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Abstract 11 

Gas extraction from the Groningen gas reservoir, located in northeastern Netherlands, has led to a 12 

drop in pressure driving compaction and induced seismicity. Stress-based models have shown 13 

success in forecasting induced seismicity in this particular context and elsewhere, but they 14 

generally assume that earthquake clustering is negligible. To assess earthquake clustering at 15 

Groningen, we generate an enhanced seismicity catalog using a deep-learning-based workflow. 16 

We identify and locate 1369 events between 2015 and 2022, including 660 newly detected events 17 

not previously identified by the standard catalog from the Royal Netherlands Meteorological 18 

Institute. Using the nearest-neighbor distance approach, we find that 72% of events are background 19 

independent events, while the remaining 28% belong to clusters. 55% of the clustered events are 20 
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swarm-like, while the rest are aftershock-like. Among the swarms include five newly identified 21 

swarm sequences propagating at high velocities between 3 – 50 km/day along directions that do 22 

not follow mapped faults or existing structures and frequently exhibit a sharp turn in the middle of 23 

the sequence. The swarms occurred around the time of the maximum compaction rate between 24 

November 2016 and May 2017 in the Zechstein layer, above the anhydrite caprock, and well-25 

above the directly induced earthquakes that occur within the reservoir and caprock. We suggest 26 

that these swarms are related to aseismic deformation within the salt formation rather than fluids. 27 

This study suggests that propagating swarms do not always signify fluid migration.  28 
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Introduction 29 

Industrial activities, such as gas extraction, wastewater disposal, hydraulic stimulation, geothermal 30 

energy production, carbon dioxide sequestration, and water impoundment from dams can produce 31 

substantial stress changes in the Earth’s crust that can induce seismicity (Ellsworth, 2013; Grigoli 32 

et al., 2017; Keranen and Weingarten, 2018; Atkinson et al., 2020; Wu et al., 2022; Moein et al., 33 

2023). The induced earthquakes can occasionally reach magnitudes of 5 or above, with 34 

hypocenters that are often shallower than those of natural seismicity (Hough, 2015), making it 35 

capable of damaging nearby structures (Clayton et al., 2016). Management of seismic risks to be 36 

within an acceptable level is critical for successful operations.  37 

Induced earthquakes, which exclude background earthquakes driven by tectonics and other natural 38 

causes of stress changes, can generally be grouped into two modes based on their clustering 39 

behaviors. The first mode includes independent background events that are driven directly by the 40 

stress changes due to the large scale human activity, whether from changes in pore pressure as the 41 

fluid diffuses (Hubbert and Rubey, 1959; Nur and Booker, 1972) or long-range poroelastic stress 42 

changes (Segall, 1989; Segall et al., 1994; Goebel et al., 2017; Zhai et al., 2019). These events are 43 

expected to follow a Poisson process, generally non-homogeneous, with time-varying rates 44 

governed by stress changes (Dempsey and Suckale, 2017; Dahm and Hainzl, 2022; Smith et al., 45 

2022; Acosta et al., 2023). The second mode includes the clustered events that appear close in 46 

space and time with some independent events and often occur as aftershocks, or more occasionally 47 

as foreshocks as observed for natural seismicity as well (Ogata, 1988). Mechanistically, these 48 

events are triggered by stress changes imparted by a previous earthquake rather than the industrial 49 

operations. Aftershocks generally follow well-known patterns, including the decay of their 50 

occurrence rates with time as a power law (Omori, 1894; Utsu, 1961) and a scaling in which the 51 
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largest aftershock is approximately 1.2 magnitude unit lower than the mainshock (Richter, 1958). 52 

Clustered events may occasionally deviate from this well-defined pattern and occur as enigmatic 53 

bursts of small-magnitude earthquakes without an identifiable mainshock, referred to as swarms 54 

(Mogi, 1963). They often exhibit migratory patterns (Audin et al., 2002; Hainzl and Fischer, 2002; 55 

Chen and Shearer, 2011) and are a manifestation of underlying aseismic processes such as 56 

spontaneous slow slip events (Lohman and McGuire, 2007; Passarelli et al., 2015; Gualandi et al., 57 

2017; Jiang et al., 2022), fluid pressure diffusion (Shapiro et al., 1997; Audin et al., 2002; Hainzl 58 

and Fischer, 2002; Shelly et al., 2013; Ruhl et al., 2016; Ross and Cochran, 2021), or a complex 59 

interaction of both (Dublanchet and De Barros, 2021; Sirorattanakul et al., 2022; Yukutake et al., 60 

2022). Clustering is generally small in induced seismicity with a proportion of clustered events 61 

generally less than 30% (Zaliapin and Ben‐Zion, 2016; Cochran et al., 2020; Karimi and Davidsen, 62 

2023), while clusters typically represent up to 70% of natural seismicity (Zaliapin and Ben-Zion, 63 

2013a). Swarms have also been observed in the context of induced seismicity where they are 64 

generally ascribed to fluid migration (Ake et al., 2005; Baisch et al., 2006; Albaric et al., 2014; 65 

Kwiatek et al., 2019).  66 

In this study, we take advantage of publicly available seismic datasets related to seismicity induced 67 

by production in the Groningen gas field in the northeastern Netherlands (Dost et al., 2017; 68 

Willacy et al., 2019; Oates et al., 2022) to investigate the degree of clustering and the possible 69 

mechanisms involved. We produce an enhanced seismicity catalog for the region using a deep-70 

learning-based workflow. The improved catalog reveals many previously unidentified events, 71 

which enables more extensive statistical analysis of earthquake clusters. The newly detected events 72 

include five distinct swarm sequences propagating at high velocity between 3 – 50 km/day.  73 

 74 
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The Groningen gas field, overview of previous studies of induced seismicity 75 

The Groningen gas field is the largest in Western Europe (Figure 1), with an initial gas reserve of 76 

approximately 2913 billion cubic meters (BCM) (Burkitov et al., 2016). The gas comprises 85% 77 

methane (CH4), 14% nitrogen (N2), and 1% carbon dioxide (CO2) (Stäuble and Milius, 1970; 78 

