Face shape and motion are perceptually separable: Support for a
revised model of face processing

Emily Renae Martin, Jason S. Hays, and Fabian A. Soto
Department of Psychology
Florida International University
11200 SW 8th St, Miami, FL, 33199

A recent model of face processing proposes that face shape and motion are processed in parallel
brain pathways. Although tested in neuroimaging, the assumptions of this theory remain rela-
tively untested through controlled psychophysical studies until now. Recruiting undergraduate
students over the age of 18, we test this hypothesis using tight control of stimulus factors,
through computerized three-dimensional face models and calibration of dimensional discrim-
inability, and of decisional factors, through a model-based analysis using general recognition
theory (GRT). Theoretical links between neural and perceptual forms of independence within
GRT allowed us to derive the a priori hypotheses that perceptual separability of shape and
motion should hold, while other forms of independence defined within GRT might fail. We
found evidence to support both of those predictions.
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Information about a number of properties can be extracted
from a single face, such as identity, emotional expression,
race, gender, and movement of facial features. The idea that
independent channels process these different dimensions is
theoretically appealing, as they would provide streamlined
processing of face dimensions that seem to vary indepen-
dently in the environment, facilitating selective attention and
generalization of knowledge acquired about one dimension
across changes in the others. Bruce and Young (1986) pro-
posed that emotional expression and identity are processed
through parallel routes in the visual system, and later Haxby
and colleagues (Haxby et al., 2000) proposed a related neural
model, in which face processing begins in the inferior occip-
ital gyrus, from which two parallel streams branch out. Pro-
cessing in the ventral stream continues to the lateral fusiform
gyrus where the fusiform face area (FFA) is housed and
where invariant aspects of faces (e.g., identity) are processed.
Processing in the dorsal stream continues to the superior tem-
poral sulcus (STS), where changeable aspects of faces (e.g.,
expression) are processed (Haxby et al., 2000).

Conflicting results from studies following the Haxby et al.
(2000) paper have led to the consensus in the literature that
revision is necessary (e.g., Bernstein & Yovel, 2015; Lander
& Butcher, 2015). Duchaine and Yovel (2015) proposed a
revised version of the Haxby model, in which they retained
the concept of the ventral and dorsal streams of face process-
ing but updated what face information is assumed to be pro-
cessed by each stream. Face shape rather than invariant as-
pects of faces would be represented in the ventral stream, and
face motion rather than changeable aspects of faces would

be represented in the dorsal stream. Therefore, any motion
information connected to an identity would be processed in
the dorsal stream and any shape information connected to
an emotional expression would be processed in the ventral
stream.

Importantly, Duchaine and Yovel (2015) based their hy-
pothesis largely on the results of lesion and neuroimag-
ing studies. The psychophysical literature at present sug-
gests that motion and shape are not behaviorally indepen-
dent, based on the finding that recognition of both face iden-
tity and expression is often facilitated by motion informa-
tion (Krumhuber et al., 2013; Lander & Butcher, 2015). It
is tempting then to conclude that the existence of parallel
routes at the neural level does not have corresponding behav-
ioral consequences. However, facilitation effects can result
from decisional rather than perceptual processing, as long
as participants adopt optimal decision strategies (Maddox &
Ashby, 1996). This underscores the importance of control-
ling for decisional strategies when studying perceptual inter-
action in psychophysical studies. Here, we test the hypothe-
sis of independent processing of shape and motion using con-
trolled psychophysical experiments and model-based data
analyses that dissociate perceptual from decisional forms of
independence. Thus, our goal was not only to test this re-
vised model using behavioral psychophysics, but also to use
precise, formal definitions of independence, control for non-
perceptual influences on task performance (i.e., decisional
strategies), and tightly control face stimuli parameters.

Regarding precise, formal definitions of independence, we
chose to use the general recognition theory (GRT) frame-



2 FACE SHAPE AND MOTION ARE PERCEPTUALLY SEPARABLE

work (for a review, see Ashby & Soto, 2015), a multidimen-
sional extension of signal detection theory (SDT; Green &
Swets, 1966) that allows for a formal dissociation between
perceptual and decisional forms of dimension interaction.
The theory proposes three forms of dimensional interaction,
with performance in most tasks being influenced by all three.
While the notions of perceptual separability and perceptual
independence are perceptual in nature, the third form of in-
teraction, decisional separability, is decisional in nature. To
precisely control motion and shape information within the
stimuli, we used realistic three-dimensional computer face
models (Hays et al., 2020) to create the stimuli.

Defining shape as static changes in inner face features
and motion as dynamic changes in the speed of face feature
movement (Figure 1), we conducted a highly controlled ex-
periment assessing violations of formally defined forms of
perceptual interaction.

A Priori Hypotheses

The revised independence hypothesis suggests that sepa-
rate neural populations encode face motion and shape. Un-
der such conditions, we would expect from neurocomputa-
tional theory (Soto et al., 2018) that perceptual separability
of the dimensions would hold, which is our first hypothesis.
When perceptual separability holds, the representation of one
property (e.g., shape) is stable across changes in a second
property (e.g., motion). Thus, perceptual separability for-
malizes the concept of invariance, which is widely believed
to be a computational goal of the visual system (e.g., Rust &
Stocker, 2010).

On the other hand, there is evidence showing that ar-
eas in the two pathways are not completely independent
but interact with one another. Assuming that such interac-
tions would introduce correlated neural noise, we hypoth-
esized that perceptual independence would fail. Percep-
tual independence fails when perceptual noise in one di-
mension (e.g., shape) is correlated with perceptual noise in
the other dimension (e.g., motion). Decisional separabil-
ity was not expected to hold since decisional strategies may
vary by individual. These hypotheses were pre-registered be-
fore data collection (see: https://osf.io/ud7jg?view_
only=e6279964d33244b6a6692£02334ae0£0).

Method
Participants

Three-hundred and ninety participants over the age of 18
were recruited from Florida International University using
Sona Systems. Participation was entirely voluntary, and par-
ticipants were compensated in course credit. All procedures
were approved by the university’s institutional review board.
One-hundred and eighty participants completed the prelimi-
nary pilot task (detailed below), whereas the remaining two-

hundred and ten participants completed the main identifica-
tion task.

