and surprise.

4.2 Speech Emotion Classifier

To assess the performance of various aggregation methods,
we use the Wav2vec2.0 architecture [46] that has shown
good performance for SER tasks in various studies [47], [48].
Among the variants of the Wav2vec2.0 model, we use the
“wav2vec2-large-robust” architecture, proposed in Hsu et
al. [49], that showed the best recognition performance in the
study of Wagner et al. [48]. The model accepts raw signal
as its input, instead of using spectrogram or Mel-frequency
cepstral coefficient (MFCC). We use a 16kHz sampling rate
for our dataset to match the sampling rate of its pre-trained
data. For efficiency and reproducibility, we remove the 12
transformer layers from the top of the 24 transformer layers
used in this architecture, which is shown to preserve the
recognition performance with fewer parameters [48]. We
attach two hidden layers and the softmax output layer on
top of the Wav2vec2.0 model, where each hidden layer has
1,024 nodes. They are implemented with the rectified linear
unit (ReLU) activation function. We aggregate the outputs
of the Wav2vec2.0 model by using average pooling per
utterance, then feed it to the classification layers. We apply
the dropout function using p = 0.5 to the first and second
layers of the classification layers to regularize the model.
When implementing the model, we utilize the pre-
trained “wav2vec2-large-robust” model from the Hugging-
Face library [50], and attach the classification layers to the
pruned Wav2vec2.0 model. Then, we fine-tune the model
for each task. During the fine-tuning step, we freeze the
convolutional layers, followed by the transformer layers
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TABLE 3: The data loss ratio imposed by the label aggrega-
tion method on the training, development, and test sets of
the PODCAST corpus. P represents primary emotion, and S
represents secondary emotions.

Rule Set PODCAST (P) PODCAST (S)
Training 47.95% 88.63%

MR Development 47.90% 89.64%
Test 47.08% 90.90%

Training 18.76% 29.46%

PR Development 19.62% 28.90%
Test 17.14% 27.76%

Training 0.00% 0.00%

AR Development 0.00% 0.00%
Test 0.00% 0.00%

of the Wav2vec2.0 model. This partial fine-tuning strategy
has shown better performance than fine-tuning the entire
parameters [47]. We use the Adam optimizer [51] with a
0.0001 learning rate. We group 32 utterances to construct
each mini-batch and update the model for 100 epochs. After
the 100 epochs, we select the model with the best recognition
performance in the development set. We implement the
code in Pytorch [52] and run the code on an NVIDIA Tesla
V100 GPU.

When training our model on the MSP-Podcast corpus,
we use the pre-defined train (63,076 samples), develop-
ment (10,999 samples), and test (16,903 samples) sets of
the corpus. The other corpora are smaller, so we use a
cross-validation strategy. We use the speaker-independent
sessions for the IEMOCAP (five sessions) and the MSP-
IMPROV (six sessions). The CREMA-D corpus does not
provide pre-defined sessions, so we manually split them
into five speaker-independent sessions. For the IEMOCAP,
MSP-IMPROV and CREMA-D corpora, we conduct a K-
fold cross validation, where K denotes the number of ses-
sions for each corpus. Each fold is organized as follows: one
session for the test set, one session for the development set,
and the remaining sessions for the train set.

Table 2 illustrates the data loss ratio introduced by each
label aggregation method in the databases considered in this
study. We evaluate the data loss ratio in each partition (i.e.,
train, development, or test set). We noticed that the data
loss trends are similar across the four datasets, so we only
present the distribution for the PODCAST database as an
example. Table 3 shows the ratios. Overall, the data loss
ratio of each partition is very similar to the data loss ratio
for the entire database.

4.3 Training/Test Set Selected by Aggregation Rules

In this evaluation, we train and test the models with match
and mismatched aggregation rules. For the train and de-
velopment sets, we use the MR, PR, and AR to define the
ground truth. We denote them as M Riyqin, PRtrain, and
ARyrqin, respectively. For testing, we evaluate the models
with the MR, PR, and AR sets. In addition, we define two
extra test conditions, which are illustrated by the donuts
in Figure 1c: PR-MR, the test set accepted by the PR, but
discarded by the MR, and AR-PR, the test set accepted by
the AR but discarded by the PR. The condition AR-PR repre-
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sents the most ambiguous set with samples receiving non-
consensus annotations. To our best knowledge, this is the
first study that evaluates SER models with non-consensus
annotations.

