10

11

12

13

14

15

16

17

18

19

20

Manuscript published in Seismological Research Letters
Draft version: June 27, 2024

Bursts of fast propagating swarms of induced earthquakes at the Groningen gas field

Krittanon Sirorattanakul!, John D. Wilding'!, Mateo Acosta', Yuexin Li', Zachary E. Ross!,

Stephen J. Bourne?, Jan van Elk?, and Jean-Philippe Avouac'+*

! Division of Geological and Planetary Sciences, California Institute of Technology, 1200 E.

California Blvd., Pasadena, CA, 91125 USA
2 Shell Global Solutions International B.V., Grasweg 39, 1031 HW, Amsterdam, The Netherlands
3 Nederlandse Aardolie Maatschappij B.V., Schepersmaat 2, 9405 TA, Assen, The Netherlands

* Department of Mechanical and Civil Engineering, California Institute of Technology, 1200 E.

California Blvd., Pasadena, CA, 91125 USA

Corresponding author: Krittanon Sirorattanakul (ksirorat@caltech.edu)

Abstract

Gas extraction from the Groningen gas reservoir, located in northeastern Netherlands, has led to a
drop in pressure driving compaction and induced seismicity. Stress-based models have shown
success in forecasting induced seismicity in this particular context and elsewhere, but they
generally assume that earthquake clustering is negligible. To assess earthquake clustering at
Groningen, we generate an enhanced seismicity catalog using a deep-learning-based workflow.
We identify and locate 1369 events between 2015 and 2022, including 660 newly detected events
not previously identified by the standard catalog from the Royal Netherlands Meteorological
Institute. Using the nearest-neighbor distance approach, we find that 72% of events are background

independent events, while the remaining 28% belong to clusters. 55% of the clustered events are
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swarm-like, while the rest are aftershock-like. Among the swarms include five newly identified
swarm sequences propagating at high velocities between 3 — 50 km/day along directions that do
not follow mapped faults or existing structures and frequently exhibit a sharp turn in the middle of
the sequence. The swarms occurred around the time of the maximum compaction rate between
November 2016 and May 2017 in the Zechstein layer, above the anhydrite caprock, and well-
above the directly induced earthquakes that occur within the reservoir and caprock. We suggest
that these swarms are related to aseismic deformation within the salt formation rather than fluids.

This study suggests that propagating swarms do not always signify fluid migration.
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Introduction

Industrial activities, such as gas extraction, wastewater disposal, hydraulic stimulation, geothermal
energy production, carbon dioxide sequestration, and water impoundment from dams can produce
substantial stress changes in the Earth’s crust that can induce seismicity (Ellsworth, 2013; Grigoli
et al., 2017; Keranen and Weingarten, 2018; Atkinson ef al., 2020; Wu et al., 2022; Moein et al.,
2023). The induced earthquakes can occasionally reach magnitudes of 5 or above, with
hypocenters that are often shallower than those of natural seismicity (Hough, 2015), making it
capable of damaging nearby structures (Clayton et al., 2016). Management of seismic risks to be

within an acceptable level is critical for successful operations.

Induced earthquakes, which exclude background earthquakes driven by tectonics and other natural
causes of stress changes, can generally be grouped into two modes based on their clustering
behaviors. The first mode includes independent background events that are driven directly by the
stress changes due to the large scale human activity, whether from changes in pore pressure as the
fluid diffuses (Hubbert and Rubey, 1959; Nur and Booker, 1972) or long-range poroelastic stress
changes (Segall, 1989; Segall et al., 1994; Goebel et al., 2017; Zhai et al., 2019). These events are
expected to follow a Poisson process, generally non-homogeneous, with time-varying rates
governed by stress changes (Dempsey and Suckale, 2017; Dahm and Hainzl, 2022; Smith et al.,
2022; Acosta et al., 2023). The second mode includes the clustered events that appear close in
space and time with some independent events and often occur as aftershocks, or more occasionally
as foreshocks as observed for natural seismicity as well (Ogata, 1988). Mechanistically, these
events are triggered by stress changes imparted by a previous earthquake rather than the industrial
operations. Aftershocks generally follow well-known patterns, including the decay of their

occurrence rates with time as a power law (Omori, 1894; Utsu, 1961) and a scaling in which the
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largest aftershock is approximately 1.2 magnitude unit lower than the mainshock (Richter, 1958).
Clustered events may occasionally deviate from this well-defined pattern and occur as enigmatic
bursts of small-magnitude earthquakes without an identifiable mainshock, referred to as swarms
(Mogi, 1963). They often exhibit migratory patterns (Audin et al., 2002; Hainzl and Fischer, 2002;
Chen and Shearer, 2011) and are a manifestation of underlying aseismic processes such as
spontaneous slow slip events (Lohman and McGuire, 2007; Passarelli et al., 2015; Gualandi et al.,
2017; Jiang et al., 2022), fluid pressure diffusion (Shapiro et al., 1997; Audin et al., 2002; Hainzl
and Fischer, 2002; Shelly et al., 2013; Ruhl ef al., 2016; Ross and Cochran, 2021), or a complex
interaction of both (Dublanchet and De Barros, 2021; Sirorattanakul et al., 2022; Yukutake et al.,
2022). Clustering is generally small in induced seismicity with a proportion of clustered events
generally less than 30% (Zaliapin and Ben-Zion, 2016; Cochran et al., 2020; Karimi and Davidsen,
2023), while clusters typically represent up to 70% of natural seismicity (Zaliapin and Ben-Zion,
2013a). Swarms have also been observed in the context of induced seismicity where they are
generally ascribed to fluid migration (Ake et al., 2005; Baisch et al., 2006; Albaric et al., 2014;

Kwiatek et al., 2019).