Burkitov et al., 2016). The reservoir lies at a depth of between 2.6 and 3.2 km and spans 79 

approximately 35 km east-west and 50 km north-south as a part of the Upper Rotlingend Group 80 

composed of interbedded Slochteren sandstone and Ten Boer claystone units. Its thickness varies 81 

substantially from 90 m in the southeast to 300 m in the northwest. The coal layers in the 82 

underlying Pennsylvanian Carboniferous limestone are the source of the gas. The reservoir is 83 

sealed by an overlying thick and impermeable caprock of anhydrite and evaporite layers of the 84 

Permian Zechstein group, an aquifer toward the north, and a system of normal faults (de Jager and 85 

Visser, 2017). Because of the limited connection with the surrounding groundwater, gas extraction 86 

has led to significant pressure depletion from 34.68 MPa, close to hydrostatic pressure (Burkitov 87 

et al., 2016), to < 10 MPa (Meyer et al., 2023), which resulted in surface subsidence of almost 40 88 

cm (Smith et al., 2019). 89 

While the field has been in production since 1963, induced seismicity did not start until 1991 (Dost 90 

et al., 2017). From 1991 to 2013, the number of earthquakes increased exponentially, prompting 91 

significant efforts to deploy additional monitoring instruments. The first regional network in 92 

operation since 1995 consisted of eight stations, each with three-component geophones at four 93 

different depth levels (50 m, 100 m, 150 m, and 200 m) and a surface accelerometer. Several 94 

upgrades of the network followed. In a major upgrade late 2014, 59 additional stations were 95 

deployed, significantly improving seismic activity detection (Dost et al., 2017). Most earthquakes 96 

align well with one of the > 1100 normal faults mapped by seismic techniques that offset the gas 97 
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reservoir (Visser and Solano Viota, 2017) and are located primarily within the reservoir (Willacy 98 

et al., 2019) or in the overburden (Smith et al., 2020). They are thought to be driven primarily by 99 

poroelastic stresses induced by bulk reservoir volume decrease (Bourne et al., 2014; Dempsey and 100 

Suckale, 2017; Candela et al., 2019; Smith et al., 2022) or by stress concentration around faults 101 

offsetting the reservoir resulting from compaction (Bourne et al., 2014; Buijze et al., 2017; Van 102 

Wees et al., 2018). The largest earthquake to date is the 2012 Mw 3.6 Huizinge earthquake, which 103 

sparked public concerns and prompted the regulators to request ramping down of production and 104 

to eventually shut it down long before exhaustion of the gas reserve (de Waal et al., 2015; van 105 

Thienen-Visser and Breunese, 2015; Muntendam-Bos et al., 2017).  106 

In recent years, many researchers have developed computationally efficient models to forecast 107 

occurrence rates of induced seismicity based on stress changes from industrial operations (Segall 108 

and Lu, 2015; Bourne and Oates, 2017; Dempsey and Suckale, 2017; Bourne et al., 2018; 109 

Langenbruch et al., 2018; Candela et al., 2019, 2022; Zhai et al., 2019; Richter et al., 2020; Dahm 110 

and Hainzl, 2022; Heimisson et al., 2022; Kühn et al., 2022; Smith et al., 2022; Acosta et al., 111 

2023; Kim and Avouac, 2023). One major limitation of these stress-based models is that they do 112 

not account for interactions between earthquakes that may lead to secondary triggering and appear 113 

as clustered events. While induced earthquakes tend to have fewer clustered events than natural 114 

earthquakes, their proportions can be > 50% depending on the geological settings, which is non-115 

negligible (Zaliapin and Ben‐Zion, 2016). A better understanding of clustering behaviors of 116 

induced seismicity can lead to further improvements in these models. 117 

 118 
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Data and Methods 119 

Enhanced seismicity catalog generation 120 

The Royal Netherlands Meteorological Institute (KNMI) has been the authoritative governmental 121 

institution responsible for maintaining a seismicity catalog for the area surrounding the Groningen 122 

gas field since 1995. To supplement the KNMI catalog, we use a recently developed deep-learning-123 

based workflow to build an enhanced high-resolution seismicity catalog between 2015 and 2022 124 

covering the domain spanning latitude 53.05 – 53.50°N and longitude 6.48 – 7.05°E. As 125 

summarized below, the workflow consists of multiple steps, including phase picking, phase 126 

association, earthquake location, and magnitude estimation. 127 

Waveform data from seismic stations in the NL and NR networks located within our domain are 128 

used in this analysis (Figure S1). We first apply the PhaseNet automated phase picking algorithm 129 

based on a convolutional neural network (Zhu and Beroza, 2019) to detect P- and S-wave arrivals. 130 

The algorithm accepts one- or three-component waveform data as input and outputs a list of 131 

timestamped P- or S-wave arrival times. We use the standard model included with the PhaseNet 132 

distribution, which was trained on California data based on manual picks from seismic analysts at 133 

the Northern California Earthquake Data Center but has been shown to effectively generalize to 134 

other regions worldwide, including Hawaii (Wilding et al., 2023), Italy (Tan et al., 2021), and 135 

Arkansas, USA (Park et al., 2020). The initial iteration of the catalog, spanning from mid-2015 to 136 

2018, includes picking from both surface and borehole seismometers. However, when we expand 137 

the catalog to include the first few months of 2015 and from 2019 to 2022, we only apply PhaseNet 138 

to surface sensors for computational efficiency. Additionally, for instruments with a sampling rate 139 

greater than 100 Hz, we decimate waveform data to 100 Hz per PhaseNet requirements. The output 140 
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from PhaseNet also has probability labels between 0 and 1, indicating confidence in the pick. We 141 

set a probability threshold of 0.3 and remove picks below this confidence threshold. 142 

The P and S arrival picks are then associated into discrete earthquake events using the Gaussian 143 

