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Abstract—Mobile Remote Presence (MRP) robots have
emerged out of the need for telepresence in various settings such
as the workplace and hospitals. As with face-to-face experiences,
these robot mediated encounters have social aspects that current
commercially available MRP robots lack the capabilities to
incorporate. In previous work, we integrated a manipulator
onto a commercial telerobotic platform to enable expressive
gestures and demonstrated that the gesturing capabilities
enhanced the social connection between remote and local users.
However, we also found that controlling the robot for complex
interactions, such as a handshake, diminishes the remote user’s
social experience. This paper presents the discovery of models
for handshakes in different social contexts, which can be used in
a shared-control architecture to reduce the effort on the remote
user. Using a haptic measurement glove, force and inertia data
was collected for human-human handshakes in various social
contexts. By applying a k-nearest neighbor algorithm in
combination with dynamic time warping and a support vector
machine algorithm, two classification models are derived that
predict the social context and can be used in an intelligent
shared-control robot architecture.

Keywords—Telerobot, Mobile remote presence, Human-robot
interaction, social robotics, Machine Learning, Robot
handshaking

I. INTRODUCTION

Telerobots or mobile remote presence (MRP) robots are
used for human-to-human activities that are normally
conducted face-to-face, such as providing services like
doctor’s visits to hospitalized patients or classroom
participation for homebound students. The MRP experience
is characterized by (a) a pilot, who is a remote human user
operating the robot from a distant location, (b) the MRP robot
itself, and (c) a colocated human user, who is interacting
directly with the robot to communicate with the pilot (Fig. 1).

Fig. 1. A human in a remote environment (a) uses a manual interface to
control a MRP robot (b) that is colocated with a human partner (c)
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MRP robots have emerged out of the need for
"telepresence" and to bridge the gap between audiovisual
communication tools and face-to-face experiences.
Currently, commercially available MRP robots lack the
capabilities to incorporate human-to-human social aspects of
body language, gesturing, and social contact (e.g.,
handshakes and fist bumps) that are part of our everyday
face-to-face interactions [11]. The challenge to adding such
capabilities is controlling the robot's physical actions with
reasonable fidelity to the pilot’s intended social and
emotional expressions. Specifically, how does the pilot’s
actions (a) trigger their physical expressions in the MRP
robot’s system and how does the MRP robot’s system (b)
control its end effectors to express the pilot’s actions in a
manner that is correctly interpreted by the colocated human
partner (c). The focus of this work is on MRP robot to human
handshaking, as handshaking plays an important role in many
cultures and is used in a variety of everyday situations [11].

Handshaking is a form of nonverbal communication that
can convey trust as well as signaling a willingness to engage
in conversation. Handshakes also require physical contact
without violating other people's personal space. Often, first
impressions are influenced by handshakes. For example, a
hardy handshake can convey a person's competence and
trustworthiness, while a feeble handshake can signal
introversion and insecurity [2]. From a robot control
perspective, whether autonomous or teleoperated,
handshaking is a complex technical action requiring accurate
positioning in relation to the human partner, cadence
appropriate to the social context, force-compliance with
respect to the human partner, and synchronization for
beginning and ending the action [1].

In addressing these control complexities, we consider the
cadence and grip forces. What social information is conveyed
by the different types of handshakes and how might this
information be used to control an MRP robot’s handshaking
behavior to convey the similar social information? To this
end, we investigate the physical properties of a handshake
between humans to enable future control and experiments
with a handshake between a human and a robot.

For this purpose, we study the physical characteristics of
handshakes between two humans in different social
situations, such as a greeting, condolence or congratulations.
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Our project aims at a quantitative analysis of the handshake,
in particular the synchronization phenomenon that occurs
when the hands of two people interact. The goal of this work
is to gather handshake data to create classification models
using Machine Learning methods that can be used to guide a
robot’s actions in corresponding social situations.

This paper reports on the modeling of human-to-human
handshakes. We use a wearable haptic measurement glove
(HMG), developed in our previous work [3], to collect force
and inertia data during handshakes in human-human
interactions. Two supervised machine learning methods,
KNN and SVM are then used to create classification models
of handshake characteristics and resulting models are
evaluated.

In the following section, we present our previous work
and other related works. In sections III and IV, we describe
the methods used, the data collection process and share our
evaluations of the algorithms and the data. Finally, in sections
V and VI, we analyze the data, present our classification
model, and provide an overview of future work.

