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Multidimensional Signal Detection Modeling Reveals Gestalt-Like
Perceptual Integration of Face Emotion and Identity
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Numerous studies have tested the hypothesis that facial identity and emotional ex-
pression are independently processed, but a solid conclusion has been difficult to
reach, with the literature showing contradictory results. We argue that this is partly
due to different researchers using different definitions of perceptual integration and
independence, usually vague and/or simply operational, and also due to lack of proper
stimulus control. Here, we performed a study using 3-D realistic computer-generated
faces for which the discriminability of identities and expressions, the intensity of the
expressions, and low-level features of the faces were controlled. A large number of
participants, distributed across twelve experimental groups, performed identification
tasks for the six basic emotional expressions and the neutral expression (between 2018
and 2019). A multidimensional signal detection model was utilized to analyze the
data, which allowed us to distinguish between multiple formally-defined notions of
independence and holism. Results showed strong and robust violations of perceptual
independence that were consistent across all experiments and suggest Gestalt-like
perceptual integration of face identity and expression. To date, our results provide
the strongest evidence for holistic/Gestalt processing found among face perception

studies that have used formal definitions of independence and holism.

Keywords: Face perception, face identity, face emotion, perceptual integration,
perceptual independence, signal detection theory, general recognition theory

The human face can convey important information
about multiple social and psychological cues and states,
including emotional expression and multiple aspects of
face identity (e.g., race, sex, age). In vision science, it
has been proposed that such features are processed inde-
pendently or separately (e.g., Bernstein & Yovel, 2015;
Bruce & Young, 1986; Duchaine & Yovel, 2015; Haxby
et al., 2000). In contrast, the affective science literature
suggests the opposite, with situational context being
important for inferences of emotion from facial expres-
sion (Aviezer et al., 2017; Hess & Hareli, 2019), either
to clarify the ambiguous mapping between expressions
and the emotions eliciting them (Barrett et al., 2019)
and/or to quickly and easily obtain socially-relevant in-
formation from faces (Adams et al., 2017). Part of this
situational context is the individual presenting the ex-
pression, and a body of literature shows that variables
related to identity influence emotion perception (Albohn
& Adams, 2016; Albohn et al., 2019). This suggests that
not only are identity features integrated into holistic
percepts (Piepers & Robbins, 2012), but such percepts
might also integrate emotional expression information.

Results of direct tests of the independence hypoth-
esis are contradictory (e.g., D’Argembeau et al., 2003;

Etcoff, 1984; Campbell, 1996; Campbell & Burke, 2009;
Pell & Richards, 2013; Fox et al., 2008; Schweinberger &
Soukup, 1998; Fitousi & Wenger, 2013), likely because
researchers have used a variety of definitions of percep-
tual integration and independence, most of them vague
and simply operational (see Mestry et al., 2012; Richler
et al., 2012). This issue is compounded if one takes into
account the emotion literature where, due the multi-
modal nature of emotion perception (Keltner et al.,
2019), operational tests might measure not only a va-
riety of visual processes, but other perceptual and post-
perceptual processes as well. Indeed, theories positing
independent pathways for identity and expression would
explain observations of integration (i.e., context-specific
processing) of these face dimensions as post-perceptual
effects (or pre-perceptual effects in the stimuli, see be-
low).

A way to bring clarity to this literature is to for-
malize concepts like integration and independence using
mathematical theories (e.g., O’Toole et al., 2001). When
such formal definitions are developed and linked to spe-
cific behavioral tasks, it is clear that the exact same
dimensions can be interactive according to one defini-
tion, but independent according to a different definition



2 HOSSEINI & SOTO

(Richler et al., 2012). General recognition theory (GRT)
is an extension of signal detection theory developed to
study interactions between stimulus dimensions (Ashby
& Townsend, 1986; Ashby & Soto, 2015). Figure 1 shows
the GRT model for an experiment testing independence
of face identity and emotional expression, where stimuli
are combinations of two identities and two expressions.
The contours represent two-dimensional Gaussian dis-
tributions, each summarizing the noisy perceptual rep-
resentation of a single stimulus. The straight lines are
decision bounds that divide the space into four response
regions, one for the identification of each stimulus.

GRT defines three types of independence between di-
mensions, with violations of each type representing a
different form of integrated processing. Perceptual sep-
arability is the type of independence that research on
visual perception of face identity and expression has
aimed to test (e.g., through the Garner interference task;
e.g., Fitousi & Wenger 2013; Wang et al. 2013). In
perceptually separable dimensions, changes in the stim-
ulus along one dimension do not alter the perceptual
representation of the stimulus on the other dimension.
In Figure 1, identity is perceptually separable from ex-
pression, as indicated by identical overlapping marginal
distributions (the unidimensional Gaussians shown on
each dimension) for each identity regardless of expres-
sion. However, expression is not perceptually separa-
ble from identity, as Bob’s expressions are perceived as
angrier than Joe’s expressions. This formal definition
of perceptual separability captures nicely the vernacu-
lar notion of “invariance” used in vision science (e.g.,
Anzellotti & Caramazza, 2014).

Perceptual independence is defined for the representa-
tion of each individual stimulus (i.e., each ellipse), and it
holds when noise along one dimension is independent of
noise along the other dimension. In Figure 1, the repre-
sentation of angry Joe shows a violation of perceptual in-
dependence, illustrated as a tilted ellipse, which reveals
that perception of the face as belonging to Joe is related
to perception of that face as being angry (i.e., correlated
perceptual noise). This captures the vernacular notion
of a Gestalt or holistic perception (Townsend & Wenger,
2014), as in this case the perception of two aspects of
a face (e.g., anger and identity) are inextricably linked.
A review of the literature reveals consistent lack of evi-
dence for holistic perception of face features defined in
this way (for a review, see Townsend & Wenger, 2014).