Sample Size

Model-based analyses like those reported here are not
amenable to traditional power analyses to determine sam-
ple size. A more common approach in the computational
modeling literature is to perform simulations to determine
at what sample sizes it is possible to recover the true model
parameters that have generated a data set. Such simulations
(Soto et al., 2021) suggest that a sample size of 20-30 par-
ticipants per experiment is adequate for accurate parameter
estimation. Therefore, 30 complete datasets were collected
for each group.

Stimuli

Each face stimulus was created by concatenating multi-
ple static images into a one-second video, at sixty frames
per second. The images were rendered from three-
dimensional face models using the software MakeHuman
(www .makehumancommunity.org) extended with the pack-
age FaReT (Hays et al.,, 2020; https://github.com/
fsotoc/FaReT). The sequence of renders was obtained by
changing the expression pose parameters of a face model in
multiple steps, going from no expression to a target expres-
sion. FaReT is an open-source toolbox recently developed
to aid in the creation of realistic computerized face stimuli.
It allows for standardization of non-facial features and exact
interpolation of facial features. Additionally, FaReT includes
a collection of empirically validated models of identity and
emotional expression (Hays et al., 2020).

Face shape was statically manipulated by changing fa-
cial feature parameters (e.g., eye shape, mouth shape, etc.),
which changed the model’s face identity but allowed for or-
thogonal manipulation of motion information as described
below. One stimulus set was comprised of two different male
identities, and the other stimulus set was comprised of two
different female identities. Only inner facial features (i.e., re-
lated to nose, mouth, eyes, forehead, chin, and cheeks) were
allowed to vary across models, with other face dimensions
(i.e., head shape, neck, and ears) standardized to match the
average face model defined in the FaReT database.

Note that we have operationally defined shape changes as
changes in the face shape parameters defined within Make-
Human, which are perceived as changes in face identity and
referenced synonymously going forward. Motion was opera-
tionally defined as the synchrony of movement in the top-half
and bottom half of the face. In other words, the dimension of
motion had two levels: synchronous movement, defined as
matching speed of movement in the top half and bottom half
of the face, and asynchronous movement, defined as non-
matching speed of movement in the top half and bottom half
of the face.
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Fi ig ure 1. (a) An example of single frames from the dynamic stimuli used for the Male — Surprise group. Participants had to identify whether motion was synchronous (A1) or

asynchronous (A2) and whether shape corresponded to one identity (B1) or the other (B2). Note that the synchronous frame shows expression in the entire face and the asynchronous

frame only shows expression for the top half of the face. The center sub-panel explains the keys participants selected for each stimulus. (b) Schematic representation of the different

motion properties applied to our stimuli; the red box denotes the top half of the face, and the blue box denotes the bottom half. Focusing on the 50% (500ms) point of each speed

condition (i.e., the colored boxes), note that the top half has moved equally as much in both conditions (asynchronous and synchronous), but the bottom half has moved only in the

synchronous condition, remaining neutral in the asynchronous condition.

There is some evidence that violations of separability are
more easily detected in less discriminable stimuli (Wang et
al., 2013). To avoid any artificial “asymmetric separabil-
ity” results, discriminability of the two dimensions should
be equated. A pilot study allows for the calculation of di-
mensional level values that are equally discriminable across
each emotion and identity. For the main identification task,
both motion and shape were calibrated to have a pre-defined
discriminability (¢’ = 1.5; where d’ is a measure of percep-
tual sensitivity from SDT; Green & Swets, 1966), using in-
formation from the pilot study. One level of shape was set
to one specific identity (e.g., Bob), and the other level was
chosen from the Bob-Joe continuum to have a pre-defined
discriminability with the first stimulus (d’ = 1.5). Likewise,
one level of motion was set to 0% asynchronous (i.e., 100%
synchronous), whereas the other level was chosen from the
synchrony continuum to have the same pre-defined discrim-
inability with the first stimulus (d’ = 1.5). See Figure I for
an example.

The faces interpolated from a neutral expression into one
of three emotional expressions: happiness, disgust, and sur-
prise. These emotions were chosen from Ekman’s six ba-
sic expressions (Ekman & Friesen, 1975) and for being the
furthest away from each other in the expression space of
MakeHuman (in Euclidean distances). Although expression
was changed across groups, it was held constant within each
group’s stimulus set. This allowed us to check the general-
izability of results across expressions. To generalize across
identities and sex, a second stimulus set of two female iden-
tities was included. The shape parameters for these female
models were different from the corresponding parameters of
the male models (in FaReT, the exact same shape model can
be transformed to a male or female), meaning that the stimu-

lus sets differed both in identity/shape and sex.

Pilot

As previously explained, a pilot study was conducted to
find the values of stimulus levels that were equally discrim-
inable across categories. An SDT model of the psychometric
function (Lesmes et al., 2015) was used to analyze discrim-
ination performance as a function of linear differences be-
tween faces in the shape parameter space of FaReT. The esti-
mated function was used to determine the difference between
faces producing a ' = 1.5 on average. Further information
about the pilot study can be found in the Supplementary Ma-
terials.

Identification Task

A complete identification task was used, as it can dissoci-
ate between all forms of independence defined in GRT (Soto
et al., 2015). On each trial of this task, a stimulus with a
value on each of two dimensions, A and B, is presented. The
task is to identify the specific combination of dimension val-
ues presented in the stimulus. For example, consider a 2x2
face identification experiment, where the two varying dimen-
sions are motion (A) and shape (B), as depicted in Figure 1a.
The levels for the motion dimension are synchronous speed
(A1) and asynchronous speed (A2), whereas the levels for the
shape dimension are identity one (e.g., Bob; B1) and identity
two (e.g., Joe; B2). The 2x2 complete identification task
would include four face stimuli: synchronous motion iden-
tity one (A1B1), asynchronous motion identity one (A2B1),
synchronous motion identity two (A1B2), and asynchronous
motion identity two (A2B2).
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Procedure

Participants were semi-randomly assigned to one of seven
groups, dependent on which of seven links they selected
when recruited for participation in the Sona website. They
received no information about what specific group they were
selecting before beginning the experiment.

