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Abstract. For every integer g > 2 we construct 3-dimensional genus-g 1-handlebodies smoothly
embedded in S* with the same boundary, and which are defined by the same cut systems of their
boundary, yet which are not isotopic rel. boundary via any locally flat isotopy even when their
interiors are pushed into B>. This proves a conjecture of Budney—Gabai for genus at least 2.
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1. Introduction

In this paper, we work in both the smooth and topological locally flat categories. We will
specify in which category various statements hold. As a shorthand, we will sometimes
write “topological”, but implicitly mean “topological and locally flat.”

The goal of this paper is to obstruct isotopies rel. boundary between two boundary-
parallel handlebodies (by which we always mean 3-dimensional 1-handlebodies) that are
properly embedded in B> and are homeomorphic rel. boundary as 3-manifolds.

Definition 1.1. Let H; and H» be genus-g handlebodies that are both bounded by the
same surface F'. We say that H; and H, are compressing curve equivalent if there exist g
disjoint simple closed curves Ay, ..., Ag in F such that F \ v(4;) is planar, and each 4;
bounds disks in both H; and H5.

If H, and H, are handlebodies properly embedded in B> with common boundary
which are homeomorphic rel. boundary as 3-manifolds, then they are compressing curve
equivalent.

Our motivation is the following conjecture of Budney and Gabai:
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Conjecture 1.2 ([3, Conjecture 11.3]). For each g > 0 there exist 3-dimensional genus-g
handlebodies Hy, Hy C S* such that 0H; = 0H, and H,, H, are compressing curve
equivalent, but Hy is not isotopic to Hy via an isotopy that fixes 0H;.

Budney and Gabai [3] provided examples satisfying Conjecture 1.2 for g = 0, ob-
structing smooth isotopy rel. boundary. We prove a stronger version of this conjecture for
g=2

Theorem 1.3. There exist smooth genus-2 compressing curve equivalent handlebodies
Hi and H, embedded in S* with dH, = 0H>, such that if H,, H, are boundary-summed
with identical collections of g — 2 smooth solid tori to obtain smooth genus-g > 2 handle-
bodies H 1 ﬁz, the handlebodies H 1 and ﬁz are not topologically isotopic rel. boundary
even when their interiors are pushed into B°.

In particular, in Theorem 1.3, boundary-summing g — 2 solid tori to H; and H; yields
a pair of genus-g handlebodies satisfying Conjecture 1.2.

In contrast, the 3-balls constructed by Budney—Gabai become smoothly isotopic rel.
boundary when their interiors are pushed into B>. This isotopy can be seen explicitly
once one understands their construction, since Budney and Gabai construct their 3-balls
explicitly. In fact, any two 3-balls embedded in S* with the same boundary become iso-
topic rel. boundary when their interiors are pushed into B>, as proved by Hartman [4].
(This statement can be made in either the smooth or topological category.) This holds
for pairs of (n — 1)-dimensional balls embedded in S” for all n > 3; for disks in S3 this
follows easily from the Schoenflies theorem and in higher dimensions it follows from the
unknotting conjecture.

Proof that (n — 1)-balls in S™ become isotopic in B*™! forn > 4. Let By and B, be
(n — 1)-balls embedded in §” with the same boundary. View S” as an equator of S"*!,
so that S cuts S”*! into two balls W and W’. Push the interior of B, slightly into W so
that B; U B, is an embedded codimension-2 sphere inside S"*! = W U W',

The complement S”*1 \ (B; U B,) is homotopy equivalent to a circle, so By U B,
bounds an n-ball V inside S”*! (by [14] in the topological category; additionally [9] in
the smooth category for n > 4 or [17, Corollary 3.1] and [13, Theorem 2.1] in the smooth
category for n = 4). If V' C W, then B; (with interior pushed into W) is isotopic rel.
boundary to B, in W = B"*! and we are done.

Suppose the interior of the ball V intersects W’. Let By x I be a thickening of B;
in 711 5o that

e Bj isidentified with By x {1/2},

e By x[0,1/2] C W and By x[1/2,1] C W,

e 0By x [1/2,1] C B>.