Finally, decisional separability holds when the deci-
sion bound for classification along one dimension does
not change with changes in the level of the other dimen-
sion (for a definition in terms of piecewise linear bounds,
see Ashby & Lee, 1991). This form of independence is
represented by bounds that are orthogonal to the dimen-

- . :

L - '

r s,~ Neutral E Angry
= Joe \ Joe _ _|
-+— N S _--""

L GC) -1 N S

| Do @

| Neutral ! Angry

- * Bob : Bob
T T T T T T

2 -1 0 1 2 3

Expression

Figure 1. A GRT model for a complete identification
task. Each dimension has two levels, resulting in four
stimuli that are perceptually represented by bivariate
Gaussian distributions. Ellipses represent contours of
equal likelihood from such distribution. Marginal dis-
tributions are shown on each dimension. The dotted
lines represent decision bounds that partition the space
into four response regions.

sion that they classify; any deviation from orthogonality
is a violation of decisional separability. For instance,
figure 1 shows that decisional separability is violated
for identity but it holds for expression. Post-perceptual
forms of interaction are captured by this concept.

Only some combinations of tasks and analyses are
able to differentiate the three forms of independence,
and most research on the interaction between face iden-
tity and emotional expression has not achieve that dif-
ferentiation. For example, the Garner interference task
(Garner, 1974) measures a combination of perceptual
and decisional separability (Ashby & Maddox, 1994).
Here, we use a complete identification task (Ashby &
Soto, 2015; Soto et al., 2017) and a model-based analy-
sis using GRT-wIND (GRT with individual differences;
Soto et al., 2015). This approach can distinguish be-
tween all three forms of independence, at the cost of
an assumption that the underlying pattern of the per-
ception of a set of stimuli is similar among people, and
differences in performance arise from attentional and de-
cisional strategies that they employ in a task (for a dis-
cussion, see Silbert & Thomas, 2013, 2017; Soto et al.,
2015).

A second issue likely to contribute to contradictory
results in the literature is lack of stimulus control, as
the results of many studies could partially mirror depen-
dencies found in the experimental stimuli rather than
reflecting any underlying perceptual processes (Tjan &
Legge, 1998). This issue is key if one wants to sug-
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gest that a given effect is related to the way in which
emotional expression is perceived rather than produced.
To reach such conclusions, stimuli should be controlled
in at least three ways. First, the relevant stimulus di-
mensions should not be correlated with any irrelevant
dimension. Low-level features of the face (e.g., head
shape, hairstyle, eye color, skin tone and texture) should
be controlled because, without such control, perceptual
separability could be trivially achieved through atten-
tion to salient low-level features (Anzellotti & Cara-
mazza, 2014). Second, the intensity of the relevant
dimensions should be constant across stimuli. For ex-
ample, if person A is more expressive in demonstrating
emotions than person B, then an observer may find dis-
criminating emotions for person B harder compared to
person A (a violation of perceptual separability), due
to stimulus properties rather than perceptual processes.
Third, the dimensions should be equally discriminable,
as discriminability might reduce interference (Ganel &
Goshen-Gottstein, 2004; Wang et al., 2013).

Here, we achieved these three goals by (1) using
highly controlled identity 3D models, designed to be re-
alistic while eliminating low-level confounds, (2) creat-
ing realistic models of expressions that can be applied
over all of the identities to equalize the displayed emo-
tion across them, and (3) equating discriminability of
the identities and expressions based on the results of a
pilot study. In addition, we determine the independence
of face identity and expression separately for each of
Ekman’s six basic emotions: anger, disgust, fear, hap-
piness, sadness and surprise (Ekman & Friesen, 1975).
Most previous studies have targeted a subset of these
expressions and, in most cases, participants were asked
to discriminate a specific pair of expressions. In our
study, we evaluate each individual expression on its own,
discriminated against a neutral expression. This makes
results comparable across expressions, allowing us to
evaluate if independence is found for some expressions
and not others, and it is closer to the task that people
encounter during naturalistic face perception. Finally,
we used two different sets of identities per expression to
assess the generalizability of the outcome across faces,
for a total of twelve experiments®.

Methods
Participants

Four hundred and twenty undergraduate students
from Florida International University were recruited
through SONA. Of those who reported demograrphics,
28.57% were male and 71.42% were female, with ages
from 18 to 39 years of age (mean = 21.21). We aimed
to obtain data from 30 participants in each group. Af-

ter exclusion of uninformative datasets (see below), we
obtained between 20 and 30 participants in each exper-
iment. Simulation work has shown that these sample
sizes provide high parameter recoverability for the model
used in our analyses (Soto et al., 2021). Participation
was voluntary and compensated with course credit. The
Institutional Review Board of Florida International Uni-
versity approved this study, and written informed con-
sent was obtained from all participants. Data were col-
lected in 2018 and 2019.

Stimuli

Highly controlled three-dimensional identity models
and expression pose models were generated using com-
puter graphics software (MakeHuman, www.makehu-
mancommunity.org; see Hays et al., 2020) so that the ex-
act same expression model could be applied on different
identity models. Four identity models were grouped into
sets of two, with each pair controlled to have identical
facial hair, head size, head shape, hairstyle, hair color,
eye color, skin color, skin tone, skin texture, and facial
fat. In addition, they were all the same age, had the
same level of sex (maleness), and race (all caucasian).
Alongside the identity models, six expression models for
the emotions happy, sad, anger, fear, surprise, and dis-
gust were created, all inspired by a real actor’s poses
(validated in Hays et al., 2020). An expression model
can be applied on any identity model, which eliminates
any difference in the intensity of the displayed emotion
by different identities. To equate the discriminability of
the dimensions, a pilot study was conducted to deter-
mine differences between levels of each dimension (e.g.,
neutral vs. sad) discriminated at average sensitivity of
d’ = 1.5 (Macmillan & Creelman, 2005). Details and
results of the pilot study, and renders of the models can
be found in the Supplementary Material (SM).

Procedures

Twelve experiments were performed, each using a dif-
ferent stimulus set, which resulted from the combination
of six basic expressions and two identity sets. Each par-
ticipant was presented with only one stimulus set.

To avoid image-matching strategies (Burton & Jenk-
ins, 2011), participants were familiarized with the iden-
tities in the set by watching short movies of each face ac-
companied by its name (Bob or Joe). Participants were
instructed to memorize the faces and informed that they

'We refer to them as experiments rather than experimen-
tal groups, as they were performed sequentially within a time
window of sixteen months, without random assignment of
participants.


http://www.makehumancommunity.org
http://www.makehumancommunity.org

4 HOSSEINI & SOTO

would be later tested on their recognition (as in Megreya
& Burton, 2006).

