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An Interpretable Deep Mutual Information
Curriculum Metric for a Robust and Generalized
Speech Emotion Recognition System

Wei-Cheng Lin

Abstract—It is difficult to achieve robust and well-generalized
models for tasks involving subjective concepts such as emotion. It
is inevitable to deal with noisy labels, given the ambiguous nature
of human perception. Methodologies relying on semi-supervised
learning (SSL) and curriculum learning have been proposed to
enhance the generalization of the models. This study proposes a
novel deep mutual information (DeepMI) metric, built with the SSL
pre-trained DeepEmoCluster framework to establish the difficulty
of samples. The DeepMI metric quantifies the relationship be-
tween the acoustic patterns and emotional attributes (e.g., arousal,
valence, and dominance). The DeepMI metric provides a better
curriculum, achieving state-of-the-art performance that is higher
than results obtained with existing curriculum metrics for speech
emotion recognition (SER). We evaluate the proposed method with
three emotional datasets in matched and mismatched testing con-
ditions. The experimental evaluations systematically show that a
model trained with the DeepMI metric not only obtains competi-
tive generalization performances, but also maintains convergence
stability. Furthermore, the extracted DeepMI values are highly
interpretable, reflecting information ranks of the training samples.

Index Terms—Curriculum learning, speech emotion recognition,
mutual information, clustering, modeling methodologies.

1. INTRODUCTION

LASSIFICATION problems with ambiguous labels (i.e.,
C noisy labels) are important but challenging tasks. In sub-
jective recognition tasks such as speech emotion recognition
(SER) [1], [2], humans may disagree on the emotional label
despite listening to the exact same audio clips [3], [4], [5].
Therefore, emotional labels are often obtained with perceptual
evaluations from multiple annotators. Different approaches have
emerged to deal with multiple annotations describing the differ-
ences in human emotional perception. One approach aims to
directly derive emotional relevant information by normalizing
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the annotations to create distributions of the emotional content
(i.e., soft-label) [6], [ 7], [8], [9], [10], [11]. This approach intro-
duces the uncertainty of the labels during the training procedure
by considering secondary emotional content. Another more con-
ventional approach is to use consensus labels (i.e., the wisdom of
the crowd). Once the number of annotations per sample is large
enough (typically more than five [12]), we can derive reliable
consensus labels by computing their mean value or finding the
majority class [13]. In fact, most SER studies apply this scheme
to build their recognition models. However, a consensus label
does not eliminate the presence of uncertainty embedded in the
samples and ignores concurrency of emotions [14], which may
lead to unstable and inferior local optimal convergence, resulting
in significant degradation of accuracy [15]. Besides noisy labels,
speech signals convey dynamic complex information such as
speaker traits, channel effects and background interferences.
These factors greatly increase the difficulty of building a robust
and well generalized SER system.

A practical alternative to handling uncertainty in SER is to
take full advantage of the source domain data for better model
convergence. In particular, the use of curriculum learning is
an appealing modeling methodology to achieve a robust and
well generalized model [16]. Curriculum learning is a training
strategy that identifies the difficulty of the training samples to
define the order that the data is presented during training. A
model using curriculum learning progressively optimizes the
model from easy to difficult samples. This training procedure
resembles the cognitive learning process of humans [17] and
results in improved generalization and faster convergence [16].
Curriculum learning has been widely applied to various tasks,
showing its effectiveness in areas such as machine transla-
tion [18], facial expression recognition [19] and audiovisual
learning [20]. The core problem of curriculum learning is how
to define a meaningful metric to quantify the difficulty of a
sample. Difficulty metrics can typically be divided into two main
categories: metrics based on the data or the label characteristics
(e.g., high SNRs refer to the easy samples), and metrics based
on a pre-trained model’s prediction errors. A recent SER study
by Lotfian and Busso [21] proposed to utilize a label-driven
metric by quantifying the inter-evaluation agreement between
annotators, under the premise that samples that are ambiguous
for humans are more difficult for SER systems. With the growing
amount of available training samples, we argue that a pure
model-driven metric could be superior to a label-driven metric,
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since it implicitly inherits useful discriminative information
from the pre-trained model.

This study introduces the deep mutual information (DeepMI)
metric, which is a novel model-driven curriculum metric for
attribute-based SER. This metric is extracted from a pre-trained
semi-supervised DeepEmoCluster model [22]. The computation
of the DeepMI metric mainly consists of two parts. First, we
construct a DeepEmoCluster model, which contains a feature
extractor, an emotional discriminator, and a cluster classifier.
The cluster classifier recognizes pseudo-labels assigned to the
training samples created with the K-means algorithm. This com-
ponent is jointly optimized with an emotional discriminator (i.e.,
arousal, valence, or dominance regressor) to capture emotional
information in the clustering process. Since the pseudo-labeling
procedure is totally unsupervised, the model can incorporate a
large amount of unlabeled data into the training process, forming
a powerful semi-supervised learning (SSL) framework. Second,
we consider the ground-truth consensus emotional labels Y and
the two prediction outputs from the pre-trained DeepEmoCluster
model (i.e., the emotional attribute score Y, and the clustering
class X). With these variables, we construct their joint proba-
bilities and obtain the mutual informations (MIs) I(Y';Y") and
I(X;Y). The DeepMI metric is finally defined as the weighted
combination of these two MI terms. I(Y’;Y") quantifies the
model prediction errors, indicating training difficulties from the
optimization perspective, and I (X ; Y') quantifies the relation be-
tween the emotions and acoustic patterns through the data-driven
clusters, showing the corresponding agreements of emotional
expressiveness in speech.

Our experimental results based on the MSP-Podcast cor-
pus [23] demonstrate that the proposed DeepMI metric achieves
state-of-the-art (SOTA) performances for curriculum learning
approaches in SER. We consistently find an improved general-
ization ability and robust model performance for within corpus
condition (i.e., MSP-Podcast corpus [23]) and cross-corpora
evaluations (i.e., IEMOCAP [24] and MSP-IMPROV [25] cor-
pora). These results show that the DeepMI metric is a better
measurement of the difficulty level of a sample, creating a better
curriculum to train SER models. Our analysis indicates that the
DeepMI metric is highly interpretable. It explicitly shows the
ambiguity level of the emotion targets in the training set. We
found that the DeepMI curriculum model learns the data from
extreme to neutral values of the emotional attribute. This resultis
interesting since samples with a neutral value for the emotional
attributes are often more uncertain in SER systems [26]. The
main contributions of this study are:

® We propose a novel model-driven DeepMI metric based

on the DeepEmoCluster model, which achieves SOTA
performances among other existing curriculum learning
approaches in the SER field.

® The proposed DeepMI metric not only offers competitive

recognition performances, but also provides interpretable
insights of the training data.

The rest of the paper is organized as follows. Section II
discusses the research background and related work. Section II1
presents the proposed methodology, providing detailed ex-
planation of the DeepMI metric. Section IV gives the
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experimental setup, emotional corpora, acoustic features, base-
line models, and implementation details used to train and test our
approach. Section V provides the experimental results, including
comprehensive interpretations of the proposed metric. Finally,
Section VI presents the concluding remarks and future directions
of this study.

II. RELATED WORK

The DeepMI metric relies on SSL to construct reliable neural
representations for complex acoustic patterns by using large
amounts of unlabeled data. The approach is used to build a
curriculum to train the SER models. This section discusses ef-
forts to improve robustness and generalization of SER solutions
(Section II-A). Then, it presents related studies on two key areas
for our paper: SSL (Section II-B) and curriculum learning (Sec-
tion II-C). We also summarize the major differences between
the DeepMI strategy and previous studies (Section II-D).