Since Bj is a ball, we can isotope V rel. boundary so that V Nv(By) = By x[1/2,1]C W.
Note 3V N W’ = By C dW'. Then W' is (homeo/diffeo)morphic to B"~! x I x I

with By = B"~! x {1/2} x {0}. (Note that this parametrization is unrelated to the previous
thickening of By.) Here, B"~! x I x {0} lies in 3W’. Up to reparametrization, we have
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V N W’ contained in B"! x I x [1/2, 1], so we may isotope the interior of V' outside
of W’ by isotopy along the second I coordinate extended to be supported in a small
neighborhood of B"~! x I x [1/2,1] € §"*!. Now V is a ball cobounded by B;, B,
that lies completely within W. ]

Our construction necessarily yields handlebodies of genus at least 2. There is thus an
obvious open question left about solid tori.

Question 1.4. Do there exist solid tori in S* with the same boundary that are compress-
ing curve equivalent but are not isotopic rel. boundary? Do they necessarily become
isotopic rel. boundary when their interiors are pushed into B> ?

Answering the first part of Question 1.4 positively would confirm Conjecture 1.2.
In a preprint of this paper, we also asked whether any two 3-balls in S* with the same
boundary become isotopic rel. boundary when their interiors are pushed into B?; this (as
mentioned above) was answered positively by Hartman [4].

2. Double slicing

Our obstruction to isotopy rel. boundary comes from double sliceness (or more precisely,
obstructing double sliceness) of 2-knots.

Definition 2.1. A 2-knot K is the image of a smooth embedding from S? to S*. We
say that K is (topologically/smoothly) unknotted if K is the boundary of the image of a
(topological/smooth) embedding of B3 in S*.

More generally, a positive-genus surface in S* is said to be (topologically/smoothly)
unknotted if it bounds an embedded handlebody in S* in the appropriate category.

It is a theorem of Kervaire [8] that every (topological/smooth) 2-knot is slice, in the
sense that it bounds a (topological/smooth) 3-ball in B>. However, Stoltzfus [15] showed
that not every 2-knot is topologically doubly slice.

Definition 2.2. Let K be a 2-knot. We say that K is (topologically/smoothly) doubly slice
if, writing S 5 as the union of two 5-balls along their boundary W = S 4 there exists a
(topological/smooth) embedding f : B* — S such that

homeor/diff
>~

(W, W N f(0B*) (S*, K).

In words, K is doubly slice when K is an equator of an unknotted 3-sphere in S° in
the appropriate category.

Ruberman [10] gave convenient examples of 2-knots that are not doubly slice (using
different techniques than Stoltzfus, who actually obstructed algebraic double sliceness, a
related property that is implied by double sliceness).

Theorem 2.3 ([10]). The 5-twist spun trefoil is not smoothly doubly slice.
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While Stoltzfus obstructs topological double sliceness (i.e. obstructs a 2-knot from
being a cross-section of a locally flat, topologically unknotted 3-sphere), Ruberman’s
theorem involves smooth topology. Ruberman gives an invariant that obstructs double
sliceness which is shown to be well-defined using Rokhlin’s theorem applied to a smooth,
spin 4-manifold cobounded by a smooth 3-manifold in B>. When applied directly, he
thus obstructs the 5-twist spun trefoil from being smoothly doubly slice. By work of Wall
[17, Corollary 3.1] and Shaneson [13, Theorem 2.1] (or more precisely a theorem of
Wall that rested on a conjecture later proved by Shaneson), every smooth 3-sphere in S°>
that is topologically unknotted is also smoothly unknotted. Thus, we can rephrase The-
orem 2.3 in a seemingly sharper way: if L is a smooth 3-sphere in S> admitting the 5-twist
spun trefoil as a cross-section (via a smooth splitting of S°), then L is not topologically
unknotted.

This is a subtle point — Hillman [5] showed that the 5-twist spun trefoil is a cross-
section of a locally flat unknotted 3-sphere, i.e. is topologically doubly slice. We conclude
that such a 3-sphere cannot be smoothed without changing its intersection with the 4-
sphere.

