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Abstract—Cryptocurrencies fluctuate in markets with high
price volatility, which becomes a great challenge for investors.
To aid investors in making informed decisions, systems pre-
dicting cryptocurrency market movements have been developed,
commonly framed as feature-driven regression problems that
focus solely on historical patterns favored by domain experts.
However, these methods overlook three critical factors that sig-
nificantly influence the cryptocurrency market dynamics: 1) the
macro investing environment, reflected in major cryptocurrency
fluctuations, which can affect investors collaborative behaviors,
2) overall market sentiment, heavily influenced by news, which
impacts investors strategies, and 3) technical indicators, which
offer insights into overbought or oversold conditions, momentum,
and market trends are often ignored despite their relevance in
shaping short-term price movements. In this paper, we propose a
dual prediction mechanism that enables the model to forecast the
next day’s closing price by incorporating macroeconomic fluctu-
ations, technical indicators, and individual cryptocurrency price
changes. Furthermore, we introduce a novel refinement mech-
anism that enhances the prediction through market sentiment-
based rescaling and fusion. In experiments, the proposed model
achieves state-of-the-art performance (SOTA), consistently out-
performing ten comparison methods in most cases.

Index Terms—Cryptocurrency Prediction, Large Language
Model, Market Sentiment Analysis, Predictive Analytics

I. INTRODUCTION

Cryptocurrencies have recently become a topic of con-
versation due to their significant impact on the financial
world, driven by sudden drops and shocks [1], high return
opportunity, and the innovative blockchain technology [2],
[3] behind them. Unlike traditional financial markets such as
bonds and stocks, the cryptocurrency market is characterized
by a comparatively smaller market capitalization and pro-
nounced volatility in short-term fluctuations [4]. On one hand,
a large proportion of cryptocurrency investors seek short-term
investments to exploit opportunities for rapid and substantial
returns [5], thereby intensifying market volatility. On the other
hand, given this context, these investors tend to be highly
sensitive to market-influencing events reported in news [6],
such as regulatory actions and fraud events, with their of-
ten exaggerated reactions further fueling market fluctuations.
Regardless, cryptocurrency is increasingly recognized as a
viable alternative investment avenue by those with higher risk
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tolerances or an interest in short-term, high-yield opportu-
nities [7]. Therefore, the ability to accurately predict short-
term cryptocurrency prices not only holds significant practical
importance but also contributes integrally to understanding the
dynamics of the financial markets as a whole.

Many studies have employed machine learning techniques
like SVM and Random Forests [8] to forecast major cryptocur-
rency returns based on historical price data. However, these
methods often exhibit unstable performance across different
timescales and cryptocurrencies [8] due to their inability
to capture complex, rapidly changing market dynamics. To
address this, recent research has focused on deep learning
models such as LSTM, bi-LSTM, GRU [9]-[11], and CNN-
LSTM [12]. Yet, these studies are confined to the top cryptos
by market capitalization, overlooking those with different
behaviors and lower liquidity. Furthermore, they primarily rely
on historical price data without incorporating technical indica-
tors and sentiment analysis, potentially missing the influence
of overbought or oversold market conditions, market sentiment
shifts, and external news events on price volatility.

More recently, researchers have integrated market sentiment
by analyzing news data alongside historical price data to
predict cryptocurrency prices, specifically focusing on Bitcoin
and Ethereum [13], [14]. NLP techniques categorize news
sentiment, which is then combined with historical price data
and fed into deep learning models like LSTM to predict
future prices [15]. However, such studies are rare and typically
limited to specific cryptocurrencies because they rely on
manually labeling sentiment data, a labor-intensive process
that doesn’t scale well for real-time predictions across multiple
cryptocurrencies [15]. Moreover, using investors’ expectations
from news alone as a trading strategy has been found inade-
quate, as concluded by Brown and Cliff [16].

To tackle these challenges, we introduce “CryptoPulse,” a
novel framework for forecasting next-day closing prices by
leveraging three primary factors: 1) broad market sentiment
from real-time news, 2) complex price dynamics from histor-
ical data and technical indicators, and 3) the macro investing
environment indicated by fluctuations in major cryptocurren-
cies. In particular, the key contributions and highlights of this
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paper are summarized as follows:

o Formulated a novel framework for next-day cryptocur-
rency forecasting, leveraging short-term observations of
key market indicators including market sentiment, macro
investing environment, technical indicators, and inherent
pricing dynamics.