After familiarization, participants performed a com-
plete identification task, in which they were asked to
identify the specific combination of identity and expres-
sion presented by pressing a key. (“B”, “G”, “J”, and
“N”; see Figure S4 and description in SM).

Each trial started with a 500ms fixation cross, fol-
lowed by a 200ms stimulus. Participants could press a
key within 2s after stimulus onset; after this the message
“Too slow!” was displayed in red. When a response was
recorded, feedback (“Correct!” in blue or “Incorrect!”
in red) was displayed for 1s. Feedback for slow or incor-
rect responses was followed by a 5s penalty timeout, to
motivate participants to perform accurately.

Participants completed twenty-three blocks of trials.
Each block included five repetitions of each stimulus,
randomized within the block, yielding a total of 460 tri-
als.

Model-Based Data Analysis

The following steps were taken to perform separate
model-based analyses of all twelve datasets.

The data from participants whose performance was
lower than 40% (near chance) or higher than 90% (near
perfect) correct was excluded, as they provide little to
no information for model-fitting. For each participant,
we excluded data acquired during learning of the task,
following the procedures outlined in Soto et al. (2015)
(for details on included/excluded participants and data,
see Table S2 in SM). Included data were aggregated into
a 4x4 confusion matrix where each row corresponded to
one stimulus and each column to one response key. The
cells of this matrix contained the frequency of each re-
sponse when the participant was presented with each of
the stimuli.

We used the package grtools (Soto et al., 2017) to fit
the GRT-wIND model (Soto et al., 2015) to the con-
fusion matrices using maximum likelihood estimation.
This model assumes that some properties of the percep-
tual distributions are the same across participants (i.e.,
perceptual separability and independence hold or fail for
all participants). Individual differences in performance
are captured by differences in decisional and attentional
processes. To ensure finding the global maximum of the
likelihood function, the optimization algorithm was run
120 times with random starting values, and the GRT-
wIND model with the highest maximum likelihood was
kept.

We performed likelihood ratio tests of perceptual sep-
arability, perceptual independence, and decisional sepa-
rability. Each test compares the fit of the full estimated
model with that of a model restricted to show a form

of independence, determining whether or not significant
violations in that form of independence were observed.
All the tests were applied as implemented in grtools. Ef-
fect size equations are not available for these tests, but
in the SM (Figures S5-S7) we report deviations from
perceptual separability and independence that can be
interpreted as unstandardized effect sizes, together with
their 95% confidence intervals.

Transparency and Openness

We report how we determined our sample size, all
data exclusions, all manipulations, and all measures in
the study. All data, analysis code, and research ma-
terials are available at https,//osf.io/thjkq/?view_
only=e17041£72471468993a0444d968c1e27. Data
were analyzed using R, version 3.6.2 (R Core Team,
2021) and the package grtools, version 0.3.1 (Soto et al.,
2017). This study was not pre-registered.

Results

The best-fitting GRT models from each experiment
are shown in 2. The model achieved good fits to the
data, accounting for between 89.63% and 97.95% of the
variance (see Table S3 in SM). Each graph in Figure 2
follows the same structure as Figure 1 and should be
interpreted in the same way. In addition, the results of
likelihood ratio tests have been summarized in Table 1,
where results that are consistent across stimulus sets are
highlighted in bold and italics.

The most consistent and strongest effect, found across
all experiments, was that identity and expression are
not perceptually independent. Figure 2 shows that the
pattern of violations of perceptual independence was the
same across all experiments, a “flower” pattern in which
stronger perceptual evidence for the correct level of one
dimension was accompanied by stronger evidence for the
correct level of the other dimension. Note that, because
the midpoint of each axis represents weaker perceptual
evidence in the corresponding dimension, the percep-
tual evidence for both stimulus dimensions is positively
correlated across all stimuli.

The results of likelihood ratio tests for perceptual
independence supported this conclusion, with all tests
showing strong and significant violations of perceptual
independence: anger - set 1, x¥>(4) = 6477.9, p < 0.001,
anger - set 2, , x¥2(4) = 6110.19, p < 0.001, disgust
- set 1, ¥*(4) = 3771.7, p < 0.001, disgust - set 2,
Y24 = 6771.1, p < 0.001, fear - set 1, y*(4) = 5292.53,
p < 0.001, fear - set 2, y*(4) = 3974, p < 0.001, happi-
ness - set 1, y*(4) = 5990.1, p < 0.001, happiness - set 2,
¥*(4) = 5211.3, p < 0.001, sadness - set 1, y*(4) = 5382.9,
p < 0.001, sadness - set 2, y*(4) = 4798.3, p < 0.001, sur-
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prise - set 1, y2(4) = 6504.9, p < 0.001, surprise - set 2,
x*(4) = 8754.6, p < 0.001.

The second most consistent effect was that of viola-
tions of decisional separability, with 21 out of 24 tests
showing significant violations of decisional separability.
Results were inconsistent across stimulus sets only for
the expressions of disgust and sadness (see Table 1). Re-
garding the decisional separability of identity, we found
significant results for anger - set 1, y*(25) = 132.2,
p < 0.001, anger - set 2, y*(27) = 237.96, p < 0.001,
disgust - set 1, ¥2(22) = 56.2, p < 0.001, fear - set 1,
¥2(21) = 123.37, p < 0.001, fear - set 2, ¥*(22) = 300.9,
p < 0.001, happiness - set 1, ¥2(23) = 92.8, p < 0.001,
happiness - set 2, ¥*(28) = 138.9, p < 0.001, sadness
- set 1, x*(28) = 203.01, p < 0.001, surprise - set 1,
¥2(24) = 119.7, p < 0.001, surprise - set 2, ¥*>(27) = 151.5,
p < 0.001. Only the tests for disgust - set 2 (p > 0.1)
and sadness - set 2 (p = 0.051) did not reach signifi-
cance, with the latter being quite close and perhaps re-
flecting low statistical power. Regarding the decisional
separability of expression, we found significant results
for anger - set 1, ¥*(25) = 128.6, p < 0.001, anger
- set 2, ¥*(27) = 267.32, p < 0.001, disgust - set 1,
¥2(22) = 80.8, p < 0.001, fear - set 1, x*(21) = 105.69,
p < 0.001, fear - set 2, ¥*(22) = 297.9, p < 0.001,
happiness - set 1, ¥?(23) = 126.4, p < 0.001, happi-
ness - set 2, y?(28) = 384.9, p < 0.001, sadness - set 1,
¥2(28) = 292.19, p < 0.001, sadness - set 2, ¥*(23) = 70.6,
p < 0.001, surprise - set 1, y*(24) = 176.3, p < 0.001,
surprise - set 2, ¥?(27) = 125, p < 0.001. Only the test
for disgust - set 2 did not reach significance (p > 0.1).