We focus on Ruberman’s obstruction rather than Stoltzfus’s because it is easier for
us to give an explicit example of a 2-knot to which Ruberman’s proof applies. This is
important because we will use another property of this particular 2-knot which we discuss
in the next section (see Proposition 3.3).

3. Constructing slice 3-balls

By Kervaire [8], we know that every 2-knot is slice. In this section we give a procedure
for constructing a 3-ball in B> bounded by a specific 2-knot in 9B°.

Definition 3.1. Let X be an oriented genus-g surface in an orientable 4-manifold X. Let
n be an arc in X with endpoints on X that is disjoint from X in its interior and is not
tangent to ¥ near its boundary. Let /& be a 3-dimensional 1-handle with core arc 7 and
feet on X with the property that surgering X along H yields an orientable genus-(g + 1)
surface X,. By Boyle [2], the handle 4 is determined by 7 up to smooth isotopy in a
neighborhood of 7.

We say that X, is obtained from X by attaching a tube along 1.

The following lemma of Hosokawa—Kawauchi [7] is very well known (and has been
proved in much greater generality by Baykur—Sunukjian [1]).

Lemma 3.2 ([7]). Let K be a smooth 2-sphere in S*. For some n, there exists a collection
of n arcs n1, ..., N, such that attaching smooth tubes to K along ny, ..., n, yields a
smoothly unknotted genus-n surface.

Proof. Let Y be an oriented 3-manifold smoothly embedded in $* with boundary K. Fix
a relative handle decomposition on Y. Let 1y, ..., n, be cores of the 1-handles of this
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decomposition. Then K, .. ,, bounds a copy of ¥ with the relative 1-handles deleted,
which is a smooth handlebody. We conclude that K3, .. 5, is smoothly unknotted. |

Satoh [11] gave examples of when the tubings prescribed by Lemma 3.2 are particu-
larly simple.

Proposition 3.3 ([11]). Let K be a k—twist spun trefoil for some k. Then a single tube
can be attached to K to obtain a smoothly unknotted torus.

Before stating the main lemma of this section, we describe some useful work of Hirose
on isotopies of unknotted surfaces that makes use of the Rokhlin quadratic form.

Definition 3.4. Let X be a genus-g surface in S*. The Rokhlin quadratic form on X is a
quadratic form ¢ : H1(X;7Z) — Z /27 defined as follows.

Given a primitive element @ € H;(X;Z), let C be a simple closed curve on X repres-
enting .. Let P be a disk in S* bounded by C that is framed, i.e. so that the 1-dimensional
subbundle of the normal bundle of C that is tangent to X extends over all of P. Then

q(@) = |I3 N 2| (mod 2).

For our purposes, a symplectic basis ((A1, B1), ..., (Ag, Bg)) of a genus-g surface F
consists of simple closed curves Ay, ..., Ag, By, ..., By on F such that the following
are all true:

[A1], ..., [Ag] are linearly independent in H; (F;Z),
[B1].....[Bg] are linearly independent in H;(F;Z),
e A;iNA;j=B,NB; =4, NB; =0fori # 7,

A; and B; intersect transversely in one point.

Hirose [6] showed that the Rokhlin form determines equivalence of symplectic bases
on unknotted surfaces in S*.

Theorem 3.5 ([6]). Let Ug be an unknotted genus-g surface in S*. Fix two symplectic
bases of curves ((A1, B1),...,(Ag, Bg)) and (A}, BY), ..., (Ay, By)) on Ug. Then there
is an ambient isotopy of S* taking Uy, to itself and taking A;, B; to Aj, B! for each i if
and only if q([Ai]) = q([A4;]) and q([Bi]) = q([B;]) for each i.

Lemma 3.6. Leth: B> — [0, 1] be the radial function. If a 2-knot K can be transformed
into an unknotted surface U, by attaching n tubes, then K bounds a 3-ball B in B> such
that h|p is Morse with one index-0 point, n index-1 points, and n index-2 points.