In this study, we take advantage of publicly available seismic datasets related to seismicity induced
by production in the Groningen gas field in the northeastern Netherlands (Dost et al., 2017,
Willacy et al., 2019; Oates et al., 2022) to investigate the degree of clustering and the possible
mechanisms involved. We produce an enhanced seismicity catalog for the region using a deep-
learning-based workflow. The improved catalog reveals many previously unidentified events,
which enables more extensive statistical analysis of earthquake clusters. The newly detected events

include five distinct swarm sequences propagating at high velocity between 3 — 50 km/day.
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The Groningen gas field, overview of previous studies of induced seismicity

The Groningen gas field is the largest in Western Europe (Figure 1), with an initial gas reserve of
approximately 2913 billion cubic meters (BCM) (Burkitov et al., 2016). The gas comprises 85%
methane (CH4), 14% nitrogen (N2), and 1% carbon dioxide (CO2) (Stduble and Milius, 1970;
Burkitov et al., 2016). The reservoir lies at a depth of between 2.6 and 3.2 km and spans
approximately 35 km east-west and 50 km north-south as a part of the Upper Rotlingend Group
composed of interbedded Slochteren sandstone and Ten Boer claystone units. Its thickness varies
substantially from 90 m in the southeast to 300 m in the northwest. The coal layers in the
underlying Pennsylvanian Carboniferous limestone are the source of the gas. The reservoir is
sealed by an overlying thick and impermeable caprock of anhydrite and evaporite layers of the
Permian Zechstein group, an aquifer toward the north, and a system of normal faults (de Jager and
Visser, 2017). Because of the limited connection with the surrounding groundwater, gas extraction
has led to significant pressure depletion from 34.68 MPa, close to hydrostatic pressure (Burkitov
et al.,2016), to <10 MPa (Meyer et al., 2023), which resulted in surface subsidence of almost 40

cm (Smith et al., 2019).

While the field has been in production since 1963, induced seismicity did not start until 1991 (Dost
et al., 2017). From 1991 to 2013, the number of earthquakes increased exponentially, prompting
significant efforts to deploy additional monitoring instruments. The first regional network in
operation since 1995 consisted of eight stations, each with three-component geophones at four
different depth levels (50 m, 100 m, 150 m, and 200 m) and a surface accelerometer. Several
upgrades of the network followed. In a major upgrade late 2014, 59 additional stations were
deployed, significantly improving seismic activity detection (Dost ef al., 2017). Most earthquakes

align well with one of the > 1100 normal faults mapped by seismic techniques that offset the gas
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reservoir (Visser and Solano Viota, 2017) and are located primarily within the reservoir (Willacy
et al., 2019) or in the overburden (Smith ez al., 2020). They are thought to be driven primarily by
poroelastic stresses induced by bulk reservoir volume decrease (Bourne et al., 2014; Dempsey and
Suckale, 2017; Candela et al., 2019; Smith et al., 2022) or by stress concentration around faults
offsetting the reservoir resulting from compaction (Bourne et al., 2014; Buijze et al., 2017; Van
Wees et al., 2018). The largest earthquake to date is the 2012 My 3.6 Huizinge earthquake, which
sparked public concerns and prompted the regulators to request ramping down of production and
to eventually shut it down long before exhaustion of the gas reserve (de Waal et al., 2015; van

Thienen-Visser and Breunese, 2015; Muntendam-Bos et al., 2017).

In recent years, many researchers have developed computationally efficient models to forecast
occurrence rates of induced seismicity based on stress changes from industrial operations (Segall
and Lu, 2015; Bourne and Oates, 2017; Dempsey and Suckale, 2017; Bourne et al., 2018;
Langenbruch et al., 2018; Candela et al., 2019, 2022; Zhai et al., 2019; Richter et al., 2020; Dahm
and Hainzl, 2022; Heimisson et al., 2022; Kihn et al., 2022; Smith et al., 2022; Acosta et al.,
2023; Kim and Avouac, 2023). One major limitation of these stress-based models is that they do
not account for interactions between earthquakes that may lead to secondary triggering and appear
as clustered events. While induced earthquakes tend to have fewer clustered events than natural
earthquakes, their proportions can be > 50% depending on the geological settings, which is non-
negligible (Zaliapin and Ben-Zion, 2016). A better understanding of clustering behaviors of

induced seismicity can lead to further improvements in these models.
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Data and Methods

Enhanced seismicity catalog generation

The Royal Netherlands Meteorological Institute (KNMI) has been the authoritative governmental
institution responsible for maintaining a seismicity catalog for the area surrounding the Groningen
gas field since 1995. To supplement the KNMI catalog, we use a recently developed deep-learning-
based workflow to build an enhanced high-resolution seismicity catalog between 2015 and 2022
covering the domain spanning latitude 53.05 — 53.50°N and longitude 6.48 — 7.05°E. As
summarized below, the workflow consists of multiple steps, including phase picking, phase

association, earthquake location, and magnitude estimation.

