
A Distributed Learned Hash Table

Shengze Wang1, Yi Liu1, Xiaoxue Zhang2, Liting Hu1, Chen Qian1

1University of California Santa Cruz, 2University of Nevada Reno
{shengze, yliu634, liting, cqian12}@ucsc.edu, xiaoxuez@unr.edu

Abstract—Distributed Hash Tables (DHTs) are pivotal in numer-
ous high-impact key-value applications built on distributed net-
worked systems, offering a decentralized architecture that avoids
single points of failure and improves data availability. Despite their
widespread utility, DHTs face substantial challenges in handling
range queries, which are crucial for applications such as LLM
serving, distributed storage, databases, content delivery networks,
and blockchains. To address this limitation, we present LEAD, a
novel system incorporating learned models within DHT structures
to significantly optimize range query performance. LEAD utilizes a
recursive machine learning model to map and retrieve data across
a distributed system while preserving the inherent order of data.
LEAD includes the designs to minimize range query latency and
message cost while maintaining high scalability and resilience to
network churn. Our comprehensive evaluations, conducted in both
testbed implementation and simulations, demonstrate that LEAD
achieves tremendous advantages in system efficiency compared to
existing range query methods in large-scale distributed systems,
reducing query latency and message cost by 80% to 90%+. Fur-
thermore, LEAD exhibits remarkable scalability and robustness
against system churn, providing a robust, scalable solution for
efficient data retrieval in distributed key-value systems.

I. INTRODUCTION

Key-value data management across distributed computing

systems plays a crucial role in supporting large-scale Internet

applications, including the emerging area of large language

model (LLM) serving [1]–[6]. Distributed Hash Tables (DHTs)

have been widely used for decentralized data management [7]–

[9]. A DHT is a distributed data structure adept at performing

storage and retrieval operations of key-value pairs across a de-

centralized network of nodes. DHTs mitigate the limitations of

centralized architectures by eliminating single points of failure

and distributing data loads across numerous nodes, thereby en-

hancing data availability and network efficiency [10]. State-of-

the-art systems like InterPlanetary File System (IPFS) [11], Cas-

sandra [12], [13], Tor [14], Namecoin [15], and Bittorrent [16],

have exemplified the integration of DHTs in ensuring scalable

and fault-tolerant data management in distributed networked

systems.

The problem. Despite their widespread adoption and in-

herent advantages, DHT-based systems encounter significant

challenges, particularly when handling complex queries such

as range queries, which are important functions in applica-

tions such as KV-cache sharing in LLM serving [2]–[4], [17],

distributed file systems and databases [11], [12], edge-cloud

systems [18], [19], and blockchain systems [20], [21]. Current

DHT systems are primarily optimized for single-key lookups.

DHTs use a uniformly random hash function to distribute keys

into random locations, hence similar keys will be mapped to

completely different storage locations. This feature of DHT

will introduce two major limitations for range queries. First,

all keys in the queried range need to be searched to ensure the

completeness of the query. Second, these keys will be mapped

to different locations based on the hash function. Accessing

these locations will cause a high cost of network traffic. In

the literature, efforts to improve range query performance in

distributed systems have led to limited solutions. Armada [22]

uses a partition tree model within the FissionE topology [23].

DBST [24] integrates binary search trees for range queries.

MARQUES [25] employs space-filling curves in a multi-level

overlay structure, bringing increased overhead and scalability

issues. RQIOT [26] explores the idea of using order-preserving

hashing to improve range query efficiency, yet how to design

such a hash method, especially in a dynamic distributed system,

is unclear. These solutions cannot completely resolve the two

limitations of range queries in DHT.

Our solution. To address the critical issue – enabling efficient

range queries for distributed networked systems – we introduce

LEAD (LEArned DHT), a novel system that first integrates

machine learning models with DHT frameworks to enhance

the performance of range queries evidently. Drawing on the

learned indexes proposed in recent years [27], which suggests

that indexes could be conceptualized as "models" that predict

the position of a key within a dataset, we argue that a learned
model can replace the hash function to distribute keys in
networked systems. By learning the cumulative distribution

function (CDF) of keys, we can maintain the inherent order
of these keys while mapping them to a decentralized group

of nodes, making similar keys be placed in close locations.