Participants completed an anonymous Qualtrics (https:
//www.qualtrics.com) survey to provide informed con-
sent and answer basic demographic questions. Upon com-
pleting the survey, participants were redirected to the study
hosted on Pavlovia (https://www.pavlovia.org), an on-
line server that allows for remote secure data collection,
where they would complete the experiment remotely. They
were instructed to use either a laptop or desktop computer.

Previous research has found that unfamiliar faces are pro-
cessed differently than familiar faces (Burton & Jenkins,
2011). Familiarization with faces through exposure to ani-
mated videos has been shown to not only help participants
learn the identity quickly, but also prevents image-matching
strategies, commonly displayed with unfamiliar faces, from
occurring (Burton & Jenkins, 2011). Therefore, the task
began with a familiarization phase, which presented an an-
imated video of the faces from different viewpoints together
with the assigned name of the identity, a strategy that has
been successful in previous research (Megreya and Burton,
2006). Each animation was repeated three times and par-
ticipants were instructed to memorize the faces. Then, the
same animations were presented without any names, and the
participant was required to choose the correct name from ten
options to ensure that they had learned the identities.

After the familiarization phase was completed, the main
task began. On a given trial, participants were shown one
of the four stimuli (i.e., A1B1, A1B2, A2B1, or A2B2) de-
fined as one of two identities showing one of two motion
sequences (i.e., synchronous or asynchronous) and were in-
structed to identify the face accordingly (i.e., the specific
combination of motion and shape, see the middle insert in
Figure 1a). The pattern of correct and incorrect responses
provides information to perform a model-based analysis with
GRT, detailed in the analysis section.

There were 460 trials in the identification task and the
stimuli were presented for 1s. A fixation cross appeared for
500ms at the beginning of each trial. Feedback was given fol-
lowing each trial; if the response was correct, a green “Cor-
rect!” appeared on the screen for 1s, but in incorrect trials, a
red “Incorrect!” appeared, followed by a 5s penalty timeout.
If the participant provided no response within a 2s window,
ared “Too Slow!” appeared for 1s, along with the 5s penalty
timeout.

Control Group

In our stimuli, motion was manipulated by changing only
one half of the face (i.e., the bottom). To increase the gener-
alizability of our results, we collected data from an additional
control group in which motion was manipulated by changing
the top half of the face. This group had all the same ex-
perimental parameters as the other identification task groups,
except or the manipulation of synchrony by changing motion
in the top half of the face. The first stimulus set showing
an expression of surprise was arbitrarily chosen to define the
dimensions for this group. Corresponding pilot data were
collected to set dimensional values at &’ = 1.5, just as be-
fore. This group was added post pre-registration', but before
the analysis was conducted.

Analysis

GRT is a framework used to study steady-state behavior
rather than learning. For this reason, it is imperative to elimi-
nate data from each individual that contain evidence of learn-
ing, defined by changes in accuracy over time. Therefore,
learning curves were obtained for each participant by aver-
aging the performance over a moving window of 101 trials
(e.g., trials 1-101, 2-102, etc.). An exponential curve was
fitted to the resulting average points using least squares min-
imization. The learning period was defined as data points be-
fore the point where the slope dropped below 0.001, which
were discarded from the data of each participant. This
method has been implemented and proved useful in multiple
previous studies (e.g., Soto et al., 2015; Soto et al., 2021).

A near-perfect performance is not ideal for model-based
analyses with GRT, as a lack of confusion errors would not
provide any information to fit the model. However, low over-
all accuracy is also not ideal, as it indicates participants are
performing near chance level and did not properly learn the
task. Therefore, overall accuracy was calculated after dis-
carding the learning period, and data from participants with
performance lower than 40% or higher than 90% correct
were excluded from the analysis.

Data from the identification task were summarized in a
4x4 confusion matrix for each participant, in which each row
corresponds to one stimulus and each column corresponds to
one possible response. Each cell in this matrix represents the
frequency of each response after presentation of each stimu-
lus.

Confusion matrices were analyzed by fitting a GRT-wIND
model (GRT with individual differences; Soto et al., 2015)
using maximum likelihood estimation with the R package gr-
tools (Soto et al., 2017). When fitting the GRT-wIND model,
the optimization algorithm was run 120 times with random
starting parameter values, and the model with the highest

"We thank Dr. Lorraine Bahrick for suggesting the addition of
this group.
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maximum likelihood was chosen as the best-fit model. All
variances in the model were fixed to a value of one. Finally,
likelihood ratio tests were performed as implemented in gr-
tools to assess for violations of perceptual separability, per-
ceptual independence, and decisional separability. The null
was defined as the model without these violations, so that a
significant result meant that there was evidence for a viola-
tion (i.e., an interaction between dimensions).

Results

The first thirty participants that completed the entire ex-
periment and had an accuracy rate between 40-90% (guess-
ing rate = 25%) after the learning period were included in
the study. Figure 2 contains information on how to inter-
pret GRT-wIND outputs for a 2x2 identification experiment.
As in SDT, the representation of a stimulus in GRT is prob-
abilistic across trials (i.e., the same stimulus produces dif-
ferent magnitudes of sensory evidence across trials) and its
distribution can be summarized by a contour (the ellipses
in Figure 2). Each axis represents a single dimension (e.g.,
shape), thus each contour is a multidimensional representa-
tion of the perceptual distribution for a single stimulus (e.g.,
asynchronous Bob). The plus sign inside the contour rep-
resents the mean of the distribution. Marginal distributions
(i.e., univariate Gaussian curves along the axes) represent the
distribution of sensory evidence along a single dimension.
For completeness, nonparametric GRT tests of marginal re-
sponse invariance and sampling independence are reported
in the Supplementary Material (see Supplementary Table 2).
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Figure 2. A multivariate Gaussian GRT model for a 2x2 identification task. Each
ellipse represents contours of equal likelihood for a specific stimulus’s perceptual dis-
tribution. The univariate Gaussian curves represent marginal distributions for each
stimulus. The darker dotted lines represent the means of the marginal distributions for
dimension A, whereas the lighter dashed lines represent the means of the marginal dis-
tributions for dimension B. Both of them intersect at the mean of the multidimensional
joint distribution (crosses inside each contour). In this example, perceptual separability
of dimension A from dimension B holds. That is, the means along dimension A are
the same across levels of dimension B. On the other hand, perceptual separability of
dimension B from dimension A fails. That is, the means along dimension B are shifted
at different levels of dimension A. The two tilted ellipses demonstrate examples of

failure of perceptual independence (i.e., positive and negative correlations).

