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Abstract— We consider the problem of promoting sustainabil-

ity in production forests wherein a given number of strategic

entities are authorized to own or manage concession regions.

These entities harvest agricultural commodities and sell them

in a market. We study optimal price-shaping in a coupled-

activity network game model in which the concession owners

(agents) engage in two activities: (a) the sustainable activity of

producing a commodity that does not interfere with protected

forest resources, and (b) the unsustainable activity of infringing

into protected regions to expand their agricultural footprint.

We characterize the policy that maximally suppresses the

aggregate unsustainable activity under budget constraints. Our

analysis provides novel insights on the agents’ influence on each

other due to intra-activity and cross-activity network effects.

We also identify a measure of node centrality that resembles

the Bonacich-Katz centrality and helps us determine pricing

incentives that minimize the aggregate unsustainable activity

over the set of all feasible policies.

I. INTRODUCTION
As our planet loses 23 million hectares of tree cover annu-

ally, the global impact of deforestation remains significant.
In particular, more than 1.47 gigatons of CO2 are emitted
per year as a result of the conversion of tropical forests for
large-scale commercial agriculture [1].

These observed effects of commercially driven deforesta-
tion have led researchers to explore the connection between
its negative societal impacts and the commercial interests
of the entities involved in deforestation. A survey of these
works can be found in [2]. Besides, there also exist studies
that reveal the effectiveness of tools from network science,
control [3], and game theory in advancing our understanding
of forest management and the economics of deforestation.
An example of the use of game theory in this context comes
from [4], which studies two-person games played by two
landowners who own neighboring plots of land and need to
compute their rewards to decide between two possible actions
in every time period: forest conservation and deforestation.

Our present work is a contribution to the above stream
of works in that we use a blend of tools from game theory
and network analysis to design economic interventions that
incentivize sustainable practices in forest concession net-
works. Specifically, we focus on the problem of restraining
the expansion of agricultural plantations into forested lands.
This is an issue of growing global importance as is evident
from the European Union (EU) Deforestation Regulation’s
latest rules that will, starting in 2025, prohibit the trade of
goods produced using deforested lands [5]. One approach

that has been used to address this issue is sustainability
certification, which identifies commercial entities whose
harvesting and manufacturing practices are environmentally
sustainable in that they do not contribute to the deforestation
of areas designated as protected forests, primary forests,
High Conservation Value (HCV) areas, etc. However, a
significant fraction (over 50%) of palm oil cultivators are
non-certified [6], and as [7] notes, increasing this fraction is
essential for improved forest protection.

The limited success of current sustainability standards
can be primarily attributed to the following shortcomings:
(a) even though sustainable goods (i.e., goods produced
by sustainability-certified cultivators) can be sold at prices
higher than those of their unsustainable counterparts, the
current monetary costs of certification are prohibitively high
for cultivators to have sufficient incentive to adopt sustain-
able agricultural practices, and (b) current standards are
sub-optimal because they ignore the geospatial distributions
of palm oil concessions, thereby failing to incorporate the
network topologies implicit in the ownership and strategic
interaction structures of the cultivators, especially those of
small-holders.

We overcome this challenge by studying a network game
in which every agent is a concession owner who is free
to choose her individual effort levels in sustainable and
unsustainable production practices separately. We use this
setup to devise agent-dependent1 pricing policies aimed at
minimizing the concession owners’ aggregate equilibrium
effort in the conversion of protected forests into palm oil
plantations. In the process, we obtain several insights into
how our optimal policy depends on the structure of the
strategic interactions network, the pre-intervention prices of
sustainable and unsustainable goods, and the pre-defined
price limits that the planner may require the post-intervention
prices to satisfy. In particular, we show that in most cases of
practical interest, the optimal post-intervention prices depend
on a hitherto-unexplored measure of node centrality that is
similar to, but not the same as, Bonacich-Katz centrality.
In fact, this centrality measure is defined by the difference
between two scaled Leontief matrices – matrices that are

1As we clarify below, our pricing policies only determine the effective
per-unit prices (i.e., the differences between per-unit selling prices and per-
unit costs) of sustainable goods. Therefore, they also apply to the case of
uniform pricing, wherein they can be interpreted as agent-dependent cost
adjustment policies.
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pivotal in the analysis of shocks in economic networks [8]–
[10].