« Devised a prompting strategy using few-shot learning and
consistency-based calibration for effective LLM-based
market sentiment analysis of cryptocurrency news.

o Developed a dual-prediction mechanism that separately
forecasts prices based on macro conditions and cryp-
tocurrency dynamics, then fuses them using a market
sentiment-driven strategy for enhanced accuracy.

« Validated our model on a large-scale real-world dataset,
demonstrating effectiveness against ten comparison meth-
ods. This dataset, sourced from Yahoo Finance' and Coin-
telegraph?, along with the source code, will be publicly
available upon acceptance.

II. PROBLEM FORMULATION

Let C = {c;}}¥, denote the historical price data for N
cryptocurrencies. For the i-th cryptocurrency, the ¢; = {f;}7_;
is a sequence of feature vectors f, € R®, where f; includes
opening, closing, high, low prices, trading volume along with
the technical indicators such as stochastic %k, stochastic %d,
momentum, williams %r, a/d oscillator, disparity 7 and rate
of change of the i-th cryptocurrency on day t. Cryptocurrency
news from Cointelegraph is also collected, denoted as D =
{d¢}],, where d; = {d; }‘;ﬂ represents the set of articles for
day t. Our objective is to predict the next day’s closing price
of a target cryptocurrency using the past L days of historical
market prices, technical indicators and news, formulated as:

ﬁi+1 =49 (Ct7L+1:t7,Dt7L+1:t) s (D

where pi 41 is the predicted closing price for cryptocurrency
17 on day ¢t + 1, and g denotes our proposed model. This
prediction is crucial for medium-frequency cryptocurrency
trading strategies [17], [18].

III. METHODOLOGY

We present our proposed model, CryptoPulse, compris-
ing three main components: 1) macro market environment-
based next-day fluctuation prediction, 2) price dynamics-based
fluctuation prediction, and 3) market sentiment-based dual-
prediction rescaling and fusion. A key preprocessing step
calculates technical indicators for each trading day using past
price data to capture essential market patterns. An overview
of the model is shown in Figure 1.

A. Technical Indicator-Based Preprocessing

The seven technical indicators commonly used in mar-
ket movement prediction: Stochastic %K, Stochastic %D,
Williams %R (W%R), Accumulation/Distribution Oscillator
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Fig. 1. Overview of CryptoPulse architecture for next-day closing price
prediction.

(A/D Osc.), Momentum, Disparity 7 (D7), and Rate of
Change (ROC), are implemented as described in [19]-[21]
to preprocess the data. These indicators help capture various
market dynamics, such as momentum, price trends, and over-
bought/oversold conditions, providing valuable features for
predicting market movements.

B. Macro Market Environment-Based Fluctuation Prediction

The overall macro market environment (e.g., gold and
dollar value, policy, public attention) significantly influences
cryptocurrency price volatility [22]. However, quantifying this
environment is challenging, and most studies [23], [24] fo-
cus on specific indicators for individual cryptocurrencies. To
address this, we leverage the collective behavior of the top
n cryptocurrencies as a proxy for understanding the macro
market’s influence.

Let x, € RS represent a length-L series of observations
from the target cryptocurrency, extracted from c;, using only
five direct market features: opening price, closing price, high,
low, and trading volume, without technical indicators. Simi-
larly, let x,,, € R™"*L*5 denote a series of the same length L
from the top n cryptocurrencies by market capitalization. Both
series are processed using a 1D convolutional layer for value
and positional embeddings and a sinusoidal positional encod-
ing layer [25]. The embedded observations are represented as
xgm € RE*dm and xgr € REXdm,

Next, we seek to modulate the correlation and interaction
between price fluctuation patterns embedded in the target
cryptocurrency information szb and the macro environment
represented by x™°. We formulate this task as directing the
model to learn which sub-series of market behaviors from the
top n cryptocurrencies can be aggregated to most effectively
approximate the macro investing environment:

h,, = Z a,;r,,r, = roll (x‘:ffb, 7') , 2)

where h,,, € REX4m represents the learned representation of
the macro investing environment, and the function roll(-, 7)
cyclically shifts the input tensor along the temporal dimension
by 7 steps. The attention weight a, for each sub-series is
calculated by using the target cryptocurrency x™ as the query,

g
while all possible shifts of xS™ serve as both keys and values:

), atin(C™ 1)) (3)

Technically, the attention function attn(-, -) can be any time
series similarity function. In our experiments, we utilize the

ar = Softmax (attn(x
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period-based similarity calculation method, as introduced in
the paper [26].