Table 1 shows a summary of the results of likelihood ra-

tio tests evaluating perceptual separability, perceptual inde-
pendence, and decisional separability. Ultimately, we found
perceptual separability of shape from motion in all groups,
and perceptual separability of motion from shape in five out
of seven groups. These results support our main hypoth-
esis of perceptual separability for the most part. In addi-
tion, there was evidence against perceptual independence in
all seven groups, and six out of seven groups found at least
one violation of decisional separability, thereby showing sup-
port for our secondary hypotheses as well. Figure 3 shows
the best-fitting GRT models obtained for each experimen-
tal group. The bottom-left insert within each plot depicts
a comparison of the performance observed (x-axis) and pre-
dicted by the model (y-axis), measured as response proba-
bilities. The main plot contains the perceptual distributions
of the model, with each contour corresponding to one of the
presented stimuli (i.e., red: synchronous identity 1, green:
asynchronous identity 1, blue: synchronous identity 2, yel-
low: asynchronous identity 2). The corresponding marginal
distributions for each stimulus are represented by univariate
Gaussian distributions along the corresponding axis. The fol-
lowing sections provide a detailed description of the model fit

and likelihood ratio tests summarized in Table 1 and Figure
3.

Happy Female Set

The model accounted for 98.84% of the variance (R?)
in the data. There was a violation of perceptual separabil-
ity of motion (¥*(2)=6.33, p=0.042), but not shape. Ad-
ditionally, the likelihood ratio test for perceptual indepen-
dence showed a significant violation (x2(4)=34.51, p<0.001),
which is depicted as tilted contours in Figure 3. There was
also a significant violation of decisional separability of mo-
tion (y2(30)=57.83, p=0.002), but not shape.

Happy Male Set

The model accounted for 99.12% of the variance (R?) in
the data. The likelihood ratio tests did not find significant vi-
olations of perceptual separability for either shape or motion.
However, the likelihood ratio test for perceptual indepen-
dence showed a significant violation (x*(4)=41.15, p<0.001),
which is depicted as tilted contours in Figure 3. Additionally,
there was a significant violation of decisional separability of
shape (y*(30)=60.07, p=0.001), but not motion.

Disgust Female Set

The model accounted for 98.76% of the variance (R?) in
the data. The likelihood ratio tests did not find any signif-
icant violations of perceptual separability for either shape
or motion. However, the likelihood ratio test for perceptual
independence showed a significant violation (y*(4)=11.11,
p=0.025), which is depicted as tilted contours in Figure 3.
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Group PS (Motion)

PS (Shape)

PI DS (Motion) DS (Shape)

Female Happy
Male Happy
Female Disgust
Male Disgust
Female Surprise
Male Surprise
Control

LU X X

SSENENENENENEN

v

X X X X X X X
X X X X <X

X X X X X

Table 1

Summary of results of likelihood ratio tests. Each row represents a different experimental group, exposed to a unique combination of one of three emotions (happy, disgust, surprise)

and one of two identity sets (male and female). PS denotes perceptual separability, Pl denotes perceptual independence, and DS denotes decisional separability. Each check mark

represents a lack of dimensional interaction (PS, PI, or DS) found for a given group and each cross represents a significant dimensional interaction (i.e., violation of PS, PI, or DS)

Sfound for that group.

Additionally, there were no significant violations of deci-
sional separability of either shape or motion.

Disgust Male Set

The model accounted for 98.77% of the variance (R?)
in the data. There was a violation of perceptual separabil-
ity of motion (¥*(2)=8.69, p=0.013), but not shape. Ad-
ditionally, the likelihood ratio test for perceptual indepen-
dence showed a significant violation (y?(4)=22.30, p<0.001),
which is depicted as tilted contours in Figure 3. There were
also significant violations of decisional separability for both
motion (x*(30)=67.75, p<0.001), and shape (y*(30)=118.18,
p<0.001).

Surprise Female Set

The model accounted for 98.85% of the variance (R?) in
the data. The likelihood ratio tests did not find any signif-
icant violations of perceptual separability for either shape
or motion. However, the likelihood ratio test for perceptual
independence showed a significant violation (y?(4)=35.47,
p<0.001), which is depicted as tilted contours in Figure 3.
Additionally, there were significant violations of decisional
separability of both motion (x*(30)=44.91, p=0.039), and
shape (x*(30)=71.97, p<0.001).

Surprise Male Set

The model accounted for 99.19% of the variance (R?) in
the data. The likelihood ratio tests did not find any signif-
icant violations of perceptual separability for either shape
or motion. However, the likelihood ratio test for perceptual
independence showed a significant violation (y*(4)=55.20,
p<0.001), which is depicted as tilted contours in Figure 3.
There were also significant violations of decisional separa-
bility for both motion (3*(30) = 52.27, p=0.007), and shape
(x*(30)=121.45, p<0.001).

Control Group (Surprise Male)

The model accounted for 98.78% of the variance (R?) in
the data. The likelihood ratio tests did not find any signif-
icant violations of perceptual separability for either shape
or motion. However, the likelihood ratio test for perceptual
independence showed a significant violation (y*(4)=84.44,
p<0.001), which is depicted as tilted contours in Figure 3.
There were also significant violations of decisional separa-
bility for both motion (¥?(30)=56.13, p=0.003), and shape
(x*(30)=53.50, p=0.005).