Related Works: Our work is a contribution to the literature
on intervention design in network games. However, unlike
this paper, most of this literature is only concerned with
single-activity games, e.g., [11], [12]. A landmark paper in
this category is [13], which studies a linear best-response
network game and identifies the “key player” – the agent
whose deletion from the network causes the maximum
decrease in the aggregate effort level. [14] consider a related
model of a linear-quadratic network game with the goal
of maximizing the social welfare over the space of all
possible network topologies. The main result therein is that
the optimal network necessarily belongs to a class of graphs
called nested split graphs. The recent work [15] extends
these results to the case of networks modeled as directed
graphs and shows that, under mild assumptions, the optimal
networks in this case are hierarchical.

The policies proposed in all of the above works lie in
the category of network interventions, i.e., the interventions
are aimed at achieving the planner’s objective by changing
the structure of the strategic interactions network. On the
other hand, the policies that we design lie in the category
of characteristic interventions [16] or interventions that
seek to achieve the planner’s objective by altering agent
characteristics (such as marginal utilities) rather than the
network structure. This set of works includes [17], which
designs interventions that maximize the aggregate action in
a single-activity network game by enhancing the availability
of resources to the agents under budget constraints. A recent
paper in this line of works is [18], one of whose key
findings is that the desired (optimal) interventions are given
by the eigenvectors of the graph adjacency matrix. Given
that our work considers the problem of maximizing social
welfare, it is related to [18] but differs from the latter in the
crucial respect that we borrow a coupled-activity network
game model from [19] to incorporate cross-activity and intra-
activity network effects. Moreover, our intervention design
problem also incorporates optimization constraints that vary
across the two activities.

Notation: In this paper N := {1, 2, . . .}, N0 := N [ {0},
R denotes the set of real numbers, Rn denotes the set of n-
dimensional real-valued column vectors, and Rn⇥n denotes
the set of n ⇥ n real-valued matrices. For n 2 N, we
let [n] := {1, 2, . . . , n}. For a vector v 2 Rn, vi denotes
its ith entry, and bij denotes the (i, j)th entry of a matrix
B 2 Rn⇥n. All matrix inequalities hold entry-wise.

We denote the column vectors with all zero entries and all
one entries in Rn by 0 and 1, respectively.

II. PROBLEM SETUP AND DESIGN OBJECTIVES
Our results are founded on the coupled-activity network

game model proposed recently in [19, Section 6.2]. A salient
feature of this model is that it enables us to model network
effects as well as agent participation in a pair of interde-
pendent activities. We use this model to analyze strategic
interactions between forest concession owners involved in

one or both of the following: (a) the unsustainable activity
or activity B, defined as the set of all harvesting and man-
ufacturing activities that entail the conversion of protected
forests into crop plantations, and (b) the sustainable activity
or activity A, which encompasses all the harvesting and
manufacturing activities that do not require clearing protected
forests. All the agents in our setup are simultaneously
engaged in the production of goods and compete in a market
to sell these goods. Under this setup, we design characteristic
interventions (i.e. changes in the effective per-unit prices
of sustainable goods, or equivalently, goods resulting from
activity A) to either (a) maximize what we call social welfare
(defined below) while keeping the aggregate unsustainable
activity in the network acceptably low, or (b) maximally
suppress the aggregate unsustainable activity without com-
promising on sustainable production levels. We formally state
and define these problems in the next section.

