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ABSTRACT
Speech Emotion Recognition (SER) faces a distinct challenge com-
pared to other speech-related tasks because the annotations will show
the subjective emotional perceptions of different annotators. Previ-
ous SER studies often view the subjectivity of emotion perception
as noise by using the majority rule or plurality rule to obtain the
consensus labels. However, these standard approaches overlook the
valuable information of labels that do not agree with the consensus
and make it easier for the test set. Emotion perception can have
co-occurring emotions in realistic conditions, and it is unnecessary
to regard the disagreement between raters as noise. To bridge the
SER into a multi-label task, we introduced an “all-inclusive rule,”
which considers all available data, ratings, and distributional labels
as multi-label targets and a complete test set. We demonstrated that
models trained with multi-label targets generated by the proposed
AR outperform conventional single-label methods across incomplete
and complete test sets.

Index Terms— speech emotion recognition, label aggre-
gation method, multi-label learning, the subjectivity of emo-
tion perception, the ambiguity of emotions

1. INTRODUCTION

SER is an essential technology in human-computer interaction (HCI)
systems [1], and the SER systems training relies on data and col-
lected emotional ratings. Each data point is typically annotated by
multiple annotators, with most emotion databases requiring at least
three annotators per data point. However, researchers frequently
encounter disagreements among annotators in most public emotion
databases [2, 3, 4]. For example, it is not uncommon for three dif-
ferent annotators to select three distinct emotional options after lis-
tening to the same speech recordings. This variability highlights a
fundamental challenge in SER: the subjectivity of emotion percep-
tion. Such disagreements underscore the complexity of accurately
identifying emotions from speech, as individuals’ interpretations of
emotional content can vary widely based on their experiences, bi-
ases, and cultural backgrounds [5, 3, 6]. However, the standard ap-
proaches regard the disagreement as noise and use the majority rule
(MR) or plurality rule (PR) to find the consensus labels. If the data
has no consensus labels, those data are removed from the test set.
The process cannot reveal the actual performance of SER systems
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Fig. 1. Overview of the averaged usage ratio of the data and ratings
generated by three rules, majority rule (MR), plurality rule (PR), and
all-inclusive rule (AR). A diagram that illustrates how much data and
ratings are used in the final test set according to each aggregation
method. MR contains the lowest amount of data, and AR always
includes the entire test set available in the dataset.

since the test cannot reflect a realistic scenario. Fig. 1 illustrates the
different amounts of data used based on each aggregation method.
The MR has the lowest amount of data, making the test easier.

Previous studies have noticed the disagreement between anno-
tators and revealed the benefits of utilizing all existing annotations
for training SER models. For instance, studies have investigated the
benefits and usage of a soft-label learning strategy to include all the
samples during training SER models [7, 8, 9, 10, 11, 12, 13, 14, 15].
Chou and Lee [16, 17] also show the effectiveness of modeling in-
dividual annotators’ SER systems for modeling the subjectivity of
emotion perception. However, those studies still regard the SER task
as a single-label task, so they only allow each data to have only one
emotion. Also, the test set is still simplified by only considering sen-
tences with consensus labels obtained by the MR or PR label aggre-
gation rules, removing a minority of emotional ratings, and discard-
ing complex and ambiguous data samples that could have more than
one emotion. However, it is important to acknowledge that percep-
tual differences are not necessarily noisy. The detailed definitions of
the MR and PR are in section 4.3.

Additionally, most prior studies often select a limited number of
emotions as their focus. For example, the well-known IEMOCAP
corpus [18], encompasses ten distinct emotions; however, studies



frequently narrow its focus to just four emotions: neutral, anger,
sadness, and happiness [19, 20], despite frustration being one of the
most frequently annotated emotions within the dataset. Those stan-
dard processes leave inevitable critical issues as below:

(1) More than 12% of data and 38% of emotional annotations are
discarded by the common label aggregation methods.
(2) Most prior studies never reveal the actual performances of SER
systems since many data and ratings in the test set are removed.
(3) Mixed emotions (co-occurrence of emotions) have not been con-
sidered in the evaluation of the conventional SER systems.

To address the three issues above, we propose an all-inclusive
label aggregation rule (AR) to maximize the usage of all emotional
ratings, utilize all data samples in the datasets for training and eval-
uating the SER systems, and employ distributional labels as multi-
label targets. With the proposed aggregation rule, we want to ad-
dress the open question: Should the SER task be approached as
a multi-label recognition task? To answer the question, we train
and evaluate the existing state-of-the-art SER framework [21] with
the data sets defined by the conventional and the proposed aggrega-
tion rules across four public emotion datasets, the IEMOCAP [18],
MSP-IMPROV [22], MSP-PODCAST [23], and BIIC-PODCAST
[24]. We found that the SER systems using conventional rules (e.g.,
MR and PR) perform worse on the complete test set than on the in-
complete one. Our results also show that training with the proposed
AR leads to overall better performances than using the MR or PR
when testing with complete and incomplete test data.