Thus, we found identical results in the control group and
its corresponding main group (i.e., surprise male set); both
groups demonstrated perceptual separability and violations
of perceptual independence and decisional separability.

Akaike Information Criterion (AIC) Weights

The previous analyses showed that perceptual separabil-
ity held in most cases, but making strong conclusions from
null results is questionable. We calculated post-hoc AIC
weights (Table 2; Wagenmakers & Farrell, 2004) for each
of the fitted models to determine the extent to which the data
supports a model restricted to show perceptual separability
over a model without such restrictions (i.e., the best-fitting
model shown in Figure 3). We found that the AIC weights
for groups not showing any violations of perceptual separa-
bility were all above 0.98, indicating that there is very high
likelihood that the model with perceptual separability was
the best model for those groups. The happy female group
with one violation of perceptual separability yielded an AIC
weight of 0.909, suggesting that in this case as well there is
a very high likelihood that the model with perceptual separa-
bility was the best model. The male disgust group with one
violation of perceptual separability yielded an AIC weight of
0.755, suggesting that the model with perceptual separabil-
ity was considerably more likely to be the best model than a
model without perceptual separability (precisely 3.08 times
more likely). These results show support for the model with
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Fi ig ure 3. Summary of the best-fitting GRT models obtained from the data of each
group in this study. Each panel represents the results for a different group, organized
by the emotion (in rows) and the identities (in columns) shown in the stimulus set. The
joint perceptual distribution for each stimulus is represented by a contour of a different
color (see Key). The plus sign represents the mean of the distribution. The marginal
distributions for each dimension are plotted on the corresponding axes. The bottom-left
insert plots the performance observed (x-axis) versus predicted by the model (y-axis),

measured as response probabilities.

perceptual separability, even in the few cases where we found
violations according to the likelihood ratio test.

Discussion

Our study behaviorally tested the revised neurobiolog-
ical hypothesis (Duchaine & Yovel, 2015) that face mo-
tion and shape are processed separately, using tight stimulus
control through computerized three-dimensional face mod-
els and calibration of dimensional discriminability, as well
as dissociation of decisional from perceptual factors through

Group PS of Motion  PS of Shape
Female Happy *0.9090 0.9971
Male Happy 0.9898 0.9999
Female Disgust 0.9999 0.9999
Male Disgust *0.7548 0.9999
Female Surprise 0.9990 0.9995
Male Surprise 0.9875 0.9998
Control 0.9968 0.9922

Table 2

AIC weights for the comparison between models assuming and not assuming percep-
tual separability. Each row represents a different experimental group, and each column
denotes the AIC weight for the model assuming perceptual separability, which can be
interpreted as the probability that perceptual separability is closer to the true model
than violations of perceptual separability. One minus the presented AIC weight would
represent the probability of violations of perceptual separability being closer to the
true model. The * symbol represents a significant violation of PS in the likelihood ratio

test.

a model-based analysis using GRT. Our results show strong
evidence supporting the idea that the parallel neural routes
proposed by the Duchaine and Yovel (2015) model have cor-
responding consequences at the perceptual/behavioral level.

Although our data suggests that perceptual separability
holds, we did find a repeated pattern of perceptual indepen-
dence violations across the groups. Perceptual independence
violations mean that the perceived shape and motion val-
ues of a face are correlated. Sometimes, these correlations
may show a pattern reflective of holistic or “Gestalt” per-
ception of the two dimensions (Townsend & Wenger, 2014),
in which strong perceptual evidence for the presence of a
feature (e.g., eye separation) is accompanied by strong per-
ceptual evidence for the presence of the other feature (e.g.,
asynchronous motion). Using controlled methods similar to
those used in the present study, a recent study has found that
face identity and expression consistently show that pattern
of Gestalt perception (Hosseini & Soto, 2024). Upon closer
inspection, we found significant positive correlations in the
off-diagonal (i.e., top-right and bottom-left) joint distribu-
tions (95% Cls: [0.065, 0.400]; [0.132, 0.408]). This result
seems to indicate that one identity may have been easier to
perceive with asynchronous motion and the other may have
been easier to perceive with synchronous motion, suggesting
that different types of motion draw attention to certain facial
identity features. However, we did find that most of the cor-
relations were quite weak in magnitude and no other patterns
were discernible.

These violations are different from violations of percep-
tual separability, which occur when changes in the external
value of one stimulus dimension influences the internal rep-
resentation of another dimension. Rather than Gestalt per-
ception, such violations suggest perception of one dimension
that is not invariant (i.e., it is context-specific) to changes in
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the second dimension. The results are in line with our origi-
nal interpretation of the neurobiological hypothesis: two in-
dependent pathways should produce something akin to in-
variant representations, but connectivity across the pathways
might introduce some noise correlation. The lack of a consis-
tent pattern of correlations across groups suggests that they
do not serve a particular perceptual goal (e.g., perceptual in-
tegration or holism), and might be the outcome of connectiv-
ity across pathways that serves other purposes.

There were also inconsistent patterns of results for deci-
sional separability both within and across groups. This is
to be expected from participants showing idiosyncratic deci-
sional strategies. Our main interest is not to interpret these
results, but rather to control for decisional factors to draw
conclusions about perceptual representation.

We opted for strong stimulus control and chose to cre-
ate three-dimensional computerized face models, which al-
though are realistic, do not completely match real-world pho-
tographs or videos. For instance, our stimuli had a stan-
dardized skin texture, despite the fact that texture differ-
ences are important for everyday face recognition (Lai et
al., 2013). Furthermore, our stimuli were standardized com-
pletely across non-facial features, removing any variability
not related to the inner shape of the face (e.g., head shape,
ears). Standardizing our stimuli and tightly controlling the
face parameters allowed us to orthogonally manipulate shape
and motion while eliminating potential stimulus confounds,
perhaps at the risk of decreased external validity. We believe
that this is a risk worth taking, as tight experimental control is
key to rigorously test hypotheses regarding the mechanisms
of perception and cognition.