Finally, perceptual separability showed results that
were in general stimulus-specific; that is, whether or not
violations of perceptual separability were observed was
highly dependent on the stimulus set (i.e., specific iden-
tities) with which participants were tested. There were
two exceptions in which results were consistent across
stimulus sets. First, expression of anger was consistently
separable from identity and vice-versa (all p > 0.1). Sec-
ond, there was an asymmetric pattern of perceptual sep-
arability observed for happy expressions, expression was
perceptually separable from identity (all p > 0.05), but
identity was not perceptually separable from expression
(set 1: )(2(2) = 1193, p < 0.001; set 2: )(2(2) = 199.1,
p <0.001).

For other expressions, we found significant violations
of perceptual separability for one stimulus set, but not
the other. For disgust, we found significant results
for expression (y*(2) = 36.4, p < 0.001) and identity
(x*(2) = 14, p = 0.001) in stimulus set 1, but neither
was significant in stimulus set 2 (p > 0.1). For fear,
we found significant results for expression (y*(2) = 16.9,
p < 0.001) and identity (y*(2) = 65.8, p < 0.001) in

stimulus set 2, but neither was significant in stimulus
set 1 (p > 0.5). For sadness, we found significant results
for expression (y*(2) = 139.3, p < 0.001) and identity
(x*(23) = 14.2, p < 0.001) in stimulus set 2, but neither
was significant in stimulus set 1 (p > 0.05). Finally,
for surprise, we found significant results for expression
(x*(2) = 99, p < 0.001) and identity (x¥*(2) = 20.1,
p <0.001) in stimulus set 2, but neither was significant
in stimulus set 1 (p > 0.05).

We performed a post-hoc control experiment with
morphed identity dimensions, which are known to be
highly interactive according to multiple tests (e.g., Blun-
den et al., 2015; Soto & Ashby, 2015). This provided a
benchmark of what magnitude of violations of percep-
tual independence and separability to expect from inter-
active dimensions using our procedures. Detailed results
from this study are reported in the SM, and they all were
in line with the results of our main analysis with like-
lihood ratio tests. When compared to our benchmark,
the magnitude of violations of perceptual separability
was highly variable and strongly dependent on stimulus
set. On the other hand, the magnitude of violations of
perceptual independence were consistently larger than
the benchmark. This suggests that our main finding of
holistic processing of expression and identity was not a
mere artifact of our methods or the type of stimuli that
we used, a possibility suggested by the absence of such
findings in the face perception literature (for a review,
see Townsend & Wenger, 2014).

Discussion

We performed a study with the goal of determin-
ing whether facial identity and expression are percep-
tually independent, while controlling for a number of
confounds in previous similar studies. We controlled
stimulus confounds by creating three-dimensional mod-
els of identity and expression pose, and by precisely
manipulating the discriminability of identities and ex-
pressions. We controlled decisional confounds by per-
forming a GRT model-based analysis of data obtained
from an identification task, which additionally allowed
us to evaluate multiple formally-defined forms of inde-
pendence, rather than relying on vague operational def-
initions. The study included two experiments for each
of Ekman’s six basic emotional expressions.

The most consistent and strongest result observed
was a significant violation of perceptual independence
of identity and expression, showing that when the ex-
pression of a face is perceived more distinctively, then its
identity is also perceived more distinctively, and when
the expression of a face is perceived with higher am-
biguity, then there is higher ambiguity in its perceived
identity. In other words, participants were unable to
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Figure 2. Best-fitting GRT model from each of the experiments in this study (one sub-figure per study). Within
each sub-figure, Each contour of a different color corresponds to one of the stimuli included in the experiment (red,
neutral Bob, green, expressive Bob, blue, neutral Joe, and orange, expressive Joe), and the marginal distributions
for each of these contours are represented by univariate Gaussians with the same color, presented to the left of
the y-axis for identity and below the z-axis for expression. The panel at the bottom-left of a sub-figure shows a
comparison between the response probabilities predicted by the best-fitting model (y-axis) against the observed
response proportions (z-axis) for all the participants. That is, for each stimulus in the task (e.g., “angry Joe”)
a participant could choose one of four different responses (“angry Joe”, “neutral Joe”, “angry Bob”, or “neutral
Bob”), with their proportion throughout the experiment adding up to one. The same data could be obtained from
the model, and the scatterplot shows a comparison of such probabilities across all stimuli and participants.

Table 1

Summary of results of likelihood ratio tests in the main study. Results that are consistent across stimulus sets are
highlighted using a font in bold and italics. PS = Perceptual Separability, PI = Perceptual Independence, DS =
Decisional Separability.

Expression PS (Expression) PS (Identity) PI DS (Expression) DS (Identity)

Anger / Stimulus Set 1 Yes Yes No No No
Anger / Stimulus Set 2 Yes Yes No No No
Disgust / Stimulus Set 1 No No No No No
Disgust / Stimulus Set 2 Yes Yes No Yes Yes
Fear / Stimulus Set 1 Yes Yes No No No
Fear / Stimulus Set 2 No No No No No
Happiness / Stimulus Set 1 Yes No No No No
Happiness / Stimulus Set 2 Yes No No No No
Sadness / Stimulus Set 1 Yes Yes No No No
Sadness / Stimulus Set 2 No No No No Yes
Surprise / Stimulus Set 1 Yes Yes No No No

Surprise / Stimulus Set 2 No No No No No
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perceive a face’s identity without its expression, or vice
versa. This pattern strongly implies what other re-
searchers (see Townsend & Wenger, 2014) have inter-
preted as holistic or Gestalt perception of face identity
and expression. To the best of our knowledge, our re-
sults provide the strongest evidence for holistic/Gestalt
processing found among face perception studies that
have used formal definitions of holism (e.g., Cornes
et al., 2011; Richler et al., 2008; for a review, see
Townsend & Wenger, 2014). The pattern of violations of
perceptual independence consistenly found across all ex-
periments was specific to the dimensions of identity and
expression; it was not found in our benchmark study
(see SM) or in other studies involving different facial
dimensions (Martin et al., 2022).