Mixture Model Associator, GaMMA (Zhu et al., 2022). GaMMA probabilistically assigns clusters 144 

of P and S picks to individual sources based on identified hyperbolic moveouts and iterates those 145 

assignments using the expectation-maximization process. The main parameters controlling the 146 

association process are the maximum time 𝜀 between two picks to be considered as a neighbor of 147 

the other and the scalar P- and S-wave velocity used to backproject arrivals. Even though GaMMA 148 

uses a uniform velocity model, it can account for travel-time errors in back-projection due to three-149 

dimensional variation of the velocity model by allowing large uncertainty in arrival times during 150 

the clustering stage. We test different parameters and identify the best set of parameters as those 151 

that include the greatest number of events previously identified by KNMI. The best combination 152 

of parameters uses 𝜀 of 3 seconds, a P-wave velocity of 3.0 km/s, and an S-wave velocity of 1.8 153 

km/s. With this set of parameters, GaMMA identifies 709 out of 739 events in the KNMI catalog 154 

over the same spatial and temporal coverage. After the association, we filter out previously 155 

unidentified events with fewer than 5 P or S picks and are left with 2591 events. Finally, we 156 

manually inspect waveforms of all newly identified events and remove the spurious picks resulting 157 

in 1369 events, including 660 newly detected events (Figure S2 and S3). 158 

The events are then located with a modified version of the Hypocenter inversion with Stein 159 

Variational Inference and physics-informed neural networks (HypoSVI) program (Smith et al., 160 

2021), adapted to allow for a 3-D velocity model. The velocity model of the Groningen region 161 

used in this study was produced by Nederlandse Aardolie Maatschappij (NAM) from seismic 162 

reflection, seismic refraction, sonic log and well core samples (Nederlandse Aardolie 163 
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Maatschappij, 2017). Since HypoSVI inverts for the full posterior distribution of an earthquake 164 

location, the algorithm also outputs associated location uncertainties. Compared with the KNMI 165 

catalog, we find approximately 40 mismatched events. Most of these events are located near the 166 

edges of the velocity model domain by both our algorithm and by KNMI. They are most likely 167 

affected by the low number of picks on stations within the velocity model domain and increased 168 

picking errors for arrivals with a lower signal-to-noise ratio. To maintain the integrity of the 169 

catalog, we manually assign the locations of these events to those provided by KNMI, which can 170 

be identified by their depth of exactly 3 km. The events that include the borehole picks can be 171 

distinguished by event ID numbers that begin with “100” in contrast to other events that only have 172 

picks on surface geophones. Events with picks only from the surface geophones have larger depth 173 

uncertainty, as evidenced by several surface-sensor-only events with depths far from the reservoir. 174 

These depths can be considered artifacts of the data downsampling process. We have also 175 

compared the epicentral (horizontal) locations derived using picks from all sensors and only from 176 

surface sensors. They are largely unaffected by excluding the picks from the borehole sensors. 177 

Local earthquake magnitudes (𝑀!) are calculated with the same procedure used by KNMI 178 

(NORSAR, 2018), which can be calculated by using the following equation: 179 

 𝑀! = log"# 𝐴 + 1.33 log"# 𝑅 + 0.00139𝑅 + 0.424 (1) 

where 𝐴 is amplitude measurement in mm on a simulated Wood-Anderson seismometer of the 180 

deepest available borehole sensor for a given station, and 𝑅 is the source-receiver distance in km. 181 

The amplitudes are measured as the peak signal amplitude of the waveform (absolute value). While 182 

it is possible to convert local magnitude to moment magnitude using the relation derived by Dost 183 

et al. (2018), we restrict our analysis to local magnitude. 184 
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Clustering analysis 185 

To analyze the clustering behaviors of seismicity in the Groningen gas field, we apply the nearest-186 

neighbor distance approach (Zaliapin and Ben-Zion, 2013a, 2013b) to the enhanced seismicity 187 

catalog. We consider only events located within the boundary of the Groningen gas field that are 188 

larger than the completeness magnitude (𝑀$) of 0.5. For each event 𝑗 in the catalog, we search for 189 

the preceding event 𝑖 that is most likely to be the parent (mainshock) of event 𝑗. The proximity 190 

distance between any event pair (𝑖, 𝑗) can be quantified using a space-time-magnitude metric 191 

normalized by the magnitude of the parent event (Baiesi and Paczuski, 2004; Zaliapin et al., 2008) 192 

defined as follows: 193 

 𝜂%& = 𝑡%&8𝑟%&:
'!10()(+"(,#) (2) 

where 𝑡%& = 𝑡& − 𝑡% is the time between the event pair, 𝑟%& is the distance between the epicenters of 194 

the event pair, 𝑑. is the fractal dimension of earthquake epicenters taken to be 1.6 (Zaliapin and 195 

Ben-Zion, 2013a), 𝑏 is the Gutenberg-Richter b-value of the frequency-magnitude distribution, 196 

and 𝑚% is the magnitude of event 𝑖. Since depth uncertainty is large, we do not include depths in 197 

the proximity distance calculations. 198 

For each event 𝑗, the event 𝑖∗ with the smallest proximity distance 𝜂%& is the nearest neighbor and 199 

hence most likely to be the parent of event 𝑗. The results can be expanded to two dimensions as 200 

rescaled time 𝑇& and rescaled distance 𝑅&, defined as follows (Zaliapin and Ben-Zion, 2013a): 201 

𝑇& = 𝑡%∗&10
()01+"∗(,#2 (3) 



Manuscript published in Seismological Research Letters 
Draft version: June 27, 2024 

 

11 

𝑅& = 8𝑟%∗&:
'!10(

)
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The distribution of nearest-neighbor distance 𝜂& is expected to be bimodal. The first mode is the 202 

independent events represented by a time-stationary, space-inhomogeneous Poisson process 203 

concentrating along log"# 𝑇& 	 + log"# 𝑅& = constant. The second mode is the clustered events with 204 

considerably smaller 𝑇& and 𝑅&, constituting foreshock-mainshock-aftershock sequences and 205 

swarms (Zaliapin et al., 2008; Zaliapin and Ben-Zion, 2013a). The separation between the two 206 

modes can be approximated by a 1-D Gaussian mixture model applied on 𝜂& (Hicks, 2011) using 207 