4.4 Label Learning for SER

In addition to the different aggregation methods, we also
evaluate the performance using different label learning
methods. In our experiments, we consider three differ-
ent label learning strategies: hard-label learning, soft-label
learning, and distribution-label learning. For the hard-label
learning, we construct ground truth by using a one-hot
encoding that has “1.0” for the class that received the
maximum number of votes from the annotators. When we
use the train set aggregated with the AR, we randomly
choose one of the emotions that received the most votes
as the ground-truth emotion if the sample does not have a
consensus. We smooth the ground truth vector of this one-
hot encoding by using the smoothing strategy proposed by
Szegedy et al. [53] which utilizes a smoothing parameter set
to 0.05. This smoothing strategy adds a small probability to
emotional classes with zero value. We use the CE objective
function to train the SER systems. For soft-label learning and
distribution-label learning, we represent the ground-truth
vector by using the distribution of the annotator’s votes. We
divide the number of votes for each class by the number
of total votes for each data point. We also implement the
label smoothing strategy used for the hard-label learning.
The cost function for the soft-label learning is the CE loss,
and for the distribution-label learning is the KLD.

4.5 Evaluation Metrics

This paper uses the macro-F1 scores to evaluate the SER
performance, which requires estimating precision and recall
rates. The MR, PR, and PR-MR test sets are formed by
selecting a single class, so they are suitable for the macro-F1
score. The class that receives the maximum number of votes
is selected as the target. We consider a prediction a success
if the class with the maximum predicted probability agrees
with the target class. In contrast, the test sets collected with
the AR and AR-PR conditions contain samples with non-
consensus labels. We allow co-existing emotions to estimate
the macro-F1 score for these experiments. The target classes
are selected by applying thresholds over the ground truth.
We consider a prediction a success if the proportion for a
class is above 1/C, where C is the number of emotional
classes, following the approach adopted by previous studies
[36], [41]. For instance, consider a four-class emotion recog-
nition task, and the emotion classes contain neutral, anger,
sadness, and happiness. Assume we collect five annotations
from five different unique raters for one sample, and the an-
notations contain neutral (N), anger (A), anger (A), sadness
(S), and sadness (S). We first calculate the label distributions,
which for this case is (N, A, S, H) = (0.2, 0.4, 0.4, 0.0). The
threshold is 1/4=0.25, and the ground truth is converted to
(0,1,1,0). During inference, we consider the predictions for
three different models: (0.2,0.35,0.35,0.1), (0.1,0.45,0.45,0.0),
and (0.45,0.1,0.0,0.45). The three predictions are transformed
into (0,1,1,0), (0,1,1,0), and (1,0,0,1), respectively, using the
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threshold. In these cases, only the first two predictions are
fully corrected.

We check the statistical significance of the results using
each aggregation method. For the cross-validation experi-
ments (IEMOCAP, CREMA-D, and IMPROV), we first con-
catenate all the predictions for each condition across all the
folds, so the results consider all the data (i.e., each sample
appears in one fold on the test set). For the PODCAST
experiments, we directly use the predictions of all the pre-
defined test sets from a single model. After collecting all the
predictions, we split those predictions into 40 folds to eval-
uate the average of the macro-F1 score. We perform a two-
tailed t-test to assign statistical significance if the p — value
is less than 0.05. We denote %, T, and x when a model has
significantly better performance than a model training with
the M Rirain, PRirain, and ARyyqir sets, respectively.

5 RESULTS AND ANALYSIS

The experimental evaluation starts by comparing our pro-
posed framework to evaluate the aggregation rules with
state-of-the-art (SOTA) baselines to demonstrate the merits
of the SER strategy used in this study (Sec. 5.1). Then,
we evaluate the three research questions listed in Section
1 (Secs. 5.2, 5.3 and 5.4).