IL. RELATED WORK

The handshake is proven to be almost 3,000 years old
when it was first illustrated in ancient Greek reliefs and on
gravestones [4]. It has played an important role in human
communication. People communicate with each other
constantly through verbal and nonverbal forms. Over time, a
simple gesture like the handshake has helped to improve
interpersonal relations in almost every area of daily life, such
as in negotiations and in the workplace, to convey empathy
and to solve conflicts. Early etiquette books ([12], [17])
described the proper handshake and its social implications.

In general, the handshake itself is quite well studied. Hall
et al. [6] was one of the first works to examine the handshake
as an interaction and its history in detail. They found that the
handshake is consistently accompanied by other gestures,
both verbal and nonverbal, and does not occur in isolation.
Katsumi et al. [8], studied the role of ethnic and gender
differences in the effect of handshake on appraisals of social
interactions. They found that the handshake is most
commonly used in Western cultures for greeting, especially
among men. Furthermore, they confirmed that the handshake
is commonly used as a nonverbal form of communication to
signal approach and avoidance intentions.

In their paper, Stahl et al. [13] discuss the limitations of
current video conferencing systems in replicating natural
interaction and non-verbal cues, hindering effective
communication and collaboration. They proposed the
development of humanoid telepresence robots that can mirror
human actions and gestures to overcome these limitations.
The authors highlighted the importance of body posture and
gesture in telepresence and called for further exploration of
these elements. They also addressed the concept of "presence
disparity" and emphasized the need for robots to resemble
humans and exhibit positive attributes to gain acceptance in
a business environment. This research aligned with the goal
of facilitating natural handshakes for mobile remote presence
(MRP) robots and addressed the challenges of social and non-
verbal cues in telecommunication.

Despite being well studied, experiments on the handshake
in different situations in the context of human-robot
interactions are rare. In previous NSF-funded work, we
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designed, built, and integrated a modular manipulator onto a
commercial telerobotic platform, the Anybots QB 2.0, to
enable expressive gestures (Fig. 2) [12]. This work was
inspired by prior research on robotic manipulators which
span a spectrum of functionalities and realism. We
demonstrated our lightweight, 5 DOF anthropomorphic arm
and 5-fingered hand (OpenBionics Brunel Hand 2.0), shown
in Fig. 2a, can achieve expressive gestures (waving),
reference pointing, and tangible interactions such as
handshakes (Fig. 2¢). Control of the manipulator is achieved
through the HTC Vive virtual reality (VR) tracking system
and the Manus VR Prime One glove, resulting in direct
mapping of the remote operator’s movements to the
manipulator pose (Fig. 2b). Through empirical user studies,
we demonstrated that gesturing capabilities onboard the
telerobot enhanced social connection for the colocated user,
but not for the pilot user. With only the visual feedback from
two cameras mounted on the telerobot, the control of the
manipulator added to the pilot’s cognitive effort, particularly
for complex action that required synchronizing with the
remote user.

Fig. 2. (a) Anybots QB 2.0 and modified platform; (b) manipulator
matching a user pose (overlaid photographs); (c¢) modified platform and
colocated human

To study human-robot handshake interactions in detail,
we developed the HMG (Fig. 3). In contrast to the four stages
described in [8], we found that both the human-human
handshake (HHI) and the human robot handshake (HRI)
consist of five distinct phases. Phase 1 is between the start of
data recording and the first contact, where interactants raise
their arms from the resting position. Phase 5 is a mirror image
of phase 1; it lies between the termination of physical contact
at the end of the handshake and the end of the recording,
during which the participants lower their arms. Phases 2, 3,
and 4 characterize the contact portions of the interactions [3].
The robot system consisted of the Anybots QB 2.0 [16]
equipped with our previously described robot manipulator. In
summary, this work found that there are differences between
HRI and HHI handshakes in terms of duration, pulses,
energy, and firmness.

Tagne et al. [15] is one of the first works to study the
social context of a handshake related to robotics. Similar to
the work reported in this paper, they studied handshakes in
different situations (i.e., hello, congratulations, sympathies).
They found that context influences the strength and duration
of the handshake. In Melnyk et al. [10], they developed a
glove to measure the physical parameters, similar to our
HMG, and found that there is a difference in the duration of
the handshake in the context of the greeting handshake and
the consolations handshake. Our research builds on these
results by taking the step of deriving classification models of



handshake data collected using our HMG [3] for the purpose
that convey

of controlling robot handshakes social

messaging.