Matlab fitgmdist function. The mode separator 𝜂# is chosen to be where the probability density 208 

function of the two modes intersects. We consider events with 𝜂& ≥ 𝜂# to be independent events 209 

and 𝜂& < 𝜂# to be clustered events (Zaliapin and Ben-Zion, 2013a). 210 

The nearest-neighbor distance approach was originally analyzed for an epidemic-type aftershock 211 

sequence (ETAS) model (Ogata, 1988) with an assumption that the background independent 212 

events follow a time-stationary, space-inhomogeneous Poisson process (Zaliapin et al., 2008). In 213 

the case of induced seismicity, we expect the background Poisson rates of independent events to 214 

be inhomogeneous in time as modulated by injection or extraction rates. To test a posteriori the 215 

effectiveness of the nearest-neighbor distance approach for induced seismicity and the robustness 216 

of the estimated mode separator 𝜂#, we take events with 𝜂& ≥ 𝜂#, create 100 shuffled catalogs by 217 

randomly permuting the order of the magnitudes and locations, and calculate nearest-neighbor 218 

distances for events in these shuffled catalogs, similar to those done in Karimi and Davidsen 219 

(2023). Since the shuffling removes any clusters while preserving the seismicity rate and spatial 220 

distribution, the distribution of nearest-neighbor distances of these shuffled events reflects the true 221 

distribution of the independent mode and hence the majority of events should have 𝜂&,4567789: ≥ 𝜂# 222 
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if the chosen 𝜂# is appropriate. Unlike in Karimi and Davidsen (2023), by shuffling only events 223 

with 𝜂& ≥ 𝜂#, we reduce bias of the clustered events on the temporal rate of independent events. 224 

In principle, we can also completely remove the time clustering by sampling new times from a 225 

uniform distribution (Zaliapin and Ben‐Zion, 2020) but then we would also remove any time-226 

inhomogeneous nature of the independent events. 227 

Furthermore, we also evaluate the relative variability of the interevent times distribution using the 228 

coefficient of variation (CoV), defined as the ratio of its standard deviation and its mean. Random 229 

process (Poissonian) is expected to have CoV in order of unity. Larger CoV suggests the presence 230 

of clustering, while smaller CoV suggests a periodic behavior. For a given 𝜂#, the CoV can be 231 

used to evaluate whether the independent events are Poissonian. If the chosen 𝜂# is too small, 232 

events with 𝜂& ≥ 𝜂# would include some clustered events and hence the CoV would become 233 

significantly greater than one. In contrary to the shuffling analysis which evaluates the upper bound 234 

of the appropriate 𝜂#, the CoV evaluates its lower bound.  235 

We additionally use the Schuster spectrum method (Ader and Avouac, 2013) to verify that, once 236 

clustered events are removed based on the chosen value of the mode separator 𝜂#, the remaining 237 

events are consistence with a non-homogeneous Poisson process. The method is based on the 238 

Schuster tests (Schuster, 1897), which evaluates the amount of seismicity rate variation for a given 239 

periodicity. By calculating the Schuster p-value for different periods, we construct a Schuster 240 

spectrum and compare with the expectation for a Poisson process. This procedure aids in 241 

verification of the quality of the declustering.  242 

To further study the relationship between events, we create a spanning tree by connecting each 243 

event to its most likely parent. The strength of each link is inversely proportional to the nearest-244 

neighbor distance 𝜂&. By removing weak links with 𝜂& ≥ 𝜂#, we create a spanning forest consisting 245 
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of single-event trees with no links and other multievent clusters (Zaliapin and Ben-Zion, 2013a). 246 

The independent events previously identified include the singles and the first event from each 247 

cluster. We can calculate the average leaf depth for each cluster by averaging the number of links 248 

needed to connect events without children to the first event or the root (Zaliapin and Ben-Zion, 249 

2013b). Swarm-like sequences have large average leaf depth, while foreshock-mainshock-250 

aftershock sequences have small average leaf depth. 251 

 252 

Results 253 

Catalog overall properties 254 

Compared to the standard catalog from the Royal Netherlands Meteorological Institute (KNMI), 255 

our deep-learning-based workflow enables us to increase the number of detected events between 256 

2015 and 2022 from 739 to 1369. 709 events from the KNMI catalog were identified by our 257 

workflow, leaving only 30 events unidentified by our method. 1297 events are located within the 258 

horizontal extent of the gas field, which we use for the analysis hereafter. 259 

Despite being automatically generated products, our events display good agreement in both 260 

locations and magnitudes with the KNMI catalog (Figure S4). The horizontal location differences 261 

for events with 𝑀! ≥ 0.5 are less than 675 m on average. Most events with large location 262 

differences are either located near the edge of the available velocity model or small magnitude 263 

events where arrival picks have large uncertainty. The magnitude differences are less than 0.1 264 

magnitude unit on average. Only 78 events (12%) have magnitude differences greater than 0.2 265 

magnitude units. There is one M3 event that is presented in our catalog but not in the KNMI 266 

catalog. Since that event is located close the edge of the velocity model, the arrival picks may have 267 
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large uncertainty and bias its location, and therefore, its magnitude. Our catalog also reports depth 268 

rather than a fixed depth of 3 km, as the KNMI catalog does. In comparison to the catalog by 269 

Willacy et al. (2019), which utilizes full-waveform inversion to determine the event location, the 270 

horizontal location differences for events with 𝑀! ≥ 0.5 decrease slightly to a mean value of 563 271 

m (Figure S5). We have refined the depth determination by including time picks from the borehole 272 

sensors for the time spanning mid-2015 to 2018, during which we observed a concentration of 273 

swarms as detailed below. 274 

The increase in detection is consistent across the period studied. Many new detections are related 275 

to small events with signals close to the noise floor. However, a significant portion of new 276 

detections are the five bursts of small-magnitude (𝑀! 0.5 – 1.5) swarm-like sequences that double 277 

the earthquake rates between November 2016 and May 2017 (Figure 2a), which we discuss further 278 

in the “Swarm sequences” Section. Our catalog has the completeness magnitude (𝑀$) of 0.5 279 

estimated using the maximum curvature method (Wiemer and Wyss, 2000). Here, we do not use 280 

the typical correction factor of 0.2 (Woessner and Wiemer, 2005), because it is advantageous to 281 

keep more events for the statistical analysis. The b-value slope of the frequency magnitude 282 

distribution is determined to be 0.86 by applying the B-Positive method (van der Elst, 2021) to all 283 

events with a conservative minimum magnitude difference of 0.2 (Figure 2b). Note that the B-284 