A. Robustness and Generalization

Robustness of a recognition model is critical to avoid fluc-
tuations to trivial variations of the input. Most studies in SER
concentrate on signal-based variations. For instance, Triantafyl-
lopoulos et al. [27] adopted an independent speech enhancement
(SE) system prior to the main SER model as a pre-processing
step, aiming to construct a robust SER under different signal-to-
noise ratios (SNRs). Lin and Busso [28] proposed a complete
chunk-level attention SER model to obtain a robust temporal
model that can handle sentences of different durations. Another
important but less discussed direction is a model-based variation,
which is related to the convergence of the network. It has
been found that a SER model can be easily overfitted during
training [29], leading to drastic differences in performance for
different initializations and poor model generalization. There-
fore, researchers have developed various approaches to prevent
overfitting a SER model such as increasing model regularization
with multitask learning [29], data augmentation [30] or dropout
layers [31]. These methods are often required to empirically
fine-tune the network structure.

Generalization can be regarded as a wider scope of model
robustness, requiring not only that the model is robust against
within-corpus conditions (i.e., source domain), but also in cross-
corpus conditions (i.e., different target domains). Typically, the
core concept is to utilize partial information of the target domain
to extract meaningful domain transformation functions between
the source and the target domains [32]. Deng et al. [33] proposed
an unsupervised domain adaptation framework based on a deep
neural autoencoder architecture. The model learns the prior
knowledge from unlabeled target domain data to achieve better
cross-corporarecognition performances. Another domain adver-
sarial approach aims to reduce the mismatches between source
and target domains [34], [35]. By attaching an auxiliary domain
classifier with a gradient reversal layer, the model is encouraged
to learn a common representation that aligns the source and
the target distributions [34]. However, these approaches require
some prior knowledge of the target domain to construct the
recognition model (i.e., part of the labeled or unlabeled data
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from the target domain). This requirement is not feasible if the
target domain is unavailable or unknown during the training
stage.

B. Semi-Supervised Learning Approach in SER

Instead of continuously collecting a time-consuming and
costly labeled data set, a large speech emotion corpus which
consists of unlabeled data is much cheaper for building a reliable
SER model. The major usage of SSL in SER is to leverage
this large set of unlabeled data for extracting complementary
information. SSL can capture diverse acoustic patterns across
different speakers, noises, or microphone settings to form a bet-
ter representation of emotional speech [29], [36], [37]. Studies
with SSL proposed in SER include an emotional discrimina-
tor with a reconstruction-based network such as autoencoder
(AE) [38], [39] or variational autoencoder (VAE) [9], [40].
Instead of attaching a single discriminator at the bottleneck layer,
Chang et al. [41] and Latif et al. [42] extended the architecture
to utilize different multitask discriminators such as other speech
attributes (e.g., gender and speakers) and fake or real adversarial
detectors. Parthasarathy et al. [29] and Huang et al. [43] adopted
the ladder networks to introduce random noise perturbations
between the encoder and decoder layers, imposing additional
consistency regularization to obtain noise-invariant intermediate
representations. All of these proposed methods can learn power-
ful and discriminative bottleneck representations, and improve
the generalization of the models.

Another strategy is to employ inductive SSL approaches such
as co-training [44] or pseudo-labeling [45]. The goal is to assign
low entropy pseudo labels on the unlabeled data and force a
discriminator to learn their relationship. The main drawback
of self-training is error accumulation by mislabeled samples,
which could lead to worse recognition results. Zhang et al. [46]
proposed an enhanced SSL approach to alleviate this problem.
The core idea was to keep re-evaluating the previously selected
data (i.e., the unlabeled data that have high confidence pseudo
labels) by the following retrained classifier. The approach can
correct mislabeled data in future iterations with an improved
model. Likewise, Lin et al. [22] presented the DeepEmoCluster
framework, which utilizes an unsupervised cluster classifier to
leverage unlabeled data. The classifier recognizes the clustering
assignment labels created by the K-means algorithm. The model
is able to fully exploit information from unlabeled data without
potentially undermining original discrimination ability by mis-
labeled samples. Section III-A provides more details about this
framework.

C. Curriculum Learning in Speech

Various speech-related studies have successfully applied cur-
riculum learning methodology to obtain remarkable results.
Studies have used the SNRs of the recordings as the direct
difficulty metric for the curriculum learning to build a robust
system against noise [47]. In the field of speech enhancement,
Gao et al. [48], [49] proposed a progressive learning (PL)
approach to train the model. The concept of PL is to learn the
reverse order of a curriculum metric, guiding the model from
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the difficult samples (i.e. low SNR) to the easy samples (i.e.,
high SNR). Their results demonstrated the improved enhance-
ment results in low SNR environments. Braun et al. [50] and
Ranjan et al. [51] also introduced similar curriculum learning
approaches to obtain improved recognition performance over
baselines in automatic speech recognition (ASR) and speaker
recognition tasks, respectively. Marchi et al. [52] presented
another interesting curriculum metric designed for a multimodal
speaker verification system. The text-dependent tasks (i.e., in-
cluding a desired keyword) were regarded as easy samples. Then,
they gradually relaxed the constraint of having a given spoken
content to construct a text-independent task. These tasks were
regarded as the difficult samples, completing the curriculum
learning.

A growing number of studies have begun to use curriculum
learning in the area of SER. The first study that introduced this
training technique in SER was Lotfian and Busso [21]. This study
quantified the disagreement-level of emotional labels between
evaluators to define the level of difficulty for the curriculum.
Some studies have explicitly incorporated the difficulty indica-
tor as a multitask learning target during the training process,
resulting in a difficulty awareness model [54]. More recently,
Zhou et al. [55] defined a curriculum metric using the difficulty
nature of the dataset. They treated recordings from a balanced
and acted speech emotional corpus as the easy samples, and
recordings from a spontaneous, large scale, in-the-wild dataset
as the difficult samples. They used this strategy for cross-
corpora SER modeling. In conversation emotion recognition,
Yang et al. [56] proposed a hybrid curriculum, which consists
of the conversation-level (CC) and utterance-level (UC) cur-
riculum. CC defines the difficulty metric based on the emotion
shift frequency observed within a conversation. UC computes the
utterance-level emotion label similarity (i.e., cosine similarity)
as the difficulty measurement.

D. Relation to Prior Work

In this study, we propose a novel MI-based metric which
considers not only the sample difficulties in the training process
(i.e., model prediction errors), but also the connection between
acoustic patterns and emotions. This study builds upon our
previous studies that introduced the semi-supervised DeepE-
moCluster framework [22]. The focus of Lin et al. [22] is the
model architecture and training strategy of the DeepEmoCluster
formulation. In contrast, the aim of this study is to utilize the
DeepEmoCluster framework for extracting the novel DeepMI
curriculum metric. Understanding what samples are “hard” or
“easy” for building the curriculum is not easy, especially when
dealing with subjective concepts such as emotions. The pro-
posed method using the DeepEmoCluster framework provides
a principled approach to achieving this goal, leading to clear
improvements in SER performance.