A. Model Definition
The model, in which a network of agents participate in a

pair of activities A and B, is defined by [19, Equation (9)],
which we reproduce below.

ui
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xA, xB

�
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B
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gijx
B
i x

A
j , (1)

Here n is the number of agents in the network, xA
i (re-

spectively, xB
i ) denotes the effort level of agent i 2 [n] in

activity A (respectively, activity B), ui denotes the utility
or the net payoff of agent i 2 {1, 2, . . . , n} as a function
of all the agents’ effort levels, pAi (respectively, pBi ) denotes
the marginal utility of activity A (respectively, activity B)
to agent i, the intra-concession substitutability � 2 (�1, 1)
denotes the extent of complementarity or substitutability
between A and B for agent i, � is the intra-activity network
effects parameter and quantifies the effect of agent-to-agent
strategic interactions associated with either activity A or
activity B on the net payoff of agent i, µ is the cross-activity
network effects parameter and quantifies the effect of agent-
to-agent strategic interactions across the two activities on the
net payoff of agent i, and gij � 0 quantifies the extent of
substitutability or complementarity between the activities of
agents i 2 [n] and j 2 [n] \ {i}. It is also convenient to
define the strategic interactions matrix of the network as the
n⇥ n non-negative matrix G = (gij).

In our setup (illustrated below in Figure 1), xA
i (respec-

tively, xB
i ) denotes the quantity of goods produced as a result

of the i-th agent’s participation in activity A (respectively,
activity B). In addition, pAi (respectively, pBi ) denotes the
effective price per unit good produced as a result of the i-
th agent’s participation in activity A (respectively, activity
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Fig. 1. Illustration of our game-theoretic setup.

B), where effective price means the difference between the
price in question and the total of all associated costs of
participation in the concerned activity. In the case of activity
A, one of these costs is the cost of acquiring sustainability
certificates. This implies that it is possible to have pAi < pBi
in scenarios in which the market prices of both sustainable
and unsustainable goods produced by agent i are equal.
Henceforth, we drop the word effective whenever we refer
to effective per-unit prices, and we define two price vectors
pA and pB such that pAi (respectively, pBi ) is the i-th entry
of pA (respectively, pB) for every i 2 {1, 2, . . . , n}.

On the basis of (1), our intervention design problems P
can be stated precisely as follows, where the subscript 0

refers to the pre-intervention scenario.

P : Minimize the aggregate unsustainable effort (i.e., the sum
of all the agents’ effort levels in activity B) subject to
the following constraints: (i) no agent’s sustainable effort
(i.e., effort in activity A) drops below her pre-intervention
effort level, and (ii) the post-intervention per-unit prices
of sustainable goods are no less than their pre-intervention
counterparts and no greater than a pre-defined maximum
pmax, where pmax > pAi0 for all i 2 [n]. P can be expressed
compactly as

Minimize
pA

nX

i=1

xB
i

s.t. xA
i � xA

i0 for all i 2 [n], (2)
pAi � pAi0 for all i 2 [n], (3)
pAi  pmax for all i 2 [n]. (4)

The problem P seeks to maximally suppress the preva-
lence of unsustainable harvesting and manufacturing activ-
ities. Note that this problem has as its decision variables
the agent-dependent per-unit prices {pAi : i 2 [n]} of goods
produced as a result of activity A. Therefore, pBi = pBi0 for
all i 2 [n].

B. Modeling Assumptions and Parameter Ranges
We first define the value ranges of the game-theoretic

modeling parameters �, µ, and �.
Since the interactions between the agents are collaborative

and complement each other’s efforts, both µ and � are
positive in our model.

On the other hand, the contributions of intra-concession
cross-activity effects are non-positive and non-increasing,
because every agent has a finite capital and limited resources
that she must divide between A and B. This makes the
agent’s individual effort levels substitutable across the two
activities, i.e., � > 0. In addition, we scale the utility function
to ensure that � < 1. Thus, � 2 (0, 1).

Next, we assume that the network effects parameters � and
µ are small enough for [19, Assumption 3] to hold. We state
this assumption formally below.