At last, we use the learned macro investing tensor h,,
to directly predict the next day’s closing price fluctuation
of the target cryptocurrency Azil. Specifically, h,, goes
through a position-wise feed-forward layer [25], followed by
two separate linear layers along the temporal and feature
dimensions. Since these linear layers are used multiple times
in this paper, we will refer to this process as ((-) in the
subsequent sections. The estimated fluctuation is then em-
ployed to generate the first prediction for the next-day price:
ﬁZL’lH = p} + ﬁALH, where  is a scaling factor whose
calculation is detailed in Section III-D. In our experiments,
we use the top 5 cryptocurrencies to approximate the macro
environment.

C. Price Dynamics-Based Fluctuation Prediction

Predicting the next day’s closing price X, using historical
observations and technical indicators is a multivariate-to-
univariate time series forecasting task. However, we observed
that allowing the model to directly predict the next day’s
price results in poor projections due to the extreme volatility
of cryptocurrencies, leading to overly drastic predictions. To
address this, we first predict the next days fluctuation and
reconstruct the price using the previous day’s closing price:

153;11 =y + HA?L?H? A;;?H = f(xg), “4)
where ;ﬁiL’ 41 Is the predicted price, AZL’ 41 1s the predicted
fluctuation, p5 is the last observed price, « is a scaling factor
(Section III-D), and f is the prediction model. We observed
that Transformer and linear layers yield comparable results,
consistent with [27]. For computational efﬁc1ency, we adapted
the NLinear structure [27] to forecast A%? 731 by applying a
linear layer along the timeline on x4, normalized by the last-
day closing price.

D. Market Sentiment-Guided Dual-Prediction Rescaling and
Fusion

As mentioned in Section I, news media significantly influ-
ences fluctuations in cryptocurrency markets [6], [28], [29].
However, incorporating this factor into prediction models
is challenging because traditional sentiment analysis mod-
els [15], [30] often rely on datasets manually annotated for
specific scenarios, which are not scalable for real-time anal-
ysis in the dynamically changing cryptocurrency market. The
recent advancements in LLMs offer an alternative approach
for sentiment analysis without requiring extensive fine-tuning
on annotated datasets. Nevertheless, designing an effective
prompting strategy is crucial for analyzing cryptocurrency
news, as recent studies [31] have found that prompt patterns
significantly influence the responses of LLMs across various
tasks.

In this paper, we combined a “think-tank discussion”-
like prompt pattern with the few-shot learning technique to
simulate a situation where a group of cryptocurrency traders
collaboratively determines the market’s reaction to specific

news. Recent work suggests that few-shot learning can en-
hance accuracy and reliability [32], [33]. However, we found
that few-shot learning alone is insufficient. Firstly, the LLM’s
responses are unstable and sometimes yield different outcomes
even with the same prompt. Secondly, the model’s perfor-
mance is vulnerable to noisy contexts, which are common
in cryptocurrency news. For example, sentences like “the
movie is good,” if injected into the news, could increase
misclassification. As a result, we incorporated a “think-tank
discussion”-like prompt pattern into the few-shot learning
technique by repeating the following block multiple times with
k examples for three different sentiment labels (i.e., 3-way-k-
shot learning):
[m] different cryptocurrency traders are reading this
news. Each trader will assign a sentiment label from
[“negative”, “positive”, “neutral”’]. Then, each trader
will share their label with the group. The majority
label will be accepted. Return the majority label
without any other text. The news is [news content]
Label: [True sentiment label]
This approach aligns with consistency-based calibration meth-
ods [34], [35], which use agreement scores among LLM
“voters” to determine confidence. However, our method is
more efficient and cost-effective, as it avoids running the LLM
multiple times with the same prompt. In our experiments, we
set m to 3 and used GPT-3.5-Turbo [36] for sentiment analysis.
Incorporating cryptocurrency market sentiment is challeng-
ing due to its volatility, which may introduce noise. However,
we found that sentiment can effectively regularize fluctuation
predictions. First, the sentiment vector is embedded during the
observation window using the previously introduced structure,
producing a tensor s°™. This tensor serves two purposes:
(1) It passes through the ((-) structure from Section III-B,
followed by a Tanh activation, to generate x € (—1,1) for
regularizing price change predictions. (2) It combines with
emb to determine how to fuse the two predictions. This fusion
is crltlcal as market environment-based predictions are less
volatile, while price dynamics predictions are more volatile,
enhancing generality across cryptocurrencies:

v) * P,y = (X s (5)