This result was also absent from previous studies
that evaluated independence of face identity and expres-
sion using GRT (Fitousi & Wenger, 2013; Soto et al.,
2015). The most likely explanation for our novel re-
sult lies in the strong level of stimulus control used
in our study, which allowed us to isolate the percep-
tual mechanisms involved in perception of face shape
only. We hypothesize strongly integrated perception
of changeable and stable aspects of face shape, against
the predictions of traditional models of face processing
(Bruce & Young, 1986; Haxby et al., 2000) and in line
with more recent models of face perception that propose
highly context-specific processing of emotional expres-
sion (Adams et al., 2017; Aviezer et al., 2017; Hess &
Hareli, 2019), as well as those that identify a pathway
in the visual system processing all aspects of face shape
(Bernstein & Yovel, 2015; Duchaine & Yovel, 2015).
Such integrated processing might be obscured by differ-
ences in non-shape features that facilitate the perception
of stable aspects of face shape, such as identity, but not
the perception of changeable aspects of face shape, such
as expression.

The second most consistent result found in our study
was that of violations of decisional separability, a com-
mon finding in the face perception literature (e.g., Fi-
tousi & Wenger, 2013; Richler et al., 2008; Wenger &
Ingvalson, 2002). This underscores the importance of
using paradigms able to distinguish between decisional
and perceptual forms of dimensional interaction. Some
of the most popular tasks used in the literature on in-
dependence of face identity and expression, such as the
Garner interference task (e.g., Etcoff, 1984; Fitousi &
Wenger, 2013; Schweinberger & Soukup, 1998; Wang
et al., 2013), are unable to distinguish between deci-
sional and perceptual separability, and they provide no
information about perceptual independence. It is im-
portant that future research avoids the use of such tasks,
focusing instead on tasks and analyses that can distin-

guish between perceptual and decisional processes.

Finally, the observed pattern of results regarding per-
ceptual separability was highly variable and dependent
on both the specific expression and identities tested.
This is again in line with recent research showing in-
teractions between emotion perception and situational
context variables, including identity (Albohn & Adams,
2016; Albohn et al., 2019). As suggested by an ecolog-
ical approach to face perception (Adams et al., 2017),
integration of information about identity and expres-
sion might be important because it allows observers to
exploit any information available that is useful for social
action and survival. This view predicts that integration
should be stimulus-specific, as physiognomic features
should influence potentially available information about
emotion (e.g., different neutral faces would appear more
or less expressive, see Albohn et al., 2019) and what
identity variables could be inferred from expression.

Results were consistent across identities only for the
expressions of anger and happiness. First, both anger
and happiness showed perceptual separability from iden-
tity. Such consistency in the perception of a level of
expression is different from advantages that these ex-
pressions might have for recognition or detection (Num-
menmaa & Calvo, 2015). Happy and angry faces are
interesting from an ecological perspective in that they
are signals of safety and threat, respectively, and there
is evidence suggesting that they evolved by exploiting
already-existing perceptual mechanisms of survival (e.g.,
Franklin et al., 2019). Perhaps reliably evaluating the
level of threat and safety in a face, regardless of who is
showing these expressions, has a higher adaptive value
than extracting more or less evidence of threat and
safety depending on a person’s physiognomy (e.g., dom-
inance features, related to physical strength).

Second, happiness caused identities to be less per-
ceptually distinctive, whereas anger had no effect. Re-
garding the effect of happiness, extraction of informa-
tion about safety might be prioritized to such an extent
that it always reduces processing of identity information.
This is to be expected from prioritization of one source
of information that is highly integrated with another. If
that is the case, then it is hard to explain why identity
perception was not influenced by changes in anger. One
possibility is that threat processing is prioritized to such
an extent that a parallel system has evolved to accom-
plish it. To explain violations of perceptual indepen-
dence, however, that system would have to implement
integration at some stage. More research is necessary to
test this and other possibilities suggested by the current
results.

We took advantage of a full factorial identification
task design. This has several advantages over the fa-
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mous Garner interference task (Garner, 1974), which
measures a combination of perceptual separability and
decisional separability (Ashby & Maddox, 1994). The
inability of the task to distinguish perceptual from de-
cisional factors could fairly explain why prior studies
have resulted in contradictory conclusions (e.g., Etcoff,
1984; Ganel & Goshen-Gottstein, 2004; Schweinberger
& Soukup, 1998; Stoesz & Jakobson, 2013). In addition,
different studies have targeted different expressions, and
we found great variation in violations of perceptual sep-
arability and decisional separability across different ex-
pressions. If the Garner task measures a form of separa-
bility not defined within GRT (Algom & Fitousi, 2016),
then it remains to be determined exactly what that is
(using a rigorous formal definition) and why it cannot
be measured consistently across experiments. We be-
lieve that, without such advances, the Garner task is a
poor choice to study perceptual independence/integra-
tion, and should be replaced by more precise approaches
(e.g., Fitousi & Wenger, 2013; Townsend & Wenger,
2014; Fifi¢ & Townsend, 2010).

Together, violations of perceptual independence and
separability suggest that emotion perception shows
context-specificity that is partially perceptual in nature,
in line with the idea that facial communication exploits
pre-existing perceptual mechanisms to generate socially-
relevant integrated representations (Adams et al., 2017)
and to disambiguate facial signals of emotion that vary
widely across individuals (Barrett et al., 2019). Indeed,
our results show that identity and expression cues are so
tightly integrated in face perception that they act as a
single perceptual unit, with both being either perceived
or missed together in conditions of low signal.