2. BACKGROUND AND RELATED WORK

2.1. Label Representations and Learning Strategies

Consensus is required to generate labels for emotion recognition
tasks. The three most common approaches are outlined below, with
Table 1 summarizing the labels according to these three definitions.

• Single-label: each sample can only be mapped to a single
emotion. Most SER researchers use MR [19, 25] or PR [9, 26]
to generate one consensus emotional label as the learning tar-
get. This method drops the data without consensus emotions.
While some studies [7, 8, 9, 10, 11, 16, 12, 13, 14, 15] utilized
the soft label as labels of training data during training SER
models, the ground truth of data is still single-label. How-
ever, different from the soft label, we allow the test data to
have more than one emotion and use an ad-hoc threshold to
convert distributional predictions into multiple emotions.

• Multi-hot label: each sample can be associated with multiple
perceived emotions. The multiple-hot label is mainly used in
text emotion recognition [27]. They take all emotional classes
as target emotions even if only one annotator chooses that
emotion on the given sample.

• Distribution-label: each sample can carry more than one
emotion. The distribution label is mainly used in facial ex-
pression emotion recognition [28, 29]. They calculate the
distribution based on the number of votes for each emotion.

In this work, we use an alternative way to define the labels for
each sample in the two stages. In the training phase, we adopt a dis-
tribution label as our learning objective, mirroring the concept intro-
duced in [30]. This approach is derived from the understanding that

Table 1. Overview of the label vectors for the various definitions
of emotion recognition with three cases. Each example has five an-
notations. We illustrate the tree definitions with a four-class emotion
classification task. The four emotions include neutral (N), anger (A),
sadness (S), and happiness (H). A label vector is created as follows:
(N,A,S,H). For instance, N,A,A,S,S indicates that the five emotional
annotations for Case 2 selected two for neutral, two for anger, and
two for sadness.

Case (1) A,A,A,S,S (2) N,A,A,S,S (3) N,N,H,A,S

Single-label (0,1,0,0) Ignored PR: (1,0,0,0) (MR: Ignored)
Multi-hot label (0,1,1,0) (1,1,1,0) (1,1,1,1)

Distribution-label (0.0,0.6,0.4,0.0) (0.2,0.4,0.4,0.0) (0.4,0.2,0.2,0.2)

assessing the consistency between a model’s predicted distribution
and subjective annotations is an effective method for evaluating if an
SER model aligns with human emotional perception. Furthermore,
the work of psychologists [6, 31] supports the idea that emotion per-
ception is not only high-dimensional but also blended in nature. For
the evaluation phase, inspired by [32], we employ a threshold tech-
nique [33, 34, 35] to transform the distribution label into a binary
vector, which serves as the basis for emotion decision-making for
each sample—similar to a multi-hot encoding scheme. Detailed in-
formation on this method can be found in Section 4.3. This threshold
approach aids in excluding infrequent emotions, thereby enhancing
the robustness of SER systems as noted by [32].

Let us consider a hypothetical scenario within a four-class emo-
tion recognition task involving neutral (N), anger (A), sadness (S),
and happiness (H) classes. In this evaluation, we use the MR, PR,
and AR to define the learning targets for the train sets. We define
them as MRTrain, PRTrain, and ARTrain, respectively. For test-
ing, We denote them as MRTest, PRTest, and ARTest. Table 2
highlights the operational distinctions among the aggregation rules
across three cases. Within Case (1), ARTrain is capable of incorpo-
rating the minority perspectives, such as sadness, which MRTrain

and PRTrain overlook, opting instead to dismiss these minority
annotations. Moving to Case (2), which presents a scenario with
equally predominant emotions, anger and sadness, both MR and PR
rules exclude this data from the training and test sets due to their
inability to resolve the “tie” case.

Table 2. Overview of the label vectors for the various aggregation
rules across three distinct cases, each with five annotations. We illus-
trate the rules with a four-class emotion classification task, including
neutral (N), anger (A), sadness (S), and happiness (H). We employ
label vectors to represent the distribution of annotations (N, A, S,
H). For example, consider the label vector for Case 2 indicated as
N,A,A,S,S; this signifies that out of the five emotional annotations,
one was neutral, two were anger, and two were sadness.