Proof. Let Ay, ..., A, be belt circles of the tubes attached to K to obtain U,. Since
each A; bounds a framed disk (the cocore of the 3-dimensional 1-handle H; used to
perform the tube surgery) whose interior is disjoint from U,,, ¢([A4;]) = 0. Choose curves
Bi,...,B, on U, suchthat (A1, B1),..., (A, By)) is a symplectic basis of U,.

If ¢([B;]) = 1, then let C; be a curve obtained by cut-and-pasting A; and B;, so
[Ci] = [A;] + [B;] and the curves A;, B;, C; pairwise intersect in a single point. Since ¢
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Fig. 1. A symplectic basis ((A1, B1). ..., (An, Bx)) on an unknotted genus-n surface in S*. We
have shaded a genus-n handlebody in which the 4; curves bound disks; the closure of its comple-
ment in this 3-dimensional cross-section is a genus-n handlebody in which the B; curves bound
disks. Gluing these two handlebodies together yields an S that splits S* into two smooth 4-balls.

is a quadratic form, we have ¢([C;]) = q([4;]) + ¢([Bi]) + |4i N Bi| =0+ 1+1=
0 € Z/27Z. Then redefine B; := C;; we thus arrange for ¢([B;]) = 0 for all ;.

By Theorem 3.5, U, can be isotoped so that ((Ay, B1), ..., (A4, By)) is taken to the
standard symplectic basis (see Figure 1), so we conclude that By, ..., B, bound disjoint
framed disks Ay, ..., A, whose interiors are in the complement of U,,. Specifically, the
disks Ay, ..., A, may be taken to lie in a copy of S3 that contains U,. These disks
have the property that when A; is thickened to A; x [ (so that (dA;) x I is contained
in U, and ﬁi x [ is disjoint from U,), compressing U, along all of the A; yields the
unknotted sphere Uy, which bounds a 3-ball D. We can now describe B via the following
intersections. (Recall that 2~!(1) = dB> and that 21 (0) is the central point of B>.)

BNh'(3/4,1] = K x (3/4,1],
Bnh'3/4y=KU|JH;.
i=1
BNh™Y(1/2,3/4) = U, x (1/2,3/4),

Bnh{1/2} = U, U J (A x D).
i=1
BNh 1 (1/4,1/2) = Uy x (1/4,1/2),
BNh1{1/4) = D,
Bnhl0,1/4) = 0.

In words, B is built from dB = K x {1} by the following steps (in order):
1. Thicken K.

2. Attach n 3-dimensional 1-handles whose belts are Ay, ..., 4,.
3. Attach n 3-dimensional 2-handles along curves By, ..., B, that are chosen so that
[Ai N Bj| = &ij.

4. Attach a 3-dimensional 3-handle to the boundary component which is not K.

Because |4; N Bj| = §;;, the 1- and 2-handles in this decomposition of B can be
canceled, and hence B is a 3-ball. After a small perturbation of B, &|p is Morse with one
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index-0 critical point (in h~!(1/4)), n index-1 critical points (in A~!(1/2)) and n index-2
critical points (in 271(3/4)). L]

4. Proof of Theorem 1.3

The ability to position the handlebody H in B> so that |y has only one index-0 point
will be particularly useful.

Lemma 4.1. Let H be a genus-g handlebody smoothly and properly embedded in B>,
and let h : B> — [0, 1] be the radial function. Assume that the function h|g is Morse with
a single index-0 critical point and with no index-2 or index-3 critical points. Then there
is a smooth isotopy of H rel. boundary taking H into 3B>.

Proof. After choosing a gradient-like flow for /|g, & induces a handlebody decomposi-
tion of H with one O-handle and g 1-handles. Let 79 and #; be chosen so that 0 < ¢y <
t1 < 1, with the index-0 critical point of |y lying below 2~ (zp), and the g index-1
critical points sitting between h~!(z9) and A~ (¢;). Then in A7 (tp) = S* the level set
S:=h |;1 (to) is an unknotted 2-sphere, which bounds a properly embedded 3-ball W =
h|7'[0. 1] in h=1([0, zo]). Let W' be the image of W after an isotopy rel. boundary to
h=(to), so W'is a 3-ball in 2~ (¢) bounded by S.

