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Abstract. For every integer g � 2 we construct 3-dimensional genus-g 1-handlebodies smoothly
embedded in S4 with the same boundary, and which are defined by the same cut systems of their
boundary, yet which are not isotopic rel. boundary via any locally flat isotopy even when their
interiors are pushed into B5. This proves a conjecture of Budney–Gabai for genus at least 2.
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1. Introduction

In this paper, we work in both the smooth and topological locally flat categories. We will
specify in which category various statements hold. As a shorthand, we will sometimes
write “topological”, but implicitly mean “topological and locally flat.”

The goal of this paper is to obstruct isotopies rel. boundary between two boundary-
parallel handlebodies (by which we always mean 3-dimensional 1-handlebodies) that are
properly embedded in B5 and are homeomorphic rel. boundary as 3-manifolds.

Definition 1.1. Let H1 and H2 be genus-g handlebodies that are both bounded by the
same surface F . We say that H1 and H2 are compressing curve equivalent if there exist g

disjoint simple closed curves A1; : : : ; Ag in F such that F n �.Ai / is planar, and each Ai

bounds disks in both H1 and H2.

If H1 and H2 are handlebodies properly embedded in B5 with common boundary
which are homeomorphic rel. boundary as 3-manifolds, then they are compressing curve
equivalent.

Our motivation is the following conjecture of Budney and Gabai:
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Conjecture 1.2 ([3, Conjecture 11.3]). For each g � 0 there exist 3-dimensional genus-g
handlebodies H1; H2 � S4 such that @H1 D @H2 and H1; H2 are compressing curve
equivalent, but H1 is not isotopic to H2 via an isotopy that fixes @Hi .

Budney and Gabai [3] provided examples satisfying Conjecture 1.2 for g D 0, ob-
structing smooth isotopy rel. boundary. We prove a stronger version of this conjecture for
g � 2.

Theorem 1.3. There exist smooth genus-2 compressing curve equivalent handlebodies
H1 and H2 embedded in S4 with @H1 D @H2, such that if H1; H2 are boundary-summed
with identical collections of g � 2 smooth solid tori to obtain smooth genus-g � 2 handle-
bodies yH1; yH2, the handlebodies yH1 and yH2 are not topologically isotopic rel. boundary
even when their interiors are pushed into B5.

In particular, in Theorem 1.3, boundary-summing g � 2 solid tori to H1 and H2 yields
a pair of genus-g handlebodies satisfying Conjecture 1.2.

In contrast, the 3-balls constructed by Budney–Gabai become smoothly isotopic rel.
boundary when their interiors are pushed into B5. This isotopy can be seen explicitly
once one understands their construction, since Budney and Gabai construct their 3-balls
explicitly. In fact, any two 3-balls embedded in S4 with the same boundary become iso-
topic rel. boundary when their interiors are pushed into B5, as proved by Hartman [4].
(This statement can be made in either the smooth or topological category.) This holds
for pairs of .n � 1/-dimensional balls embedded in Sn for all n � 3; for disks in S3 this
follows easily from the Schoenflies theorem and in higher dimensions it follows from the
unknotting conjecture.

Proof that .n � 1/-balls in Sn become isotopic in BnC1 for n � 4. Let B1 and B2 be
.n � 1/-balls embedded in Sn with the same boundary. View Sn as an equator of SnC1,
so that Sn cuts SnC1 into two balls W and W 0. Push the interior of B2 slightly into W so
that B1 [ B2 is an embedded codimension-2 sphere inside SnC1 D W [ W 0.

The complement SnC1 n .B1 [ B2/ is homotopy equivalent to a circle, so B1 [ B2

bounds an n-ball V inside SnC1 (by [14] in the topological category; additionally [9] in
the smooth category for n > 4 or [17, Corollary 3.1] and [13, Theorem 2.1] in the smooth
category for n D 4). If V � W , then B1 (with interior pushed into W ) is isotopic rel.
boundary to B2 in W Š BnC1 and we are done.

Suppose the interior of the ball V intersects W 0. Let B1 � I be a thickening of B1

in SnC1, so that

� B1 is identified with B1 � ¹1=2º,

� B1 � Œ0; 1=2� � W 0 and B1 � Œ1=2; 1� � W ,

� @B1 � Œ1=2; 1� � B2.