Case (1) A,A,A,S,S (2) N,A,A,S,S (3) N,N,H,A,S

MRTrain (0,1,0,0) Removed Removed
PRTrain (0,1,0,0) Removed (1,0,0,0)
ARTrain (0.0,0.6,0.4,0.0) (0.2,0.4,0.4,0.0) (0.4,0.2,0.2,0.2)

MRTest (0,1,0,0) Removed Removed
PRTest (0,1,0,0) Removed (1,0,0,0)
ARTest (0,1,1,0) (0,1,1,0) (1,0,0,0)



Table 3. The table provides a summary of the data and ratings loss
ratios associated with Majority Rule (MR), Plurality Rule (PR), and
All-inclusive Rule (AR).

Aggregation Rule MR PR AR

Database Data Rating Data Rating Data Rating

IEMOCAP 31.37% 49.44% 25.32% 45.70% 0.00% 3.10%
IMPROV (P) 9.18% 28.52% 5.63% 26.41% 0.00% 5.12%

PODCAST (P) 44.81% 59.87% 19.85% 49.24% 0.00% 6.15%
B-PODCAST (P) 20.25% 43.18% 0.06% 30.76% 0.00% 0.61%

Average 26.40% 45.25% 12.72% 38.03% 0.00% 3.75%

2.2. Selection of Test Set for Evaluating SER Systems

Using the complete test set to evaluate the performances of SER
systems is very essential. However, the common practice to han-
dling the data without consensus is to remove them from the test set.
For example, the IEMOCAP corpora use MR for constructing the
ground-truth labels [18, 36], discarding approximately 31.37% of
the data and 49.44% of the ratings shown in Table 3. However, real-
life emotional states can co-occur in many situations (e.g., sad and
angry) [31, 6, 37]. Previous studies discarded many data points in
the test set since they assumed each sample had only one emotional
category. Then, the ground-truth category does not reflect secondary
emotions that are also conveyed in the utterance. Therefore, aggre-
gating multiple annotations into a single class and discarding non-
consensus data points of the test set is not appropriate to accurately
evaluate whether the predictions of SER systems can represent emo-
tional behaviors observed in daily interactions. In this work, we first
show the better performances of the SER systems trained with labels
using the proposed label aggregation method across the conventional
incomplete test sets and the proposed complete test sets. To our best
knowledge, this is the first study that evaluates SER models with data
samples with non-consensus annotations.

3. METHODOLOGY

To bridge to the multi-label SER, we introduce an alternative aggre-
gation rule named the All-inclusive rule (AR), maximizing the usage
of annotated ratings within a corpus, ensuring that no data points are
discarded. Initially, the AR compiles all classes attributed to each
data point to establish the ground truth and utilizes the distributional
ground truth to train SER systems to form the SER task’s training
set. For instance, Table 2 shows different ground truth formats ac-
cording to aggregation rules. The Train means the training phase;
The Test is the testing phase. The AR uses the count for each emo-
tion to calculate the distributional label. Also, the AR ensures that
every annotated data point and all usable emotional annotations are
included in the test set. For instance, in Table 3, compared to the MR
method, the multi-label approach retains an additional 26.40% of the
data and 41.45% more emotional ratings. Furthermore, it preserves
12.72% more data and 34.28% more emotional ratings than the PR
method.

An interesting aspect of AR in the testing phase (ARTest in Ta-
ble 2) involves adopting a threshold method. This method converts
distributional labels into binary vectors based on a defined thresh-
old. Emotions are considered positive if the proportion of a class
surpasses the threshold of 1/C, where C is the total number of emo-

tion classes involved. Therefore, with four emotion categories, the
threshold is set at 0.25. This approach allows Case (2) in Table 1 to
acknowledge anger and sadness as part of the ground truth, demon-
strating AR’s nuanced capacity to capture a spectrum of emotional
states in contrast to the binary resolutions offered by MR and PR.

Notice that the AR allows for including sentences with ambigu-
ous emotions in the test set, ensuring a comprehensive and naturalis-
tically accurate approach to SER. This AR aims to capture the high-
dimensional nature of emotion perception during training and facili-
tates a more accurate and comprehensive representation of emotional
states, aligning the SER system’s capabilities with the complex na-
ture of human emotions across various test sets.

4. EXPERIMENTAL SETTINGS

We introduce the resources, preprocessing procedures, objective
function, evaluation process, and the SER framework as follows.
For the databases without predefined training, development, and
testing splits, we describe the details about the split sets in the sup-
plementary material1 (section A) to ensure a thorough evaluation
process. The details about the splits can resolve the reproducibility
issue mentioned in [38] that 80.77% results using the IEMOCAP
dataset that cannot be reproduced.