Waveform data from seismic stations in the NL and NR networks located within our domain are
used in this analysis (Figure S1). We first apply the PhaseNet automated phase picking algorithm
based on a convolutional neural network (Zhu and Beroza, 2019) to detect P- and S-wave arrivals.
The algorithm accepts one- or three-component waveform data as input and outputs a list of
timestamped P- or S-wave arrival times. We use the standard model included with the PhaseNet
distribution, which was trained on California data based on manual picks from seismic analysts at
the Northern California Earthquake Data Center but has been shown to effectively generalize to
other regions worldwide, including Hawaii (Wilding et al., 2023), Italy (Tan et al., 2021), and
Arkansas, USA (Park ef al., 2020). The initial iteration of the catalog, spanning from mid-2015 to
2018, includes picking from both surface and borehole seismometers. However, when we expand
the catalog to include the first few months of 2015 and from 2019 to 2022, we only apply PhaseNet
to surface sensors for computational efficiency. Additionally, for instruments with a sampling rate

greater than 100 Hz, we decimate waveform data to 100 Hz per PhaseNet requirements. The output
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from PhaseNet also has probability labels between 0 and 1, indicating confidence in the pick. We

set a probability threshold of 0.3 and remove picks below this confidence threshold.

The P and S arrival picks are then associated into discrete earthquake events using the Gaussian
Mixture Model Associator, GaMMA (Zhu et al., 2022). GaMMA probabilistically assigns clusters
of P and S picks to individual sources based on identified hyperbolic moveouts and iterates those
assignments using the expectation-maximization process. The main parameters controlling the
association process are the maximum time € between two picks to be considered as a neighbor of
the other and the scalar P- and S-wave velocity used to backproject arrivals. Even though GaMMA
uses a uniform velocity model, it can account for travel-time errors in back-projection due to three-
dimensional variation of the velocity model by allowing large uncertainty in arrival times during
the clustering stage. We test different parameters and identify the best set of parameters as those
that include the greatest number of events previously identified by KNMI. The best combination
of parameters uses € of 3 seconds, a P-wave velocity of 3.0 km/s, and an S-wave velocity of 1.8
km/s. With this set of parameters, GaMMA identifies 709 out of 739 events in the KNMI catalog
over the same spatial and temporal coverage. After the association, we filter out previously
unidentified events with fewer than 5 P or S picks and are left with 2591 events. Finally, we
manually inspect waveforms of all newly identified events and remove the spurious picks resulting

in 1369 events, including 660 newly detected events (Figure S2 and S3).

The events are then located with a modified version of the Hypocenter inversion with Stein
Variational Inference and physics-informed neural networks (HypoSVI) program (Smith et al.,
2021), adapted to allow for a 3-D velocity model. The velocity model of the Groningen region
used in this study was produced by Nederlandse Aardolie Maatschappij (NAM) from seismic

reflection, seismic refraction, sonic log and well core samples (Nederlandse Aardolie
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Maatschappij, 2017). Since HypoSVI inverts for the full posterior distribution of an earthquake
location, the algorithm also outputs associated location uncertainties. Compared with the KNMI
catalog, we find approximately 40 mismatched events. Most of these events are located near the
edges of the velocity model domain by both our algorithm and by KNMI. They are most likely
affected by the low number of picks on stations within the velocity model domain and increased
picking errors for arrivals with a lower signal-to-noise ratio. To maintain the integrity of the
catalog, we manually assign the locations of these events to those provided by KNMI, which can
be identified by their depth of exactly 3 km. The events that include the borehole picks can be
distinguished by event ID numbers that begin with “100” in contrast to other events that only have
picks on surface geophones. Events with picks only from the surface geophones have larger depth
uncertainty, as evidenced by several surface-sensor-only events with depths far from the reservoir.
These depths can be considered artifacts of the data downsampling process. We have also
compared the epicentral (horizontal) locations derived using picks from all sensors and only from

surface sensors. They are largely unaffected by excluding the picks from the borehole sensors.

Local earthquake magnitudes (M;) are calculated with the same procedure used by KNMI

(NORSAR, 2018), which can be calculated by using the following equation:

M, =log,o A + 1.3310g,4 R + 0.00139R + 0.424 (1)

where A is amplitude measurement in mm on a simulated Wood-Anderson seismometer of the
deepest available borehole sensor for a given station, and R is the source-receiver distance in km.
The amplitudes are measured as the peak signal amplitude of the waveform (absolute value). While
it is possible to convert local magnitude to moment magnitude using the relation derived by Dost

et al. (2018), we restrict our analysis to local magnitude.
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Clustering analysis

To analyze the clustering behaviors of seismicity in the Groningen gas field, we apply the nearest-
neighbor distance approach (Zaliapin and Ben-Zion, 2013a, 2013b) to the enhanced seismicity
catalog. We consider only events located within the boundary of the Groningen gas field that are
larger than the completeness magnitude (M) of 0.5. For each event j in the catalog, we search for
the preceding event i that is most likely to be the parent (mainshock) of event j. The proximity
distance between any event pair (i,j) can be quantified using a space-time-magnitude metric
normalized by the magnitude of the parent event (Baiesi and Paczuski, 2004; Zaliapin et al., 2008)

defined as follows:
d _ o
nij = tij(rij) f10 b(m;—M.) (2)

where t;; = t; — t; is the time between the event pair, 7;; is the distance between the epicenters of
the event pair, df is the fractal dimension of earthquake epicenters taken to be 1.6 (Zaliapin and
Ben-Zion, 2013a), b is the Gutenberg-Richter b-value of the frequency-magnitude distribution,
and m; is the magnitude of event i. Since depth uncertainty is large, we do not include depths in

the proximity distance calculations.