CLINNTS

A~ .1
Pry1 =7 *Pryq + (1 -

IV. EXPERIMENT
A. Experiment Setup

Dataset: The proposed method is evaluated using real-
world data, including cryptocurrency prices from Yahoo Fi-
nance [37], a leading source of financial information in the
U.S., and news articles from Cointelegraph [38], a prominent
news outlet for blockchain and cryptocurrency analysis. The
price dataset includes historical prices for cryptocurrencies
with market valuations above $8 billion, spanning January 1,
2021, to April 1, 2024, and representing 92.18% of the total
market cap. From this price data, we calculated and incorpo-
rated seven widely-used technical indicators [19], [21], [39],
which are traditionally employed by market analysts to de-
rive market trend insights and enhance predictive capabilities
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TABLE I
FORECASTING RESULTS FOR THE TOP 5 INDIVIDUAL CRYPTOCURRENCIES, AS WELL AS AVERAGES FOR THE TOP 10, 15, AND 20. LOWER MAE AND
MSE VALUES, AND CORR VALUES CLOSER TO 1, INDICATE BETTER PERFORMANCE. THE BEST-PERFORMING MODEL IS HIGHLIGHTED IN BOLD, WITH
THE SECOND-BEST UNDERSCORED. T USES PRICE AND TECHNICAL INDICATORS, AND  USES PRICE, TECHNICAL INDICATORS, AND NEWS SENTIMENT.

Method Bitcoin Ethereum Tether Binance Coin

MAE MSE CORR MAE MSE CORR MAE MSE CORR MAE MSE CORR
svMmTt 0.5530  0.4239  0.0083 0.4420 0.3006  0.2317 0.3884  0.2552  0.2715 0.6887 0.6086  0.6072
RFf 0.5338 0.3778  0.0159 0.4808 0.3398 -0.372 1.2149 3.8364 -0.0804 0.6513 0.5827 -0.1409
GRU? 0.2299 0.0976  0.9810 0.1427 0.0387  0.9702 04731 03722 0.5120 0.1249  0.0294  0.9900
LSTM? 0.3396  0.2458  0.9445 0.1952  0.0888  0.9494 0.5147 0.4988  0.4456 0.2129  0.1036  0.9529
Bi-LSTM? 0.3235 0.2126  0.9675 0.1947  0.0751  0.9594 0.4464 03779 0.4864 0.1933  0.0714  0.9775
CNN-LSTM¥ 02749  0.1294  0.9403 0.3511 0.2548  0.8420 0.4946  0.4064  0.3361 0.2268  0.0902  0.9649
DLinear? 0.2975 0.1859 0.9725 0.4009 0.3555 0.4701 0.3963  0.2893  0.3098 0.2213 0.0816  0.9791
Linear? 0.3625 0.3199  0.9433 0.2600 0.1376  0.8748 0.4474  0.3510  0.2503 0.6565 0.8487  0.3896
NLinear? 0.1376  0.0306  0.9879 0.1065 0.0202 0.9815 0.3627 0.2283  0.6577 0.0948 0.0212  0.9902
Autoformer? 0.1604  0.0408  0.9848 0.1594  0.0383  0.9667 0.3929 0.2656  0.6130 0.1627  0.0447  0.9805
CryptoPulseit 0.0607  0.0095  0.9961 0.0529  0.0065  0.9937 0.3249  0.1891  0.6946 0.0563  0.0103  0.9949
Method Solana Top 10 Top 15 Top 20

MAE MSE CORR MAE MSE CORR MAE MSE CORR MAE MSE CORR
svMmt 0.5375 0.4269 0.1289 0.4305 0.2967 0.3191 0.4377 02955 0.3321 0.7813  2.3293  0.2077
RFf 0.6302 0.5464 -0.1028 0.6337 0.8240 -0.1880 0.7689  1.0265 -0.2067 0.9955 2.6771 -0.1491
GRU* 0.1709  0.0592  0.9822 0.3742  1.9460  0.8295 0.3142 1.6011  0.8839 0.4132 1.7916  0.9091
LSTM? 0.3246  0.1805  0.9404 04811 2.1543  0.7970 0.3520 0.8895  0.8379 0.5340 1.7531 0.8745
Bi-LSTM? 0.2979  0.1553  0.9210 0.3215 0.6710  0.8076 0.3394  1.1232  0.8468 0.5018 1.7740  0.8770
CNN-LSTM¥ 02655 0.1565 0.9436 0.4000 1.2353  0.7054 0.3490 0.8692  0.7689 0.5266  1.6552  0.8063
DLinear® 0.4651 0.4820 0.5740 0.3239 0.2873  0.6892 0.3123  0.2499 0.7314 0.3973 04790 0.7504
Linear? 0.2228 0.1013  0.9486 0.3721  0.4585 0.5743 0.3640 0.3925 0.6366 0.4408 0.5934  0.7025
NLinear® 0.1410 0.0297  0.9839 0.1565 0.0517  0.8865 0.1429  0.0430 0.9185 0.1387 0.0421  0.9380
Autoformer? 0.1474  0.0351 0.9814 0.2037 0.0842  0.8435 0.1919  0.0720  0.8841 0.1939  0.0744  0.9089
CryptoPulseit 0.0511  0.0064  0.9962 0.0905 0.0301 0.9073 0.0758 0.0224  0.9364 0.0774  0.0225  0.9516