Assumption 1: We have max
⇣

|�+µ|
1+� , |��µ|

1��

⌘
�1(G) < 1,

where �1(G) denotes the spectral radius of G.
Next, we assume the following.
Assumption 2: We have µ < �.
This means that cross-activity network effects are weaker

than intra-activity network effects, which models the real-
world scenario in which agents whose harvesting and manu-
facturing practices are largely sustainable try to avoid coop-
erating with those whose practices are largely unsustainable.

Finally, we make a standard connectivity assumption.
Assumption 3: The network is connected and undirected.

Equivalently, G is irreducible and symmetric.

III. MAIN RESULTS
In this section, we solve the intervention design problem

P , interpret the resulting optimal policy, and explain its
significance for sustainable forestry.

As our goal is to find a pricing policy that achieves a
positive reduction in the aggregate unsustainable equilibrium
effort, there should exist at least one policy that is feasible
and strictly outperforms the current policy. This motivates
the following definition.

Definition 1 (Essential Feasibility): For i 2 {1, 2}, we
say that Pi is essentially feasible if the feasible set of Pi

contains at least one policy pA for which
Pn

i=1 x
B
i <Pn

i=1 x
B
i0. If Pi is not essentially feasible, we say that it

is essentially infeasible.
We now define the notation that we will use to characterize

P and its optimal solution. We reproduce the definitions of
the following scaled Leontief matrices from [19]:

M+ := ((1 + �)I � (� + µ)G)�1

M� := ((1� �)I � (� � µ)G)�1.

The existence of M+ and M� is implied by Assumption 1.
In addition, we let b+ := M+1, b� := M�1, and b� =
b� � b+. We also let dmin := mini2[n]

Pn
j=1 gij denote the

minimum weighted node degree of the network.
We now state our main result: the optimal solution of P .

The proof of this result can be found in the extended version
of this paper [20].

4708

Authorized licensed use limited to: MIT. Downloaded on December 24,2025 at 06:00:10 UTC from IEEE Xplore.  Restrictions apply. 



Proposition 1: The following statements hold true for P .
1) For all G, �, �, and µ satisfying Assumptions 1 - 4, P is

essentially feasible if µ < �� and essentially infeasible
if µ > max{ 2�

1+�2 �,
�

dmin
}.

2) Suppose µ < ��. Then there exists a threshold

p⇤max :=
(b� + b+)>pB

(b� � b+)>1
=

(b� + b+)>pB

b>�1
(5)

such that the solution to P satisfies the following:
(i) If pmax  p⇤max, then we have pAi = pmax for all

i 2 {1, 2, . . . , n}.
(ii) If pmax > p⇤max, then every pA satisfying p⇤max 

pAi  pmax for all i 2 {1, 2, . . . , n} is optimal. In
addition, xB

i = 0 for all i 2 {1, 2, . . . , n}.
Proof:

1) We first observe from [19, Theorem 4] that P can be
expressed as follows.

P : Minimize (b+ � b�)>z

s.t.
�
M+ +M�� z � 2xA

0 � (M+ �M�)pB ,
(6)

z � pA0 (7)
z  pmax1, (8)

where z = pA is the vector of optimization variables
(the post-intervention effective prices for activity A),
and constraints (6), (7), and (8) are equivalent to (2), (3)
and (4), respectively.
To establish the essential feasibility of P for µ < ��,
we first claim that B� := M� �M+ is entry-wise
positive. To prove this claim, we observe that