5.1 Comparison of Results with Prior SOTA Methods

We compare the performance of our SER model with three
existing SOTA approaches using the IMPROV(P), CREMA-
D, PODCAST(P), and IEMOCAP corpora. The first baseline
is the model proposed by Li et al. [54], which built an
end-to-end framework that extracts a spectrogram from the
input speech and integrates a self-attention mechanism to
emphasize the emotional frames of the utterances. At the
time this paper was published, this model achieved SOTA
performance on the IEMOCAP database with four primary
emotions. The second baseline is the model proposed by
Pepino et al. [55]. This study used wav2vec 2.0 to extract
speech representations, combining them with hand-crafted
features (i.e., eGeMAPS [56]). The study achieved SOTA
classification performance on the IEMOCAP corpus. The
third baseline was proposed by Goncalves and Busso [31],
which proposed a transformer architecture network trained
with multimodal losses, achieving SOTA performance on
the CREMA-D and IMPROV(P) corpora. To fairly compare
this model with our approach, we only use the network
under the “audio-only” scenario with 65 acoustic low-level
descriptors as input. The three baselines are implemented
following the description provided in their corresponding
papers, evaluating the models under the same testing con-
ditions as our model. In our experiments, we treat SER as
a single-label task, following previous studies, and report
performance on the MR or PR test conditions. We train and
test these models using all the primary emotion classes.
Table 4 lists the results of our comparison. We compare
our model to the SOTA models trained on the MR, data
for the CREMA-D and IEMOCAP corpora and the PRp,4in,
data for the IMPROV(P) and PODCAST corpora. Our model
trained on the ARrpyqi, set outperforms all three SOTA
methods on the IMPROV(P), CREMA-D, IEMOCAP, and
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TABLE 4: Macro-F1 score of existing SOTA baselines and our proposed model on the IMPROV(P), CREMA-D, IEMOCAP,
and PODCAST(P) databases. The results are evaluated by aggregating the labels in the test set using either the majority rule

(MR) or plurality rule (PR).

MR PR
Aggregation Method IMPROV(P) CREMA-D IEMOCAP | PODCAST(P)
Li et al. [54] 0.398 0.311 0.256 0.150
, | Pepino et al. [55] 0.331 0.223 0.191 0.142
MR7rain/PRTrain | Goncalves et al. [31] | 0.539 0.574 0.261 0.161
Ours 0.512 0.591 0.269 0.184
ARTrain | Ours | 0.562 0.585 0.279 | 0.166

PODCAST(P) corpora. Most of the best results came from
our model, demonstrating that our SER models are com-
petitive when compared with previous SOTA approaches.
The baseline with the best results for all the conditions is
the framework proposed by Goncalves and Busso [31]. On
the IMPROV (P) corpus, we obtain a macro-F1 of 0.562
using ARrpy.qin, outperforming this SOTA method (macro-
F1 score: 0.539). However, when we train with the PRp;q;n,
set, we obtain a macro-F1 of 0.512, which is worse than the
model trained with the approach proposed by Goncalves
and Busso [31] (macro-F1 score: 0.539). On the CREMA-
D corpus, to the best of our knowledge, we are the first
to use annotations obtained with the voice-only condition
to train SER systems. Our method obtains a macro-F1 of
0.591 using the MR7,.qiy, set, and 0.585 using the AR7,qin
set. This performance is better than the SOTA performance
[31] (macro-F1 score: 0.574). On the IEMOCAP and POD-
CAST(P) corpora, our SER model outperforms all other
SOTA methods [31], [54], [55].

5.2 Evaluation with Complete and Incomplete Test Data

Table 5 shows the macro-F1 scores for each combination of
aggregation method and label-learning strategy. The results
are based on 18 experiments with different databases where
the models were trained with either the M Ry..qin, PRirain,
or ARyyqin set (6 databases x 3 learning strategies). Figures
2 and 3 present the average performance for each evaluation
set (MR, PR, AR, PR-MR, or AR-PR). We perform a small-
sample test of the hypothesis (matched pairs) on those
results.

We consider our first research question: how is the
performance of SER systems affected by using different
aggregation methods for the training set? We evaluate
this research question by assessing the models trained in
different conditions in the complete test data, incomplete
test data, and cross-corpus setting.

5.2.1 Evaluation on the Complete Test Set (AR)

When testing with the AR approach using all the annotated
data in the test set, Figure 2c indicates that the macro-
F1 score using the ARy qin set is significantly higher than
using the M Ryyqin, and PRiyqin sets across the 18 condi-
tions. In fact, the best overall macro-F1 score in 14 out of
18 experiments was achieved by models trained with the
ARyrqin set, as shown in Table 5. These findings suggest that
incorporating the AR approach during training can enhance
performance, compared to models trained with either the
MR or the PR criterion. Adding more annotated samples in
the training process of SER tasks is beneficial.
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5.2.2 Evaluation on the Incomplete Test Sets (MR & PR)

The single-label task SER performance was evaluated by
considering the MR and PR test conditions. As shown in
Table 5, testing with the PR set resulted in consistently
lower performance compared to testing with the MR set,
since more ambiguous samples were discarded in the MR
set. Similarly, the performance in the PR-MR condition was
generally lower than in the PR conditions. These results
indicate that including more ambiguous samples in the test
set (e.g., more samples without majority consensus), which
are commonly seen in practical scenarios, can decrease the
performance of SER models. Therefore, using either PR or
MR to define the test set may not provide a representative
picture of the realistic results that would be observed during
the deployment of SER systems in real-world situations,
where every sentence is expected to be recognized.