The approach is also related to the study by Lotfian and
Busso [21], which defined the curriculum based on emotional
perceptual differences (i.e., disagreement between different an-
notators). In contrast, the DeepMI approach quantifies the agree-
ment level between the acoustic and predicted emotional space
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TABLE I
SUMMARY OF THE MAIN DIFFERENCES BETWEEN THE DEEPMI STRATEGY AND OTHER EXISTING CURRICULUM METRICS USED FOR SER TASKS

Curriculum Approach Interpretability Model Performance Worker-level Labels Extra Complexity
Label-driven: [21] High Not considered Required Not required
Model-driven: [53] Low Considered Not required Required
DeepMI (prop.): High Considered Not required Required
Feature Extractor: &( - ) P X Y Algorithm 1: The Complete Training Procedure for the
.', z |9 |9 \ é’,“ I ]]_l Semi-Supervised DeepEmoCluster Model.
E : § a § a § a\ I# § ; P !] Emotion Levels Initialize:
= uster Classes round-trus
=% § s Il ke - S ®(-): the feature extractor
ERTEAR 15} .
A-ESR- 2g< .i_. _ .Y’ Lv. Y g(+): the cluster classifier
&2 / 2 | |7 < I I ]]_l f(-): the emotional regressor
d v .
< /_ R —— -8 Emation Levls Emodon Leves x;u: i-th batch data for the unlabeled set U
rediction ground-tru . ..
Resnet Block: : X;r,: i-th batch training data for the labeled set L.
2 .é. alo % z Sl 8] 5 é 2 5 ye,,iO’iL: i-th batch training targets for set IL
8| &ML S| g8 3|2 3| B Bl g|  Main:
) ) ) = —
2|5 3:453 Mgnﬂmg (4 for epoch = 1, 2, ..., N do
% pseudo-labeling for U
Fig. 1. The process of extracting the DeepMI curriculum metric using the h,;y = q)(XiU ), Vi

training set. First, the DeepEmoCluster framework is pre-trained, including the
feature extractor ®(-), the cluster classifier g(-), and the emotional regressor
f(+). Then, the emotional label, the recognized cluster and predicted emotional
attributes are used to compute joint probabilities. Finally, we derive mutual
information measures to estimate the DeepMI metric.

from a SER model using mutual information units. This novel
formulation does not require knowledge of individual emotional
annotations used to derive consensus labels, which are not
available for most of the SER corpora. Therefore, the proposed
approach has a wider range of applications. In addition, DeepMI
uses MI as the metric which has an appealing physical interpre-
tation that is not available in other conventional mathematical
formulations such as model prediction errors [53].

Table I summarizes the features of the DeepMI framework,
comparing it to other existing curriculum approaches.

III. PROPOSED METHODOLOGY

Fig. 1 visualizes the system flow and model architecture for
extracting the DeepMI metric. There are three main steps for
building the proposed curriculum SER model, which utilizes
the DeepMI metric. The first step is to construct the DeepEmo-
Cluster model using the complete training set (Section III-A).
The second step is to compute the DeepMI metric for the training
set with the pre-trained DeepEmoCluster model (Section III-B).
The third step is to define the curriculum learning strategy for
the DeepMI metric (Section III-C).

A. The Semi-Supervised DeepEmoCluster Model

The proposed approach relies on the SSL framework proposed
in our previous study [22], which we referred to as DeepEmo-
Cluster. This section describes this approach. The DeepEmo-
Cluster model consists of three modules as shown in Fig. 1:
(1) the feature extractor, ®(-), which maps the input acoustic
feature representations to hidden neural embeddings to extract

Yeurav — Kmeans(hy), ¥ i
% Stage I: self-supervised path
fori=1 2 ...1do
Verriv = 9((xiv))
j = CE(ycltr,iU’ ycltr,iU)
update ®(+) and g(-) by J
end
% pseudo-labeling for L
hip = ®(x;z), Vi
Yeitrir < Kmeans(h;p), V i
% Stage II: jointly optimized path
fori=1,2 ...1do
ycltr,iL’ yemo,iL = g((I)(XiL))7 f(q)(sz))
j = CE(ycltr,iL’ ycltr,iL) +
[1 - CCC(ymno,iL’ yemo,iL)]

update ®(+) , g(+) and f(+) by J
end

end

task-relevant information, (2) the cluster classifier, g(-), which
classifies pseudo class labels generated by the K-means cluster-
ing based on these embeddings, and (3) the emotional regressor,
f(+), which predicts an emotional attribute (i.e., arousal, valence
or dominance).

The DeepEmoCluster model is trained with a labeled set (IL)
and an unlabeled set (U). Algorithm 1 shows the detailed steps of
the semi-supervised DeepEmoCluster training procedure, where
each training epoch contains two stages. The first stage in each
training epoch is to run the K-means clustering algorithm for
neural embeddings h;;; of the unlabeled set U. After this step,
the cluster assignments of samples (i.e., y ;) are treated as
training targets of the cluster classifier g(-). We compute the
cross entropy (CE) loss that is used to update ®(-) and g(-).
The second stage does the same pseudo-labeling procedure on
the labeled set IL to generate the cluster class labels y i ir..
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Since we also have the emotional labels y ¢, i1, (Where emo €
{aro,dom,val}), we can jointly optimize ®(-), g(-) and f(-).
The overall cost function 7 (1) is the direct combination of the
concordance correlation coefficient (CCC) and CE losses,

j:jemo+jCE (1)

where Jemo = 1 — CCC'is the loss term for the emotional re-
gressor. Notice that here we can introduce an additional weight-
ing factor in J to control which task should be emphasized.
The two-stage training strategy makes the DeepEmoCluster
model to explore useful prior knowledge from the unlabeled set,
before bringing the second discriminative stage for constructing
meaningful cluster representations using an auxiliary emotional
regressor.

A difference in our implementation of the DeepEmoCluster
is the feature extraction module. The original implementation
of the DeepEmoCluster used an end-to-end framework using
the chunk-based segmentation presented in Lin and Busso [28].
Instead, we extract a feature representation by processing the
high level descriptor (HLDs) described in Section IV-B. This
study uses the residual neural network (ResNet) [57] architec-
ture as the backbone for the feature extractor ®(-). Since our
input feature is a vector (i.e., the 6,373 sentence-level repre-
sentation described in Section IV-B) rather than a 2D feature
map, we replace the original convolutional weighted layers
with fully connected layers without pooling operations. The
detailed network structure is illustrated in Fig. 1. It contains
three standard ResNet blocks, where each block has two residual
connections implemented with dropout layers (rate=0.3). The
settings of the hidden nodes are formed to be an encoder-like
architecture, mapping a 6,373D input vector into a hidden 256D
output vector. We implement the cluster classifier g(-) and
the emotional regressor f(-) with two fully connected layers
implemented with the rectified linear unit (ReLLU). The outputs
are dependent on their corresponding losses to compute, where
the softmax activation is applied for the cluster classifier, and a
linear activation is used for the emotion score regressor.