Positive method does not require a complete catalog. With these additional events, the enhanced 285 

catalog can unlock new insights into the clustering behaviors of earthquakes in the Groningen gas 286 

field. 287 

 288 
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Clustering behaviors 289 

The nearest-neighbor distance approach is applied to 726 earthquake epicenters in the enhanced 290 

catalog with 𝑀! ≥ 0.5. The distribution of nearest-neighbor distance 𝜂& expanded in the form of 291 

rescaled time 𝑇& and rescaled distance 𝑅& is shown in Figure 3a. By fitting 𝜂& with a 1-D Gaussian 292 

mixture model, we find the best-fit mode separator of log"# 𝜂# = −3.05. We find that 522 events 293 

(72%) are independent, while the remaining 204 events (28%) appear to be clustered (Figure 3b). 294 

The two-dimensional probability distribution of nearest-neighbor distances of the 100 shuffled 295 

catalogs are averaged and shown in Figure 3c. Since the rate of independent events vary only 296 

gradually during this period, their distribution similarly concentrates along a line with log"# 𝑇& 	 +297 

log"# 𝑅& = constant with almost all reshuffled events (93%) having 𝜂& ≥ 𝜂#, validating the 298 

approach and the chosen mode separator. The results are qualitatively similar if the earthquake 299 

hypocenters are used instead of the epicenters, accounting also for the depths (Figure S6). 300 

Furthermore, the independent events (those with 𝜂& ≥ 𝜂#) have CoV of approximately one, 301 

consistent with them being Poissonian. If we were to choose 𝜂# < −4, events with 𝜂& ≥ 𝜂# include 302 

clusters as CoV becomes significantly greater than one (Figure S7).  303 

The Schuster spectrum calculated for the non-declustered catalog shows low p-values, lower than 304 

expected for a Poisson process, which drifts to even lower value starting at a period of about 2-3 305 

days (Figure S8a). This pattern shows that the catalog contains clusters (Ader and Avouac, 2013) 306 

and we can infer they have durations of a few days or eventually longer. However, if we use only 307 

the independent events, the drifting low p-values disappear (Figure S8b), further validating the 308 

choice of the value of the mode separator chosen. 309 
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We proceed to analyze the spatiotemporal evolution of the events from each of the two modes 310 

(Figure 4). The independent events align well with mapped faults and have the seismicity rate that 311 

is gradually changing with time. On the other hand, the clustered events show multiple lineations 312 

that do not align with mapped faults and occur as short-duration bursts of events in time. The most 313 

prominent clusters are the five bursts of small magnitude (𝑀! 0.5 – 1.5) swarm-like sequences 314 

occurring between November 2016 and May 2017. The others appear to be aftershocks of the 315 

larger 𝑀! > 2 events. By construct, if a sequence has a foreshock, the mainshock will be identified 316 

as a clustered event rather than an independent event because the foreshock would be its parent, 317 

which explains why some of the larger events are identified as clustered. 318 

The spanning tree created by connecting each event with its nearest neighbor if 𝜂& < 𝜂# reveals 319 

448 single-event clusters (62% of events) and 73 multievent clusters (38% of events). Their 320 

detailed statistics are shown in Figure 5. The average size of the multievent clusters is 3.8 events 321 

with a standard deviation of 3.6 events. The large standard deviation reflects significant variations 322 

in clustering behaviors. All earthquakes with 𝑀! > 2.5 are a part of multievent clusters, with the 323 

number of events in the cluster growing with mainshock magnitude. On average, the largest 324 

aftershock is 1.5 magnitude unit lower than the mainshock, in line with those expected from Båth’s 325 

law (Richter, 1958). The average leaf depth of these aftershock sequences is 1.3, indicating that 326 

most of the events are triggered by the mainshock rather than being aftershocks of aftershocks. On 327 

the other end of the spectrum, there are multievent clusters that exist as swarm-like sequences 328 

without a clearly identifiable mainshock (𝑀;<=>45?@A −𝑀8<BC94D	<7D9B45?@A ≪ 1, contradicting 329 

Båth’s law) and a larger value of average leaf depth (𝑑89<7) of up to 8.7. For an earthquake sequence 330 

with an average of two aftershocks for each earthquake, the cluster size (𝑛@864D) would then be 331 

2'%&'(. Therefore, this motivates using 𝑑89<7 of log0 𝑛@864D as a cutoff for binary classification 332 
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between swarm-like and aftershock-like clusters. Considering only clusters with at least 5 events, 333 

we find 7 swarm-like clusters (𝑑89<7 ≥ log0 𝑛@864D ) with a total of 77 events (55% of clustered 334 

events) and 9 aftershock-like clusters (𝑑89<7 < log0 𝑛@864D) with a total of 64 events (45% of 335 

clustered events). The analysis suggests that the clustered events are slightly dominated by swarm-336 

like sequences. Among the aftershock-like clusters, the events are 16% foreshocks, 14% 337 

mainshocks, and 70% aftershocks.  338 

 339 

Swarm sequences 340 

There were five noticeable swarm-like clusters between November 2016 and May 2017, each 341 

lasting 1 to 5 days and consisting of 10 to 20 events, with 𝑀! ranging from 0.66 to 1.56 (Figure 342 

6). Outside of this period, we did not find any other noticeable swarm clusters. Upon further 343 

investigation of their kinematics, all swarms migrate with velocities ranging from 3 to 50 km/day. 344 