For each event j, the event i* with the smallest proximity distance 1;; is the nearest neighbor and

hence most likely to be the parent of event j. The results can be expanded to two dimensions as

rescaled time T and rescaled distance R;, defined as follows (Zaliapin and Ben-Zion, 2013a):

b
1y = 107500 ®)

10
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R; = (Ti*j)df 107 20mis=Mo)

The distribution of nearest-neighbor distance 7; is expected to be bimodal. The first mode is the
independent events represented by a time-stationary, space-inhomogeneous Poisson process
concentrating along log;, T; + log;o R; = constant. The second mode is the clustered events with
considerably smaller T; and R;, constituting foreshock-mainshock-aftershock sequences and
swarms (Zaliapin et al., 2008; Zaliapin and Ben-Zion, 2013a). The separation between the two
modes can be approximated by a 1-D Gaussian mixture model applied on n; (Hicks, 2011) using
Matlab fitgmdist function. The mode separator 1, is chosen to be where the probability density

function of the two modes intersects. We consider events with n; = 1, to be independent events

and 1; <1, to be clustered events (Zaliapin and Ben-Zion, 2013a).

The nearest-neighbor distance approach was originally analyzed for an epidemic-type aftershock
sequence (ETAS) model (Ogata, 1988) with an assumption that the background independent
events follow a time-stationary, space-inhomogeneous Poisson process (Zaliapin et al., 2008). In
the case of induced seismicity, we expect the background Poisson rates of independent events to
be inhomogeneous in time as modulated by injection or extraction rates. To test a posteriori the
effectiveness of the nearest-neighbor distance approach for induced seismicity and the robustness
of the estimated mode separator 14, we take events with 17; = 1, create 100 shuffled catalogs by
randomly permuting the order of the magnitudes and locations, and calculate nearest-neighbor
distances for events in these shuffled catalogs, similar to those done in Karimi and Davidsen
(2023). Since the shuffling removes any clusters while preserving the seismicity rate and spatial
distribution, the distribution of nearest-neighbor distances of these shuffled events reflects the true

distribution of the independent mode and hence the majority of events should have 1; shuffied = Mo

11
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if the chosen 74 is appropriate. Unlike in Karimi and Davidsen (2023), by shuffling only events
with n; = 1o, we reduce bias of the clustered events on the temporal rate of independent events.
In principle, we can also completely remove the time clustering by sampling new times from a
uniform distribution (Zaliapin and Ben-Zion, 2020) but then we would also remove any time-

inhomogeneous nature of the independent events.

Furthermore, we also evaluate the relative variability of the interevent times distribution using the
coefficient of variation (CoV), defined as the ratio of its standard deviation and its mean. Random
process (Poissonian) is expected to have CoV in order of unity. Larger CoV suggests the presence
of clustering, while smaller CoV suggests a periodic behavior. For a given 7, the CoV can be
used to evaluate whether the independent events are Poissonian. If the chosen 7, is too small,
events with n; =7, would include some clustered events and hence the CoV would become
significantly greater than one. In contrary to the shuffling analysis which evaluates the upper bound

of the appropriate 7,4, the CoV evaluates its lower bound.

We additionally use the Schuster spectrum method (Ader and Avouac, 2013) to verify that, once
clustered events are removed based on the chosen value of the mode separator 7, the remaining
events are consistence with a non-homogeneous Poisson process. The method is based on the
Schuster tests (Schuster, 1897), which evaluates the amount of seismicity rate variation for a given
periodicity. By calculating the Schuster p-value for different periods, we construct a Schuster
spectrum and compare with the expectation for a Poisson process. This procedure aids in

verification of the quality of the declustering.

To further study the relationship between events, we create a spanning tree by connecting each
event to its most likely parent. The strength of each link is inversely proportional to the nearest-

neighbor distance ;. By removing weak links with n; = 7, we create a spanning forest consisting

12
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of single-event trees with no links and other multievent clusters (Zaliapin and Ben-Zion, 2013a).
The independent events previously identified include the singles and the first event from each
cluster. We can calculate the average leaf depth for each cluster by averaging the number of links
needed to connect events without children to the first event or the root (Zaliapin and Ben-Zion,
2013b). Swarm-like sequences have large average leaf depth, while foreshock-mainshock-

aftershock sequences have small average leaf depth.

Results

Catalog overall properties

Compared to the standard catalog from the Royal Netherlands Meteorological Institute (KNMI),
our deep-learning-based workflow enables us to increase the number of detected events between
2015 and 2022 from 739 to 1369. 709 events from the KNMI catalog were identified by our
workflow, leaving only 30 events unidentified by our method. 1297 events are located within the

horizontal extent of the gas field, which we use for the analysis hereafter.

Despite being automatically generated products, our events display good agreement in both
locations and magnitudes with the KNMI catalog (Figure S4). The horizontal location differences
for events with M; > 0.5 are less than 675 m on average. Most events with large location
differences are either located near the edge of the available velocity model or small magnitude
events where arrival picks have large uncertainty. The magnitude differences are less than 0.1
magnitude unit on average. Only 78 events (12%) have magnitude differences greater than 0.2
magnitude units. There is one M3 event that is presented in our catalog but not in the KNMI

catalog. Since that event is located close the edge of the velocity model, the arrival picks may have

13
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large uncertainty and bias its location, and therefore, its magnitude. Our catalog also reports depth
rather than a fixed depth of 3 km, as the KNMI catalog does. In comparison to the catalog by
Willacy et al. (2019), which utilizes full-waveform inversion to determine the event location, the
horizontal location differences for events with M; > 0.5 decrease slightly to a mean value of 563
m (Figure S5). We have refined the depth determination by including time picks from the borehole
sensors for the time spanning mid-2015 to 2018, during which we observed a concentration of

swarms as detailed below.