B. The DeepMI Curriculum Metric

In this step, we use the pre-trained SSL. DeepEmoCluster
model to perform predictions on the labeled training set L.
Therefore, every sample in the training set has two predicted
outputs (i.e., the cluster class and the emotional score) and its
ground-truth emotional label. Then, we discretize the ground-
truth and the predicted continuous emotional scores into F
equally-spaced levels, regarding them as two discrete random
variables: Y for the ground-truth label and Y for the predicted
label. Similarly, the cluster class output is directly treated as
another discrete random variable X . The variable X is already
discrete, with a total of K classes, where K is the number of
clusters created by the K-means algorithm. We can construct
a joint probability mass function (PMF) and its corresponding
marginal PMFs by simply counting the number of joint com-
binations of the state of the variables, and by normalizing the
resulting matrices by the size of the training set. We estimate
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P(X,Y)and P(Y',Y) to calculate the proposed DeepMI met-
ric. Typically, the number of clusters K will be greater than the
number of emotional levels, E. Then, we apply the definition
of the mutual information (MI) in (2) to compute I(X;Y)
and I(Y’;Y). Since the speech cluster X is directly obtained
from data using the DeepEmoCluster framework, it captures
patterns observed on the acoustic features. I(X; Y') captures the
emotional dependency on the clusters created with the acoustic
features. Therefore, I(X;Y') indicates the mutual information
between the acoustic features and emotional labels through the
clusters. For the I(Y’;Y") term, it quantifies the discrimination
ability of the pre-trained model (i.e., the prediction error). Fi-
nally, the DeepMI curriculum metric is defined in (3), which is
a weighted combination of these two MI terms controlled by the

hyper-parameter «.
P(x,

P(z)P(y)
DeepMT =al(Y;YV)+ (1 - a)I(X;Y)  (3)

I(Xx;Yy)P(Ly)log(

Notice that the complete formula of MI includes the summation
overall X and Y ranges. However, here we compute the M1 value
for each training sample, resulting in a DeepMI sequence of the
train set. These instance-based MI values can be regarded as
small components of the full MI, which might contain negative
and positive values for different training samples. If we sum up
all the MI components over the entire training set (since we de-
fine our random variables based on it), we obtain a positive value
satisfying the non-negativity property of MI. Similar use of this
instance-wise MI computation can also be found in the natural
language processing (NLP) field for sentiment detection [58].

C. Proposed Curriculum Learning Schedule

Curriculum learning optimizes a recognition model step-by-
step by gradually adding data bins into the training process
according to their defined curriculum. Conventionally, we will
start with the easiest data bin using a larger learning rate. Then,
we progressively combine the existing data with the data from
the bin with the next difficulty level, using a smaller learning
rate to achieve hierarchical convergence. The key aspect is how
to define the difficulty metric, which determines the sequential
order in which the data is introduced. A good curriculum met-
ric can effectively lead the model to find better local optima,
resulting in well generalized recognition performances across
matched or mismatched conditions.

For our curriculum settings, we split the original training
set into 10 data bins based on the sorting order provided by
the DeepMI metric. Larger values of DeepMI indicate that the
samples are easy. Indeed, a larger value for I(X;Y) indicates a
stronger relation between the emotions and the acoustic clusters
(e.g., extreme emotions tend to have a stronger acoustic pattern).
Likewise, a larger value for I(Y”;Y") indicates a strong correla-
tion between the predicted and ground truth labels (i.e., it refers
to the model prediction errors). Notice that the I(X;Y) term
plays the most critical role in the DeepMI metric, since the vari-
able X can leverage additional information from the unlabeled
set to obtain extra prior knowledge of the data distribution, such
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as higher diversity of the speaker traits, channel conditions and
acoustic events.

We do not use the pre-trained SSL DeepEmoCluster model to
evaluate our metric. Instead, we independently train a simple
emotional regressor O(-) following the curriculum learning
scheme to evaluate the effectiveness of the DeepMI metric.
The input of the model is the 6,373D feature vector mentioned
in Section IV-B. The model structure of ©(-) contains three
fully connected layers implemented with 512 nodes and with
ReLU activation. We use dropout with a rate p = 0.3 to increase
the regularization of the network. The output layer is a linear
activation, and the loss function is implemented to minimize
the term 1-CCC. We add a new data bin (i.e., the next level of
difficulty) into the existing bins for every five training epochs.
Every time we incorporate new data, we reduce the learning rate
by half. Hence, the learning rate for the final stage will be 27
of the starting learning rate used for the first bin.

IV. EXPERIMENTAL SETTINGS
A. Emotional Databases

The main corpus we utilize to build the recognition models is
the MSP-Podcast corpus [23]. We also use the IEMOCAP [24]
and the MSP-IMPROV [25] corpora as two additional test sets
for the cross-corpora evaluations (i.e., both datasets are not
considered during training).

1) The MSP-Podcast Corpus: The primary corpus used in
this study is the MSP-Podcast corpus [23], which is the largest
naturalistic speech emotion dataset consisting of emotionally
rich spontaneous speech recordings gathered from podcasts
from various audio-sharing websites. The podcast recordings
are segmented using speaker diarization. We also use automatic
algorithms for signal-to-noise ratio (SNR) estimation and music
detection, creating a speech repository with speaking turns with
durations between 2.75 s and 11 s without excessive background
noise, music or overlapped speech. We use different machine
learning techniques to retrieve emotionally rich segments to
balance the emotional content in the corpus by following a
retrieval-based strategy to collect data. The segments are an-
notated using Amazon Mechanical Turk (AMT). We follow
a crowdsourcing protocol inspired by the method discussed
in Burmania et al. [59]. The annotation includes primary and
secondary emotions, and emotional attributes. This study relies
on the emotional attributes arousal (calm versus active), valence
(negative versus positive) and dominance (weak versus strong),
which are annotated with self-assessment manikins (SAMs) on
a seven point Likert scale. The ground truth attribute label for
each speech segment is obtained by averaging the scores across
the five or more annotators.

The database is split into train, test and development sets
with the goal of minimizing the speaker overlap in the sets. We
use version 1.8 of the MSP-Podcast corpus in this study. The
development set has 7,800 samples from 40 speakers, the test
set has 15,326 samples from 50 speakers, and the train set has
44,879 samples from the rest of the speakers (more than 1,000
speakers). There are around 600,000 speech segments that are

IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 32, 2024

not yet annotated with emotional labels. We use a portion of
these recordings as the unlabeled set.

2) The IEMOCAP Corpus: The USC-IEMOCAP cor-
pus [24] is an audiovisual corpus, where we only utilize the
audio modality for this study. The corpus consists of dyadic in-
teractions from 10 actors in improvised scenarios. The database
contains 10,039 speaking turns. All the segments are annotated
for arousal, valence and dominance by at least two raters using a
five point Likert scale. The ground-truth for the emotional label
for each sentence is obtained by averaging the scores across
different annotators.

3) The MSP-IMPROV Corpus: We also use the MSP-
IMPROV corpus [25], which is a multimodal emotional database
that contains interactions between pairs of actors engaged in
improvised scenarios. The dataset also contains the interactions
between the actors during the breaks, making it more naturalis-
tic. The corpus uses a novel elicitation scheme, where two actors
in an improvised scenario interact, leading one of them to utter
a target sentence. For each of the target sentences, four emo-
tional scenarios were created to contextualize the sentence while
eliciting happy, angry, sad and neutral reactions, respectively.
This corpus consists of 8,438 speaking turns recorded from 12
actors (over 9 hours). The corpus was annotated with emotional
categories and emotional attributes (arousal, valence and domi-
nance) using the protocol described in Burmania et al. [59]. The
ground-truth emotional attribute label assigned to each utterance
is the average across the scores provided by the annotators,
which is linearly mapped between —3 and 3.

B. Acoustic Features

This study uses the Interspeech 2013 computational paralin-
guistics challenge (ComParE) [60] feature set, extracted with
the OpenSmile [61] toolkit. For each speaking turn, the toolkit
firstly extracts frame-level low level descriptors (LLDs) such as
fundamental frequency (f0), energy and Mel-frequency cepstral
coefficients (MFCCs) using 32ms windows with 16ms overlap
between windows. Then, the toolkit applies various statistical
functions computed over the temporal dimension for each LLD
(e.g., mean and standard deviation of the f0). These functions
are also called high level descriptors (HLDs). In total, we obtain
a 6,373 dimensions sentence-level feature vector, regardless
of the duration of the speaking turn. We also perform the
z-normalization on these features by estimating the mean and
the standard deviation over the train set.