We numbered the swarms from 1 to 5 based on the order that they occurred. The migration 345 

occurred along one single direction for swarms 1 and 2 and two different orthogonal directions for 346 

swarms 3 – 5. For swarms 3 and 4, there exists also ~ 15 hour pauses with no events before the 347 

migration direction switches. The migration directions do not follow mapped faults or other known 348 

features of the reservoir. While there are not enough events to determine the exact shape of the 349 

migration front, it is possible to model them with √4𝜋𝐷𝑡 where 𝐷 would be an apparent hydraulic 350 

diffusivity, and 𝑡 is time. In the case of fluid-driven swarms, the fitted 𝐷 would be related to the 351 

hydraulic diffusivity of the fault zones (Shapiro et al., 1997), though with a conversion factor that 352 

accounts for the time delays associated with earthquake nucleation (Kim and Avouac, 2023). The 353 

swarms in our study have 𝐷 ranging from 70 – 800 m2/s, much larger than a commonly accepted 354 

range for fluid-driven swarms of 0.005 – 10 m2/s (Amezawa et al., 2021). In comparison to other 355 
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swarms around the world, the scaling between migration velocity and duration places them closer 356 

to slow-slip events and swarms driven dominantly by slow-slip events than other injection-induced 357 

swarms (Danré et al., 2022). We further discuss possible drivers for these swarms in “Possible 358 

drivers of swarm-like sequences” Section. 359 

Another interesting observation is that the swarms occurred at a depth of between 1.5 to 2.5 km. 360 

While there could be some uncertainty with the absolute depth locations, they are certainly located 361 

toward the shallower side when compared to other earthquakes that are generally thought to be 362 

located near the top of the reservoir (Willacy et al., 2019; Smith et al., 2020). As a result, this 363 

would place them in the 1 – 2 km thick Zechstein evaporite (salt) above the anhydrite caprock, 364 

well above the gas reservoir (Figure 7). 365 

 366 

Discussion 367 

Comparison of clustered fraction with other studies 368 

Induced earthquakes are known to have a lower proportion of clustered events than naturally 369 

occurring tectonic earthquakes due to high driving stresses from anthropogenic activities in 370 

comparison to tectonic loading (Schoenball et al., 2015; Zaliapin and Ben‐Zion, 2016; Cochran et 371 

al., 2018; Martínez-Garzón et al., 2018). Here, we compile in Table 1 the clustered proportion of 372 

seismicity from different regions as reported by previous studies. We find that the clustered events 373 

can account for up to 70% of naturally occurring tectonic earthquakes but no more than 30% of 374 

induced earthquakes. The estimate of 28% from this study places the Groningen gas field well 375 

within the range estimated for other induced seismicity settings. Other studies on the clustered 376 

proportion of seismicity from the Groningen gas field provide different estimates of the clustered 377 
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proportion varying from a few percent up to 27%, which are generally lower than the 28% that we 378 

report here (Candela et al., 2019; Muntendam-Bos, 2020; Post et al., 2021; Trampert et al., 2022). 379 

Among those that also uses the nearest-neighbor distance approach, Candela et al. (2019) finds 380 

18% of clustered events between 1993 – 2016, while Muntendam-Bos (2020) finds only 6% of 381 

clustered events between 1995 – 2018, but the proportion increases to 22% if consider only the 382 

period between 2014 – 2018. On the other hand, Post et al. (2021) uses the statistics of the 383 

interevent times and finds a larger value of 27% for the clustered proportion. The scatter of the 384 

clustered proportion identified by the different studies can be attributed to various factors, 385 

including but not limited to: variation of earthquake rates and clustering behaviors with time 386 

(Trugman et al., 2016; Martínez-Garzón et al., 2018; Muntendam-Bos, 2020), accuracy of 387 

earthquake locations (Muntendam-Bos, 2020), and the five swarm sequences occurring between 388 

November 2016 and May 2017 that were not previously identified other seismicity catalogs, and 389 

the cutoff magnitude employed (Zaliapin and Ben-Zion, 2013a). By removing the five swarms, 390 

our estimate of the clustered proportion becomes 19%, which is almost equivalent to the estimate 391 

from Candela et al. (2019). We also calculate the clustered proportion using the different cutoff 392 

and find that the clustered proportion generally decreases with larger cutoff and becomes stable at 393 

between 18 – 20% as the cutoff exceeds 𝑀! of 1.2 at which the five swarm sequences are excluded 394 

from the analysis (Figure 8). 395 

 396 

Possible drivers of swarm-like sequences 397 

Although the migration of swarms in the Groningen gas field can be modeled with a square root 398 

of time typically associated with fluid pressure diffusion (Shapiro et al., 1997), it is unlikely that 399 

fluid plays any dominant role because of the following reasons. First, the migration direction 400 
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should be along the maximum spatial pressure gradient, which follows the spatial derivative of the 401 

compaction rate. This contradicts the observations in which the migration direction seems to align 402 

more along the contours of constant compaction (Figure 9a). Second, the migration velocity is on 403 

the order of 10 km/day, which requires a much higher hydraulic diffusivity than the values 404 

typically expected for fluid-driven swarms (Amezawa et al., 2021). Third, while fault slip can 405 

enhance permeability, allowing for faster diffusion rates, the migration directions do not follow 406 

mapped faults or any known structures. There may be other unmapped faults in which the 407 

migration follows as there are focal mechanisms with fault planes not orienting along the mapped 408 

faults (Willacy et al., 2019). Nevertheless, because the swarms are located in the Zechstein salt 409 

well above the impermeable anhydrite caprock that allows the gas to be preserved for millions of 410 

years (Figure 7), the faults in the Zechstein layer are probably not hydraulically connected to the 411 

reservoir and are most probably located in the anhydrite fragments that are embedded within the 412 

Zechstein evaporite rather than in the evaporite itself which cannot support brittle fractures due to 413 

its viscous nature. Hence, the swarms cannot be driven by direct fluid contact.  414 

Besides fluids, cascading earthquakes can create an apparent diffusive expansion front 415 

(Helmstetter and Sornette, 2002). However, the swarms consist of only small 𝑀! 0.5 – 1.5 events 416 

which would correspond to a rupture dimension of ~ 15 – 40 m, much smaller than the average 417 

distance of ~ 1 km between events (Figure 6). While there could exist a chain of smaller 418 

undetectable events that connect the larger ones, this is unlikely as our deep-learning-based 419 

workflow should be able to detect some events below 𝑀! 0.5 (Figure 2), but we detect none. 420 