We must note that there are other possible interpreta-
tions of the two-streams hypothesis in terms of neural en-
coding. For example, one could assume that the two streams
do not interact at all, a case in which we would expect
no violations of either perceptual separability or indepen-
dence (see Soto et al., 2018). The two-streams hypoth-
esis is not detailed and formalized enough to clarify this
point, but we have assumed a “less strict” version in which
connections between the two streams produce neural noise
correlations between them. We have found that only this
“less strict” version of the hypothesis is supported by the
data. If the two-streams hypothesis posits that there are
no interactions between motion and shape at all, then we
find evidence against that claim because perceptual inde-
pendence failed. However, if it posits that there exists
some interaction between the pathways that leaves motion
and shape separable across stimuli (i.e., invariant represen-
tations), then we find strong support for this hypothesis.
possible interpretation of the current data posits that the sep-
aration of neural encoding occurs not in the visual process-
ing streams but in later brain areas (e.g., frontal cortex).
In Figure 4, we propose two neural encoding models , in

which separation may occur early during visual processing
(i.e., Duchaine & Yovel’s model), or after visual processing
and before the encoded information reaches decision mak-
ing. Following Townsend et al. (2020; see Figure 8), and in
line with the neuroscientific literature, both models propose
shared noise during an early stage of processing (e.g., the oc-
cipital face area), leading to violations of perceptual indepen-
dence. Further computational neuroimaging studies (e.g., us-
ing encoding modeling or decoding analyses) are necessary
to arbitrate between these two hypotheses. The current neu-
roimaging data supports the early model, but studies using
formal definitions of neural independence that can be linked
to our results (see Soto et al., 2018) are lacking. We hope
that our study shows how a rigorous methodology, based on
strong experimental control and precise definition and quan-
tification of interactions through model-based analyses, can
help to bridge the gap between the neurobiological and psy-
chophysical literatures.

Early Separation Model

Visual Encoding Meumne Decion Meumn

PS holds

¥y

Pl fails

Late Separation Model

Visual Encoding Neumrs Deciion Neumn

-
| X

Figure 4. Simplified neural encoding models that our data could explain, in which

PS holds

¥y

Plfails

both perceptual independence fails and perceptual separability holds. In each model, a
population of vision neurons that encode both shape and motion in faces exist in early
visual processing. Here, perceptual independence fails (i.e., correlated noise within
dimensions). In the early separation model, during visual processing, a population
of neurons that encode shape (i.e., red neurons) is independent from the population
of neurons that encode motion information (i.e., blue neurons). This information is
eventually passed to the associative cortex where a decision is made, and perceptual
separability holds. In the late separation model, during visual processing, two popula-
tions that encode shape and motion information exist, but the populations each contain
neurons that encode shape and motion. Therefore, information from both “streams”
are passed to the associative cortex where the decision is made, but the information is
separated before it reaches the decision neuron and thus perceptual separability holds.
Further computational neuroimaging data is required to test these models, but either

model is possible from the current behavioral data.
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1 Definitions of Independence in GRT

Implementing a GRT model (Ashby & Townsend, 1986) to describe psychophysical data gives the ability
to dissociate perceptual from decisional processes in the processing of stimulus dimensions. There are three
primary concepts describing interactions between dimensions in GRT: perceptual independence, perceptual
separability, and decisional separability (see Figure S1).

Perceptual independence refers to the case in which sensory evidence for a stimulus’ level in one dimension
is uncorrelated with the sensory evidence for the level in a second dimension. For example, in Figure S14, the
left figure shows a stimulus with perceptual independence; the representation of identity is uncorrelated with
the representation of motion. The right figure shows a stimulus with violation of perceptual independence;
the internal representation of identity is correlated with the internal representation of motion.

Perceptual separability refers to the case in which the perceptual representations along one stimulus di-
mension do not change with changes in the other dimension. In the left panel of Figure S1B, the perceptual
distributions align along the y-axis and the marginal distributions overlap along the z-axis, showing per-
ceptual separability of motion. Perceptions of motion are not influenced by changes in identity. The right
figure shows a violation of perceptual separability; that is, perceptions of motion are influenced by changes
in identity.

Finally, decisional separability refers to the case in which the decision bound used to classify values (e.g.,
level of synchrony) in one dimension (e.g., motion) does not change with changes in the other dimension
(e.g., shape). To clarify, a decision bound can be conceptualized as a line that defines at which point the
participant begins to choose one level of the dimension instead of the other level. In both panels of Figure
S1C, this bound is represented by the blue line. In the left figure, the bound is orthogonal to the motion
axis, indicating decisional separability of motion. This means that decisions about motion do not depend
on identity. The right figure is an example of a violation of decisional separability; that is, an individual
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Figure S1: Different forms of dimensional interaction defined under GRT (adapted from Soto et al., 2017).

is more likely to respond “synchronous” when Joe’s face is shown and “asynchronous” when Bob’s face is
shown, demonstrating a bias that depends on identity.

Based on a neurocomputational version of General Recognition Theory (Soto et al., 2018), we hypothe-
sized that perceptual separability would be the most likely consequence of separate brain pathways for the
processing of face shape and motion (for a more detailed explanation, see the main text).

2 GRT-wIND Model

The GRT-wIND model (Soto et al., 2015) controls decisional factors by identifying and estimating separate
parameters for perceptual and decisional mechanisms. The model takes a hierarchical form, in which group-
level parameters explain processes assumed to be shared across participants and individual-level parameters
explain individual differences.

Within our 2x2 identification task, stimuli could take on one of two levels of shape and one of two levels of
motion. We can capture the perceptual representation through a bivariate Gaussian distribution, described
by the mean vector p,:

_ Msaz
s =, (1)

5,y

and covariance matrix Xg:
2
N = Os.z PsOs,20sy (2)
s = 2
Ps0s,20s,y O—S,y

where each stimulus is represented by s, the dimensions shape and motion are represented by x and y
respectively, o is a standard deviation parameter, and p is a correlation parameter. All o were set to 1 to fix
the model’s scale and avoid identifiability problems that arise in signal detection theory models (Silbert &
Thomas, 2017). The parameter 4151 was set to [0 0] to fix the position of the model in the two-dimensional
space.