As ¢ increases from 7o to 71, the cross-sections h|5 (t) of H change by attaching
tubes along some arcs 71, ..., y. Push these tubes down to A1 (zy), so that iz (t9)
consists of the union of the unknotted 2-sphere S along with g 3-dimensional 1-handles
by, ...,bg attached to S along each 1y, ..., ng respectively. For small ¢ > 0, nearby level
sets 1| (to — €) now consist of only (a parallel copy of) the sphere S, while i |7 (o + €)
is a genus-g surface parallel to one obtained from adding tubes to S along the arcs n;.

Because 71 (S*\ S) = Z, any two arcs based at a pair of points in S and with interiors
disjoint from S are homotopic and hence isotopic in S* \ S. This allows us to isotope
H so that the arcs n; (and hence the 3-dimensional 1-handles b;) avoid the ball W’ in
h=(to).

Now we can isotope W to W’ C h™! (o), so M := h7;! (o) is the genus-g handlebody
W' Uby U---U b,. If we push the interior of M slightly below 4~ (z9), the function h|g
has no critical values in [tg, 1]. The level sets h|l__11 (t) for tp <t <1 trace out an isotopy
of a genus-g surface F in S* that can be extended to an ambient isotopy f; (o <t < 1)
of $*, with f, = id. If we parametrize 1~ ([to, 1]) = dB* x [to, 1], then

H = {(fio(M),10)} UL(f: (F),1) [to =t = 1},
which is isotopic rel. boundary to {( f1 (M), t0)} U {(f1(F),t)|to <t < 1}. This can in
turn be pushed into dB>. |

Proof of Theorem 1.3. First we prove the theorem for g = 2. We will then extend this
strategy to larger g. Let K be the 5-twist spun trefoil. By Theorem 2.3, K is not smoothly
doubly slice. By Proposition 3.3 and Lemma 3.6, there is a smoothly embedded 3-ball B
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in B> whose boundary is K and such that the radial function on B> restricts to a Morse
function on B with one index-0 point, one index-1 point, and one index-2 point.

Double B along K to obtain a smooth 3-sphere L in S>. (Thatis, (S°, L) = (B>,B)U
(B3, B). We will write B and B to denote the corresponding halves of L.) By replacing
the radial function & on (B>, B) with 2 — h, and gluing to the radial function on (B, B),
we obtain a function S° — [0, 2] which (by abuse of notation) we continue to denote
by &. This new function restricts to a Morse function 4|z, on L with the following critical
points, in order from highest to lowest (descending in the table, naturally):

(vi) index-3 from B: the dual of the index-0 point of B,
(v) index-2 from B: the dual of the index-1 point of B,
(iv) index-1 from B the dual of the index-2 point of B,
@iii) index-2 from B,

(ii)) index-1 from B,

(i) index-0 from B.

Note that the critical points of &|z are not in order. However, we may interchange the
heights (with respect to /) of the (iv) index-1 point and the (iii) index-2 point by smoothly
isotoping L, so that both of the index-1 points of |, are below both the index-2 points.
After this isotopy, fix alevel S* = h~!(¢y) between the index-1 and index-2 critical points
of |1, separating S° into two 5-balls V; := h~1[0, #o] and V5 := h™[to, 2]. This S* inter-
sects L in a smooth genus-2 unknotted surface U = h|Z1 (to). We have L = Hy Uy H,
for two smooth genus-2 handlebodies H; and H,, with H; C V; lying below U and
H, C V, lying above U. Note that /|g, and —h|p, each have one index-0 point and
two index-1 points. By Lemma 4.1, H; is smoothly boundary-parallel in V; and H, is
smoothly boundary-parallel in V5.

Since (Hy, H») is a Heegaard splitting of S3, by Waldhausen’s theorem ([16]; see [12]
for exposition) there exists a symplectic basis ((A1, B1), (A2, B2)) of U such that each A4;
bounds a disk in H; and each B; bounds a disk in H,. Since H;, H, are each boundary-
parallel, we may isotope such a disk bounded by A; or B; from B> to S* to obtain a
framed disk with boundary on U and interior disjoint from U. We conclude ¢ ([4;]) =
q([Bi]) = 0.