for cryptocurrency forecasting. The news dataset comprises
25,210 articles from the Cointelegraph, spanning the same
period. This dataset captures sentiment and market-relevant
insights, complementing the price and technical indicator data
to support robust and accurate forecasting.

Metrics: Following [27], [40], we use MSE, MAE, and
cross-correlation (CORR) to evaluate models performance.

Comparison Methods: Ten SOTA baseline methods are
considered for comparison. We adopt the same settings as
the original papers. For models capable of directly incor-
porating technical indicators and sentiment labels alongside
price history, we report their performance on the full dataset
in the main results to ensure a fair comparison. Superscripts
are added in Table I to differentiate model variants based on
dataset configurations used for testing. The selected methods
include four general time series forecasting models: DLin-
ear [27], NLinear [27], Linear [27], and Autoformer [26];
three RNN-based methods: LSTM [10], [15], GRU [10], and
Bi-LSTM [10]; one hybrid RNN model: CNN-LSTM [12];
and two traditional machine learning methods adapted for
cryptocurrency forecasting: SVM [8] and RF [8].

We fixed the observation window at 7 days (i.e., L = 7)
and split the dataset chronologically into training, validation,
and test sets using a 7:1:2 ratio. All results are averaged over
five experiments

B. Main Results

We evaluate the performance of our proposed model, Cryp-
toPulse, by comparing it with ten SOTA models. Due to
space limitations, results for all 75 cryptocurrencies are not
included; instead, Table I presents performance for the top
five cryptocurrencies by market value and the average for the
top 10, 15, and 20 cryptocurrencies. This provides insights into
both individual cryptocurrency predictions and broader market
trends. All results are averaged over five experiments.

CryptoPulse consistently outperforms all baseline methods
across key metrics as shown in Table I. For the top 5 cryp-
tocurrencies, our model improves MAE by 10.4% to 63.8%
and MSE by 17.2% to 69.0% compared to the best method.
For the top 10, 15, and 20 cryptocurrencies, MAE improves
by 42.2% to 46.9% and MSE by 41.8% to 47.9%. These
results highlight the effectiveness of CryptoPulses design,
which incorporates macroeconomic approximations, technical
indicators, and market sentiment analysis to enhance cryp-
tocurrency price forecasting.

In addition to these results, we identified key insights
that contribute to improved performance. To understand these
factors, we conducted a comprehensive analysis by posing and
answering the following questions:

Are traditional machine learning models expressive
enough for this task? Deep neural networks often outperform
traditional models due to their superior expressive capacity,
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though traditional models can perform comparably in simpler
tasks. As shown in Table I, traditional models (SVM and RF)
perform significantly worse than deep learning models. To rule
out sentiment data as the cause, we conducted an ablation
study on our model and the Linear model (the smallest deep
learning model), denoted as CryptoPulse,s and Linears,
by removing sentiment data. Figure 2 shows that traditional
models still underperform, except in USDT prediction, where
SVM slightly outperforms Linear,s. These results suggest
that the weak performance of traditional models stems from
their limited expressive capability.

Are RNN-based models outdated? RNN-based models
can still achieve comparable performance in some cases.
Among the four RNN-based models, the best one outperforms
the Linear model in MAE or MSE in 12 out of 16 cases,
DLinear in 9, and Autoformer in 3. While no single RNN-
based model consistently dominates, GRU generally performs
better, as shown in Figure 3, likely due to its simple recurrent
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architecture, which is less prone to overfitting cryptocurrency’s
dynamic patterns. Due to space constraints, the figure for MSE
performance is omitted, but Table I shows similar patterns as
MAE. Another key observation is that RNN-based predictions
are more stably correlated to the ground truths than those of
DLinear and Linear models. Thus, RNN-based models remain
important benchmarks in our scenarios. However, our model
not only outperforms RNN-based models across all cases but
is also more computationally efficient.