4.1. Resources

In this study, we utilize four public emotion databases to demon-
strate the performance of our SER framework. Contrary to the com-
mon practice that discards emotional ratings and data samples as
illustrated in Table 3, our approach is focused on leveraging the en-
tirety of available emotional annotations and data to precisely aim
at pre-defined emotion categories in order to refine our recognition
capabilities.

The SAIL-IEMOCAP [18], referred here to as IEMOCAP, en-
compasses a collection of recordings derived from five dyadic con-
versations, performed by ten professional actors in English. These
recorded sessions have been meticulously segmented into 10,039
utterances. The corpus is annotated with ten distinct emotions:
neutral, happiness, sadness, anger, surprise, fear, disgust, frustra-
tion, excitement, and “other.” In this study, we omit the “other’”
category. Annotators were permitted to assign multiple emotions
to each utterance, reflecting the complex nature of human emo-
tion. Our experiments adopt a 5-fold cross-validation defined in the
supplementary material, section A.1.

The MSP-IMPROV [22], referred here to as IMPROV, comprises
high-quality audio-video recordings, featuring performances by 12
actors in English, encapsulated within five primary emotions: anger,
happiness, sadness, a neutral state, and “other.” The six dyadic ses-
sions are diligently segmented into 8,438 clips. We exclude the
“other” category to focus on four-class emotions. In the experiments,
we adopt a 6-fold cross-validation defined in section A.2.

The MSP-PODCAST [23], referred here to as PODCAST, offers a
collection of naturalistic emotional speech segments, selected from a
broad spectrum of real-world podcast recordings. The annotation in-
cludes both primary and secondary emotional scenarios. We only
employ the primary emotions, which encompass nine categories:

1Supplementary Material

http://dx.doi.org/10.13140/RG.2.2.30988.94087


anger, sadness, happiness, surprise, fear, disgust, contempt, neutral,
and “other.” We opt to exclude the “other” category in the study. We
utilize version 1.11 of the PODCAST dataset. This version incorpo-
rates a comprehensive collection of 84,030 utterances for training,
19,815 for development, and a combined total of 45,462 utterances
for testing, achieved by merging 30,647 from test set 1 and 14,815
from test set 2.

The BIIC-PODCAST [24], referred here to as B-PODCAST, serves
as a Mandarin Chinese variant of the original PODCAST collection.
We utilized release version 1.01 of the corpus, and our study con-
centrated on primary emotions. The dataset composition includes
48,815 utterances designated for training, 10,845 for development,
and 10,340 for testing.

4.2. Selection Emotion Classes

We use the pre-defined emotions while excluding the “other” cate-
gory in some datasets to maximize the usage of data samples and
reflect the original behaviors of raters. The count of target emotions
analyzed in our study stands at 4 for IMPROV, 8 for PODCAST and
B-PODCAST, and 9 for IEMOCAP.

4.3. Aggregation Rules Comparison

We implement conventional and novel aggregation methods for la-
bel generation to evaluate and discern the performance disparities
between single-label and multi-label SER systems. These methods
are pivotal in preparing and assessing the data within the SER sys-
tems.

• Majority Rule (MR) selects the emotion class designated by
over half of the annotations as the definitive target emotion.
This approach disregards less frequently annotated emotions,
excluding and wasting instances where annotations do not
converge on a majority consensus.

• Plurality Rule (PR) focuses on the emotion with the most
annotations. It highlights the emotion that appears more often
in the annotations. This strategy defines an emotional label
even if it does not make up more than half of all annotations.

• All-inclusive Rule (AR) incorporates every annotation to for-
mulate a distribution-like representation based on the number
of annotations for each emotional class. This method ensures
that no samples are excluded, maintaining an inclusive dataset
that reflects the diversity of emotional expressions indicated
by the annotations.

4.4. Class-balanced Objective Function

We follow [35] to employ the Class-Balanced Cross-Entropy Loss
(CBCE), as introduced by [39], to address the challenge of im-
balance in the annotation distributions observed across all utilized
databases, which is a concern also highlighted in [35]. The foun-
dational concept of CBCE revolves around introducing a weighting
factor designed to adjust the loss function values. The inverse fre-
quencies of the classes in the training dataset directly influence this
adjustment. The factor is 1→ω

1→ω
nj , where nj is the number of positive

samples in the jth emotion class in the train set, and ω → (0, 1] is
a hyperparameter. The number of factors to weigh the loss values

equals the number of target emotions. The CBCE value can be
calculated using Eq. 1:

LCBCE =
K∑

j=1

(
1↑ ω
1↑ ωnj

· LCE
(j)), (1)

where LCE
(j) is the value of cross-entropy loss [40] for the jth emo-

tion. We set the beta value to 0.99.