Therefore, cascade triggering is also unlikely. 421 

These swarms occurred just after the period of accelerated compaction (Figure 9b), suggesting 422 

they might be related to the large strain rate from such period that could trigger swarms in the 423 
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Zechstein layer above the reservoir. However, since the compaction rate seems to be more 424 

correlated with the rate of independent events rather than the rates of all events (Figure S9), some 425 

additional mechanisms are required to connect compaction to the swarms. While seismic events 426 

in the salt are rare because salt is highly ductile they can occur in case of large strain rates, for 427 

example related to the collapse of mining cavity (Kinscher et al., 2016) or fault creep (Barnea 428 

Cohen et al., 2022), or in relation to fluid injection (Lei et al., 2019). Alternatively, these events 429 

could also occurred within the anhydrite fragments embedded in the salt (Spetzler and Dost, 2017). 430 

Since there are no mining activities in the Zechstein layer and that the faults in this layer are most 431 

probably not hydraulically connected to the reservoir, propagating episodes of aseismic 432 

deformation is the most probable mechanism. While there are no detectable geodetic signals in 433 

either GPS on InSAR during the time of the swarms, aseismic creep may locate too deep or being 434 

too small to be detected. Swarms that are driven by aseismic slip generally propagate at high 435 

velocity in the order of km/hr (Lohman and McGuire, 2007; Sirorattanakul et al., 2022), which is 436 

consistent with the observations of the Groningen swarms. The aseismic fault creep could occur 437 

within the fragments of anhydrite embedded in the Zechstein evaporite. Such creep can be driven 438 

by the long-range poroelastic stress changes incurred by pore pressure change in the reservoir. 439 

Poroelastic effects are indeed needed to explain both the surface subsidence and the induced 440 

seismicity at Groningen and are therefore explicitly included in most models (Bourne et al., 2014; 441 

Buijze et al., 2017; Dempsey and Suckale, 2017; Candela et al., 2019; Smith et al., 2022) . 442 

Alternatively, aseismic fault creep may be driven by stress induced by bulk creep in the 443 

surrounding Zechstein evaporite as the salt redistribute, possibly in response to the disturbances 444 

from the historic gas production. When faults are moderately stressed, fluid-induced aseismic 445 

creep can outpace the pressure diffusion front and trigger a seismicity front that propagates at 446 
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velocities that are orders of magnitude larger than the fluid diffusion (Bhattacharya and Viesca, 447 

2019; Wynants-Morel et al., 2020; Sáez et al., 2022). Since these swarms are not driven directly 448 

by stress changes from the industrial operations, they are not yet accounted for in induced 449 

seismicity forecasting models for the Groningen gas field. 450 

 451 

Conclusions 452 

By applying a deep-learning-based workflow for earthquake detection to seismic data from the 453 

Groningen gas field, we identify and locate a total of 1369 events from 2015 – 2022, almost two 454 

times more than the standard KNMI catalog. Despite being automatically generated products, the 455 

locations and magnitudes of the overlapping events display a high degree of similarity with the 456 

KNMI catalog. Analysis of the nearest-neighbor distances reveals that the clusters account for 28% 457 

of all events. Among the clustered events, approximately half are swarm-like clusters , while the 458 

remaining half are aftershock-like clusters. The swarm-like clusters include five distinct swarm 459 

sequences that migrate at incredibly fast velocities between 3 – 50 km/day along directions that do 460 

not follow mapped faults or existing structures and frequently exhibit a sharp turn in the middle of 461 

the sequence. Based on the observations of fast velocities and their depths in the Zechstein salt 462 

above the reservoir caprock, the swarms are most likely not driven by fluids but rather other 463 

aseismic processes such as propagating aseismic creep. The magnitude of these swarms is within 464 

the detectable range of the KNMI catalog, but they were not previously identified. With a better 465 

catalog, we can enhance our understanding of the mechanics of earthquake clusters and allow us 466 

to better incorporate their contributions to seismic hazards into induced seismicity forecasting 467 

models.  468 
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Data and Resources 745 

Raw seismic waveforms were accessed through the ORFEUS (Observatories and Research 746 

Facilities for European Seismology) FDSN (International Federation of Digital Seismograph 747 

Networks) client via a python script using the package Obspy (https://docs.obspy.org/; Beyreuther 748 

et al., 2010). 3D seismic velocity and faults map were provided to us by Shell Global Solutions 749 

International B.V. Computer programs used to generate the enhanced seismicity catalog are 750 

previously published and can be found in the following references: seismic phase detection 751 

software PhaseNet (https://github.com/AI4EPS/PhaseNet; Zhu and Beroza, 2019), seismic phase 752 

association software GaMMA (https://github.com/AI4EPS/GaMMA; Zhu et al., 2022), 753 

hypocenter inversion software HypoSVI (https://github.com/Ulvetanna/HypoSVI; Smith 754 

et al., 2021). The seismicity catalog from the Royal Netherland Meteorological Survey (KNMI) is 755 

available online at www.knmi.nl. Matlab version 2020a were used to analyze data and prepare 756 

figures. The enhanced seismicity catalog generated in this study along with the picks of arrival 757 

times and codes used to analyze them are made available online at CaltechDATA repository (links 758 

will be provided after revisions). 759 
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 771 

Figure 1. Map of induced seismicity in the Groningen gas field from 2015 – 2023 that were 772 

detected and located in this study using a deep-learning-based workflow. Circles show events with 773 

size representing the local magnitude and color representing the occurrence time. Black line shows 774 

the outline of the reservoir. Gray lines show mapped faults. The inset shows the location of the gas 775 

field within Europe. 776 

 777 
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 778 

Figure 2. Enhanced seismicity catalog. (a) Comparison between our enhanced seismicity catalog 779 

and the standard catalog from the Royal Netherlands Meteorological Institute (KNMI). The top 780 

panel compares number of detected events per month. The middle panel shows distribution of 781 

event magnitude vs. time for the enhanced catalog. The red circle highlights the five newly 782 

detected swarm sequences. The bottom panel is the same as the middle but for the KNMI catalog. 783 

(b) Frequency-magnitude distribution from the two catalogs. The dashed line represents the 784 