Basic emotion theory (for a review, see Keltuner et al.,
2019) proposes that people reliably perceive emotion in
faces showing a particular pattern of expression, and it
is linked to the idea that the brain activity accompany-
ing that perception is similarly stereotypical (see discus-
sion in Lindquist et al., 2012). While context-specificity
has been taken as evidence against basic emotion the-
ory, the type of results that warrant such interpretation
are different from those found here. Our results only
show that identity can change how strongly an emo-
tion is perceived, not what emotion is perceived. Simi-
larly, our results support very specific hypotheses about
how integration of expression and identity is achieved
in the brain. Neurocomputational extensions of GRT
(Soto et al., 2018) suggest that failures of perceptual
separability and independence must be accompanied by
similar context-specific neural encoding (i.e., failures of
encoding separability and independence). Populations
of neurons that encode expression and identity might
be localized in specific brain areas or be more malleable

(Lindquist et al., 2012), encapsulated in visual cortex or
open to top-down influence (Firestone & Scholl, 2016).
Regardless, neurocomputational theory indicates that
they must be context-sensitive, in that changes in iden-
tity modify encoding of expression, and vice-versa.

Limitations

Our results might not generalize to people with de-
mographics different from those of our participants. Al-
though our stimuli were realistic and obtained from val-
idated models (Hays et al., 2020), they do not match
real-world face photographs. Our goal was to manip-
ulate inner face shape features and standardize every-
thing else about our models, and we believe that this
level of control is behind the consistency of our results
regarding perceptual independence. On the other hand,
it is well known that people use other cues for face
identification. Thus, our conclusions are limited to face
shape perception, and not other aspects of face percep-
tion. Our model-based analysis depends on the assump-
tion that patterns of interference between emotion and
identity are similar across people, which has been called
into question (Silbert & Thomas, 2017). Future research
should explore potential individual differences and their
implications for our conclusions, using traditional GRT
analysis of a larger identification task (e.g., with three
levels per dimension). Because model-fitting requires
identification errors, we excluded data from a minor-
ity of participants with near-perfect performance, who
might process faces differently from other people, show-
ing higher levels of independence of processing. The
definitions of independence and integration included in
GRT refer to the nature of the perceptual represen-
tation of a stimulus, but other forms of independence
can be formally defined which are beyond the scope of
GRT. For example, systems factorial technology (see
Little et al., 2017) offers definitions in terms of real-
time processing, neurocomputational GRT (Soto et al.,
2018) offers definitions in terms of neural representation,
and extensions of GRT to the linear-nonlinear observer
model (Soto, 2019) offer definitions in terms of infor-
mation sampled by a perceptual observer (i.e., repre-
sentations estimated in reverse correlation studies). We
advice researchers to focus on such formal definitions
and known ways to validly test them, rather than vague
operational definitions.
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1 Pilot Study
1.1 Methods

Highly controlled three-dimensional identity models were created using the software MakeHuman, such that
models of eyeballs, eyebrows, skin, and teeth were identical. Two pairs of male identities were chosen to
be used in this study. Expression models were generated by selecting an actor from the KDE+ database
(Lundqvist et al., 1998), so that his photographs served as the basis for the creation of pose models for all six
basic emotional expressions (Ekman & Friesen, 1975): anger, happiness, sadness, fear, disgust, and surprise.
All the expression models were applied to all four selected identity models to construct the final expressive
facial models plus the neutral version of each identity, creating 28 different facial (identity/expression)
models, which were rendered from a frontal viewpoint. Identities were grouped into two stimulus sets (top
two identities and bottom two identities in Figure S3). The availability of two separate stimulus sets allowed
to test the generalizability of results across identities in the main experiments.

Using the software JPsychMorph, we could make morphed series of these renders, which varied either
across identities or expressions. Morphed series are sequences of images obtained by interpolation between
two extremes. Those extremes were two renders from the already generated facial models, and the inter-
polations were performed in 10% steps. To obtain psychometric curves for identity, two sequences of static
stimuli were created, one for each stimulus set (i.e., pair of identities), going from one identity to the other
in the set in 10% steps. The expression was kept neutral. The resulting stimuli varied in identity but kept
expression constant. To obtain psychometric curves for expression, six different sequences of stimuli were
created for each stimulus set, going from neutral to each of the six emotional expressions in 10% steps. The
average of the two identities in the set was used, so that the resulting stimuli varied in expression but kept
identity constant.

Figure S1 demonstrates one of the morph series created for the pilot study. This sequence was created for
the average identity of one of the sets from the neutral expression to the happy expression with 10% steps.

A discrimination task was developed where groups of 20 participants (undergraduate students from
Florida International University recruited through SONA) were first trained to discriminate the two extremes
of the sequence for a total of 48 trials. This was followed by 50 blocks of testing, each involving 6 training



Figure S1: A morphed sequence from neutral (left) to happy (right) expressions within an identity. The
sequence was generated in 10% steps.

trials with the extremes of the sequence and 9 testing trials with all the faces between the two extremes.
Stimuli were presented for 200 ms in each trial (as in the main study). Participants were excluded if their
accuracy across training trials did not reach 75% correct. Psychometric curves could be obtained from
the data collected during both the expression discrimination and identity discrimination tasks (as shown
in Figure S2). The data from each participant was fitted to a model of the psychometric curve based
on signal detection theory (Lesmes et al., 2015) using the R package quickpsy (Linares & Lopez-Moliner,
2016), which allowed to obtain sensitivity functions linking d’ with morph level. The group model of the
psychometric curves (the thick black psychometric curve in Figure S2) enabled us to find the morph levels
for each sequence corresponding to the a sensitivity value of d’ = 1.5, meaning that the discriminability
between the selected level of the morphing sequence and the start point of the sequences (the first identity
or the neutral expression) was kept constant across dimensions and stimulus sets.



1.2 Results
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Figure S2: Psychometric curves obtained from the pilot study.



Figure S2 depicts the psychometric curve diagrams that we obtained for our pilot study. A psychometric
curve visualizes the performance of the participants as a function of the stimulus level (the morph level in
our study) in a discrimination task (e.g., identity 1 vs. identity 2, neutral vs. fearful, etc.). The data from
each individual participant are shown in a different color, with points representing proportion of choices of
the second of the two trained stimuli, and lines representing the best-fitting psychometric curve.