By Theorem 3.5, there is a diffeomorphism of S* taking (U (A1, By). (A2, B>)) to
the standard unknotted surface with standard curves as in Figure 1 (drawn for general
genus). Then U bounds smooth handlebodies H;* and H. in S* with A; bounding a
disk in H{ and B; bounding a disk in HJ', and with H" Uy HJ an unknotted 3-sphere.
Push H{ into V; and HJ into V,. Since L = H; Uy H, is topologically knotted, L is
not topologically isotopic to H{" Uy HJ, which is unknotted. Therefore, if H; is topo-
logically isotopic rel. boundary in V; = B> to H}", then H} is not topologically isotopic
rel. boundary in V, =~ B> to H;. This completes the proof for g = 2, with the pair of
non-isotopic handlebodies being either (Hy, H{") or (H», H;).

To extend the above argument to larger g, we simply perturb the 3-ball B. Fix g > 2
and let B be obtained from B by perturbing B with respect to / to introduce g — 2 pairs
of canceling index-1, index-2 pairs to /| 5. Now consider the 3-sphere L=BUBinS".
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Again, K is a cross-section of L, so L is not topologically unknotted. (And more directly,
Lis smoothly isotopic to L so of course L is not topologically unknotted.) In words, we
obtain L by gluing a copy of Btoa copy of B (with opposite orientations); note that Lis
not expressed as a double. As constructed, the radial function on B* restricts to a Morse
function on L with the following critical points:

(vii) index-3 from B; the dual of the index-0 point of B,

(vi) index-2 from B: the dual of the index-1 point of B,

(v) index-1 from B: the dual of the index-2 point of B,
(iva(n—2)) index-2
(iva(n—2)—1) index-1
}from the perturbations that yield B from B,
(ivy) index-2
(ivy) index-1
(iii) index-2 from B,
(ii)) index-1 from B,
(i) index-0 from B.

In total, | ; has one index-0 point, g index-1 points, g index-2 points, and one index-3
point. Smoothly isotope L to move the index-1 critical points below 271 (fy) = S* and
the index-2 critical points above h~!(fy). Then A~ !(zy) intersects Lina genus-g sur-
face U, and H; = h|7'0, t0] and H, = h|z1 [t0, 1] are smooth genus-g handlebodies that
are smoothly boundary-parallel (via Lemma 4.1) in the 5-balls V;, V, respectively. By the
same argument as in the g = 2 case (recall Figure 1), U bounds smooth boundary-parallel
handlebodies A ; and ﬁz* respectively in Vq, V, such that ﬁi and ﬁi* are compressing
curve equivalent but A 1 Up ﬁz"‘ is unknotted. We similarly conclude that if A is topolo-
gically isotopic rel. boundary to H*, then H, is not topologically isotopic rel. boundary
to I-AIZ* Then either (ﬁl, ILAII*) or (ﬁz, ﬁz*) is the desired pair of non-isotopic genus-g
handlebodies. ]

Remark 4.2. While not strictly necessary in the proof of Theorem 1.3, we can modify
the argument slightly so that the non-isotopic pair of handlebodies is specified (rather than
being indeterminately one of (Hy, H{') or (H,, H})).

To accomplish this, return to the genus-2 case and recall that H; U H> is the knotted
3-sphere L C S° with H; C V; = B® so that L intersects S* = 9V; in an unknotted
genus-2 surface U. Let ((41, B1), (A2, B2)) be a symplectic basis of U with each 4;
bounding a disk in H; and each B; bounding a disk in H,. Push Hy, H, into S*. Perform
a smooth isotopy of §* (extended to all of ) that takes H to a handlebody in a smooth
equatorial S of S*, and let H3 := S3\ H;. Set H]* := H;. Note that this isotopy need
not fix U, and will take H, to some potentially complicated handlebody in S* with the
same boundary as H;. If H;, H, are pushed back into V7, V, respectively, their union is
a 3-sphere isotopic to L, so still not topologically isotopic to the unknotted 3-sphere.
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Ay 71 Az