Out of 18 conditions, Table 5 shows that training with
ARyrqin achieved the best performance in 11 cases when
tested with the PR set (approximately 61%) and 14 cases
when tested with the AR set (approximately 78%). Figure
2b shows that the average macro-F1 scores of the models
trained with the AR, 4, are statistically significantly better
than the ones obtained when training with the PRy 4x, set.
These results demonstrate that aggregating the annotations
with the AR approach for the training set can improve
the SER performance on samples with lower-agreement
annotations.

When focusing on the results evaluated on the MR test
condition, the model trained with the AR 4 set outper-
formed other methods in only 7 out of 18 experiments (ap-
proximately 39%). Figure 2a shows that the model trained
with AR4rqin performed worse than the models trained
with the M Ry,.qin or PRyyqin set. Incorporating more chal-
lenging samples in the training set (AR;rqin) Seems to de-
crease its accuracy on the most straightforward (unambigu-
ous) samples. However, this trade-off enhances the model’s
robustness in real-world scenarios, where ambiguous and
unambiguous samples are inevitably encountered. There-
fore, we argue that training SER systems with the ARy, qin
set is, in general, more effective for real-life deployments
where the test set includes a mix of ambiguous and unam-
biguous data, reflecting the true complexity of real-world
scenarios.” We also find that the average performance of
the model trained with PRy, 4, was higher than the results
of the model trained with M R;,..;, when the number of
training samples was increased. This finding is consistent
with the results reported in Chou et al. [9].
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TABLE 5: The table illustrates the macro-F1 score when training and testing with each aggregation method under each
label-learning strategy for each database. We highlight in bold the best performance for each condition. We denote *,
1, and * when a model has significantly better performance than a model training with MR¢yqin, PRérgin, and AR¢pqin,
respectively.

Aggregation Hard-label learning Soft-label learning Distributional-label learning
Database (train/test set) | MR PR AR PR-MR AR-PR| MR PR AR PR-MR AR-PR| MR PR AR PR-MR AR-PR

MR7Trgin 0.5121 05071 0.5551 0.300 0.5167 0.595 0.587 0.613 0.346 0.530 0.612 0.604 0.599 0.401 0.440
IMPROV(P) PR7rain 0.450 0448 0513 0305 0.465 0.600 0.593 0.623 0.341 0.531 0.601 0596 0.590 0.359 0.436
AR7Tgin 0.562x1 0.555%7 0.593+7 0.335 0.498 0.576 0569 0.602 0.339 0.518 0.602 0.594 0.600 0.340 0.441
MR 7 rgin 0591 0532 0551 0.381 0.500 0.640 0575 0.671  0.409 0.651 0.518% 0.474x 0.411 0.357 0.368
CREMA-D PRTrain 0.600 0.545 0.595x 0.390 0.572% 0.667 0594 0.699x 0.416 0.688 0.518% 0.473x 0.419 0357  0.374
AR7Tgin 0.585 0.528  0.607« 0.386 0.593% 0.673 0.615% 0.710x 0.444 0.706x 0486 0442 0414 0.340 0.370
MR7Trgin 0.214% 0.184% 0.303 0.143 0.300 0.215 0.185 0.326 0.145 0.328 0.161 0.137 0.162 0.102 0.159
PODCAST (P) PRrrain 0.259%x 0.232:%% 0.403%*x 0.187xx 0.420%x | 0.241% 0.207xx 0.397+x 0.160%  0.408%* | 0.195x 0.166x 0.192% 0.126%« 0.184x%
ARTrain 0.192 0.166  0.330% 0.129 0.351% 0.199 0.174 0.355% 0.138 0.367% 0.204* 0.175% 0.200% 0.139%  0.192x
MR7Tain 0269 0260 0339 0.203 0.351 0.346 0343 0412 0257 0426 0354 0.341 0.299 0.253 0.287
IEMOCAP PRrrain 0259 0254 0345 0.186 0.355 0.369 0359 0433 0.279 0.453 0377 0.361 0.320 0.253 0.306
AR7Tgin 0.279 0.268 0.365 0.2381 0.378 0.390x 0.383x 0.464x7 0.266 0.479x% 0.369 0.361 0.325x 0.265 0.317
MR7Trgin 0424 0254 0229 0234 0.245 0.451 0299 0379 0.278 0.386 0361 0.185 0.137 0.149 0.150
IMPROV (S) PR7rain 0.455% 0.340%« 0.328% 0.318%  0.360x% 0.433 0.353% 0.483+ 0.342«  0.505% 0.397 0.248« 0.181x 0.219% 0.189%
AR7Tgin 0.391  0.315% 0.337« 0.311x  0.365x% 0.410 0.360x 0.491x 0.343% 0.522x 0.431x 0.306x1 0.216+7 0.282xf 0.227xT
MR 7 rgin 0344 0.078 0.138 0.076 0.141 0.389% 0.080 0.199 0.076 0.198 0.352 0.051 0.060 0.047 0.059
PODCAST (S) PRryain 0.392% 0.113%  0.327x 0.111x  0.328% 0.321 0.122%  0.450% 0.122x  0.457% 0.412 0.076x 0.078% 0.072x  0.074x
ARTrain 0.283 0.125% 0.352%t 0.124+1 0.357%7 | 0.237 0.139% 0.457%« 0.142% 0.466x 0.425 0.078+« 0.091xt 0.075%  0.088x
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(c) Macro-F1 scores on AR set. 5.2.3 Evaluation in Cross-Corpus Settings