Fig. 3. A participant wearing the HMG and the confederate shaking hands

III. METHODS

The HMG was used to collect the data such as force,
acceleration, angular rotation and orientation. As shown in
Fig. 4, the HMG [3] consists of a silk glove with force
sensitive resistors (FSRs), a slide switch, an LED, a built-in
battery, an SD card, and an IMU on a 9-DOF Razor IMU
microcontroller. It has 14 total sensing capabilities (5 FSRs +
9 degrees of freedom IMU) and can form-fit to most sized
hands. The FSRs are three-layer sensors consisting of a
conductive layer, a spacer, and an interdigitated electrode
layer. In total, there are five FSRs placed on points of the
glove determined in our previous work [3] to have
concentrated contact during a handshake. These points are on
(1) the tip of the index finger, (2) the heel of the ulnar side of
the palm, (3) the base knuckle of the little finger on the ulnar
side of the palm, (4) the middle of ulnar side of the hand
between the palm and the back of the hand, and (5) the radial
side of the base knuckle of the index finger.

)

Fig. 4. The HMG components: silk glove, FSRs (locations circled with
dotted lines representing a sensor on the palm side), slide switch, LED, built-
in battery, SD card, 9-DoF Razor IMU microcontroller, insulated wires,
conductive thread. The orientation of the IMU axes is different for the (a)
accelerometer/gyroscope and the (b) magnetometer. In (a), the positive z-
axis is in the palm direction. In (b), the positive z-axis points in the dorsal
direction [2]

To collect handshake data in different situations, a three-
part experiment was conducted. We collected force and
inertial data on handshakes in between two people in

situations such as a greeting, sympathy or congratulation in
order to identify quantitative and qualitative characteristics of
each and to compare the execution of handshakes in between
the three scenarios. A total of 15 subjects participated in this
study, 10 of whom were male students. The mean age of the
participants was 24. Each subject was asked to shake hands
two times per situation. In total, each subject shook hands 7
times, one handshake for testing purposes and to get familiar
with the study procedure and 6 situational handshakes.

During the study, a subject, wearing the HMG, shook
hands with a confederate. The confederate, a student from
SIUE, and the participant were instructed to stand at arm’s
length. The participant was told a short story by the
experimenter, depending on the situation, to better empathize
with the situational action. For the greeting handshake, the
participant was told they would meet an old friend. Then the
confederate said: “"Hey [participant], how are you? It's good
to see you again." and the handshake was initiated. All
handshakes were performed with the right hand.

TABLE I. EXAMPLE OF THE STORIES FOR THE DIFFERENT HANDSHAKING

SITUATIONS
Handshake Situation Story
Greeting Meeting with an old friend
Congratulatory Congratulations on graduation
Sympathy Loss of a beloved pet

After starting the data collection, both subjects hold their
arms in idle position, carry out a handshake and return their
arm to idle. This was repeated three times for each of the four
situations per pair of subjects to record 180 total handshakes.
The study was approved by the SIUE’s Institutional Review
Board. The duration of each study session was around 20
minutes and the subjects received a $10 gift card for their
participation.

A. Analysis Metrics

According to [4], handshakes can be quantitatively
categorized by the following factors: Vigor, duration, number
of up and down movements, firmness, and completeness of
grip. Vigor, duration and the number of up and downs can be
measured by the accelerometer, gyroscope, and
magnetometer. The completeness of grip, firmness and
duration can be computed from the FSR data.

With the collected data, a profile of each handshake was
created. Data on handshake duration, waveform amplitude,
number of waveform peaks, number of sensors activated, and
force magnitude of activated sensors are recorded for each
trial (see Fig. 5).

Preprocessing the dataset is vital before training the
machine learning model, as it prepares the data for analysis.

One important preprocessing step is the data selection.
The analysis is based on handshake stages 2, 3, and 4 as they
characterize the handshake the most. All these stages describe
the contact interaction and can be extracted by filtering the
data by force. Since no contact is made in phases 1 and 5, the
force values for the FSR are at 0. The handshake stages are
described in more detail in the Results section.
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Fig. 5. Representative time plots of 3-axis linear acceleration for a greeting
handshake

Two algorithms are used to derive classification
models: 1) k-nearest neighbor (KNN) in combination with a
Dynamic Time Warping (DTW) algorithm and 2) Support
Vector Machine (SVM) algorithm.