C. Implementation Details

Each emotional attribute is regarded as an independent regres-
sion task, where we build separate models for arousal, valence
and dominance. The train and development sets are only coming
from the MSP-Podcast corpus. We use three test sets in this
study: the test set of the MSP-Podcast, the IEMOCAP and the
MSP-IMPROV datasets. With the test set of the MSP-Podcast
corpus, we show the recognition performances under matched
conditions (e.g., spontaneous emotions and podcast recordings).
With the IEMOCAP and the MSP-IMPROV corpora, we show
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the recognition performances with mismatched conditions (e.g.,
acted emotions and laboratory recordings). The scales of the
annotated emotional attributes are different across databases
(e.g., the range for the attributes in the [IEMOCAP is from 1
to 5, and in the MSP-Podcast is from 1 to 7), we train our model
with the z-normalized emotional targets where the normaliza-
tion parameters are calculated over the training set. Therefore,
the model prediction outputs are normalized emotional scores
without a mismatch with the emotional labels of the evaluation
corpora.

For building the pre-trained semi-supervised DeepEmoClus-
ter model, we randomly select 90K samples from the unlabeled
pool (see Section IV-A1) to form the unlabeled set. Notice that
we do not include any sample neither from the IEMOCAP
nor the MSP-IMPROV corpora as data for the unlabeled set.
The DeepMI metric has two important hyper-parameters: 1) the
number of the K-means clusters K, which directly determines
the diversity of the acoustic pattern space, and 2) the weighting
factor o, which defines the importance of different relations
between the variables X, Y and Y’ ((3)). We fine-tune these two
hyper-parameters based on the development set performances.
For the K-means clusters &, we setitto 50 and discretize the con-
tinuous emotional scores into £=6 levels. Section V-D presents
experimental results to demonstrate the impact of changing the
number of clusters on the model recognition performances.
For the DeepMI weighting factor o, we set to 0, 0 and 0.5
for arousal, dominance and valence, respectively. Interestingly,
we found that for arousal and dominance, we can directly rely
on I(X;Y), since their acoustic patterns are highly related to
the emotional labels. However, valence is a more challenging
attribute compared to other emotions [31], [62], [63], demand-
ing complementary information from the model’s prediction
error 1(Y';Y') to obtain better recognition results. Section V-E
demonstrates the performance as we change the value of a.

To train the DeepEmoCluster model, we use the stochastic
gradient descent (SGD) optimizer with a learning rate set to
0.001 for the first training stage (i.e., the self-supervised path in
Algorithm 1). For the second stage (i.e., the jointly optimized
path in Algorithm 1), we use the Adam optimizer, setting the
learning rate equal to 0.0001. The models are trained with a
batch size of 512 samples, using 200 epochs. For the model ©(-),
which is the network used to evaluate our proposed curriculum
learning formulation, we use the Adam optimizer where the
learning rate starts at 0.001 and then follows the learning rate
decay scheme mentioned in Section III-C to train the model. We
use a batch size of 512, training the model for 70 epochs. This
training procedure is sufficient to converge for all the models. We
save the best models with an early stopping criterion based on the
development loss, and report the accuracy of the model predic-
tions in the three testing sets in terms of CCC. The CCC values
are the average results after running 10 experiment trials with
different network initializations. This implementation strategy
allows us to conduct statistical analysis using a two-tailed t-test
over the 10 trials. We define statistical significance at p-value =
0.05. All the models are implemented in PyTorch under a single
NVIDIA GeForce RTX 2080 Ti GPU environment.
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D. Baselines for Curriculum Metrics

We consider three alternative curriculum strategies as base-
lines to compare our method: pretrained [53], disagreement, and
minmax entropy [64]. We also consider training the models
without a curriculum or defining the curriculum at random to
serve as ablation baselines for verifying the effectiveness of
curriculum learning.

® W/O Curriculum: This approach does not consider any cur-

riculum, which follows the conventional training strategy
to train the model with all the data for every epoch.

® Random: This approach creates a curriculum with random

assignments to form the data bins (i.e., simply adding
subsets of the training data to train the model). It serves
as an ablation result for evaluating the role of having a
meaningful curriculum strategy.

® PreTrained [53]: The approach first pre-trained an emotion

recognition model based on the given training data (i.e., the
model architecture only consists of the feature extractor
®(-) and the emotional regressor f(-), without the cluster
module ¢(-) in Fig. 1). Then, the model is utilized to
make predictions on the same training set. We compare
point-wise distances between the predicted results with
the actual ground-truths (i.e., L1 prediction errors). The
difficulty metric is determined by the distances, assuming
that more difficult samples have higher errors. We can
simply switch the structure of ®(-) for model-agnostic
PreTrained results. In this study, we use two implemen-
tations, one with RestNet and the other with long-short
term memory (LSTM). PreTrained-ResNet denotes the ap-
proach that uses the same ResNet structure for ®(-) as we
used in the DeepEmoCluster framework (Section III-A).
This model provides a fair comparison, since it fixes the
model complexity in ®(-). The PreTrained-LSTM base-
line implements the structure for ®(-) using a LSTM,
where the model input receives frame-level features (i.e.,
LLDs) instead of HLDs. Specifically, the model tracks the
frame-level temporal dynamics with two stacked LSTM
layers. Then, the last time-step output is passed through
the emotional regressor f(-) to predict the sentence-level
emotional attributes. This setting provides a complemen-
tary model-agnostic architecture to compare the results.

® Disagreement: This method quantifies the disagreement

level between annotators for each sentence by computing
the standard deviation among their annotated results. The
higher the standard deviation, the more difficult the sample
is.

® Minmax Entropy [21]: This approach is inspired by the

item response theory (IRT) [65]. This method considers the
expertise of annotators to determine whether the disagree-
ment between labels is because of poor labelers or difficult
samples. Zhou et al. [64], [66] modeled this problem using
aminimax conditional entropy formulation, where the goal
is to estimate the probability of a sample belonging to
a particular class (unobserved true label of a sample) by
taking both the sample difficulty and annotator expertise
into account. If the observed label is y;_;, which is the label
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given by annotator j to a sample 7. The probability that an
annotator j labels a sample ¢ with label ¢ while the true
label is e is given by, P(Y; ; = q|Y; = ¢). Q(Yi = ¢) is the
probability that a sample ¢ has a true label e. The observed
(P) and true (@) label distributions are jointly estimated

using a minimax entropy criterion shown in (4)

ménmng (YY) 4)

This formulation is used to estimate the difficulty of a
sample by calculating the sample confusion matrix. The
elements of the confusion matrix measure how likely a
sample ¢ is labeled as ¢ by a randomly chosen annotator
while its true label is e. Finally, the difficulty is calculated
by taking the ratio between the trace of the matrix and the
sum of its elements.

For fair comparison, all curriculum training settings and
model structures follow the same strategy mentioned in Sec-
tions III-C and I'V-C. The only difference is how we define the
difficulty metric for determining the sequential order to create
the curriculum learning.

V. EXPERIMENTAL RESULTS

This section presents the experimental results of the proposed
curriculum metric, comparing the results with the alternative
baselines. The analysis also discusses the model convergence
stability, the generalization capability of the models, the impact
of a semi-supervised pre-trained model and the sensitivity of the
model for variations of the hyper-parameters. We also illustrate
the emotional distribution of the data included in the bins during
the curriculum learning procedure.