4.5. Evaluation Metrics and Confidence Interval

We deploy the macro-F1 score [41], a comprehensive metric that
considers recall and precision rates concurrently. This evaluation
approach is implemented using Scikit-learn [42]. For multi-label
classifications, the evaluation process involves the application of
thresholds to the ground truth data to delineate the target classes.
Specifically, a prediction for a given class is considered accurate
if its proportional representation in the predictions exceeds (1/C),
where C denotes the total count of emotional classes involved. This
threshold-based approach, resonating with the methodologies out-
lined in existing literature [34, 33], underpins our calculation of
macro-F1 scores.

Inspired by the methodology of Steidl et al. [30], where results
are assessed with an entropy-based metric, we utilize the Kullback-

Leibler divergence (KLD) and Jensen-Shannon Divergence (JSD) to
quantify the similarity between the model’s prediction distribution
and subjective annotations. This approach helps determine whether
an SER model aligns with human emotion perception.

Notice that we collect the predictions from each partition defined
in section A, and then measure the performances in macro-F1 score
with the average and the lower and upper bound of the confidence
interval (CI) between 2.75% and 97.5% using the toolkit [43]. All
results are single-run with the fixed random seed number.

4.6. SER Framewrok

We employed the SER framework initially introduced by [21], which
builds upon the foundational “wav2vec2-large-robust” model as pro-
posed by [44]. Following their pioneering methodology, we tailored
the architecture to enhance efficiency and maintain high recogni-
tion performance by removing the top 12 transformer layers from
the original 24-layer structure. Following [21]2, our model config-
uration includes adding two hidden layers, each containing 1,024
nodes, atop the modified “wav2vec2-large-robust” backbone. These
layers are activated using the rectified linear unit (ReLU) activation
function. A softmax output layer follows these hidden layers, pro-
viding a probabilistic distribution over the target emotion classes.
Furthermore, we applied average pooling to the resulting representa-
tions, feeding it into the classification layers. We applied a dropout
function with a probability of 0.5 to the first and second layers of
the classification architecture to regularize the model, following the
work [21]. The number of model parameters is around 317 million.

4.7. Models Training and Choice

We use the AdamW optimizer [45] with a 0.0001 learning rate. The
batch size and epoch are set as 32 and 50, respectively. We choose

2https://huggingface.co/audeering/wav2vec2-large-robust-12-ft-emotion-
msp-dim



Table 4. The table summarizes the overall performance across the four public emotion datasets in macro-F1 scores. We also indicate the
lower and upper bound of the confidence interval (CI) between 2.75% and 97.5% for each result (lower bound, upper bound).

Database Train\Test Average MRTest PRTest ARTest

IEMOCAP
MRTrain 0.391 (0.384,0.398) 0.366 (0.358,0.373) 0.365 (0.358,0.373) 0.442 (0.435,0.448)
PRTrain 0.377 (0.371,0.384) 0.348 (0.341,0.354) 0.347 (0.340,0.354) 0.437 (0.431,0.443)
ARTrain 0.421 (0.414,0.429) 0.378 (0.371,0.385) 0.376 (0.369,0.384) 0.510 (0.503,0.518)

IMPROV
MRTrain 0.607 (0.597,0.616) 0.603 (0.593,0.613) 0.597 (0.588,0.607) 0.620 (0.612,0.629)
PRTrain 0.609 (0.600,0.619) 0.607 (0.596,0.617) 0.599 (0.589,0.609) 0.622 (0.614,0.631)
ARTrain 0.638 (0.629,0.647) 0.634 (0.624,0.643) 0.627 (0.618,0.635) 0.654 (0.646,0.662)

PODCAST
MRTrain 0.344 (0.341,0.347) 0.300 (0.297,0.304) 0.297 (0.294,0.301) 0.434 (0.431,0.436)
PRTrain 0.349 (0.347,0.352) 0.293 (0.290,0.296) 0.292 (0.290,0.295) 0.463 (0.460,0.466)
ARTrain 0.359 (0.356,0.362) 0.306 (0.302,0.310) 0.306 (0.303,0.310) 0.464 (0.461,0.467)

B-PODCAST
MRTrain 0.266 (0.256,0.280) 0.234 (0.222,0.252) 0.235 (0.225,0.250) 0.329 (0.323,0.337)
PRTrain 0.264 (0.259,0.271) 0.231 (0.225,0.237) 0.233 (0.228,0.238) 0.329 (0.323,0.337)
ARTrain 0.271 (0.264,0.278) 0.239 (0.232,0.247) 0.241 (0.234,0.247) 0.333 (0.327,0.340)

the best models according to the lowest value of the class-balanced
cross-entropy loss (Equation 1) on the development set. We use two
Nvidia Tesla v100 GPUs with 32 GB memory. The total number of
GPU hours is around 50.