Gutenberg-Richter exponential distribution with the b-value slope of 0.86 estimated from the 785 

enhanced catalog using B-Positive method (van der Elst, 2021). The completeness magnitude (𝑀$) 786 

of the enhanced catalog is estimated to be approximately 0.5.  787 
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 788 

Figure 3. Nearest-neighbor clustering analysis performed on our enhanced seismicity catalog with 789 

𝑀! ≥ 0.5. Only epicenters are used and the fractal dimension (𝒅𝒇) is taken to be 1.6. (a) A joint 790 

2-D distribution of the rescaled time and rescaled distance. Each of the black dots represent 791 

proximity of each event to a parent event. (b) Histogram of the nearest-neighbor proximity distance 792 

with curves showing the two Gaussian distributions representing the two modes derived from 1-D 793 

Gaussian mixture model. (c) The average joint distribution of the rescaled time and rescaled 794 

distance derived from 100 catalogs created from reshuffling locations and magnitudes of 795 

independent events. The diagonal white dashed lines in panels (a) and (c) and black vertical dashed 796 

line in panel (b) mark the mode separator (𝜂# = 10(G.#I) used to perform binary classification of 797 

events into either independent or clustered.  798 
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  799 

Figure 4. Distribution of independent vs. clustered events for 𝑀! ≥ 0.5 from our enhanced 800 

seismicity catalog. (a) Spatial distribution of events color coded by the mode they belong to. (b) 801 

Magnitude and cumulative number of events vs. time distribution of the independent events. (c) 802 

Same as (b) but for clustered events.  803 
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  804 

Figure 5. Statistics of the identified clusters. (a) Cluster size (number of events) vs. magnitude of 805 

the largest event color coded by the magnitude difference between mainshock and largest 806 

aftershock. Black circles denote the case with only one event in the cluster or when the largest 807 

earthquake is the last one in the sequence. (b) is the same as (a) but color coded by the average 808 

leaf depth. (c) A schematic showing aftershock-like and swarm-like sequences. Aftershock-like 809 

sequence has smaller average leaf depth than swarm-like sequence, but each event produces more 810 

offsprings.  811 
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  812 

Figure 6. Fast propagating earthquake swarms. (a) Magnitude vs. time of the five distinct bursts 813 

of swarm-like sequences. (b) – (f) show the spatiotemporal evolution of these five swarms. The 814 

white stars mark the second event in swarm 2 and first event in all other swarms. The dashed lines 815 

show the predicted expansion for the different values of apparent hydraulic diffusivity 𝐷.  816 
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  817 

Figure 7. Depth distribution of earthquakes with 𝑀! ≥ 0.5 from our enhanced seismicity catalog 818 

with colors identifying whether they are independent, fast propagating swarms shown in Figure 6, 819 

or other clustered events, along with a schematic showing a depth cross-section of lithologies taken 820 

from Smith et al. (2019). Only the time period where we have picks from both surface and borehole 821 

sensors are shown. The five swarm sequences are located in the Zechstein evaporite. 822 

  823 
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  824 

Figure 8. Variations of clustered proportion for the different cutoff magnitude. The dashed line 825 

shows the number of events larger than or equal to a given cutoff magnitude. 826 

  827 
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  828 

Figure 9. Comparison of swarms with reservoir compaction. (a) Spatial distribution of modelled 829 

reservoir compaction between 2016 and 2018. The calculation is done using a simple expression 830 

𝐶 = 𝐶+ ∙ Δ𝑃 ∙ ℎ relating compaction 𝐶 with the compressibility 𝐶+ from Smith et al. (2019) 831 

constrained with geodetic data, pressure depletion Δ𝑃 from Acosta et al. (2023) calculated using 832 

a simplified reservoir model from Meyer et al. (2023) constrained with pressure measurements 833 

from the borehole sensors, and the reservoir thickness ℎ. The circles with different colors denote 834 

the five different swarms shown in Figure 6. (b) Average compaction in the reservoir vs. time. The 835 

vertical lines denote the timing of the five swarms. The inset shows a zoomed-in during the time 836 

of swarms.   837 
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Table 1. A compilation of clustered fraction of seismicity from different regions. With the 838 

exception of Post et al. (2021), which utilizes the statistics of interevent times, all other studies 839 

utilized the nearest-neighbor distance approach (Zaliapin et al., 2008; Zaliapin and Ben-Zion, 840 

2013a). 841 

Region 
Type of 

seismicity 

Magnitude 

cutoff 

Clustered 

fraction 

Southern California (Zaliapin and Ben-Zion, 

2013a) 

Mostly 

tectonic 
2 0.70 

San Jacinto fault zone, California, USA 

(Zaliapin and Ben‐Zion, 2016) 
Tectonic 1 0.34 

Coso geothermal field, California, USA 

(Zaliapin and Ben‐Zion, 2016) 
Mixed 1 0.44 

Salton Sea geothermal field, California, USA 

(Zaliapin and Ben‐Zion, 2016) 
Mixed 1.5 0.69 

Geysers geothermal field, California, USA 

(Zaliapin and Ben‐Zion, 2016) 
Induced 1.0 0.17 

TauTona gold mine, South Africa (Zaliapin 

and Ben‐Zion, 2016) 
Induced 1.5 0.12 

Saltwater disposal, Oklahoma (Cochran et 

al., 2020) 
Induced 0.95 0.30 

Hydraulic fracturing in western Alberta, 

Canada (Karimi and Davidsen, 2023) 
Induced 0.2 0.25 
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Groningen gas field, Netherlands, KNMI 

catalog (Candela et al., 2019) 
Induced 1.0 0.18 

Groningen gas field, Netherlands, KNMI 

catalog (Post et al., 2021) 
Induced 1.3 0.27 

Groningen gas field, Netherlands, KNMI 

catalog between 01/1995 – 01/2019 

(Muntendam-Bos, 2020) 

Induced 1.2 0.06 

Groningen gas field, Netherlands, KNMI 

catalog between 05/2014 – 01/2019 

(Muntendam-Bos, 2020) 

Induced 1.2 0.22 

Groningen gas field, Netherlands, enhanced 

catalog (this study) 
Induced 0.5 0.28 

Groningen gas field, Netherlands, enhanced 

catalog (this study) 
Induced 1.2 0.21 
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