A. Curriculum Learning Results

Table II presents different recognition performances un-
der matched (i.e., MSP-Podcast corpus) and mismatched (i.e.,
IEMOCAP and MSP-IMPROV corpora) conditions. We con-
sider the model generalization ability by evaluating how good
a trained SER model can perform with unseen data. The results
on the [IEMOCAP and MSP-IMPROV corpora provide insights
about the generalization of the models. As mentioned in Sec-
tion IV-C, we conduct statistical analysis across approaches.
Each of the approaches is represented by a specific symbol
showing right next to it (i.e., *, T, 1, &, ¢, ¥ and #). Values
in the table that are tagged with these symbols indicate that the
approach is significantly better than the approach indicated by
the corresponding symbol. This analysis helps us to visualize
how the performance of one approach compares with the re-
sults of another. For example, the DeepMI strategy significantly
outperforms the W/O Curriculum strategy in six out of the nine
testing cases (i.e., 3 emotional attributes x 3 datasets), since
the symbol *, associated with the W/O Curriculum strategy,
appears six times in the DeepMI results. This result shows
that the DeepMI strategy is better than the W/O Curriculum
strategy.

There are some interesting observations from these results.
First, the Random curriculum method does not provide any

TABLE II
RECOGNITION PERFORMANCE USING DIFFERENT CURRICULUM APPROACHES
FOR THE TEST SETS IN MATCHED (MSP-PODCAST) AND MISMATCHED
(IEMOCAP AND MSP-IMPROV) CONDITIONS

[[ Aro[CCC] | Val [CCC] | Dom [CCC]
[ MSP-Podcast Test Set
W/O Curriculum® 0.6257+* 0.2757* 0.5447%%
Random’ 0.598 0.233 0.511
Disagreement:k 0.591 0.231 0.504
Minmax Entropy® 0.598 0.234 0.505
PreTrained-LSTM® 0.628"* 0.283%* 0.554* 1%
PreTrained-ResNet” 0.627* 0.281* 0.551**
DeepMI (Prop.)* 0.626"** 0.304*TE4 ¢ 0.553*7*
IEMOCAP
W/O Curriculum® 0.4487*¢ 0.20477%¢Y 0.276
Random' 0.431* 0.161% 0.287*
Disagreement” 0.448™** 0.142 0.294%Y
Minmax Entropy‘ 0.408 0.178" 0.319*1¢v
PreTrained-LSTM* 0.426* 0.194* 0.294*Y
PreTrained—ResNet' O.446“” 0.193Ti‘ 0.278
DeepMI (Prop.)* 0.4427*¢ 0.20475%¢Y 0.292*"
MSP-IMPROV
W/O Curriculum® 0.522* 0.280+** 0.360*
Random’ 0.515* 0.242* 0.378**
Disagreementi 0.515* 0.245* 0.376**
Minmax Entropy* 0.503 0.219 0.340
PreTrained-LSTM* 0.526"* 0.2687* 0.377**
PreTrained-ResNet” 0.547*13%¢ 0.316"1#*¢ 0.380**
DeepMI (Prop.)* 0.543*TE%® | 33 %740 0.386****

Each approach is represented by a specific symbol shown in the first column. Values tagged
with a symbol indicate that the approach is significantly better than the approach indicated by
the corresponding symbol (two-tailed t-test, p-value < 0.05).

benefit compared to the normal training strategy (i.e., the W/O
Curriculum method). This approach even degrades the recog-
nition performances. This result emphasizes the critical role of
having a well-designed curriculum. Only a carefully designed
and meaningful difficulty indicator can result in an effective
curriculum learning. Second, we observe that model-driven
metrics (i.e., the PreTrained-LSTM, PreTrained-ResNet and
DeepMI methods) generally obtain better performances than
other approaches including the label-driven Disagreement and
Minmax Entropy metrics. This result validates our argument
that a model-driven metric can be more effective when we
have sufficient amounts of training data, since the model can
implicitly bring useful discriminative information into the cur-
riculum metric. Third, our proposed DeepMI metric achieves
the highest performances in most cases with either matched
or mismatched conditions. Besides a clear performance gap
over label-driven metrics, the DeepMI strategy significantly
outperforms the PreTrained-ResNet strategy in four out of
the nine cases (i.e., 44% symbol ¥ in DeepMI results). The
differences are even clearer when our approach is compared
with the PreTrained-LSTM method, where the DeepMI strategy
significantly outperforms the PreTrained-LSTM strategy in six
out of the nine cases (i.e., 67% symbol 4 in DeepMI results).
In contrast, there are no cases (i.e., 0%) in the table showing
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TABLE III
THE DEFINED VAR VALUES TO ASSESS THE MODEL CONVERGENCE STABILITY
ACROSS DIFFERENT NETWORK INITIALIZATIONS
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TABLE IV
COMPARISON BETWEEN A SEMI-SUPERVISED VERSION (SSL) AND A FULLY
SUPERVISED VERSION (FSL) OF THE DEEPEMOCLUSTER FRAMEWORK USED
TO DERIVE THE DEEPMI METRIC

Aro [VAR] Val [VAR] Dom [VAR]

H ll/ISP-Po Teast Tes‘t Set | Aro[CCC] [ Val[CCC] | Dom [CCC]
W/O Curriculum 0.96% 4.72% 0.92% H MSP-Podcast Test Set
Random 0.67% 4.29% 1.96% FSL (K=30) 0.624* 0.283* 0.548
Disagreement 0.51% 1.73% 0.40% SSL-45K (K=40) 0.626 . 0.290 . 0-548*
Minmax Entropy 0.33% 4.27% 0.40% SSL-90K (K=50) 0.626 0.304 0.553
PreTrained-LSTM 0.16% 0.71% 0.00% [ IEMOCAP
PreTrained-ResNet 0.00% 0.71% 0.00% FSL (K=30) 0433 0211 0.208
DeepMI (Prop.) 0.00% 1.32% 0.18% SSL45K (K=40) 0.445" 0.205 0.315"

I IEMOCAP SSL-90K (K=50) 0.442* 0.204 0.292
W/O Curriculum 5.80% 20.58% 7.97% H MSP-IMPROV
g‘?"do’” i“s‘iz’ 136;5727;" ?‘g;Z” FSL (K=30) 0.555 0329 0374
M’F“g "ege’" 1'96; h 36; 2~82; SSL-45K (K=40) 0.557" 0.326 0.403*
A ;”L’g’gw Leact 1000, e SSL-90K (K=50) 0.543 0.331 0.386"

relrained-. . 0 B 0 . 0

PreTrained-ResNet 0.45% 2.07% 0.72% Thf §yn:b01 : 'lirzldtictatis that lthejSOLor;letric is statistically significantly better than the FSL
DeepMI (Prop.) 1.58% 2.45% 1.71% metric (two-tailed t-test, p-value < 0.05).

I MSP-IMPROV

urriculum .56% 57% 11% able ists the results for different approaches. Conven-

W/0 C I 5.56% 13.57% 6.11% Table III lists the VAR Its for different app hes. C
Random 2.72% 16.94% 6.35% tional training methods without curriculum (W/O Curriculum)
Disagreement 1.17% 4.90% 1.06% . . Sy .
Minmax Entropy 1.59% 8.68% 2 65% and curriculum learning with incorrect metric (Random) have
PreTrained-LSTM 0.95% 7.84% 0.80% low model robustness against different initialization, especially
PreTrained-ResNet 0.55% 1.27% 0.79% for the valence attribute under mismatched conditions (i.e.,
DeepMI (Prop.) 0.92% 1.51% 1.55% IEMOCAP and MSP-IMPROV sets). The worst case reaches

A higher VAR value means that the model is more sensitive against different initializations.

that the PreTrained approaches lead to significantly better re-
sults than the proposed DeepMI strategy (i.e., no symbol & in
all the PreTrained-ResNet and PreTrained-LSTM results). Our
approach leads to better performance for most of the cases or
reaches a similar performance to these approaches. These results
demonstrate the effectiveness of the proposed DeepMI strategy
over the PreTrained methods.