5. RESULTS AND ANALYSIS

5.1. Impact of Aggregation Rules on Data and Ratings

The MR and PR methods demonstrate significant data loss, an aspect
outlined in Table 3. Across the four emotion databases, MR and PR
contribute to an average data loss of 26.40% and 12.72%, respec-
tively, illustrating a large reduction in data usage for SER system
training and evaluation. In contrast, the AR retains all data points,
with the minimal exclusion of 3.75% representing the “other” anno-
tations, while the MR and PR lose 45.25% and 38.03% of ratings,
respectively. This difference in data retention between the methods
underscores a critical limitation of traditional SER systems, which
may not leverage the full spectrum of available emotional informa-
tion due to the inherent data loss associated with MR and PR meth-
ods. Consequently, these traditional systems risk being evaluated on
a diminished dataset, potentially impairing the robustness and gen-
eralizability of SER applications.

5.2. Impact of Aggregation Rules on SER Performances

Table 4 summarizes the performance of the SER models trained with
datasets selected by different aggregation rules in macro-F1 scores.
We also indicate the lower and upper bound macro-f1 scores in the
confidence interval (CI) between 2.75% and 97.5% for each result
(lower bound, upper bound) using the toolkit [43]. In the column,
Average, the models trained with the data set selected with AR,
ARTrain, perform the best among the three rules on average and
across 4 public emotion databases. The models trained by ARTrain

led to 5.13% and 5.58% relative improvement than the models
trained by MRTrain and PRTrain, respectively, when all models are
trained with the mentioned training information in section 4.7.

5.3. Evaluation with Complete and Incomplete Test Sets

We evaluate the performances of SER systems in three different test-
ing conditions. The MRTest and PRTest are the test data sets se-

lected by MR and PR, respectively, and they are incomplete test sets.
Instead, the ARTest contains all data samples and allows data points
to have more than one emotion. We showed the examples in sec-
tion 2.1. Additionally, the amount of test sets differ, as shown in
Fig. 1. The ARTest contains more data samples that have mixed
emotions than the PRTest and the MRTest.

By employing the AR rule, SER systems can be trained with
more data samples and various emotional ratings and better rec-
ognize ambiguous samples containing mixed emotions. Also, the
performances of the SER systems trained by ARTrain significantly
outperform the models trained with the conventional methods, MR
or PR. Therefore, we suggest that training SER systems with the
ARTrain set is more effective for real-life deployments where the
test set includes a mix of ambiguous and unambiguous data, reflect-
ing the true complexity of real-world scenarios.

More specifically, using the proposed all-inclusive rule has one
significant advantage the “complete” test set can serve as a bench-
mark for evaluating SER systems. By using the complete test, the
community is provided with a uniform standard for assessing and
comparing SER systems since all data are used directly without the
need for selection or filtration, unlike conventional methods, such
as EMO-SUPERB [46]. For example, some studies exclude data
without a majority consensus label, or they only focus on specific
emotion classes, such as four or six emotions out of nine emotions
in the IEMOCAP corpus [18]. The all-inclusive rule also takes into
account samples with co-existing emotions, which is more reflective
of real-world scenarios and a crucial step toward practical applica-
tions of SER systems. The rationale behind this method is that it
effectively handles the inherent subjectivity and variability in emo-
tional labeling. Unlike plurality and majority rules, which often treat
these variations as noise and consequently exclude samples and dis-
regard emotional ratings, the all-inclusive rule incorporates the en-
tire set of samples and a broader range of emotional ratings. This
thorough approach is essential for developing more effective SER
systems compared to traditional aggregation techniques.