DTW is a mathematical method for comparing two time
series sequences that do not perfectly match by computing
the distance of similar elements [S]. DTW includes the
following steps: (1) compute a distance matrix between the
two sequences, where each cell in the matrix represents the
distance between two points in the sequences, (2) compute
the cumulative distance matrix by summing the distances
along a path through the distance matrix and (3) find the path
with the lowest cumulative distance, using dynamic
programming [9]. With the DTW technique, we are able to
detect similarities in the handshakes even if one person was
shaking hands faster than the other. This can mitigate the
emphasis on individual idiosyncrasies in classification that
could lead to overfitting.

The KNN algorithm is used because of its simplicity and
wide usage in applications. Given a new observation, KNN
finds the k-nearest points to that observation in the training
dataset and assigns the class of the majority of the k-nearest
points to the new observation. The KNN algorithm includes
the following steps: (1) choose the k number of expected
classes, (2) calculate the distance between the new
observation and each point in the training dataset using the
DTW distance, (3) select the k-nearest points to the new
observation based on the smallest distance, and (4) assign the
class of the majority of the k-nearest points to the new
observation [7].

A SVM algorithm is a supervised machine learning
algorithm used for classification and regression tasks. It
works by finding an optimal hyperplane that separates
different classes in the input data [14]. The SVM aims to
maximize the margin, which is the distance between the
hyperplane and the nearest data points of each class. This
allows the SVM to create a decision boundary that
generalizes well to new, unseen data. SVM can handle high-
dimensional data efficiently and is effective in cases where
the data is not linearly separable by transforming the input
space using kernel functions. By mapping the data into a
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higher-dimensional space, SVM can find a nonlinear decision
boundary.

Both the KNN with DTW and the SVM algorithm split
the dataset containing the handshake time series data for each
category into 80% for training and 20% for testing.

Iv. RESULTS

In this section, we present our results from the
classification study and describe outcomes regarding the
characteristics of handshakes in different situations. As
described in [3], when interpreting the data, the positive Y-
axes for the accelerometer and gyroscope points down when
the arm is extended parallel to the ground with the palm of
the hand perpendicular to the ground during a normal
handshake. The axis orientation is provided in Fig. 4.

A. Handshake Stages

Representative time plots are shown in Fig. 6 for context.
Similar to our previous work [3], all handshakes consist of 5
different phases.

Stage 1 describes the part between the start of the data
recording after switching the slide and the first contact. While
doing this, the participants rotate their hands around the Z-
axis and, as shown in Fig. 6, the hands experience relatively
constant acceleration. In stage 1, there is no FSR data as there
is no physical contact between the confederate and
participant. Stage 5 mirrors stage 1, i.e., it is the phase
between the end of the contact interaction and the participant
switching the slide again to end the recording. The stages 2,
3, and 4 describe the contact interaction. In stage 2, the
participants make contact and start their handshake
movement. During this stage, the participant subconsciously
determines how the handshake will proceed. Stage 3 is the
main stage and shows the typical up and down motion (see
Fig. 6). Stage 4 is the phase when one or both participants
want to terminate the handshake and the physical contact
ends.

For all different handshake situations, stages 1 and 5 are
relatively similar with constant acceleration. Stages 2 and 4
consist of more unstable data and vary from participant to
participant. Stage 3, the main stage, shows a steady
waveform. As shown in Fig. 6, the greeting and
congratulation handshakes have relatively high amplitudes
and are pretty similar in terms of acceleration. In comparison,
the sympathy handshake has less up and down movements,
and the amplitude is lower. The similarities and differences
observed in each stage are discussed in more detail in Section
V.
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Fig. 6. Time plots of 3-linear acceleration for (a) a greeting handshake, (b)
a congratulation handshake, and (c) a sympathy handshake. The handshakes
are divided into five stages

B. Handshake Metrics

We now further analyze stages 2, 3, and 4 in the context
of the 5 characteristics of handshakes.

Duration: The greeting handshake duration is 1.7 +
0.41seconds, the congratulation handshake duration is /.6 +
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0.36seconds and the sympathy handshake duration is /.3 +
0.39seconds.

Vigor: Sympathy handshakes have lower acceleration
waveform amplitudes compared to greeting and
congratulation handshakes. The waveform amplitude is
measured from the y-axis waveform because the amplitude
of the y-axis waveform is the most prominent and consistent
of the three axes. The sympathy handshake acceleration
amplitude is 3.8 £ 0.49g, the congratulation handshake
acceleration amplitude is 3.9 + 0./8g, the sympathy
handshake acceleration amplitude is 2.3 £ 0.43g.