Since B1 is a ball, we can isotope V rel. boundary so that V \ �.B1/DB1 � Œ1=2;1��W .
Note @V \ W 0 D B1 � @W 0. Then W 0 is (homeo/diffeo)morphic to Bn�1 � I � I

with B1 DBn�1 � ¹1=2º � ¹0º. (Note that this parametrization is unrelated to the previous
thickening of B1.) Here, Bn�1 � I � ¹0º lies in @W 0. Up to reparametrization, we have
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VV \ W 0 contained in Bn�1 � I � Œ1=2; 1�, so we may isotope the interior of V outside
of W 0 by isotopy along the second I coordinate extended to be supported in a small
neighborhood of Bn�1 � I � Œ1=2; 1� � SnC1. Now V is a ball cobounded by B1; B2

that lies completely within W .

Our construction necessarily yields handlebodies of genus at least 2. There is thus an
obvious open question left about solid tori.

Question 1.4. Do there exist solid tori in S4 with the same boundary that are compress-
ing curve equivalent but are not isotopic rel. boundary? Do they necessarily become
isotopic rel. boundary when their interiors are pushed into B5?

Answering the first part of Question 1.4 positively would confirm Conjecture 1.2.
In a preprint of this paper, we also asked whether any two 3-balls in S4 with the same
boundary become isotopic rel. boundary when their interiors are pushed into B5; this (as
mentioned above) was answered positively by Hartman [4].

2. Double slicing

Our obstruction to isotopy rel. boundary comes from double sliceness (or more precisely,
obstructing double sliceness) of 2-knots.

Definition 2.1. A 2-knot K is the image of a smooth embedding from S2 to S4. We
say that K is (topologically/smoothly) unknotted if K is the boundary of the image of a
(topological/smooth) embedding of B3 in S4.

More generally, a positive-genus surface in S4 is said to be (topologically/smoothly)
unknotted if it bounds an embedded handlebody in S4 in the appropriate category.

It is a theorem of Kervaire [8] that every (topological/smooth) 2-knot is slice, in the
sense that it bounds a (topological/smooth) 3-ball in B5. However, Stoltzfus [15] showed
that not every 2-knot is topologically doubly slice.

Definition 2.2. Let K be a 2-knot. We say that K is (topologically/smoothly) doubly slice
if, writing S5 as the union of two 5-balls along their boundary W Š S4, there exists a
(topological/smooth) embedding f W B4 ! S5 such that

.W; W \ f .@B4//
homeo/diff
Š .S4; K/:

In words, K is doubly slice when K is an equator of an unknotted 3-sphere in S5 in
the appropriate category.

Ruberman [10] gave convenient examples of 2-knots that are not doubly slice (using
different techniques than Stoltzfus, who actually obstructed algebraic double sliceness, a
related property that is implied by double sliceness).

Theorem 2.3 ([10]). The 5-twist spun trefoil is not smoothly doubly slice.
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While Stoltzfus obstructs topological double sliceness (i.e. obstructs a 2-knot from
being a cross-section of a locally flat, topologically unknotted 3-sphere), Ruberman’s
theorem involves smooth topology. Ruberman gives an invariant that obstructs double
sliceness which is shown to be well-defined using Rokhlin’s theorem applied to a smooth,
spin 4-manifold cobounded by a smooth 3-manifold in B5. When applied directly, he
thus obstructs the 5-twist spun trefoil from being smoothly doubly slice. By work of Wall
[17, Corollary 3.1] and Shaneson [13, Theorem 2.1] (or more precisely a theorem of
Wall that rested on a conjecture later proved by Shaneson), every smooth 3-sphere in S5

that is topologically unknotted is also smoothly unknotted. Thus, we can rephrase The-
orem 2.3 in a seemingly sharper way: if L is a smooth 3-sphere in S5 admitting the 5-twist
spun trefoil as a cross-section (via a smooth splitting of S5), then L is not topologically
unknotted.

This is a subtle point – Hillman [5] showed that the 5-twist spun trefoil is a cross-
section of a locally flat unknotted 3-sphere, i.e. is topologically doubly slice. We conclude
that such a 3-sphere cannot be smoothed without changing its intersection with the 4-
sphere.

We focus on Ruberman’s obstruction rather than Stoltzfus’s because it is easier for
us to give an explicit example of a 2-knot to which Ruberman’s proof applies. This is
important because we will use another property of this particular 2-knot which we discuss
in the next section (see Proposition 3.3).