The increase in detection is consistent across the period studied. Many new detections are related
to small events with signals close to the noise floor. However, a significant portion of new
detections are the five bursts of small-magnitude (M, 0.5 — 1.5) swarm-like sequences that double
the earthquake rates between November 2016 and May 2017 (Figure 2a), which we discuss further
in the “Swarm sequences” Section. Our catalog has the completeness magnitude (M.) of 0.5
estimated using the maximum curvature method (Wiemer and Wyss, 2000). Here, we do not use
the typical correction factor of 0.2 (Woessner and Wiemer, 2005), because it is advantageous to
keep more events for the statistical analysis. The b-value slope of the frequency magnitude
distribution is determined to be 0.86 by applying the B-Positive method (van der Elst, 2021) to all
events with a conservative minimum magnitude difference of 0.2 (Figure 2b). Note that the B-
Positive method does not require a complete catalog. With these additional events, the enhanced
catalog can unlock new insights into the clustering behaviors of earthquakes in the Groningen gas

field.

14
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Clustering behaviors

The nearest-neighbor distance approach is applied to 726 earthquake epicenters in the enhanced
catalog with M, = 0.5. The distribution of nearest-neighbor distance 7; expanded in the form of
rescaled time T; and rescaled distance R; is shown in Figure 3a. By fitting n; with a 1-D Gaussian
mixture model, we find the best-fit mode separator of logo 1y = —3.05. We find that 522 events

(72%) are independent, while the remaining 204 events (28%) appear to be clustered (Figure 3b).

The two-dimensional probability distribution of nearest-neighbor distances of the 100 shuffled
catalogs are averaged and shown in Figure 3c. Since the rate of independent events vary only
gradually during this period, their distribution similarly concentrates along a line with log,, T; +
log,o Rj = constant with almost all reshuffled events (93%) having n; = n,, validating the
approach and the chosen mode separator. The results are qualitatively similar if the earthquake
hypocenters are used instead of the epicenters, accounting also for the depths (Figure S6).
Furthermore, the independent events (those with n; =n,) have CoV of approximately one,
consistent with them being Poissonian. If we were to choose 17y < —4, events with n; = 7, include

clusters as CoV becomes significantly greater than one (Figure S7).

The Schuster spectrum calculated for the non-declustered catalog shows low p-values, lower than
expected for a Poisson process, which drifts to even lower value starting at a period of about 2-3
days (Figure S8a). This pattern shows that the catalog contains clusters (Ader and Avouac, 2013)
and we can infer they have durations of a few days or eventually longer. However, if we use only
the independent events, the drifting low p-values disappear (Figure S8b), further validating the

choice of the value of the mode separator chosen.

15
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We proceed to analyze the spatiotemporal evolution of the events from each of the two modes
(Figure 4). The independent events align well with mapped faults and have the seismicity rate that
is gradually changing with time. On the other hand, the clustered events show multiple lineations
that do not align with mapped faults and occur as short-duration bursts of events in time. The most
prominent clusters are the five bursts of small magnitude (M; 0.5 — 1.5) swarm-like sequences
occurring between November 2016 and May 2017. The others appear to be aftershocks of the
larger M; > 2 events. By construct, if a sequence has a foreshock, the mainshock will be identified
as a clustered event rather than an independent event because the foreshock would be its parent,

which explains why some of the larger events are identified as clustered.

The spanning tree created by connecting each event with its nearest neighbor if n; < n, reveals
448 single-event clusters (62% of events) and 73 multievent clusters (38% of events). Their
detailed statistics are shown in Figure 5. The average size of the multievent clusters is 3.8 events
with a standard deviation of 3.6 events. The large standard deviation reflects significant variations
in clustering behaviors. All earthquakes with M; > 2.5 are a part of multievent clusters, with the
number of events in the cluster growing with mainshock magnitude. On average, the largest
aftershock is 1.5 magnitude unit lower than the mainshock, in line with those expected from Bath’s
law (Richter, 1958). The average leaf depth of these aftershock sequences is 1.3, indicating that
most of the events are triggered by the mainshock rather than being aftershocks of aftershocks. On
the other end of the spectrum, there are multievent clusters that exist as swarm-like sequences

without a clearly identifiable mainshock (Mmainshock — Miargest aftershock << 1, contradicting

Béth’s law) and a larger value of average leaf depth (d;¢,¢) of up to 8.7. For an earthquake sequence
with an average of two aftershocks for each earthquake, the cluster size (ngy,st) would then be

2%eaf Therefore, this motivates using djea¢ of 10g; Nopyst @ a cutoff for binary classification
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between swarm-like and aftershock-like clusters. Considering only clusters with at least 5 events,
we find 7 swarm-like clusters (djear = 108, Naust ) With a total of 77 events (55% of clustered
events) and 9 aftershock-like clusters (dje s < log, ngust) With a total of 64 events (45% of
clustered events). The analysis suggests that the clustered events are slightly dominated by swarm-
like sequences. Among the aftershock-like clusters, the events are 16% foreshocks, 14%

mainshocks, and 70% aftershocks.