Pulses: Greeting and congratulating handshakes have
more pulses than sympathy handshakes. The highest
amplitudes are seen in stage 3 of the handshakes. The average
number of waveform peaks for greeting handshakes is 4.0 +
1.9peaks, the average number of peaks for congratulation
handshakes is 4.3 + [.7peaks and the average number of
peaks for congratulation handshakes is 3.7 + 1.8peaks.

Firmness: Sympathy handshakes have lower firmness
compared to congratulation and greeting handshakes. Similar
to [3], firmness is determined by taking the mean of the
magnitude of force (N) applied to the sensors that are
activated in each trial. The sensors that are not activated are
ignored so as not to bias analysis by differences in grip
completeness. The mean force exerted on FSRs during
sympathy handshakes is 8./ + 5.4N, the mean force for
greeting handshakes is 8.8 £ 7.69N and the mean force for
congratulating handshakes is 9.7 = 8.12N.

Completeness of Grip: The number of activated FSR is
lower for Sympathy handshakes than for the other
handshakes. As in [3], the number of activated sensors for
each trial is counted to determine completeness. The average
sensor activation per congratulation handshake (out of 5
sensors in total) is 2.8 + 0.89sensors, the average per
congratulation handshake is 2.9 £ [./2sensors, and the
average per sympathy handshake is 2.7 + 1.01sensors.

C. Classification Results

We now discuss the data classification results. We applied
DTW to solve the problem of time warping between time
series data. In this way, we were able to align time series data
across participants and compute a distance that accounted for
differences in temporal alignment between two given series.
For example, by comparing the DTW distance between two
handshake signals, we can determine how similar their
waveforms are, which is essential for analyzing and
characterizing handshakes in different situations. Fig. 7
shows representatively how two greeting handshakes are
aligned, although the second greeting handshake (blue) has a
longer duration and shows two additional up and down
movements. It becomes clear that the length of the handshake
has no influence on this time series and that the waveforms
are well matched by the application of the algorithm and thus
made comparable.

Using a k-nearest neighbors algorithm with a k value of 2
and Dynamic Time Warping, the implemented model
achieved an accuracy of 0.85 on the test set. This means that
85% of the test set samples were correctly classified based on
their handshaking patterns, demonstrating promising results.

Using a Support Vector Machine (SVM) algorithm, the
implemented model achieved an overall accuracy of 0.89,
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which means that 89% of the test samples were classified
correctly.

Fig. 7.  Representative DTW results for 2 greeting handshakes

V. DISCUSSION

A. Handshake Stages Discussion

Similar to [3], phases 2, 3, and 4 represent the core
function of the handshake and contain most of the
information about a handshake. Phases 2 and 4 are
contradictory because each person has their own expectation
of the handshake. These phases differ from participant to
participant and are therefore very different. We observed that
some participants are very insecure in phase 2 because this is
the phase in which first contact with the confederate is
established. Similarly in Phase 4, where the handshake ends
and some participants seemed to be waiting for a sign from
the confederate to end the handshake.

In Phase 3, the phase in which individuals move their
hands up and down, force and momentum are periodic, while
completeness and firmness are constant. As can be seen from
the results, handshaking in sympathy is slower and has fewer
waveform periods compared to the other situations. For
example, in Fig. 6 (b) for the congratulatory handshake, the
participant slowed down the movement and decided that the
handshake was complete, but received additional feedback
from his counterpart and started the up-and-down movement
again.

B. Handshake Metrics Discussion

In almost every category, the sympathy handshake was
significantly different from the greeting and congratulatory
handshakes, while the greeting and congratulatory
handshakes were similar in terms of duration, force,
frequency, firmness, and completeness of grip.

During the study, it was also noticed that people shake
hands differently, everyone has their own handshake style.
Also, as expected, there were significant differences between
female and male participants. Most male participants shook
hands more vigorously and with fewer up-and-down motions,
while most female participants shook hands more slowly and
made more up-and-down motions. In addition, participants
reported that they had never thought about shaking hands
differently in different situations; after the study, some of
them asked how to perform a particular handshake. This
shows that shaking hands is something natural, people do it
without thinking about it, and yet people unconsciously shake
hands in different ways.

The data shows that there are differences in various
handshake situations.