3. Constructing slice 3-balls

By Kervaire [8], we know that every 2-knot is slice. In this section we give a procedure
for constructing a 3-ball in B5 bounded by a specific 2-knot in @B5.

Definition 3.1. Let † be an oriented genus-g surface in an orientable 4-manifold X . Let
� be an arc in X with endpoints on † that is disjoint from † in its interior and is not
tangent to † near its boundary. Let h be a 3-dimensional 1-handle with core arc � and
feet on † with the property that surgering † along H yields an orientable genus-.g C 1/

surface †� . By Boyle [2], the handle h is determined by � up to smooth isotopy in a
neighborhood of �.

We say that †� is obtained from † by attaching a tube along �.

The following lemma of Hosokawa–Kawauchi [7] is very well known (and has been
proved in much greater generality by Baykur–Sunukjian [1]).

Lemma 3.2 ([7]). Let K be a smooth 2-sphere in S4. For some n, there exists a collection
of n arcs �1; : : : ; �n such that attaching smooth tubes to K along �1; : : : ; �n yields a
smoothly unknotted genus-n surface.

Proof. Let Y be an oriented 3-manifold smoothly embedded in S4 with boundary K. Fix
a relative handle decomposition on Y . Let �1; : : : ; �n be cores of the 1-handles of this
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decomposition. Then K�1;:::;�n
bounds a copy of Y with the relative 1-handles deleted,

which is a smooth handlebody. We conclude that K�1;:::;�n
is smoothly unknotted.

Satoh [11] gave examples of when the tubings prescribed by Lemma 3.2 are particu-
larly simple.

Proposition 3.3 ([11]). Let K be a k–twist spun trefoil for some k. Then a single tube
can be attached to K to obtain a smoothly unknotted torus.

Before stating the main lemma of this section, we describe some useful work of Hirose
on isotopies of unknotted surfaces that makes use of the Rokhlin quadratic form.

Definition 3.4. Let † be a genus-g surface in S4. The Rokhlin quadratic form on † is a
quadratic form q W H1.†IZ/ ! Z=2Z defined as follows.

Given a primitive element ˛ 2 H1.†IZ/, let C be a simple closed curve on † repres-
enting ˛. Let P be a disk in S4 bounded by C that is framed, i.e. so that the 1-dimensional
subbundle of the normal bundle of C that is tangent to † extends over all of P . Then

q.˛/ D j VP \ †j .mod 2/:

For our purposes, a symplectic basis ..A1;B1/, : : : ; .Ag ;Bg// of a genus-g surface F

consists of simple closed curves A1, : : : ; Ag , B1, : : : ; Bg on F such that the following
are all true:

� ŒA1�; : : : ; ŒAg � are linearly independent in H1.F IZ/,

� ŒB1�; : : : ; ŒBg � are linearly independent in H1.F IZ/,

� Ai \ Aj D Bi \ Bj D Ai \ Bj D ; for i ¤ j ,

� Ai and Bi intersect transversely in one point.

Hirose [6] showed that the Rokhlin form determines equivalence of symplectic bases
on unknotted surfaces in S4.

Theorem 3.5 ([6]). Let Ug be an unknotted genus-g surface in S4. Fix two symplectic
bases of curves ..A1;B1/; : : : ; .Ag ;Bg// and ..A0

1;B 0
1/; : : : ; .A0

g ;B 0
g// on Ug . Then there

is an ambient isotopy of S4 taking Ug to itself and taking Ai ; Bi to A0
i ; B 0

i for each i if
and only if q.ŒAi �/ D q.ŒA0

i �/ and q.ŒBi �/ D q.ŒB 0
i �/ for each i .

Lemma 3.6. Let h W B5 ! Œ0; 1� be the radial function. If a 2-knot K can be transformed
into an unknotted surface Un by attaching n tubes, then K bounds a 3-ball B in B5 such
that hjB is Morse with one index-0 point, n index-1 points, and n index-2 points.

Proof. Let A1; : : : ; An be belt circles of the tubes attached to K to obtain Un. Since
each Ai bounds a framed disk (the cocore of the 3-dimensional 1-handle Hi used to
perform the tube surgery) whose interior is disjoint from Un, q.ŒAi �/ D 0. Choose curves
B1; : : : ; Bn on Un such that ..A1; B1/; : : : ; .An; Bn// is a symplectic basis of Un.