Are linear models always better than Transformer-based
models? We investigate whether Linear models consistently
outperform Transformers, as observed by [27] in other tasks.
Our findings show this is not necessarily the case. As shown
in Figure 4 and 5, DLinear and Linear perform worse than
Autoformer, while NLinear consistently outperforms Auto-
former, with comparable results. Linear models, which do
not explicitly capture correlations across time series, benefit
from price-related data, technical indicators, and sentiment
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when combined in forecasting tasks. Transformer-based mod-
els better handle these complex correlations due to their larger
size. However, DLinear and Linear exhibit instability in high-
volatility scenarios, particularly with MSE as the metric, as
shown in Figure 5.

Can trend analysis benefit performance? Series decompo-
sition is a common method in time-series forecasting, and we
examined its role in our task. DLinear, our model, and Auto-
former explicitly account for trend patterns, while RNN-based
models capture changes across time points implicitly. Trend
analysis proves to be a double-edged sword. On one hand,
as shown in Figure 4 and 5, improperly modulated moving-
average-based trends can destabilize models like DLinear due
to cryptocurrency volatility disrupting the moving average.
On the other hand, Autoformer balances seasonal and trend-
cyclical components effectively, producing more stable fore-
casts. The short observation window likely amplifies this effect
but is necessary, as long-term patterns are rarely present in
cryptocurrency markets for next-day predictions.

C. Ablation Study

In this subsection, we analyzed the impact of each group
of financial features on forecasting performance. First, we
examined the effect of sentiment data on cryptocurrency
prediction by removing news sentiment from the dataset for

all Linear-based and Transformer-based models, denoted with
an xs subscript. Figures 6 and 7 visualize the results, where
bar heights indicate performance, and black horizontal lines
represent full-feature performance, including price history,
technical indicators, and market sentiments. Sentiment data
generated using our proposed LLM-based approach improves
forecasting performance overall, as shown by the black line
within the bars. However, NLinear outperformed its full-
feature version in 5 of 8 cases, likely due to its reliance on time
series continuity, where sentiment labels introduce noise from
missing values on days without cryptocurrency-related news.
DLinear and Linear models showed instability, with significant
performance differences when sentiment data was excluded.

Second, we removed technical indicators from the feature
set and conducted ablation studies on all linear-based and
Transformer-based models, as well as our own. These models
are denoted with an x¢ subscript. Figures 8 and 9 present
the results, with black lines marking full-feature performance.
Including technical indicators improved performance overall,
with DLinear and Autoformer benefiting the most, while our
model showed slight improvement. These indicators, derived
from financial domain knowledge, are designed to be less
sensitive to short-term fluctuations, providing trend analysis
insights that enhance automated models.
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D. Robustness

The robustness of the models was evaluated by calculating
the standard deviation of MAE across five independent exper-
iments, averaged over the top 5, 10, 15, and 20 cryptocurren-
cies. A lower standard deviation indicates higher consistency
and robustness across training runs. To avoid overcrowding in

figures, the analysis focuses on Linear-based and Transformer-
based methods, along with our proposed model, as these
demonstrated superior performance. As shown in Figure 10,
our approach achieves the lowest standard deviation for the top
10, 15, and 20 cryptocurrencies and performs comparably to
the best for the top 5. Furthermore, it demonstrates notable ro-
bustness when handling smaller market-cap cryptocurrencies,
which are typically more volatile, a challenge where Linear
and DLinear methods struggle.

V. CONCLUSION

In this paper, we present “CryptoPulse”, a new approach
to predicting the next-day closing prices of cryptocurrencies.
This model integrates three primary factors: fluctuations in
the macro environment, changes in individual cryptocurrency
prices and technical indicators, and overall cryptocurrency
market sentiment. By leveraging a dual prediction mechanism,
the model captures both the macro market environment and
the specific price and technical indicator dynamics of the
target cryptocurrency. Moreover, a fusion component based on
the market sentiment information integrates these predictions
to improve the results. The experimental evaluation shows
that our model achieves higher accuracy in predicting cryp-
tocurrency fluctuations compared to ten different methods,
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making it suitable for application in the highly unpredictable
cryptocurrency market.
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