C. Handshake Classification Discussion

In the following, the results for the KNN and SVM
algorithms are presented.
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KNN with DTW

Fig. 8 presents the confusion matrix that shows the
classification results of the KNN model using DTW with a k
of 2 for the handshake situation recognition. The rows
represent the true labels, while the columns represent the
predicted labels.

The values in the confusion matrix in Fig. 8 represent the
proportion of samples that are classified into each label. For
example, the value at row 1, column 1 (0.85) indicates that
85% of samples with the true label greeting are correctly
classified as greeting. Similarly, the value at row 2, column 1
(0.16) indicates that 16% of samples with the true label
congratulations are incorrectly classified as greeting.

Overall, the confusion matrix suggests that the KNN
model performs reasonably well on the three classes, with
highest accuracy on the sympathy class and lowest accuracy
on the congratulations class. However, there were also some

misclassifications. Specifically, 8% of the greeting
handshakes were misclassified as congratulations
handshakes, 8% of the greeting handshakes were
misclassified as sympathy handshakes, 16% of the

congratulation handshakes were misclassified as greeting
handshakes, 9% of the congratulation handshakes were
misclassified as sympathy handshakes, 5% of the sympathy
handshakes were misclassified as greeting handshakes, and
4% of the sympathy handshakes were misclassified as
congratulations handshakes.

0.9

05

True labels

- 0.4

- 0.3

- 0.2

-01

0

1
Predicted labels

2

Fig. 8. Confusion matrix showing the performance of the KNN-DTW
model on the handshake recognition task, with class labels of 0 (greeting), 1
(congratulations), and 2 (sympathy)

SVM

The confusion matrix of the SVM algorithm shows that
the model performed well overall with an accuracy of 0.91
for greeting, 0.85 for congratulations, and 0.89 for sympathy
(Fig. 9). The model has the lowest precision for
congratulations, with 12% of greeting being classified as
congratulations and 3% of sympathy being classified as
congratulations. The training accuracy, validation accuracy,
and test accuracy are 94%, 88%, and 89%, respectively.
These results indicate that the model is not overfitting and has
a good generalization performance. The mean -cross-
validation score is 86%, indicating that the model performed
consistently across different training and validation sets.
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Fig. 9. Confusion matrix showing the performance of the SVM model
on the handshake recognition task, with class labels of 0 (greeting), 1
(congratulations), and 2 (sympathy)

VL CONCLUSION

We showed that handshakes have distinct characteristics
that vary depending on the situation. Handshakes consist of
five stages, and the main stage (stage 3) shows a steady
waveform with a typical up and down motion. The greeting
and congratulation handshakes have higher acceleration
waveform amplitudes and more pulses compared to
sympathy handshakes. Sympathy handshakes have lower
acceleration waveform amplitudes, lower firmness, and
lower completeness of grip compared to greeting and
congratulation handshakes. The duration of greeting and
congratulation handshakes is longer than that of sympathy
handshakes.

Furthermore, the results show that it is possible to classify
different types of handshakes using KNN with DTW and
SVM, and the classification results were highly accurate.
Another approach of classifying the data would be the
combination of SVM with DTW. Overall, the study provides
insight into the characteristics of handshakes in different
situations, which can be used to model handshakes for
specific social situations and to control robot actions for more
human-like social interactions.

Future work will focus on utilizing the derived handshake
models to implement robot handshake control, ensuring
appropriate handshakes in social contexts. This requires
designing a shared control architecture that integrates the
classification models with the robot's motor control system.
In an MRP robot system, the pilot would trigger the
appropriate type of handshake. The telepresence robot would
then navigate through phase 1 and 2. Then an exemplar from
the corresponding derived handshake class would guide the
motor controls with the appropriate social characteristics of
vigor, pulse, firmness and completeness of grip.

Evaluating the performance of the models in situated
human-robot interaction (HRI) and telerobot HRI,
considering factors like communication delay and limited
sensory feedback, is essential. Enhancing telepresence and
user experience in telerobot-assisted handshakes is crucial to
bridge the physical gap between the operator and the remote

environment. Adapting and optimizing the classification
models for telerobot HRI scenarios, including investigating
methods for triggering handshakes based on social context,
would contribute to real-world applications. Expanding the
dataset, mitigating ordering effects, and considering gender-
based differences are important for a comprehensive
understanding of handshakes.

Overall, addressing these aspects would advance
handshakes classification, foster socially intelligent robots,
and improve human-robot interactions.
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