The previous experimental results are conducted in within-
corpus settings. We are interested in studying the effect of
training the models with different aggregation strategies in
cross-corpus settings. We choose to train the model with the
PODCAST (P) corpus and test the models with the IMPROV
(P) corpus to demonstrate the benefits of the AR method in
cross-corpus experiments. The IMPROV (P) corpus has the
following emotions: anger, sadness, happiness, and neutral

Fig. 2: Averaged macro-F1 scores across 18 experiments
listed in Table 5 with different databases and label-learning
strategies on the different evaluation sets generated by
three rules, majority rule (MR), plurality rule (PR), and all-
inclusive rule (AR). We denote *, T, and * when a model has
significantly better performance than a model training with
MRirain, PRirgin, and ARy¢yqin, respectively.
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emotions. The PODCAST (P) corpus includes the same
four categories in addition to surprise, fear, disgust, and
contempt. Given the overlap between emotions, we can
conduct this cross-corpus evaluation, where a SER model
is trained with the PODCAST (P), and the objective is
to predict the emotions in the IMPROV (P) corpus. Our
strategy is to use the models trained with the PODCAST
(P) corpus as they are, evaluating their performance on the
IMPROV (P) set. Then, we select the predictions on anger,
sadness, happiness, and neutral state. We use the threshold
to convert the distribution predictions into binary labels and
calculate the results using the macro F1 score. For instance,
consider the prediction of one sample of the IMPROV (P) as:
(anger, sadness, happiness, surprise, fear, disgust, contempt,
neutral) = (0.2, 0.2, 0.1, 0.1, 0.2, 0.1, 0.0, 0.1). We only select
the four predictions without renormalizing the predictions:
(anger, sadness, happiness, the neutral) = (0.2,0.2,0.1,0.1). In
the next step, we use the threshold 1/C' =1/8 to obtain
the following binary format: (1,1,0,0). Consider that the
ground truth of the sample is: (anger, sadness, happiness,
the neutral) = (0.4,0.4,0.1,0.1). Since the threshold for the
IMPROV (P) corpus is 1/4, the binary format is (1,1,0,0).
In this scenario, the prediction is 100% correct.

Table 6 summarizes the cross-corpus macro-F1 results
when the test set is created using the MR, PR, AR, PR-MR,
and AR-PR labels. The table shows that training the models
with the AR7,4ir, set leads to better performance on the MR,
PR, AR, and AR-PR sets. This evaluation demonstrates that
the proposed approach is also beneficial for cross-corpus
evaluations.

5.3 Evaluation on the Ambiguous Set

We consider our second research question: does training
an SER system with data derived from the all-inclusive
rule improve the performance on ambiguous emotions
compared to data using the majority or plurality rules?

5.3.1 Performance on the AR — PR Condition

We analyze the results on the AR — PR test condition,
which only considers the samples in the AR set that are
not included in the PR set. When exclusively using the
samples from the AR— PR test condition, Table 5 shows that
training with M R4y, does not show the best performances
in 17 out of 18 cases (approximately 94%). We observe
significantly better performance for models trained with
the PRiyqin set in 10 out of 18 experiments (approximately
56%) when using the AR — PR test condition. Moreover,
Figure 3b shows the averaged macro-F1 score of the model
trained with the M R;,.4in set achieves the worst classifica-
tion performance. These results show that containing more

TABLE 6: The table shows cross-corpus macro-F1 results of
the models trained with the 8-class MSP-PODCAST (P) set
used to predict the emotions on the 4-class IMPROV (P) set.