B�

= (1� �)�1(I � (1� �)�1(� � µ)G)�1

� (1 + �)�1(I � (1 + �)�1(� + µ)G)�1

(a)
� (1� �)�1(I � (1� �)�1(� � µ)G)�1

� (1� �)�1(I � (1 + �)�1(� + µ)G)�1

(b)
= (1� �)�1

1X

k=0

 ✓
� � µ

1� �

◆k

�
✓
� + µ

1 + �

◆k
!
Gk,

where (a) holds because � > 0 and (b) follows
from Neumann series expansion [21, 5.6.P26], which
converges due to Assumption 1. Now, we know from
Assumption 3 that G is the non-negative adjacency
matrix of a graph in which there exists a path from
every node i 2 [n] to every other node j 2 [n] \ {i}.
Equivalently, for every pair (i, j) 2 [n]⇥[n], there exists
a kij 2 N such that (Gk)ij > 0 for k = kij . Therefore,
it suffices to show that the coefficient of Gk in the above
series expansion is positive for each k. To this end, we
observe upon some simplification that µ < �� implies
(1 � �)�1(� � µ) > (1 + �)�1(� + µ). As a result,
(1� �)�k(��µ)k > (1+ �)�k(�+µ)k for all k. This
completes the proof of the claim that B� is positive.

Therefore, the objective function (b+ � b�)>z =
�1>B>

�z is decreasing in every entry of z. It now
follows from [19, Theorem 4] that 2

Pn
i=1 x

B
i = (b+�

b�)>pA + 1>(M+ + M�)pB is decreasing in each
entry of pA = z. Moreover, as all Leontief matrice
are positive, M+ + M�, which is the sum of two
scaled Leontief matrices with positive scaling factors, is
also positive. Therefore, any price vector z that satisfies
p01 < z < pmax1 also satisfies (6) - (8). Such a z
ensures that 2

Pn
i=1 x

B
i < (b+ � b�)>pA0 + 1>(M+ +

M�)pB = 2
Pn

i=1 x
B
0i. Hence, P is essentially feasible.

Suppose now that µ > max{ 2�
1+�2 �,

�
dmin

}. As � <

1, we can use µ > 2��
1+�2 to verify that the inequality

(�+µ)k

(1+�)k+1 � (��µ)k

(1��)k+1 > 0 holds for all k 2 N. On the
other hand, we know from the definition of dmin that
G1 � dmin1. Using induction, this can be generalized
to Gk1 � dkmin1 for all k � 1. Consequently, using
Neumann series expansions of M+ and M� yields

B�1

=
2�

1� �2
1�

1X

k=1

✓
(� + µ)k

(1 + �)k+1
� (� � µ)k

(1� �)k+1

◆
Gk1

 2�

1� �2
1�

1X

k=1

✓
(� + µ)k

(1 + �)k+1
� (� � µ)k

(1� �)k+1

◆
dkmin1

(a)
=

2�

1� �2
1� (� + µ)dmin

(1 + �)2(1� (1 + �)�1(� + µ)dmin)
1

+
(� � µ)dmin

(1� �)2(1� (1� �)�1(� � µ)dmin)
1,

where (a) follows from Geometric series expansion. On
simplification, the above inequality reduces to B�1 
�c0(2�d2min(�

2 � µ2) + (1 � �2)(dminµ � �))1 for
some c0 > 0. It now follows from Assumption 2 and
µ � �

dmin
that B�1  0, i.e., b+ � b� � 0. Therefore,

the value of the objective function is non-decreasing
in every entry of z, and hence, (7) implies that the
objective function is minimized at pA0 . In other words,
P is essentially infeasible.

2) We know from [19, Theorem 4] that z = p⇤max1 implies
2
Pn

i=1 x
B
i = �(b��b+)>1p⇤max�(b�+b+)>pB = 0.

Thus, if pmax > p⇤max, then every value of z satisfying
p⇤max1  z  pmax1 is optimal because it drives the
aggregate unsustainable equilibrium effort to 0. On the
other hand, if pmax < p⇤max, then the optimal solution
is attained at the upper bound on z specified by (8)
because the objective function is decreasing in z by
virtue of B� being positive (as proved above).