If q.ŒBi �/ D 1, then let Ci be a curve obtained by cut-and-pasting Ai and Bi , so
ŒCi � D ŒAi � C ŒBi � and the curves Ai ; Bi ; Ci pairwise intersect in a single point. Since q
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Fig. 1. A symplectic basis ..A1; B1/; : : : ; .An; Bn// on an unknotted genus-n surface in S4. We
have shaded a genus-n handlebody in which the Ai curves bound disks; the closure of its comple-
ment in this 3-dimensional cross-section is a genus-n handlebody in which the Bi curves bound
disks. Gluing these two handlebodies together yields an S3 that splits S4 into two smooth 4-balls.

is a quadratic form, we have q.ŒCi �/ D q.ŒAi �/ C q.ŒBi �/ C jAi \ Bi j D 0 C 1 C 1 D

0 2 Z=2Z. Then redefine Bi WD Ci ; we thus arrange for q.ŒBi �/ D 0 for all i .
By Theorem 3.5, Un can be isotoped so that ..A1; B1/; : : : ; .An; Bn// is taken to the

standard symplectic basis (see Figure 1), so we conclude that B1; : : : ; Bn bound disjoint
framed disks �1; : : : ; �n whose interiors are in the complement of Un. Specifically, the
disks �1; : : : ; �n may be taken to lie in a copy of S3 that contains Un. These disks
have the property that when �i is thickened to �i � I (so that .@�i / � I is contained
in Un and V�i � I is disjoint from Un), compressing Un along all of the �i yields the
unknotted sphere U0, which bounds a 3-ball D. We can now describe B via the following
intersections. (Recall that h�1.1/ D @B5 and that h�1.0/ is the central point of B5.)

B \ h�1.3=4; 1� D K � .3=4; 1�;

B \ h�1
¹3=4º D K [

n[
iD1

Hi ;

B \ h�1.1=2; 3=4/ D Un � .1=2; 3=4/;

B \ h�1
¹1=2º D Un [

n[
iD1

.�i � I /;

B \ h�1.1=4; 1=2/ D U0 � .1=4; 1=2/;

B \ h�1
¹1=4º D D;

B \ h�1Œ0; 1=4/ D ;:

In words, B is built from @B D K � ¹1º by the following steps (in order):

1. Thicken K.

2. Attach n 3-dimensional 1-handles whose belts are A1; : : : ; An.

3. Attach n 3-dimensional 2-handles along curves B1; : : : ; Bn that are chosen so that
jAi \ Bj j D ıij .

4. Attach a 3-dimensional 3-handle to the boundary component which is not K.

Because jAi \ Bj j D ıij , the 1- and 2-handles in this decomposition of B can be
canceled, and hence B is a 3-ball. After a small perturbation of B , hjB is Morse with one
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index-0 critical point (in h�1.1=4/), n index-1 critical points (in h�1.1=2/) and n index-2
critical points (in h�1.3=4/).

4. Proof of Theorem 1.3

The ability to position the handlebody H in B5 so that hjH has only one index-0 point
will be particularly useful.

Lemma 4.1. Let H be a genus-g handlebody smoothly and properly embedded in B5,
and let h W B5 ! Œ0; 1� be the radial function. Assume that the function hjH is Morse with
a single index-0 critical point and with no index-2 or index-3 critical points. Then there
is a smooth isotopy of H rel. boundary taking H into @B5.

Proof. After choosing a gradient-like flow for hjH , h induces a handlebody decomposi-
tion of H with one 0-handle and g 1-handles. Let t0 and t1 be chosen so that 0 < t0 <

t1 < 1, with the index-0 critical point of hjH lying below h�1.t0/, and the g index-1
critical points sitting between h�1.t0/ and h�1.t1/. Then in h�1.t0/ Š S4 the level set
S WD hj�1

H .t0/ is an unknotted 2-sphere, which bounds a properly embedded 3-ball W D

hj�1
H Œ0; t0� in h�1.Œ0; t0�/. Let W 0 be the image of W after an isotopy rel. boundary to

h�1.t0/, so W 0 is a 3-ball in h�1.t0/ bounded by S .
As t increases from t0 to t1, the cross-sections hj�1