5.4. Differences in Distribution Between Predictions and Hu-
man Perception

Unlike converting the model’s output into binary labels for single-
label or multi-label tasks during macro-F1 evaluations, we employ
the model’s probability distributions directly for all test sets using



Table 5. The results are presented using Kullback–Leibler Divergence (KLD), following the same format as shown in Table 4.
Database Test\Train Average MRTest PRTest ARTest

IEMOCAP
MRTrain 1.183 (1.157,1.209) 1.226 (1.195, 1.257) 1.257 (1.229, 1.285) 1.066 (1.048, 1.084)
PRTrain 1.178 (1.156,1.202) 1.242 (1.216, 1.269) 1.274 (1.25, 1.301) 1.019 (1.002, 1.036)
ARTrain 0.984 (0.965,1.005) 1.063 (1.041, 1.086) 1.096 (1.075, 1.119) 0.794 (0.778, 0.809)

IMPROV
MRTrain 0.781 (0.758,0.802) 0.816 (0.792, 0.839) 0.835 (0.810, 0.860) 0.691 (0.673, 0.707)
PRTrain 0.785 (0.762,0.806) 0.819 (0.793, 0.843) 0.839 (0.815, 0.863) 0.696 (0.679, 0.713)
ARTrain 0.589 (0.573,0.604) 0.640 (0.622, 0.658) 0.654 (0.637, 0.67) 0.472 (0.459, 0.483)

PODCAST
MRTrain 1.074 (1.064,1.085) 1.083 (1.071, 1.096) 1.240 (1.229, 1.251) 0.900 (0.893, 0.907)
PRTrain 1.107 (1.099,1.114) 1.18 (1.172, 1.19) 1.295 (1.287, 1.303) 0.845 (0.839, 0.85)
ARTrain 0.931 (0.924,0.938) 0.988 (0.98, 0.997) 1.111 (1.104, 1.118) 0.694 (0.689, 0.698)

B-PODCAST
MRTrain 1.181 (1.165,1.197) 1.252 (1.233, 1.269) 1.310 (1.293, 1.328) 0.982 (0.970, 0.994)
PRTrain 1.069 (1.052,1.085) 1.122 (1.102, 1.14) 1.196 (1.178, 1.214) 0.889 (0.876, 0.902)
ARTrain 0.988 (0.974,1.002) 1.048 (1.032, 1.064) 1.117 (1.101, 1.132) 0.799 (0.788, 0.809)

Table 6. Results are displayed using Jensen-Shannon Divergence (JSD), adhering to the same format as Table 4.
Database Test\Train Average MRTest PRTest ARTest

IEMOCAP
MRTrain 0.252 (0.248,0.256) 0.261 (0.257, 0.266) 0.281 (0.277, 0.285) 0.213 (0.210, 0.216)
PRTrain 0.253 (0.249,0.257) 0.276 (0.272, 0.280) 0.266 (0.262, 0.271) 0.217 (0.214, 0.220)
ARTrain 0.227 (0.223,0.230) 0.250 (0.246, 0.254) 0.255 (0.251, 0.258) 0.175 (0.172, 0.178)

IMPROV
MRTrain 0.165 (0.162,0.169) 0.177 (0.173, 0.181) 0.180 (0.176, 0.185) 0.139 (0.136, 0.142)
PRTrain 0.164 (0.159,0.168) 0.175 (0.170, 0.179) 0.179 (0.174, 0.183) 0.138 (0.134, 0.141)
ARTrain 0.142 (0.139,0.145) 0.157 (0.154, 0.161) 0.160 (0.157, 0.163) 0.109 (0.107, 0.111)

PODCAST
MRTrain 0.239 (0.237,0.241) 0.248 (0.246, 0.250) 0.274 (0.272, 0.276) 0.195 (0.194, 0.197)
PRTrain 0.259 (0.258,0.261) 0.279 (0.278, 0.281) 0.299 (0.298, 0.301) 0.200 (0.199, 0.201)
ARTrain 0.228 (0.227,0.229) 0.245 (0.244, 0.247) 0.268 (0.267, 0.269) 0.171 (0.170, 0.172)

B-PODCAST
MRTrain 0.275 (0.272,0.278) 0.292 (0.288, 0.295) 0.301 (0.298, 0.304) 0.232 (0.229, 0.234)
PRTrain 0.248 (0.245,0.250) 0.262 (0.259, 0.265) 0.275 (0.272, 0.278) 0.206 (0.204, 0.208)
ARTrain 0.239 (0.236,0.242) 0.254 (0.252, 0.257) 0.267 (0.264, 0.270) 0.196 (0.193, 0.198)

the Kullback-Leibler divergence (KLD) and Jensen-Shannon Diver-

gence (JSD). The results, presented in Table 5 and 6, respectively,
indicate that a lower KLD and JSD value corresponds to better per-
formance. The observed patterns in these results are consistent with
those found in the macro-F1 score, as shown in Table 4.