TestSet | MR PR AR PR-MR AR-PR
MRy qin | 0445 0441 0520 0271 0.506
PRryqin | 0445 0448 0521  0.295 0.495
AR7rqin | 0458 0459 0523 0276 0.520
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ambiguous data in the train set (i.e., the model trained
with either the PRyyqin, Or ARyrqin set) can improve the
performance on sentences with more ambiguous emotions.
Therefore, we conclude that only training SER models with
the MR set does not help predict ambiguous emotions.
Besides, Figure 3 shows that the averaged macro-F1 scores
of models trained with the ARy.., set are significantly
better than the ones trained with either the M Ry,..;,, set or
the PRty qin set on both the AR — PR and PR — MR test
conditions. We suggest using the AR approach to select the
training data for SER tasks.

5.3.2 Analysis of the Feature Embeddings

We aim to visualize the embeddings of the models trained
by various aggregation rules for sentences with high and
low agreements. We take the PODCAST (P) to explore this
question. We restrict the analysis to only four emotions for
better visualizations: anger, sadness, happiness, and neutral
state. We are interested in segments that have either low
or high agreements from the test set for the visualization.
We define the low and high agreement groups by selecting
samples from the test set using the Cohen Kappa statistic
[57]. We select the top 2% of the test samples with high
agreement, obtaining 21 samples for “sadness,” 33 samples
for “anger,” 97 samples for “happiness,” and 139 samples
for “neutral.” We consider these samples to be represen-
tative of emotional speech with high agreement. We also
consider ambiguous cases. Our approach is to select the top
2% of the test samples with low agreement. The majority of
these samples do not have a clear consensus. We consider
sentences that have the following two emotions, indicating
in brackets the number of selected samples: anger-neutral
(30), sadness-happiness (18), neutral-happiness (67), and
anger-sadness (30).

We utilized the T-distributed stochastic neighbor embedding
(T- SNE) to visualize the data distribution in the feature rep-
resentation (1,024-dimensional vector) in two-dimensional
plots. We visualize the figures with two emotions plus one
complex emotion. For example, “anger,” “sadness,” plus
“anger-sadness” (complex emotions). We print the name of
the emotion centered around the average values of the sen-
tences for the given class. Figure 4 shows plots for the em-
bedding obtained with the models trained with the AR:yqin
and M Ry, qin sets. The results for PRiyqin, AR — PRirgin,
and PR — M Ry,qin are omitted for space limitations. The
T- SNE plots show some separations between the emotions
with high agreements. The samples from the complex sam-
ples with two emotions are often located between the emo-
tional samples with high agreements. When we compare the
embeddings created with models trained with the ARy 4in
and M Ryyqin sets, we observe a higher separation between
the classes when using the AR;,qin set (see the location of
the name of the emotions in the plots). We provide further
evidence of this result with the silhouette score [58], which
is a metric used to compare the quality of the clusters gen-
erated in the embeddings. It evaluates how well-separated
and distinct the clusters are in the data, ranging from -1
(poor cluster) to +1 (perfect clusters). We extracted the 1,024-
dimensional feature representation created by our models
when they were trained with sets created with different
types of consensus agreement. Table 7 lists the estimated
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TABLE 7: Silhouette score of emotional clusters observed on
the embeddings. The analysis of the feature embeddings in-
cludes the emotion pairs: anger-neutral (ang.-neu.), sadness-
happiness (sad.-hap.), neutral-happiness (neu.-hap.), and
anger-sadness (ang.-sad.). We highlight in bold the highest
silhouette score for each case.

Case | ang.-neu. sad.-hap. neu-hap. ang.-sad.
MR7Trqin -0.0366 0.4085 0.0819 0.0819
PR7rain 0.0502 0.3994 0.1291 0.0492
ARTrain 0.0618 0.4571 0.1369 0.1627
AR-PR77qin -0.1371 0.1597 0.0166 0.2695
PR-MR7qin -0.1379 0.17 0.0108 0.4395

silhouette score with the three clusters: first emotion, second
emotion, and the complex sentences with the two emotions.
For this analysis, we also include the embedding generated
by models trained with the PRiyqin, AR — PRirgin, and
PR — M Ry, qin sets. The Table shows that the model trained
with the AR¢yqin set achieves the highest silhouette score
for the “anger-neutral”, “sadness-happiness”, and “neutral-
happiness” cases. Surprisingly, the model trained with the
PR — M Ryyqin set achieves the highest silhouette score on
the “anger-sadness” case. Overall, the embeddings from the
models trained with more ambiguous samples have a higher
capability to cluster the complex emotion samples than the
model trained with the M Ry,.q;n set.