Fig. 2. The surface U on which ((A1, B1), (A2, B2)) is a symplectic basis, as also is
((A1, C1), (A2, C3)). For each i, the curve A; bounds a disk into Hp, the curve B; bounds a
disk into H3, and C; bounds a disk into H3 (see Remark 4.2). We include curves yp, y»2. There
is an automorphism ¢ of U, fixing A; and A, pointwise, that takes B; to C;. Up to isotopy rel.
boundary in the complement F := U \ v(A; U Ap), the map ¢ is a product of Dehn twists about
Y1, V2, and curves parallel to components of dF . Here we draw a general situation, but in Remark
4.2 we show how to perform an isotopy of S before choosing C1, C5 so that C; = B; for each i,
and thus H, and H3 are compressing curve equivalent.

If H,, H; are compressing curve equivalent, then we are done: set H := H3 and push
the interior of each H; and H* slightly into V;. Since H;* U H; is an unknotted S* and
Hi,H] are isotopic rel. boundary in Vj, the handlebodies H», H, are not topologically
isotopic rel. boundary in the 5-ball V5.

In general, we cannot expect H,, H3 to be compressing curve equivalent. Let C;, Cy
be curves on U bounding disks in H3 so that ((A1, Cy), (42, C3)) are a symplectic
basis for U (again using Waldhausen’s theorem). Take the intersection points A; N B;
and A; N C; to agree for each i, and let ¢ : U — U be a surface automorphism with
¢ (Bj) = Cj for each j and that fixes each A; pointwise. Then ¢ restricts to a boundary-
fixing automorphism of the planar surface F := U \ v(A; U A). Let y1, Y2 be separating
curves on F as in Figure 2. Then 7o (Aut(F)) is generated by Dehn twists about the four
boundary components of F' and the curves yi, y». In particular, this means that up to
isotopy, ¢ (1) is obtained from y; by a sequence of Dehn twists about y; and y,.

Note that y; is separating in U. Then we may perform a smooth isotopy of S* (exten-
ded to S°) taking H to itself (setwise) so that the induced automorphism on U is a Dehn
twist (of either sign) about y;. In the top row of Figure 3, we show how to perform another
smooth isotopy of S* (extended to S°) taking H, to itself so that the induced automor-
phism on U is a composition of a Dehn twist about y, (of either sign) and Dehn twists
about A; and A, of the opposite sign. Thus, by performing a sequence of these isotopies
before choosing H3, we may assume that ¢(y;) = y1.

Now we have arranged that C; = ¢(B;) is obtained from B; by Dehn twists about A;.
Since ¢([A4;]) = q([Bi]) = q([Ci]) = 0, C; is obtained from B; by an even number of
Dehn twists about A; for each i. In the bottom row of Figure 3, we show another smooth
isotopy of S* (extended to S°) taking H; to itself so that the induced automorphism
on U is given by two Dehn twists about A; (of either sign). By performing a number
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Fig. 3. Each row depicts an isotopy of S* taking H; to H setwise, as in Remark 4.2. In the top
row, from left to right the induced automorphism on U is isotopic to a product of right-handed Dehn
twists A1 and A5 and a left-handed Dehn twist about y,. In the bottom row, from left to right the
induced automorphism of U is isotopic to two right-handed Dehn twists about A;. The handedness
of all relevant Dehn twists can be reversed by reversing the illustrated isotopy.

of these isotopies (again before choosing H3z) we may take C; = Bj, so H, and H3
are compressing curve equivalent. Then set H, := H3 and push the interiors of both
H,, HJ slightly into V. The smooth handlebodies H», H, are not topologically isotopic
rel. boundary in V, =~ B>.

So far, we have only considered the genus-2 case. As in the proof of Theorem 1.3,
if we simultaneously add g — 2 solid tubes to H,, H;, the resulting smooth genus-g
handlebodies are not topologically isotopic rel. boundary in V, 2 B either.
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