Swarm sequences

There were five noticeable swarm-like clusters between November 2016 and May 2017, each
lasting 1 to 5 days and consisting of 10 to 20 events, with M; ranging from 0.66 to 1.56 (Figure
6). Outside of this period, we did not find any other noticeable swarm clusters. Upon further
investigation of their kinematics, all swarms migrate with velocities ranging from 3 to 50 km/day.
We numbered the swarms from 1 to 5 based on the order that they occurred. The migration
occurred along one single direction for swarms 1 and 2 and two different orthogonal directions for
swarms 3 — 5. For swarms 3 and 4, there exists also ~ 15 hour pauses with no events before the
migration direction switches. The migration directions do not follow mapped faults or other known
features of the reservoir. While there are not enough events to determine the exact shape of the
migration front, it is possible to model them with v4wDt where D would be an apparent hydraulic
diffusivity, and t is time. In the case of fluid-driven swarms, the fitted D would be related to the
hydraulic diffusivity of the fault zones (Shapiro et al., 1997), though with a conversion factor that
accounts for the time delays associated with earthquake nucleation (Kim and Avouac, 2023). The
swarms in our study have D ranging from 70 — 800 m?/s, much larger than a commonly accepted

range for fluid-driven swarms of 0.005 — 10 m?/s (Amezawa et al., 2021). In comparison to other
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swarms around the world, the scaling between migration velocity and duration places them closer
to slow-slip events and swarms driven dominantly by slow-slip events than other injection-induced
swarms (Danr¢ et al., 2022). We further discuss possible drivers for these swarms in “Possible

drivers of swarm-like sequences” Section.

Another interesting observation is that the swarms occurred at a depth of between 1.5 to 2.5 km.
While there could be some uncertainty with the absolute depth locations, they are certainly located
toward the shallower side when compared to other earthquakes that are generally thought to be
located near the top of the reservoir (Willacy et al., 2019; Smith et al., 2020). As a result, this
would place them in the 1 — 2 km thick Zechstein evaporite (salt) above the anhydrite caprock,

well above the gas reservoir (Figure 7).

Discussion

Comparison of clustered fraction with other studies

Induced earthquakes are known to have a lower proportion of clustered events than naturally
occurring tectonic earthquakes due to high driving stresses from anthropogenic activities in
comparison to tectonic loading (Schoenball et al., 2015; Zaliapin and Ben-Zion, 2016; Cochran et
al., 2018; Martinez-Garzon et al., 2018). Here, we compile in Table 1 the clustered proportion of
seismicity from different regions as reported by previous studies. We find that the clustered events
can account for up to 70% of naturally occurring tectonic earthquakes but no more than 30% of
induced earthquakes. The estimate of 28% from this study places the Groningen gas field well
within the range estimated for other induced seismicity settings. Other studies on the clustered

proportion of seismicity from the Groningen gas field provide different estimates of the clustered
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proportion varying from a few percent up to 27%, which are generally lower than the 28% that we
report here (Candela et al., 2019; Muntendam-Bos, 2020; Post et al., 2021; Trampert et al., 2022).
Among those that also uses the nearest-neighbor distance approach, Candela et al. (2019) finds
18% of clustered events between 1993 — 2016, while Muntendam-Bos (2020) finds only 6% of
clustered events between 1995 — 2018, but the proportion increases to 22% if consider only the
period between 2014 — 2018. On the other hand, Post et al. (2021) uses the statistics of the
interevent times and finds a larger value of 27% for the clustered proportion. The scatter of the
clustered proportion identified by the different studies can be attributed to various factors,
including but not limited to: variation of earthquake rates and clustering behaviors with time
(Trugman et al., 2016; Martinez-Garzon et al., 2018; Muntendam-Bos, 2020), accuracy of
earthquake locations (Muntendam-Bos, 2020), and the five swarm sequences occurring between
November 2016 and May 2017 that were not previously identified other seismicity catalogs, and
the cutoff magnitude employed (Zaliapin and Ben-Zion, 2013a). By removing the five swarms,
our estimate of the clustered proportion becomes 19%, which is almost equivalent to the estimate
from Candela et al. (2019). We also calculate the clustered proportion using the different cutoff
and find that the clustered proportion generally decreases with larger cutoff and becomes stable at
between 18 — 20% as the cutoff exceeds M; of 1.2 at which the five swarm sequences are excluded

from the analysis (Figure 8).

Possible drivers of swarm-like sequences

Although the migration of swarms in the Groningen gas field can be modeled with a square root
of time typically associated with fluid pressure diffusion (Shapiro et al., 1997), it is unlikely that

fluid plays any dominant role because of the following reasons. First, the migration direction
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should be along the maximum spatial pressure gradient, which follows the spatial derivative of the
compaction rate. This contradicts the observations in which the migration direction seems to align
more along the contours of constant compaction (Figure 9a). Second, the migration velocity is on
the order of 10 km/day, which requires a much higher hydraulic diffusivity than the values
typically expected for fluid-driven swarms (Amezawa et al., 2021). Third, while fault slip can
enhance permeability, allowing for faster diffusion rates, the migration directions do not follow
mapped faults or any known structures. There may be other unmapped faults in which the
migration follows as there are focal mechanisms with fault planes not orienting along the mapped
faults (Willacy et al., 2019). Nevertheless, because the swarms are located in the Zechstein salt
well above the impermeable anhydrite caprock that allows the gas to be preserved for millions of
years (Figure 7), the faults in the Zechstein layer are probably not hydraulically connected to the
reservoir and are most probably located in the anhydrite fragments that are embedded within the
Zechstein evaporite rather than in the evaporite itself which cannot support brittle fractures due to

its viscous nature. Hence, the swarms cannot be driven by direct fluid contact.

Besides fluids, cascading earthquakes can create an apparent diffusive expansion front
(Helmstetter and Sornette, 2002). However, the swarms consist of only small M; 0.5 — 1.5 events
which would correspond to a rupture dimension of ~ 15 — 40 m, much smaller than the average
distance of ~ 1 km between events (Figure 6). While there could exist a chain of smaller
undetectable events that connect the larger ones, this is unlikely as our deep-learning-based
workflow should be able to detect some events below M; 0.5 (Figure 2), but we detect none.