Depicted in black is the average psychometric curve for each group, obtained by averaging estimated
parameters across participants. These group models were used to obtain thresholds corresponding to d’ = 1.5,
which are reported in Table S1. In the main experiment, we used morph levels equal to zero and the
thresholds values reported in Table S1 as the two levels in each dimension, ensuring that the discriminability
of dimensional levels was on average equivalent across stimulus sets.

Group Threshold
Anger / Stimulus Set 1 52.51%
Anger / Stimulus Set 2 53.85%

Disgust / Stimulus Set 1 44.15%
Disgust / Stimulus Set 2 53.18%
Fear / Stimulus Set 1 49.50%
Fear / Stimulus Set 2 41.47%
Happiness / Stimulus Set 1 36.12%
Happiness / Stimulus Set 2 42.81%
Sadness / Stimulus Set 1 54.85%
Sadness / Stimulus Set 2 54.85%
Surprise / Stimulus Set 1 41.47%
Surprise / Stimulus Set 2 48.16%
Identity / Stimulus Set 1 49.16%
Identity / Stimulus Set 2 50.17%

Table S1: Thresholds obtained from the pilot experiment.

2 Main Study

2.1 Supplementary Methods

Renders from the full set of models used in our study are shown in Figure S3. Each row represents a
different identity model, and each column represents a different expression pose model that could be applied
independently to an identity model. Identity and expression are defined in MakeHuman as two separate
sets of deviations from a base face model. Identity models are defined by a set of numbers quantifying the
presence of specific anatomical face features (e.g., lip thickness, nose width, etc.). Expression pose models
are defined by a set of numbers quantifying the presence of a particular expression pose (similar to an action
unit: lip corner up, nose flare, etc.).

In our identification task, the keys “B”, “G”, “J”, and “N” on a QWERTY keyboard were assigned to the
stimuli, such that the keys on the left (“G” and “B”) corresponded to Bob, the keys on the right (“J” and
“N”) correspond to Joe, the keys at the bottom (“B” and “N”) corresponded to the neutral expression, and
the keys at the top (“G” and “J”) were assigned to the target expression This assignment of keys to stimuli
was performed in order to highlight the factorial nature of the task (i.e., two simultaneous discriminations)
and to help participants to more easily remember the keys. We asked participants to press the keys with the
middle and index fingers of both hands, making the keys easier to work with (left hand would be assigned
to Bob and right hand would be assigned to Joe, index fingers would report the neutral expressions and the
middle fingers would report the target emotion expressions).



Figure S3: The identities and expression models used for the study. The identities in the first two rows are
paired in the first set and the identities in the two last rows are paired in the second set of stimuli. The
expressions are neutral, angry, happy, sad, fearful, disgusted, and surprised from left to right, respectively.
Note that renderings of the original 3D models used to generate stimuli are shown to aid comparison; the final
calibrated stimuli presented to participants showed less discriminable differences in expression and identity
(see description in text).

Top Keys: Emotion
(e.g., anger)

Bob
- Joe

Left Keys
Right Keys

Bottom Keys: Neutral

Figure S4: Participants were asked to use the response keys as demonstrated in this figure. The assignment
of keys to stimuli shown in this figure was chosen to highlight the factorial nature of the task (i.e., two
simultaneous discriminations) and to help participants to more easily remember the keys.



2.2 Supplementary Results

Group Included Excluded Excluded Included Excluded Accuracy
- Low - High  trials (range, trials (range,
Perfor- Perfor- mean) mean)
mance mance
Anger / Stimulus Set 1 25 4 1 216-460, 399 0-244, 62 60.22%
Anger / Stimulus Set 2 27 2 1 208-460, 386 0-253, 75 68.68%
Disgust / Stimulus Set 1 22 5 2 199-460, 385 0-261, 75 73.31%
Disgust / Stimulus Set 2 26 3 2 182-460, 435 0-278, 25 70.82%
Fear / Stimulus Set 1 21 8 1 234-460, 402 0-226, 58 64.59%
Fear / Stimulus Set 2 22 6 2 227-460, 414 0-233, 46 71.25%
Happiness / Stimulus Set 1 23 6 1 188-460, 384 0-272, 76 68.37%
Happiness / Stimulus Set 2 28 0 2 215-460, 423 0-245, 37 72.74%
Sadness / Stimulus Set 1 28 2 0 224-460, 424 0-236, 36 63.14%
Sadness / Stimulus Set 2 26 2 2 134-460, 412 0-326, 48 74.73%
Surprise / Stimulus Set 1 24 3 3 170-460, 417 0-290, 43 63.10%
Surprise / Stimulus Set 2 27 2 1 264-460, 443 0-196, 17 66.83%

Table S2: Number of included and excluded participants and trials, presented separately for each experiment.

Group R?

Anger / Stimulus Set 1 89.63%
Anger / Stimulus Set 2 94.47%
Disgust / Stimulus Set 1 97.36%
Disgust / Stimulus Set 2 94.45%
Fear / Stimulus Set 1 94.29%
Fear / Stimulus Set 2 96.96%
Happiness / Stimulus Set 1 94.22%
Happiness / Stimulus Set 2 96.93%
Sadness / Stimulus Set 1~ 92.95%
Sadness / Stimulus Set 2 97.95%
Surprise / Stimulus Set 1 91.04%
Surprise / Stimulus Set 2 90.63%

Table S3: Fit of the GRT-wIND model to data, presented separately for each experiment.