5.3.3 Role of Extra Data Added by the AR Approach

One of the benefits of using the AR¢yqin set is the extra
amount of data used during training, since it uses every
sample in the data, in contrast to the M Ry,qin or PRrgin
sets. However, adding extra data is not the only reason for
the benefits of this strategy. We conducted experiments to
compare models under training sets of similar size using
oversampling and undersampling strategies.

We implement the oversampling approach by generating
synthetic data. We follow the approach proposed by Pap-
pagari et al. [32] to generate the data until the number of
the data is equal to the number used in the AR, 4y set.
Table 8 shows the results. The column “Real Data” means
the number of original training sets; the column “Synthetic
Data” indicates the number of generated synthetic training
data. The table reports the performance in each testing set
under this setting. The performance of the model trained
with the AR;yqin set constantly outperforms the “M Ryrqin
+ synthetic data” and the “P Ry, 4y, + synthetic data.” There-
fore, the introduction of the samples in the AR — PRyy4in
set is indeed helpful in predicting ambiguous samples.

For the undersampling strategy, we also conduct ex-
periments that reduce the training set until the number
of samples in the PRyyqin and ARyyq, sets equals the
number of data selected by the M Ry, set. The samples
to be removed are randomly selected. Table 8 summarizes
the macro-F1 score for each condition. The table shows
that training with the ARy 4, set leads to the best per-
formance on the AR, PR — MR, and AR — PR test sets.
We conducted a second undersampling strategy where all
the models are trained in two conditions with consistent
size across the M Rirqin, PRirain and ARyyqin strategies.
The first condition consists of 20K random data points in
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Fig. 4: T-SNE using embeddings generated by the models
trained with the MR 7,4, and ARp,..;n sets. The feature em-
bedding analysis includes the emotion pairs: anger-neutral,
sadness-happiness, neutral-happiness, and anger-sadness.

the training set selected following the corresponding rules
(MR, PR, or AR). The second condition adds 12,831 data
points, leading to 32,831 samples in the training set. These
12,831 samples are randomly selected from the rest of the
training set, and they do not have to satisfy any consensus
criteria. Since not all the 32,831 samples have consensus for
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TABLE 8: Analysis of the role of extra data added by the AR approach. The table reports the oversampling approach, which
uses data augmentation, and the undersampling approach, which randomly removes samples until the data is consistent.

Experiments Train Real Data  Synthetic Data ~ Reduce Data MR PR AR PR-MR AR-PR
MR7rqin 32,831 30,245 0 0217 0.188 0.343  0.145 0.345
Oversampling ~ PRryqin 51,243 11,833 0 0206 0.178 0.368  0.136 0.368
Train 63,076 0 0 0.234 0.211 0.398 0.172 0.407
MR7rqin 32,831 0 0 0.237 0.207 0366  0.164 0.372
Undersampling ~ PR7yqin 32,831 0 18,412 0.214 0.186 0.380 0.142 0.388
ARTrqin 32,831 0 30,245 0.227 0.201  0.387 0.164 0.399

TABLE 9: Results for the undersampling strategy that com-
pares training sets with either 20,000 samples, following the
corresponding aggregation rules, or 32,831 samples that are
formed by randomly adding 12,831 samples regardless of
whether they reach or do not reach consensus. The table
shows the macro-F1 scores, highlighting the benefit of using
the AR¢yqin set.

Train Set # MR PR AR PR-MR  AR-PR
MR- 20,000 0303 0.320 0.317 0.334 0.309
Train 37831 0333 0350 0.349 0.362 0.345
PR . 20,000 0336 0375 0.377 0.404 0.382
Train 37831 0350 0.391 0.394 0.424 0.404
AR - 20,000 0.353 0.400 0.402 0.438 0.408
Train 33831 0367 0.415 0.418 0.454 0.430

the MR and PR rules, we train the models using a soft-
label learning strategy, using all the samples in the set.
Table 9 provides the macro-F1 score when training with
both conditions. The table shows that adding more data
is always helpful. Interestingly, we consistently observe the
highest performance across test settings using the AR¢rqin
set for both conditions (20,000 and 32,831 sets). These results
indicate that the AR method can improve the performance
of the SER models by including ambiguous data, where the
benefits are not only due to adding more samples.