B. Analysis of Convergence Stability

Besides the improved generalization performances, we find
that models trained with the right metric to define the curricu-
lum can obtain better model convergence stability. Specifically,
if a model’s recognition performance has drastic differences
depending on the network initializations, we consider that the
model has low robustness due to its unstable convergence. Since
we repeatedly run our experiments for 10 trials with different
initializations, we can compare the convergence stability of
different approaches by computing the standard deviation of
their prediction performances across these 10 trials. To have a
fair comparison, (5) defines the relative variation (VAR) metric
to represent model convergence stability. The standard deviation
of the CCC is normalized by its corresponding mean CCC value
to show the relative variation across trials. Therefore, a high
value for VAR indicates that the model is more sensitive to the
network initialization.

std CCC

mean CCC ©®)

VAR = < ) * 100%

more than 20% performance deviations across different trials. In
contrast, the proposed DeepMI method consistently maintained
robust recognition performances under matched or mismatched
conditions, showing its model robustness and convergence sta-
bility. Interestingly, we observe a general trend for model-
driven metrics (i.e., PreTrained-LSTM, PreTrained-ResNet and
DeepMI) of having a stable model convergence, suggesting the
extra benefit of model-driven approaches.

C. The Effectiveness of the SSL DeepEmoCluster

As we mentioned in Section II, we consider whether the
success of the DeepMI metric is due to the semi-supervised
DeepEmoCluster. In this section, we explicitly demonstrate the
performance benefits obtained by using the SSL implemen-
tation. We directly compare our approach with the DeepMI
metric obtained with a fully supervised learning (FSL) Deep-
EmoCluster. The FSL approach trains the DeepEmoCluster
without relying on the unlabeled set (i.e., only performs the
second stage in Algorithm 1 during the training process). Since
we have fewer training samples, we reduce the number of
clusters K from 50 to 30, which follows the suggestion of the
original DeepEmoCluster paper [22]. We also include another
intermediate result that trains the model using 45K unlabeled
data and 40 clusters to provide further insights. These pre-trained
models (i.e., SSL-45K, SSL-90K and FSL DeepEmoCluster)
are then utilized to extract their corresponding DeepMI metric
for constructing the curriculum model ©(-). Table IV reports
the recognition performances. We find significant improve-
ments in performances under matched conditions when using
the SSL DeepEmoCluster (i.e., the MSP-Podcast test set). It
suggests that increasing the amount of unlabeled data benefits
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TABLE V
THE RECOGNITION PERFORMANCES ON THE MSP-PODCAST TEST SET AS A
FUNCTION OF THE NUMBER OF CLUSTERS K IN THE K-MEANS ALGORITHM

I Aro [CCC] | Val [CCC] | Dom [CCC]
SSL-90K || MSP-Podcast Test Set
K=10 0.621 0.272 0.546
K=30 0.620 0.277 0.551
K=50 0.626 0.304 0.553
K=70 0.623 0.272 0553

The results are trained using the SSL DeepEmoCluster using 90K samples as the unlabeled
set. The results are the average CCC across 10 trials.

in-domain generalization. We also observe improvement gains
in some of the mismatched conditions. Generally, the SSL model
achieves higher performance than the FSL model. This result
reinforces the advantage of exploring the distribution of the
acoustic features for the input data derived from the unlabeled
set. This approach can effectively enhance the performance of
the model [67], [68].

D. Number of K-Means Clusters

The parameter K (i.e., number of K-means clusters) plays
an important role in the proposed DeepMI metric. It not only
directly affects the encoding hidden representation outputs of
the DeepEmoCluster model, but also changes the subsequent
joint probability P(X,Y’). Table V presents the recognition
results of the curriculum learning-based approach by training
©(-) with DeepMI metrics obtained with a different number of
clusters. For simplicity, we only show the results on the test
set of the MSP-Podcast corpus, since we can observe similar
improvement trends if the model is evaluated in either matched
or mismatched conditions. The performance peaks for the three
emotional attributes are located at K=50. K is a fine-tuned
parameter that influences the recognition accuracy, especially
for valence. It is interesting that =50 was also the optimal
value observed on the development set, which was used to define
this hyper-parameter. The inferior performances when K=10
indicate that we should increase the value of X when we have a
large training corpus (i.e., labeled data plus the additional 90K
unlabeled set). Having enough data for training can ensure the
DeepEmoCluster model has sufficient hidden clusters to encode
most acoustic conditions for obtaining better representations
(e.g., speakers, channels or microphone settings).

E. The Impact of DeepMI Weighting Factor

As we mentioned in Section IV-C, the weighting factor «v in
(3) determines the importance of the acoustic cluster variable
X. A lower value for « increases the importance of the term
I(X;Y). The variable X is the most critical part of the DeepMI
metric, since it can leverage additional useful information from
the unlabeled data. This section evaluates the sensitivity of « in
our approach. Table VI shows the results, where « is bounded
between O to 1. One-way analysis of variance (ANOVA) eval-
uations indicate that the differences are statistically significant
across different values of « for the three databases and three
attributes, except for dominance in the MSP-IMPROV corpus

IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 32, 2024

TABLE VI
THE RECOGNITION PERFORMANCES ON THE MATCHED (MSP-PODCAST) AND
MISMATCHED (IEMOCAP AND MSP-IMPROV) CONDITIONS AS A FUNCTION
OF THE HYPER-PARAMETER « (THE WEIGHTING FACTOR OF THE DEEPMI
METRIC IN (3))

i Aro [CCC] | Val [CCC] | Dom [CCC]
SSL-90K || MSP-Podcast Test Set
=0.00 0.626 0.298 0.553
=0.25 0.618 0.309 0.547
=0.50 0.621 0.304 0.546
=0.75 0.618 0.302 0.548
a=1.00 0.620 0305 0.544
SSL-90K || IEMOCAP
=0.00 0.442 0.195 0.292
=025 0.392 0.187 0276
=0.50 0.384 0.204 0.269
a=0.75 0.372 0.206 0.267
a=1.00 0.384 0.210 0.283
SSL-90K || MSP-IMPROV
=0.00 0.543 0.319 0386
=0.25 0.531 0.313 0.387
=0.50 0518 0.331 0378
=0.75 0514 0.335 0.379
a=1.00 0.531 0.351 0.388

These results are trained with the SSL DeepEmoCluster (K=50) using 90K samples as the
unlabeled set. We report the average CCC across 10 trials.

(ANOVA-test, p-value < 0.05). The underlined values in Ta-
ble VI correspond to the adopted settings with the best perfor-
mance observed on the development set (i.e., the results shown in
Table II). Interestingly, arousal and dominance achieve the best
generalization performances without relying on the I(Y';Y)
term in (3) (i.e., «=0). This result demonstrates the benefit of
leveraging unlabeled data, which might potentially provide extra
acoustic patterns with respect to the unseen testing conditions,
leading to improve the model’s generalization. However, we find
the DeepMI metric needs the additional discriminated informa-
tion from the 7(Y’;Y") term to obtain better performance for
valence (i.e., « >0.5). We hypothesize that this finding is due to
the ambiguity in the relation between the acoustic patterns and
valence, which has been identified as a more challenging predic-
tion task using acoustic features than arousal or dominance [31],
[63]. Therefore, it requires additional discriminate information.