3 Benchmark Study

An issue with the results of likelihood ratio tests in our main study is that in many cases violations of
perceptual separability were significant despite appearing to be weak in magnitude, compared to what we
have seen in previous studies (e.g., Soto & Ashby, 2015). As we have argued elsewhere (Soto et al., 2017),
such cases of weak but significant violations of perceptual separability are common and interpreting them is
sometimes difficult without a benchmark of what one should expect from truly non-separable dimensions. To
obtain such a benchmark, we performed a post-hoc control experiment with morphed identity dimensions,
which are known to be highly interactive according to multiple tests of separability (Blunden et al., 2015;
Folstein et al., 2012; Goldstone & Steyvers, 2001; Soto & Ashby, 2015). An additional advantage of this
benchmark is that it allows us to determine to what extent the consistent and strong evidence of holistic
(not perceptually independent) perception of face identity and expression observed in our experiments might
be brought about by our methods and/or stimuli, as such evidence has been absent from the face perception
literature (e.g., Cornes et al., 2011; Richler et al., 2008 ; for a review, see Townsend & Wenger, 2014).
Stimuli were obtained by morphing each of the identity models in set 1 with each of the identity models
in set 2. This produced four morphed stimuli, which corresponded to the factorial combination of two levels



of each identity dimension. A group of sixty participants completed an identification task involving those
stimuli. All procedures were the same as in the main study, but participants were familiarized with all
four original identities with the assigned names “Bob”, “Tom”, “Leo”, and “Ray”. After familiarization with
the original identities, participants were presented with the four morphed identities (Tom/Leo, Tom/Ray,
Bob/Leo, Bob/Ray) introduced as nephews of the original identities, to highlight that the morphed identities
had combined features of those presented during familiarization. The initials of each name corresponded to
the initials of the words “top”, “bottom”; “left,” and “right,” again to facilitate understanding and learning of
the task.

Sixty participants completed the study. The data from 34 subjects were excluded from the final analysis
due to performance being too high or low (see methods section of main manuscript). Data from 26 subjects
in the dataset was used for the final analysis and the mean accuracy of the responses for these participants
was at 61.56% correct.

The results obtained for the control dataset are reported in Figure 3. The model explains 93.44% of the
variation in the data and the prediction errors made by the model do not follow a systematic pattern. The
results suggest that there are violations of perceptual separability for both identity dimensions (x?(2) = 16.9,
p < 0.001 for dimension A and x?(2) = 25.8, p < 0.001 for dimension B). Furthermore, decisional separability
was violated for both identity dimensions (x?(26) = 247.5, p < 0.001 for dimension A and x?(26) = 155.6,
p < 0.001 for dimension B). Violation of perceptual independence was also observed (x?(4) = 396.6, p <
0.001).
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Best-fitting GRT model from the control benchmark experiment. Ellipses are contours of equal likelihood,
and associated marginal distributions are plotted with the same color. The sub-panel at the bottom-left shows
the scatterplot of predicted response probabilities against observed response proportions. The diagonal line
represents a model with perfect fit.

We used the obtained best-fitting models from all experiments in our main study and the control bench-
mark to estimate and compare the magnitude of deviations in perceptual separability and perceptual inde-
pendence.

Deviations from perceptual separability were measured through the L1 distance between two distributions
that share a value in a target dimension (e.g., emotional expression), but different values in an irrelevant
dimension (e.g., identity),

1= / P () — p2 (2)]

where p; and py represent the marginal distributions of values along the relevant dimension for two
different levels (1 and 2) of the irrelevant dimension. To compute L1, we obtained 100 evenly spaced values
of the dimensional variable z, starting five standard deviations to the left of the smaller of the two means of
p1 and ps , and ending five standard deviations to the right of the larger of those two means. Let z; with
k=1, 2, ... 100 represent these discrete values of the relevant dimension z. An estimate of the of the summed
L1 distances representing deviations from perceptual similarity was computed in the following way,



1§ = Z Z |Pm1 (2k) — Pm2 (21|
m k

Where d stands for the target dimension for which perceptual separability is being computed (either
expression or identity), G stands for global as this is a measure that adds multiple L1 estimates (i.e., one
for each level of the target dimension), and m indexes the levels of the target dimension.

Deviations from perceptual independence were measured as the sum of absolute values of the estimated
correlation parameters.

To more easily compare the magnitude of deviations from perceptual separability and perceptual inde-
pendence across groups, we obtained bootstrap confidence intervals. At each of 2,000 bootstrap steps, a
simulated data set was sampled from the best-fitting GRT-wIND model, and was used to fit a new model to
the simulated data. This model was in turn used to compute measures of violations of perceptual separability
and independence as described above. For each measure, this results in an empirical distribution function of
values, which was used to directly obtain 95% confidence intervals using a simple quantile procedure.

Figure S5 shows the obtained measures of deviations from perceptual separability for the expression
dimension, together with their 95% bootstrap confidence intervals. The two leftmost plots represent the
benchmark of perceptual separability violations provided by the control group, and the rest represent per-
ceptual separability violations observed for all groups in the main study. Figure S6 shows the equivalent
plots for deviations from perceptual separability for the identity dimension. In both cases, it can be seen that
the results confirm what was observed from likelihood ratio tests, the magnitude of violations of perceptual
separability is highly variable and in many cases strongly dependent on stimulus set. More importantly, such
violations were for the most part comparable to those observed in the control experiment, although more so
for the identity dimensions than for the expression dimensions.
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Figure S5: Measures of deviations from perceptual separability for the expression dimension, together with
their 95% bootstrap confidence intervals. The two leftmost plots represent the benchmark of perceptual
separability violations provided by the control group, and the rest represent perceptual separability violations
observed for all experimental groups.

Figure S7 shows the obtained measures of deviations from perceptual independence, together with their
95% bootstrap confidence intervals. The leftmost plot represent the benchmark of perceptual independence
violations provided by the control group, and the rest represent perceptual independence violations observed
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Figure S6: Measures of deviations from perceptual separability for the identity dimension, together with
their 95% bootstrap confidence intervals. The two leftmost plots represent the benchmark of perceptual
separability violations provided by the control group, and the rest represent perceptual separability violations
observed for all experimental groups.

for all experimental groups. The results confirm that violations of perceptual independence in the main study
were consistently larger than what was observed in the control group. This suggests that our main finding
of holistic processing of expression and identity was not brought about by our methods and/or stimuli, as
the same method and type of stimulus was used in the control experiment.
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Figure S7: Measures of deviations from perceptual independence, together with their 95% bootstrap confi-
dence intervals. The leftmost plot represents the benchmark of perceptual independence violations provided

by the control group, and the rest represent perceptual independence violations observed for all experimental
groups.
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