5.4 What is the best label learning for SER?

We consider our third research question: what is the best
label learning strategy for training SER systems when
evaluated on the complete test set?

Figure 5 shows the performance of SER systems trained
using various aggregation methods and different label-
learning methods. We present these results on the entire test
set using the AR approach. Among the label-learning meth-
ods, the distribution-label learning strategy, which uses KLD
as the cost function, has the lowest performance. Using CE
as the loss function results in better SER performance than
using KLD. Among the label-learning strategies that use
CE, soft-label learning shows better results than hard-label
learning. Table 5 reveals that SER systems using soft-label
learning outperformed systems using hard-label learning in
17 out of 18 cases (approximately 94%). This result aligns
with previous studies, which have shown that representing
emotions with soft-encoding and using the CE loss function
is a more appropriate label learning strategy for training
SER models [6], [7], [12], [59], [60].

Additionally, Figure 6 summarizes the macro-F1 scores
for each database when using hard-label learning, soft-label
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learning, and distributional-label learning strategies. We
only consider the results on the AR — PR test set for better
interpretation since these samples are the most emotionally
ambiguous. Figures 6a (training with MR), 6b (training with
PL), and 6c (training with AR) reveals that the soft-label
learning strategy is the most suitable learning method to
train SER systems from the existing learning methods to
recognize mixed emotions from the ambiguous samples in
the AR — PR set.

6 CONCLUSION AND FUTURE WORK

This paper investigated the performance of speaker-
independent categorical SER systems evaluated on an all-
inclusive test set without discarding any data, using our
aggregation rule. Our preliminary investigation showed
that following the majority or plurality rule discards a
significant portion of the annotated test samples, resulting
in poor representations of the expected SER performance
in realistic scenarios where the classifier must recognize the
emotions in all the sentences, with or without consensus.
The experiments with the all-inclusive test set showed that
using the all-inclusive aggregation rule for defining the
ground truth leads to more reliable SER performance, as the
test includes more speech samples with lower-agreement
annotations. Our results also indicated that the performance
of SER models decreases as more ambiguous samples are
included in the test set, emphasizing the importance of
using the complete test set. Additionally, we found that
training with high-agreement data alone cannot help to pre-
dict ambiguous emotions. Lastly, our findings showed that
among label-learning strategies, soft-label learning leads to
the best performance in the entire test set. The averaged
SER performance of the model trained with data selected by
the all-inclusive aggregation rule is consistently higher than
those trained with data selected by the majority or plurality
rule on both the incomplete and entire test sets.

Building upon the findings presented in this study,
future directions can expand the application of the all-
inclusive rule to other subjective tasks. Specifically, we can
investigate its effectiveness in the context of text-to-speech
(TTS) and textless speech-to-speech translation (S2ST) systems.
For instance, Zhou et al. [61] developed a system to syn-
thesize human voices with mixed emotions. However, the
number of emotions is limited, so their emotion embedding
has room to improve. By applying the all-inclusive rule,
which considers the entire dataset, we anticipate that the
TTS system will become more realistic with a broader range
of emotional expressions compared to existing methods.
Likewise, current S2ST systems do not consider emotional
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Fig. 5: Bar plots illustrate the macro-F1 scores when using
hard-label learning, soft-label learning, and distributional-
label learning strategies. All models are evaluated with the
complete test set aggregated by the AR strategy for each
database. We denote @, {, and ¢ when a model has signif-
icantly better performance than a model training with the
hard-label learning, soft-label learning, and distributional-
label learning strategies, respectively.

information [62], [63], which is a critical aspect of natural
human conversation. Recognizing the significance of emo-
tions in effective communication, we believe that integrating
the all-inclusive rule into S2ST systems can significantly
enhance their realism during speech conversion. We intend
to investigate all-inclusive approaches for incorporating
emotional information into S2ST systems and evaluate the
impact when compared to traditional methods such as the
majority rule. Besides, we will explore other important
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Fig. 6: Macro-F1 scores for each database when using hard-
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learning strategies. All models are evaluated with the AR-
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consensus. We denote @, {, and ¢ when a model performs
significantly better than a model training with the hard-
label learning, soft-label learning, and distributional-label
learning strategies, respectively.

dimensions in addition to accuracy to derive better labels,
including reduction of biases, improvement of fairness, and
reduction of uncertainty [64], [65]. We expect that by con-
sidering all the annotations provided by the workers, we
can derive better labels that also address these important
dimensions.
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