F. Flexibility to Adopt in SOTA Approaches

Once the difficulty order in the samples of the training set
has been established, curriculum learning can be applied to any
SER framework since this strategy is a general training scheme.
We evaluate this idea by training other existing SOTA SER
approaches, bringing further improvements in the recognition
performance. To demonstrate this point, we conduct experiments
with other SOTA SER models [69], [70] that involve finetuning a
pre-trained self-supervised learning model for downstream SER
tasks. Specifically, we select WavLM-large [71] as the backbone
pretrained self-supervised model. In our setup, we freeze the
encoder and utilize the mean-pooled hidden output, then finetune
only the emotion prediction head. Importantly, this SOTA SER
model is fine-tuned with the same curriculum scheduler detailed
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Fig. 2. The emotional distributions for valence of the data from the first four and last curriculum bins using the Disagreement, PreTrained-ResNet and DeepMI

metrics. The plots only include the data introduced for each bin. The x-axes correspond to the ground truth emotional labels.

TABLE VII
THE SER PERFORMANCE WHEN APPLYING DEEPMI CURRICULUM LEARNING
ON SOTA (WAVLM) SER APPROACHES

[[ Aro [VAR] [ Val [VAR] | Dom [VAR]
|| MSP-Podcast Test Set

W/O Curriculum (WavLM) 0.674 0.469 0.603

DeepMI (WavLM) 0.674 0.470 0.601
i IEMOCAP

W/O Curriculum (WavLM) 0.511 0.401 0.333

DeepMI (WavLM) 0.541* 0.394 0.379*
i MSP-IMPROV

W/O Curriculum (WavLM) 0.545 0.497 0.397

DeepMI (WavLM) 0.578% 0.470 0.428"

The symbol * indicates that the proposed DeepMi approach is statistically significantly better
than a model trained without curriculum (w/o curriculum) (10-trials, two-tailed t-test,
p-value< 0.05).

in Sections III-C and I'V-C. This ablated approach allows us to
clearly assess the impact of curriculum learning on the SER task.
Similar to Table II, Table VII compares the strategies of training
W/O Curriculum and with the DeepMI approach to show the
validity of the proposed method.

Table VII shows that adopting curriculum learning with
DeepMI metric for finetuning most of the time can significantly
improve the model generalization performance over the plain
finetuning strategy (see IEMOCAP and MSP-IMPROV, espe-
cially for arousal and dominance attributes). This consistent
trend holds when using the traditional HLDs (Table II) or
WavLM self-supervised deep features (Table VII), demonstrat-
ing the flexibility of the proposed approach.

G. Interpretation of the DeepMI Metric

Besides bringing performance gains, the proposed DeepMI
metric is highly interpretable. One of the criticized drawbacks

for model-driven curriculum metrics is their lack of interpretabil-
ity. However, the DeepMI metric quantifies the curriculum into
mutual information units, sorting information rankings between
the acoustic patterns, predicted emotion and ground-truth emo-
tional label. We can better understand our training corpus by
observing the emotional patterns of the data with high mutual
information.

To perform a curriculum learning scheme, we have to divide
the original training set into various small data bins according
to the predicted difficulties of the samples. Therefore, the most
straightforward way to analyze the extracted curriculum metric
is by comparing their corresponding ground-truth emotional
target distributions among each training bin. Fig. 2 demonstrates
the distributions for the first four and last bins of the valence
attribute, where the horizontal axis corresponds to the ground
truth labels. The figure considers only the new data entered
at each stage, without accumulating the data from the bins.
We only present the distribution for valence as an example
since arousal and dominance show similar trend. Due to space
consideration, we do not present all 10 levels in the figure.
The size of MSP-Podcast train set is 44,879 utterances (see
Section IV-A1l) and is divided into 10 bins. Therefore, each bin
has ~4,488 utterances. Since the number of samples in each bins
is consistent, the figures can be directly compared. We also report
the distribution for the Disagreement and the PreTrained-ResNet
metrics, since they are the most intuitive and competitive (in
terms of recognition performances) approaches, respectively.
Fig. 2 shows that the Disagreement and PreTrained-ResNet
metrics do not reflect any specific pattern in the emotional
distributions. They are generally a normal distribution centered
around neutral values, mirroring the distribution of the entire
data. We cannot find explicit explanation from these figures that
accounts for the improvement in the recognition performances of
the models. However, the DeepMI metric clearly shows distinc-
tive patterns in the distributions. First, it identifies samples with
extreme emotions (i.e., the two edge regions). Then, it gradually
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includes the samples with neutral valence (i.e., the middle re-
gions). This result suggests that the neutral areas are considered
as more difficult samples for the model. This finding supports
similar observations presented by Sridhar and Busso [26], who
reported that the recognition model shows higher uncertainties
(i.e., more ambiguous) in the prediction results for samples
having neutral values for the emotional attributes. The model
incrementally builds information knowledge from the easiest
to the hardest samples, following the desired property of cur-
riculum learning to improve recognition performances. Similar
improvement results can be found in Lee et al. [72], where
their model was designed to hierarchically recognize emotions
based on empirical observations, focusing first on easy tasks
(e.g., anger/happiness versus sadness), and leaving more difficult
tasks for later stages (e.g., sadness versus neutral). Interestingly,
the proposed DeepMI metric automatically defines this order
directly from the data.

VI. CONCLUSIONS AND FUTURE WORK

In this study, we introduced an advanced curriculum DeepMI
metric for attribute-based SER tasks. The metric is extracted
via a pre-trained semi-supervised DeepEmoCluster framework,
forming a complete model-driven difficulty indicator for the
training corpus to build the curriculum learning. Our evaluation
results based on matched and mismatched testing conditions
demonstrated that the proposed DeepMI results achieved SOTA
recognition performances compared to other existing curriculum
metrics in the SER field. We conclude that the success of the
DeepMI metric is a combination of using semi-supervised learn-
ing and curriculum learning. The DeepEmoCluster model can
utilize large amounts of unlabeled data to acquire robust hidden
neural representations, resulting in a robust difficulty metric
for performing curriculum learning. We also found that the
convergence stability of DeepMI against different initializations
is superior to other non-curriculum strategies or label-driven
metrics. In addition to performance gains and robust model
convergence, the DeepMI is highly interpretable, where we can
directly observe the emotional patterns from the easiest to the
hardest samples based on the DeepMI values.

One limitation of DeepMI is the requirement of the pre-
trained DeepEmoCluster model, which inevitably introduces
extra computational complexity, which is common to all other
model-driven curriculum approaches [53]. An important future
direction of this study is extending the DeepMI metric to a mul-
timodality curriculum metric that also considers video, language
and speech. Mutual information offers a flexible formulation to
quantify relevant degree between two arbitrary types of variables
once we can model them as discrete random variables. Since the
DeepEmoCluster framework can be easily implemented with
different modalities, we can always follow the same modeling
strategy that we proposed in this study to obtain their corre-
sponding hidden cluster representations to measure arbitrary
combinations of information quantities from pair of variables,
such as speech-language, speech-video and language-emotion.
These cross modality metrics would provide comprehensive
insights about human behavioral and emotional expressions.
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