GRT-wIND captures individual differences in performance through individual parameters. Parameter ry
represents the overall attention level shown by participant k, with higher levels decreasing perceptual noise
and increasing discriminability along both dimensions. Parameter A; represents the selective attention to
each dimension shown by participant k, with a value of 0.5 representing equal attention to both dimensions.
A value higher than 0.5 represents more attention towards shape and a value lower than 0.5 represents more
attention towards motion. Therefore, the covariance matrix becomes modified to:

2

Os,a Ps0s,20s,y
KAk VE2AR(1=Ag)
Xk = PsOswTsy o2 (3)
VE2 AR (1=Xx) fk (1=Ak)

Two other individual parameters describe decision bounds assumed to be used by participants. Each
bound can be written as a linear discriminant function in which one parameter is always fixed to one and
the others define its slope and position:

har (X,Y) = bak, o X + bag Y + cax 4)

where d represents dimension (i.e., shape or motion), and X and Y represent specific values of the
dimensions x and y respectively.

The two response bounds together subdivide the perceptual distribution associated with stimulus s into
four areas that add up to 1.0, each representing the probability of each response (i.e., synchronous IDy,
synchronous ID,, asynchronous IDq, asynchronous ID,) given the stimulus s, P (R;|s). We can use such
probabilities to compute the likelihood of a set of parameters given the data (Soto et al., 2015). We then
can estimate the model parameters by maximizing the log-likelihood of the model:

LogLik (0) = %, 5,% 715,109 Py (R;|s, 6) (5)

where 755 is the frequency in which participant k& gave the response R; when presented with stimulus s
and Py (R;|s) is the probability of this event given the model parameters, represented by 0.

3 Pilot Methods

Considering the evidence that less discriminable stimuli produce stronger violations of separability (Wang
et al., 2013), probably due to selective attention to the more easily-discriminable dimension, we decided to
equate the discriminability of the two dimensions. A pilot study was implemented to obtain psychometric
functions for shape and motion, which would in turn allow us to calculate the stimulus values leading to a
pre-defined sensitivity (d' = 1.5) in both dimensions.

3.1 Stimuli

To generate a sequence of face models transforming from one face identity to another in the shape/identity
groups, models were obtained from the line segment connecting the two identities in the shape parameter
space defined within MakeHuman (www.makehumancommunity.org) extended with the package FaReT (Hays
et al., 2020; https://github.com/fsotoc/FaReT). This line segment was divided into equally spaced parts
that represent percentages of transformation from one identity to the other, with each percentage point
containing its own parameter values for each of the face features manipulated. The collection of models at
each step, rendered from a frontal view, became the stimuli. For example, the stimuli for set one consisted of
Bob, Joe, and nine images in-between as a shape continuum between Bob and Joe, each in 10% transformation
steps. Therefore, 10% Joe (or 90% Bob) translates to the identity being at 10% of the linear trajectory from
Bob to Joe. The 50% image became the average face of the two identities, which was used as the constant
identity /shape when the target dimension was motion. In sum, we implemented linear interpolation in the
parameter space of MakeHuman to obtain the shape dimension.

In the motion groups, the parameters of the face expressions were divided into two feature groups: face
features around the eyes, eyebrows, and forehead (red region in Figure S2), and face features around the
mouth, cheeks, and chin (blue region in Figure S2). For this experiment, we manipulated the level of
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synchrony between top face movement (e.g., eyebrow, eyelid) and bottom face movement (e.g., mouth) in
10% steps from complete synchrony (both feature groups moving at the same speed) to complete asynchrony
(one feature group moving first completely, followed by movement in the other feature group).

Top Parameters

Bottom Parameters

Figure S2: Manipulation of motion asynchrony of face features in dynamic stimuli. The black segment represents complete
synchrony, whereas the lightest segment represents complete asynchrony.

The motion dimension was defined as the amount of motion synchrony between the top half and bottom
half of the face, just as in the main experiment. As before, we interpolated between complete synchrony
(black line in Figure S2) and complete asynchrony (light orange line in Figure S2), to obtain a continuum
composed of 11 levels of motion synchrony. The final dynamic stimuli were obtained by concatenating
renders of faces transformed from a neutral expression to one of three emotions (i.e., happiness, surprise,
and disgust), using the same procedure described in the main text. Emotional expression was held constant
within each study group. Stimulus sets presented to different groups varied in sex and identity (i.e., male
and female), and emotion (i.e., happiness, surprise, and disgust). Motion and expression were held constant
in the identity groups. The faces in these groups displayed a neutral expression and were static images
displayed for 200ms. To hold identity constant within the motion groups, the 50% average face created
for the shape pilot group was used. Constant texture and illumination were implemented through FaReT’s
defaults.

3.2 Procedure

There were 48 training trials and 750 subsequent testing trials for the pilot task. During training trials, only
the two stimuli representing the endpoints of the dimension (0% and 100%) were presented. During testing
trials, the endpoint stimuli (i.e., 0% and 100% conditions) were presented 150 times, and the stimuli created
along the dimension (i.e., 10%-90% conditions) were presented 50 times. Trials were organized in 50 blocks
of 15 trials each (3 presentations of each endpoint stimulus, and one presentation of each of the other nine
stimuli), and randomized within block.

During each trial, a fixation cross appeared for 500ms before the presentation of a stimulus. Static
images were displayed for 200ms and the dynamic stimuli were presented for 1s. Feedback was given at
the end of trials with stimuli representing the endpoints of the dimension, both during training and testing.
If the response was correct, a green “Correct!” appeared on the screen for 1s, but in incorrect trials, a red
“Incorrect!” followed by a 5s penalty timeout would appear. If the participant provided no response within
a 2s window, a red “Too Slow!” appeared for 1s, along with the 5s penalty timeout.