Therefore, cascade triggering is also unlikely.

These swarms occurred just after the period of accelerated compaction (Figure 9b), suggesting

they might be related to the large strain rate from such period that could trigger swarms in the
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Zechstein layer above the reservoir. However, since the compaction rate seems to be more
correlated with the rate of independent events rather than the rates of all events (Figure S9), some
additional mechanisms are required to connect compaction to the swarms. While seismic events
in the salt are rare because salt is highly ductile they can occur in case of large strain rates, for
example related to the collapse of mining cavity (Kinscher ef al., 2016) or fault creep (Barnea
Cohen et al., 2022), or in relation to fluid injection (Lei ef al., 2019). Alternatively, these events
could also occurred within the anhydrite fragments embedded in the salt (Spetzler and Dost, 2017).
Since there are no mining activities in the Zechstein layer and that the faults in this layer are most
probably not hydraulically connected to the reservoir, propagating episodes of aseismic
deformation is the most probable mechanism. While there are no detectable geodetic signals in
either GPS on InSAR during the time of the swarms, aseismic creep may locate too deep or being
too small to be detected. Swarms that are driven by aseismic slip generally propagate at high
velocity in the order of km/hr (Lohman and McGuire, 2007; Sirorattanakul et al., 2022), which is
consistent with the observations of the Groningen swarms. The aseismic fault creep could occur
within the fragments of anhydrite embedded in the Zechstein evaporite. Such creep can be driven
by the long-range poroelastic stress changes incurred by pore pressure change in the reservoir.
Poroelastic effects are indeed needed to explain both the surface subsidence and the induced
seismicity at Groningen and are therefore explicitly included in most models (Bourne et al., 2014;
Buijze et al., 2017; Dempsey and Suckale, 2017; Candela et al., 2019; Smith et al., 2022) .
Alternatively, aseismic fault creep may be driven by stress induced by bulk creep in the
surrounding Zechstein evaporite as the salt redistribute, possibly in response to the disturbances
from the historic gas production. When faults are moderately stressed, fluid-induced aseismic

creep can outpace the pressure diffusion front and trigger a seismicity front that propagates at
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velocities that are orders of magnitude larger than the fluid diffusion (Bhattacharya and Viesca,
2019; Wynants-Morel et al., 2020; Séez et al., 2022). Since these swarms are not driven directly
by stress changes from the industrial operations, they are not yet accounted for in induced

seismicity forecasting models for the Groningen gas field.

Conclusions

By applying a deep-learning-based workflow for earthquake detection to seismic data from the
Groningen gas field, we identify and locate a total of 1369 events from 2015 — 2022, almost two
times more than the standard KNMI catalog. Despite being automatically generated products, the
locations and magnitudes of the overlapping events display a high degree of similarity with the
KNMI catalog. Analysis of the nearest-neighbor distances reveals that the clusters account for 28%
of all events. Among the clustered events, approximately half are swarm-like clusters , while the
remaining half are aftershock-like clusters. The swarm-like clusters include five distinct swarm
sequences that migrate at incredibly fast velocities between 3 — 50 km/day along directions that do
not follow mapped faults or existing structures and frequently exhibit a sharp turn in the middle of
the sequence. Based on the observations of fast velocities and their depths in the Zechstein salt
above the reservoir caprock, the swarms are most likely not driven by fluids but rather other
aseismic processes such as propagating aseismic creep. The magnitude of these swarms is within
the detectable range of the KNMI catalog, but they were not previously identified. With a better
catalog, we can enhance our understanding of the mechanics of earthquake clusters and allow us
to better incorporate their contributions to seismic hazards into induced seismicity forecasting

models.
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Data and Resources

Raw seismic waveforms were accessed through the ORFEUS (Observatories and Research
Facilities for European Seismology) FDSN (International Federation of Digital Seismograph

Networks) client via a python script using the package Obspy (https://docs.obspy.org/; Beyreuther

et al., 2010). 3D seismic velocity and faults map were provided to us by Shell Global Solutions
International B.V. Computer programs used to generate the enhanced seismicity catalog are
previously published and can be found in the following references: seismic phase detection

software PhaseNet (https://github.com/AI4EPS/PhaseNet; Zhu and Beroza, 2019), seismic phase

association software GaMMA (https:/github.com/AI4EPS/GaMMA; Zhu et al., 2022),

hypocenter inversion software HypoSVI (https://github.com/Ulvetanna/HypoSVI; Smith

et al., 2021). The seismicity catalog from the Royal Netherland Meteorological Survey (KNMI) is
available online at www.knmi.nl. Matlab version 2020a were used to analyze data and prepare
figures. The enhanced seismicity catalog generated in this study along with the picks of arrival
times and codes used to analyze them are made available online at CaltechDATA repository (links

will be provided after revisions).
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Figure 2. Enhanced seismicity catalog. (a) Comparison between our enhanced seismicity catalog
and the standard catalog from the Royal Netherlands Meteorological Institute (KNMI). The top
panel compares number of detected events per month. The middle panel shows distribution of
event magnitude vs. time for the enhanced catalog. The red circle highlights the five newly
detected swarm sequences. The bottom panel is the same as the middle but for the KNMI catalog.
(b) Frequency-magnitude distribution from the two catalogs. The dashed line represents the
Gutenberg-Richter exponential distribution with the b-value slope of 0.86 estimated from the
enhanced catalog using B-Positive method (van der Elst, 2021). The completeness magnitude (M,.)