H .t/ of H change by attaching
tubes along some arcs �1; : : : ; �g . Push these tubes down to h�1.t0/, so that hj�1

H .t0/

consists of the union of the unknotted 2-sphere S along with g 3-dimensional 1-handles
b1; : : : ; bg attached to S along each �1; : : : ; �g respectively. For small " > 0, nearby level
sets hj�1

H .t0 � "/ now consist of only (a parallel copy of) the sphere S , while hj�1
H .t0 C "/

is a genus-g surface parallel to one obtained from adding tubes to S along the arcs �i .
Because �1.S4 n S/ Š Z, any two arcs based at a pair of points in S and with interiors

disjoint from S are homotopic and hence isotopic in S4 n S . This allows us to isotope
H so that the arcs �i (and hence the 3-dimensional 1-handles bi ) avoid the ball W 0 in
h�1.t0/.

Now we can isotope W to W 0 � h�1.t0/, so M WD h�1
H .t0/ is the genus-g handlebody

W 0 [ b1 [ � � � [ bg . If we push the interior of M slightly below h�1.t0/, the function hjH
has no critical values in Œt0; 1�. The level sets hj�1

H .t/ for t0 � t � 1 trace out an isotopy
of a genus-g surface F in S4 that can be extended to an ambient isotopy ft (t0 � t � 1)
of S4, with ft0 D id. If we parametrize h�1.Œt0; 1�/ Š @B4 � Œt0; 1�, then

H D ¹.ft0.M /; t0/º [ ¹.ft .F /; t/ j t0 � t � 1º;

which is isotopic rel. boundary to ¹.f1.M /; t0/º [ ¹.f1.F /; t/ j t0 � t � 1º. This can in
turn be pushed into @B5.

Proof of Theorem 1.3. First we prove the theorem for g D 2. We will then extend this
strategy to larger g. Let K be the 5-twist spun trefoil. By Theorem 2.3, K is not smoothly
doubly slice. By Proposition 3.3 and Lemma 3.6, there is a smoothly embedded 3-ball B
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in B5 whose boundary is K and such that the radial function on B5 restricts to a Morse
function on B with one index-0 point, one index-1 point, and one index-2 point.

Double B along K to obtain a smooth 3-sphere L in S5. (That is, .S5;L/D .B5;B/[

.B5; B/. We will write B and xB to denote the corresponding halves of L.) By replacing
the radial function h on .B5; B/ with 2 � h, and gluing to the radial function on .B5; B/,
we obtain a function S5 ! Œ0; 2� which (by abuse of notation) we continue to denote
by h. This new function restricts to a Morse function hjL on L with the following critical
points, in order from highest to lowest (descending in the table, naturally):

(vi) index-3 from xB; the dual of the index-0 point of B ,
(v) index-2 from xB; the dual of the index-1 point of B ,

(iv) index-1 from xB; the dual of the index-2 point of B ,
(iii) index-2 from B ,
(ii) index-1 from B ,
(i) index-0 from B .

Note that the critical points of hjL are not in order. However, we may interchange the
heights (with respect to h) of the (iv) index-1 point and the (iii) index-2 point by smoothly
isotoping L, so that both of the index-1 points of hjL are below both the index-2 points.
After this isotopy, fix a level S4 Š h�1.t0/ between the index-1 and index-2 critical points
of hjL separating S5 into two 5-balls V1 WD h�1Œ0; t0� and V2 WD h�1Œt0; 2�. This S4 inter-
sects L in a smooth genus-2 unknotted surface U D hj�1

L .t0/. We have L D H1 [U H2

for two smooth genus-2 handlebodies H1 and H2, with H1 � V1 lying below U and
H2 � V2 lying above U . Note that hjH1

and �hjH2
each have one index-0 point and

two index-1 points. By Lemma 4.1, H1 is smoothly boundary-parallel in V1 and H2 is
smoothly boundary-parallel in V2.