Participants were instructed to categorize the stimuli based on the target dimension (e.g., categorizing
the face as ‘Bob’ versus ‘Joe’, or as ‘synchronous motion’ versus ‘asynchronous motion’). The pilot study
was divided into nine experimental groups, each with their own target dimension (i.e., male identity, female
identity, male happy motion, male surprise motion, male disgust motion, female happy motion, female
surprise motion, female disgust motion, and a second male surprise motion control group).

3.3 Data Analysis

Participants showing a low performance level (<75% correct) in the discrimination between the extreme
levels of the dimension (e.g., 0% Bob versus 100% Bob) were excluded from the analysis, as we assumed that
they did not learn the task or were not paying attention. Psychometric curves that do not reach values close
to floor and ceiling of performance cannot be adequately analyzed through curve-fitting. Model parameters



then become difficult to recover, with the fitting procedure often failing to converge to a reasonable set of
parameter estimates. Therefore, it is important to discard participants with low performance level to prevent
such issues.

Categorization responses were used to estimate psychometric curves for shape and motion at the indi-
vidual level. The estimated parameters were averaged to obtain psychometric curves at the group level.
The psychometric curves were estimated using a signal detection theory model (Lesmes et al., 2015), which
breaks down participant performance in terms of sensitivity, independently from decisional biases. As in-
dicated earlier, the psychometric curves for the participants were obtained to calibrate the stimulus sets in
the main study and to ensure that the discriminability of dimensional changes is equivalent for shape and
motion (both at d’ = 1.5). Data from the pilot studies were analyzed using the R package quickpsy (Linares
& Lopez-Moliner, 2016).

4 Pilot Results

Table S1 depicts the stimulus values used for each group in the main identification task according to a d’ of
1.5.

Group Value
Identity Set 1 (Male) 53.912
Identity Set 2 (Female) 37.884
Motion Happy Set 1 58.647
Motion Happy Set 2 59.189
Motion Disgust Set 1 63.316
Motion Disgust Set 2 49.914
Motion Surprise Set 1 61.631

Motion Surprise Set 2 55.865
Motion Control (Surprise 1) 51.402

Table S1: Stimulus value at d’ = 1.5 for each dataset. Each value represents the percentage of the second stimulus shown for

each dimension and group. Set 1 = Male. Set 2 = Female.

These stimulus values were calculated from the average of the fitted psychometric curves shown in Fig-
ure S3. The colored curves represent each participant’s data, and the black curve represents the group
psychometric curve found by averaging parameters across participants.

5 Post-Hoc Tests

5.1 Binomial Test

Overall, our results indicate support for perceptual separability of face shape and motion; however, we did
find two significant violations. Because those two violations were found using a frequentist likelihood ratio
test with a 5% false discovery rate, we wondered whether two significant tests out of fourteen is higher than
what we would expect from chance, assuming that perceptual separability (i.e., the null hypothesis) holds in
general for shape and motion. A post-hoc binomial test revealed that two violations of perceptual separability
is not significantly higher than expected by chance with ¢=0.05, p=0.123. Indeed, the two significant results
had relatively high p-values and would not be found significant under a Bonferroni-corrected ¢=0.0035. For
completeness, we tested whether obtaining only two significant violations of perceptual separability out of
fourteen is itself significantly lower than chance, under the assumption that perceptual separability does not
hold for shape and motion in the true data-generating model. Testing this hypothesis requires assuming a
particular level of power of the statistical test (e.g., under the null of no separability, and with power of 0.80,
the expected number of significant violations of separability would be 0.8 x 14 ~ 11). For this reason, we
tested the hypothesis using a binomial test for a range of values of power. We found that with power as low
as 0.37 we would still reject the hypothesis of violations of separability in our data (i.e., p<0.05).
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Figure S3: The psychometric curves for each group from the pilot study. Each colored curve represents an individual’s curve,
and the black curves represent the group average. The curves were fit using a Signal Detection Theory model (Lesmes et al.,
2015) with the R package quickpsy (Linares & Lopez-Moliner, 2016).



5.2 Nonparametric GRT Tests

Supplementary nonparametric GRT tests of Marginal Response Invariance (MRI) and Sampling Indepen-
dence (SI) are reported below. MRI is related to perceptual and decisional separability. Because most of our
results involved perceptual separability holding but decisional separability failing, we would expect that in
most cases MRI should fail. However, we see in Supplementary Table 2 that in the large majority of cases
the MRI test holds. Similarly, SI is related to perceptual independence and decisional separability. Because
most of our results involved failures of both perceptual independence and decisional separability, we would
expect that in most cases SI should fail, but again we see that in the large majority of cases the SI test holds.
There are at least two possible explanations for these results. First, a difference in statistical power between
our tests with GRT-wIND, which are based on the data from all participants in each experiment, and the
nonparametric tests presented below, each based only on the data from a single participant. Violations of
decisional separability and perceptual independence that are small in magnitude could very well lead to the
pattern of results shown below. As indicated in the main text, this was the case for violations of perceptual
independence obtained from our model-based analysis. Second, it has been shown that, in general, analyses
of data with GRT focused on individual participants undergoing a 2x2 identification experiment like ours
are problematic (Mack et al., 2011; Silbert and Thomas, 2013). GRT-wIND solves these issues when its
assumptions are correct (Soto et al., 2015), which is the reason why our pre-registered data analysis applies
this methodology.

Group MRI (Motion) MRI (Shape) SI (A;B;) SI (A:B;) SI (A;B2) SI (A:B,)
Female Happy 67 7 100 100 100 100
Male Happy 90 80 100 100 100 100
Female Disgust 90 83 100 100 100 100
Male Disgust 80 70 100 100 100 100
Female Surprise 93 53 100 96.7 96.7 100
Male Surprise 93 73 100 96.7 96.7 100
Control 100 70 96.7 100 96.7 100

A = Motion, B = Shape

Table S2: Marginal Response Invariance (MRI) and Sampling Independence (SI) GRT nonparametric tests are reported as
the proportion of participants (in percentage points) for which the test held. Therefore, “100” corresponds to MRI or SI holding
for 100% of participants in that group.
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