of the enhanced catalog is estimated to be approximately 0.5.
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Figure 3. Nearest-neighbor clustering analysis performed on our enhanced seismicity catalog with
M, = 0.5. Only epicenters are used and the fractal dimension (dy) is taken to be 1.6. (a) A joint
2-D distribution of the rescaled time and rescaled distance. Each of the black dots represent
proximity of each event to a parent event. (b) Histogram of the nearest-neighbor proximity distance
with curves showing the two Gaussian distributions representing the two modes derived from 1-D
Gaussian mixture model. (¢) The average joint distribution of the rescaled time and rescaled
distance derived from 100 catalogs created from reshuffling locations and magnitudes of
independent events. The diagonal white dashed lines in panels (a) and (c¢) and black vertical dashed
line in panel (b) mark the mode separator (, = 1073:05) used to perform binary classification of

events into either independent or clustered.
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Figure 5. Statistics of the identified clusters. (a) Cluster size (number of events) vs. magnitude of
the largest event color coded by the magnitude difference between mainshock and largest
aftershock. Black circles denote the case with only one event in the cluster or when the largest
earthquake is the last one in the sequence. (b) is the same as (a) but color coded by the average
leaf depth. (c) A schematic showing aftershock-like and swarm-like sequences. Aftershock-like
sequence has smaller average leaf depth than swarm-like sequence, but each event produces more
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Figure 6. Fast propagating earthquake swarms. (a) Magnitude vs. time of the five distinct bursts
of swarm-like sequences. (b) — (f) show the spatiotemporal evolution of these five swarms. The
white stars mark the second event in swarm 2 and first event in all other swarms. The dashed lines

show the predicted expansion for the different values of apparent hydraulic diffusivity D.
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Figure 7. Depth distribution of earthquakes with M; > 0.5 from our enhanced seismicity catalog
with colors identifying whether they are independent, fast propagating swarms shown in Figure 6,
or other clustered events, along with a schematic showing a depth cross-section of lithologies taken

from Smith et al. (2019). Only the time period where we have picks from both surface and borehole

Jan 2018
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sensors are shown. The five swarm sequences are located in the Zechstein evaporite.
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Figure 8. Variations of clustered proportion for the different cutoff magnitude. The dashed line

shows the number of events larger than or equal to a given cutoff magnitude.

39



828

829

830

831

832

833

834

835

836

837

Manuscript published in Seismological Research Letters
Draft version: June 27, 2024

(a) s35°NF

53.4°N ||

53.3°N

53.2°N

Compaction, 2016 - 2018 (mm)

53.1°N | mcmcm

(b)

250 T T T T T
232

L

230
- /

228
2016.5 2017 2017.5

50

Compaction since 1960 (mm)

1990 2000 2010 2020
Time (year)

0 .
1960 1970 1980

Figure 9. Comparison of swarms with reservoir compaction. (a) Spatial distribution of modelled
reservoir compaction between 2016 and 2018. The calculation is done using a simple expression
C = Cp, - AP - h relating compaction C with the compressibility C,, from Smith et al. (2019)
constrained with geodetic data, pressure depletion AP from Acosta ef al. (2023) calculated using
a simplified reservoir model from Meyer et al. (2023) constrained with pressure measurements
from the borehole sensors, and the reservoir thickness h. The circles with different colors denote
the five different swarms shown in Figure 6. (b) Average compaction in the reservoir vs. time. The
vertical lines denote the timing of the five swarms. The inset shows a zoomed-in during the time

of swarms.
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838  Table 1. A compilation of clustered fraction of seismicity from different regions. With the
839  exception of Post et al. (2021), which utilizes the statistics of interevent times, all other studies

840  utilized the nearest-neighbor distance approach (Zaliapin et al., 2008; Zaliapin and Ben-Zion,

841  2013a).
Type of Magnitude Clustered
Region
seismicity cutoff fraction
Southern California (Zaliapin and Ben-Zion, Mostly
2 0.70
2013a) tectonic
San Jacinto fault zone, California, USA
Tectonic 1 0.34
(Zaliapin and Ben-Zion, 2016)
Coso geothermal field, California, USA
Mixed 1 0.44
(Zaliapin and Ben-Zion, 2016)
Salton Sea geothermal field, California, USA
Mixed 1.5 0.69
(Zaliapin and Ben-Zion, 2016)
Geysers geothermal field, California, USA
Induced 1.0 0.17
(Zaliapin and Ben-Zion, 2016)
TauTona gold mine, South Africa (Zaliapin
Induced 1.5 0.12
and Ben-Zion, 2016)
Saltwater disposal, Oklahoma (Cochran et
Induced 0.95 0.30
al., 2020)
Hydraulic fracturing in western Alberta,
Induced 0.2 0.25
Canada (Karimi and Davidsen, 2023)
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Groningen gas field, Netherlands, KNMI

Induced 1.0 0.18
catalog (Candela et al., 2019)
Groningen gas field, Netherlands, KNMI

Induced 1.3 0.27
catalog (Post et al., 2021)
Groningen gas field, Netherlands, KNMI
catalog between 01/1995 —01/2019 Induced 1.2 0.06
(Muntendam-Bos, 2020)
Groningen gas field, Netherlands, KNMI
catalog between 05/2014 — 01/2019 Induced 1.2 0.22
(Muntendam-Bos, 2020)
Groningen gas field, Netherlands, enhanced

Induced 0.5 0.28
catalog (this study)
Groningen gas field, Netherlands, enhanced

Induced 1.2 0.21

catalog (this study)
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