Assertion 1 provides a set of necessary conditions and
also a set of sufficient conditions for the essential feasibility
of P . Taken together, these conditions mean the following:
for us to be able to reduce the aggregate unsustainable
activity

P
i x

B
i in the network without decreasing the agents’

sustainable effort levels with respect to their pre-intervention
values {xA

0i}ni=1 and without decreasing the per-unit prices
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of sustainable goods w.r.t. their pre-intervention counter-
parts {pA0i}ni=1, the cross-activity network effects (quantified
by µ) must not exceed the combined effect of the intra-
activity network effects (quantified by �) and the intra-
concession substitutability (quantified by � and the function
max{ 2�

1+�2 �,
�

dmin
}, which is increasing in � on (�1, 1))

across the two activities.
To explain these conditions intuitively, we first note that

increasing the per-unit price of sustainable goods for any
agent increases the agent’s incentive to produce sustainably,
which further increases the incentive of the agent’s neighbors
to produce sustainably (via the network G and the intra-
activity network effects parameter �). This increase has two
conflicting effects on the agents’ incentives to engage in
unsustainable production: (a) via � (intra-concession substi-
tutability), it decreases the incentive to produce unsustainably
(i.e., as the agents increase their participation in sustain-
able production, their cost of dividing effort and resources
between the two activities compels them to decrease their
participation in unsustainable production), and (b) via cross-
activity agent-to-agent complementarities, it increases the in-
centive to produce unsustainably. To minimize the aggregate
unsustainable activity, we need to ensure that the former
effect (a) dominates over the latter effect (b), and this is
made precise by the conditions in Assertion 1.

Note that the necessary and sufficient conditions provided
by Assertion 1 are not tight. This is because for µ 2⇣
��,max{ 2�

1+�2 �,
�

dmin
}
⌘

, the feasibility of P depends on
the structure of the network (as captured by G) and the values
of � and �.

Next, observe that Assertion 2 requires all the post-
intervention per-unit prices of sustainable goods to equal the
maximum allowable price pmax when this price is below
the threshold p⇤max. This is because the assumption µ < ��
guarantees that the post-intervention unsustainable effort lev-
els {xB

i }ni=1 are monotonically non-increasing in every per-
unit price pAi , and in particular, {xB

i }ni=1 are monotonically
decreasing in {pAi }ni=1 when pmax < p⇤max. However, as
pmax crosses the threshold p⇤max, the aggregate unsustainable
activity

Pn
i=1 x

B
i vanishes in the post-intervention equilib-

rium, which means that increasing the per-unit prices beyond
p⇤max does not yield any additional benefit over setting all of
them to p⇤max. Nevertheless, as there is no undesirable effect
of increasing pAi beyond pmax, there exists a range of optimal
prices for the case pmax > p⇤max.

Remark 1: Observe that the aggregate unsustainable activ-
ity
Pn

i=1 x
B
i is more sensitive to increases in pAi for higher

values of b�i = b�i � b+i . This leads to an interpretation of
b� as a vector of node centralities: agents with higher values
of b�i are more central in the network in the sense that they
are better-positioned than other agents for the purpose of
transferring the unsustainability-suppressing effects of their
individual price interventions to the rest of the network.
Furthermore, the entry-wise positivity of B� implies the
entry-wise positivity of b�, which means that the centralities
of interest are all positive.

IV. CONCLUSION

We have designed a pricing policy by formulating and
solving a budget-constrained optimization problem that seeks
to maximally reduce the aggregate unsustainable activity in
the post-intervention equilibrium. We have shown that this
problem is essentially feasible (i.e., it has an optimal solution
that achieves a positive reduction in the aggregate un-
sustainable activity) provided cross-activity network effects
are weaker than intra-activity network effects as quantified
by Assertion 1 of Proposition 1. Conversely, the problem
becomes essentially infeasible if cross-activity network ef-
fects are significant relative to intra-activity network effects.
Furthermore, we observe that when the maximum allowable
price exceeds the threshold p⇤max, the price adjustment budget
is sufficiently large in the sense that it is possible to eliminate
the aggregate unsustainable activity entirely.

In future, we will investigate the role of network structure
in the context of our setup. Another important direction is
to use the framework of supermodular games to analyze
coupled-activity network games in which the agents’ equilib-
rium effort levels are bounded by heterogeneous thresholds.
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