6. DISCUSSION AND LIMITATIONS

With the compressive and empirical experiments in Table 4, the AR
rule represents an alternative and potentially practical aggregation
approach for the SER task. Our findings align with the recent emerg-
ing emotion theory, the semantics space theory [6]. The core of
the theory is that emotions are blended and high-dimensional. Also,
the semantics space theory emphasizes that boundaries of categori-
cal emotions are not discrete but blended, and it explains that emo-
tion perception could have more than one emotion (mixed emotion).
With the proposed all-inclusive rule, we can make the SER systems
have the ability to recognize actual human emotions from speech,
reflecting the findings of the emerging semantics space theory [6].
However, we only employ one model and evaluate the proposed
method on the four public emotion datasets in English and Chinese.

7. CONCLUSION AND FUTURE WORK

We introduce the novel all-inclusive rule (AR), designed to deploy
all data, maximize the usage of the emotional ratings available in

these datasets to avoid data wasting, and generate multi-target la-
bels throughout both the training and evaluation phases of SER sys-
tems. To demonstrate our approach’s effectiveness, we employed
one of the latest SER models [21], evaluating it under three different
data aggregation rules: two conventional methods (majority (MR)
and plurality rules (PR)) and our proposed AR rule. Models trained
with the AR rule outperformed those trained with the conventional
rules, showing 5.13% and 5.58% relative improvements in perfor-
mance over the MR and PR, respectively. The improvement indi-
cates that the AR rule can significantly improve the performance of
SER systems. We suggest using the AR approach to select the train-
ing data for SER tasks. Such an improvement aligns with the emerg-
ing semantics space emotion theory, suggesting that speech emotion
recognition should inherently be approached as a multi-label task.
Besides, given that the current loss functions are not optimized for
the SER task, we will develop a novel loss function explicitly tai-
lored for SER in our future work. Furthermore, the models will be
evaluated using the proposed comprehensive AR on bias and fair-
ness to thoroughly understand potential issues, as highlighted in the
recent study by [47].
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Supplementary Material for
Embracing Ambiguity And Subjectivity

Using The All-inclusive Aggregation
Rule For Evaluating Multi-label Speech

Emotion Recognition Systems

A. SPLIT SETS

We meticulously delineate the specifics of the speaker-independent
training, development, and test splits for the IMPROV [22] and
IEMOCAP [18] datasets, acknowledging that these datasets are not
publicly accessible. Our goal in presenting detailed descriptions of
these split sets is to enhance the reproducibility of our research. By
doing so, we aim to provide a comprehensive blueprint that allows
replicating and validating our findings within the research commu-
nity, thus fostering a deeper understanding and further exploration
of the datasets in question. Notice that we collect the predictions
from each partition, and then measure the performances in macro-F1
score using the toolkit [43]. All results are single-run with the fixed
random seed number.

A.1. The IEMOCAP

Table 7 encapsulates the division of the IEMOCAP corpus for our
study. We have split five independent splits, labeled as Dyad 1
through Dyad 5, corresponding to each session within the corpus.
Notably, each session is characterized by a dyadic interaction be-
tween two speakers. To rigorously evaluate our model’s perfor-
mance across these interactions, we have employed a 5-fold cross-
validation strategy. This method is graphically represented in Table
7, highlighting the unique configurations of training, development,
and test sets for each fold. This approach ensures a detailed and un-
biased assessment of model efficacy across different duos within the
IEMOCAP dataset.

A.2. The IMPROV

In the speaker-independent scenario, the MSP-IMPROV corpus is
partitioned into six folds for cross-validation. Each fold combines
training, development, and test sets, as illustrated in Table 8. This
partitioning strategy ensures that the model is trained on interactions
involving different sets of speakers and evaluated on unseen speaker
combinations, facilitating robust evaluation of model generalization
across various dyadic conversations within the MSP-IMPROV cor-
pus.

Table 7. IEMOCAP corpus partitions.
Partition Training Set Development Set Test Set

1 Dyad 1,2,3 Dyad 4 Dyad 5
2 Dyad 2,3,4 Dyad 5 Dyad 1
3 Dyad 3,4,5 Dyad 1 Dyad 2
4 Dyad 1,4,5 Dyad 2 Dyad 3
5 Dyad 1,2,4 Dyad 3 Dyad 4

Table 8. MSP-IMPROV corpus partitions.
Partition Training Set Development Set Test Set

1 Dyad 1,2,3,4 Dyad 5 Dyad 6
2 Dyad 1,2,3,6 Dyad 4 Dyad 5
3 Dyad 1,2,5,6 Dyad 3 Dyad 4
4 Dyad 1,4,5,6 Dyad 2 Dyad 3
5 Dyad 3,4,5,6 Dyad 1 Dyad 2
6 Dyad 2,3,4,5 Dyad 6 Dyad 1
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