Since .H1;H2/ is a Heegaard splitting of S3, by Waldhausen’s theorem ([16]; see [12]
for exposition) there exists a symplectic basis ..A1;B1/; .A2;B2// of U such that each Ai

bounds a disk in H1 and each Bi bounds a disk in H2. Since H1; H2 are each boundary-
parallel, we may isotope such a disk bounded by Ai or Bi from B5 to S4 to obtain a
framed disk with boundary on U and interior disjoint from U . We conclude q.ŒAi �/ D

q.ŒBi �/ D 0.
By Theorem 3.5, there is a diffeomorphism of S4 taking .U I .A1; B1/; .A2; B2// to

the standard unknotted surface with standard curves as in Figure 1 (drawn for general
genus). Then U bounds smooth handlebodies H�

1 and H�
2 in S4 with Ai bounding a

disk in H�
1 and Bi bounding a disk in H�

2 , and with H�
1 [U H�

2 an unknotted 3-sphere.
Push H�

1 into V1 and H�
2 into V2. Since L D H1 [U H2 is topologically knotted, L is

not topologically isotopic to H�
1 [U H�

2 , which is unknotted. Therefore, if H1 is topo-
logically isotopic rel. boundary in V1 Š B5 to H�

1 , then H2 is not topologically isotopic
rel. boundary in V2 Š B5 to H�

2 . This completes the proof for g D 2, with the pair of
non-isotopic handlebodies being either .H1; H�

1 / or .H2; H�
2 /.

To extend the above argument to larger g, we simply perturb the 3-ball B . Fix g > 2

and let yB be obtained from B by perturbing B with respect to h to introduce g � 2 pairs
of canceling index-1, index-2 pairs to hj yB . Now consider the 3-sphere yL D yB [ xB in S5.
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Again, K is a cross-section of yL, so yL is not topologically unknotted. (And more directly,
yL is smoothly isotopic to L so of course yL is not topologically unknotted.) In words, we
obtain yL by gluing a copy of yB to a copy of B (with opposite orientations); note that yL is
not expressed as a double. As constructed, the radial function on B5 restricts to a Morse
function on yL with the following critical points:

(vii) index-3 from xB; the dual of the index-0 point of B ,
(vi) index-2 from xB; the dual of the index-1 point of B ,
(v) index-1 from xB; the dual of the index-2 point of B ,

(iv2.n�2/) index-2 µ
from the perturbations that yield yB from B ,

(iv2.n�2/�1) index-1
:::

:::

(iv2) index-2
(iv1) index-1
(iii) index-2 from B ,
(ii) index-1 from B ,
(i) index-0 from B .

In total, hjyL has one index-0 point, g index-1 points, g index-2 points, and one index-3
point. Smoothly isotope yL to move the index-1 critical points below h�1.t0/ Š S4 and
the index-2 critical points above h�1.t0/. Then h�1.t0/ intersects yL in a genus-g sur-
face yU , and yH1 D hj�1

L Œ0; t0� and H2 D hj�1
L Œt0; 1� are smooth genus-g handlebodies that

are smoothly boundary-parallel (via Lemma 4.1) in the 5-balls V1; V2 respectively. By the
same argument as in the g D 2 case (recall Figure 1), yU bounds smooth boundary-parallel
handlebodies yH�

1 and yH�
2 respectively in V1; V2 such that yHi and yH�

i are compressing
curve equivalent but yH�

1 [ yU
yH�

2 is unknotted. We similarly conclude that if yH1 is topolo-
gically isotopic rel. boundary to yH�

1 , then yH2 is not topologically isotopic rel. boundary
to yH�

2 . Then either . yH1; yH�
1 / or . yH2; yH�

2 / is the desired pair of non-isotopic genus-g
handlebodies.

Remark 4.2. While not strictly necessary in the proof of Theorem 1.3, we can modify
the argument slightly so that the non-isotopic pair of handlebodies is specified (rather than
being indeterminately one of .H1; H�

1 / or .H2; H�
2 /).

To accomplish this, return to the genus-2 case and recall that H1 [ H2 is the knotted
3-sphere L � S5 with Hi � Vi Š B5 so that L intersects S4 D @Vi in an unknotted
genus-2 surface U . Let ..A1; B1/; .A2; B2// be a symplectic basis of U with each Aj

bounding a disk in H1 and each Bj bounding a disk in H2. Push H1;H2 into S4. Perform
a smooth isotopy of S4 (extended to all of S5) that takes H1 to a handlebody in a smooth
equatorial S3 of S4, and let H3 WD S3 n H1. Set H�

1 WD H1. Note that this isotopy need
not fix U , and will take H2 to some potentially complicated handlebody in S4 with the
same boundary as H1. If H1; H2 are pushed back into V1; V2 respectively, their union is
a 3-sphere isotopic to L, so still not topologically isotopic to the unknotted 3-sphere.
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Fig. 2. The surface U on which ..A1; B1/; .A2; B2// is a symplectic basis, as also is
..A1; C1/; .A2; C2//. For each i , the curve Ai bounds a disk into H1, the curve Bi bounds a
disk into H2, and Ci bounds a disk into H3 (see Remark 4.2). We include curves 
1; 
2. There
is an automorphism � of U , fixing A1 and A2 pointwise, that takes Bi to Ci . Up to isotopy rel.
boundary in the complement F WD U n �.A1 t A2/, the map � is a product of Dehn twists about

1, 
2, and curves parallel to components of @F . Here we draw a general situation, but in Remark
4.2 we show how to perform an isotopy of S5 before choosing C1; C2 so that Ci D Bi for each i ,
and thus H2 and H3 are compressing curve equivalent.

If H2;H3 are compressing curve equivalent, then we are done: set H�
2 WDH3 and push

the interior of each Hi and H�
i slightly into Vi . Since H�

1 [ H�
2 is an unknotted S3 and

H1,H�
1 are isotopic rel. boundary in V1, the handlebodies H2; H�

2 are not topologically
isotopic rel. boundary in the 5-ball V2.

In general, we cannot expect H2; H3 to be compressing curve equivalent. Let C1; C2

be curves on U bounding disks in H3 so that ..A1; C1/; .A2; C2// are a symplectic
basis for U (again using Waldhausen’s theorem). Take the intersection points Ai \ Bi

and Ai \ Ci to agree for each i , and let � W U ! U be a surface automorphism with
�.Bj / D Cj for each j and that fixes each Ai pointwise. Then � restricts to a boundary-
fixing automorphism of the planar surface F WD U n �.A1 [A2/. Let 
1; 
2 be separating
curves on F as in Figure 2. Then �0.Aut.F // is generated by Dehn twists about the four
boundary components of F and the curves 
1; 
2. In particular, this means that up to
isotopy, �.
1/ is obtained from 
1 by a sequence of Dehn twists about 
1 and 
2.

Note that 
1 is separating in U . Then we may perform a smooth isotopy of S4 (exten-
ded to S5) taking H1 to itself (setwise) so that the induced automorphism on U is a Dehn
twist (of either sign) about 
1. In the top row of Figure 3, we show how to perform another
smooth isotopy of S4 (extended to S5) taking H1 to itself so that the induced automor-
phism on U is a composition of a Dehn twist about 
2 (of either sign) and Dehn twists
about A1 and A2 of the opposite sign. Thus, by performing a sequence of these isotopies
before choosing H3, we may assume that �.
1/ D 
1.

Now we have arranged that Ci D �.Bi / is obtained from Bi by Dehn twists about Ai .
Since q.ŒAi �/ D q.ŒBi �/ D q.ŒCi �/ D 0, Ci is obtained from Bi by an even number of
Dehn twists about Ai for each i . In the bottom row of Figure 3, we show another smooth
isotopy of S4 (extended to S5) taking H1 to itself so that the induced automorphism
on U is given by two Dehn twists about Ai (of either sign). By performing a number
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Fig. 3. Each row depicts an isotopy of S4 taking H1 to H1 setwise, as in Remark 4.2. In the top
row, from left to right the induced automorphism on U is isotopic to a product of right-handed Dehn
twists A1 and A2 and a left-handed Dehn twist about 
2. In the bottom row, from left to right the
induced automorphism of U is isotopic to two right-handed Dehn twists about Ai . The handedness
of all relevant Dehn twists can be reversed by reversing the illustrated isotopy.

of these isotopies (again before choosing H3) we may take Ci D Bi , so H2 and H3

are compressing curve equivalent. Then set H�
2 WD H3 and push the interiors of both

H2; H�
2 slightly into V2. The smooth handlebodies H2; H�

2 are not topologically isotopic
rel. boundary in V2 Š B5.

So far, we have only considered the genus-2 case. As in the proof of Theorem 1.3,
if we simultaneously add g � 2 solid tubes to H2; H�

2 , the resulting smooth genus-g
handlebodies are not topologically isotopic rel. boundary in V2 Š B5 either.
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