Hence the two limitations of random hash functions can be

completely resolved. To minimize inference overhead and re-

duce the prediction error, we adapt the Recursive Model Index

(RMI) structure [28] to train the learned model.

However, the idea of learning models to maintain the key

relationships while disturbing keys consistently in DHT-based

systems poses several challenges. First, we need to devise a

strategy for managing key mapping and peer addressing, as

well as utilizing the relationships between keys to conduct

range queries efficiently. Second, the distributed environment is

highly dynamic and characterized by frequent network churns;

this requires the protocol to quickly adapt to network changes.

Third, as the network expands and new data are introduced, the

previously established Cumulative Distribution Function (CDF)

on which the model was trained may no longer accurately979-8-3315-0376-5/25/$31.00 ©2025 IEEE

20
25

 IE
EE

 3
3r

d
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 N
et

w
or

k
Pr

ot
oc

ol
s (

IC
N

P)
 |

97
9-

8-
33

15
-0

37
6-

5/
25

/$
31

.0
0

©
20

25
 IE

EE
 |

D
O

I:
10

.1
10

9/
IC

N
P6

58
44

.2
02

5.
11

19
23

84

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on November 13,2025 at 04:50:17 UTC from IEEE Xplore. Restrictions apply.

represent the new data distribution. Consequently, the learned

model might not distribute data as uniformly as traditional hash

functions, posing additional challenges for load balancing.

In response to these challenges, our protocol, LEAD, elabo-

rates on the methodologies for applying learned models within

DHT-based systems, focusing on the following aspects:

(1) We first introduce the concept of the Learned Hash Func-

tion under the realm of distributed key-value systems. We

detail the strategy to map and retrieve keys with learned

models for DHT-based systems. This approach renovates

traditional hash functions that map keys to random posi-

tions, allowing LEAD to maintain the inherent order of

keys and enhance range query performance.

(2) LEAD is designed to adapt dynamically to frequent

changes in the system such as database size increases,

node joins, and departures. It employs mechanisms that

rapidly update the overlay routing tables and maintain the

learned models, ensuring the system remains robust and

efficient even in highly volatile environments. We propose

a distributed model update method termed the Federated

Recursive Model (FRM).

(3) LEAD incorporates a load-balancing model called Shadow
Balancer using virtual nodes to allocate keys in an even

manner that prevents overloading specific nodes, thus en-

hancing overall system performance and scalability.

(4) We conduct comprehensive evaluations of LEAD’s perfor-

mance in both implementation on real networked systems

and simulations. The evaluation spans various network

conditions, scales, and topologies, along with diverse

datasets and data volumes. Our assessment demonstrates

LEAD significantly outperforms existing baseline methods

in range query efficiency, reducing latency by more than

tenfold compared to traditional methods in current DHT-

based systems. Additionally, LEAD exhibits remarkable

scalability and resilience to network churn, maintaining

logarithmic efficiency in single-key query performance.

(5) We conduct two timely case studies demonstrating LEAD’s

effectiveness in real-world applications that require effi-

cient range queries: key-value cache management for LLM

serving and the InterPlanetary File System (IPFS).

Beyond the immediate motivation of accelerating

range queries in classical DHT deployments, the same

order-preserving learned hash that powers LEAD unlocks

a diverse set of emerging workloads: it can collocate

semantically close embeddings in vector databases that serve

retrieval-augmented LLMs, shard the rapidly growing key–value

caches and adapter weights of distributed transformer inference

without a central router, deliver geo-temporal IoT telemetry and

edge-AI models to nearby gateways for low-latency analytics,

adapt CDN object placement to shifting popularity skew in

real time, and provide an range index across heterogeneous

blockchains. These broader scenarios underscore LEAD’s

potential as a general storage substrate for next-generation,

data-intensive distributed networked systems and motivate the

design choices detailed in the rest of the paper.

(a) Memory cost (b) # of messages
Fig. 1. Micro benchmark of Range Query Performance

II. BACKGROUND AND MOTIVATION

We conducted a focused micro-benchmark to expose the

inherent trade-offs of three representative baselines: DHT-based

key-value system with Chord [7] (DHT), the centralized range-

location mapping table (C-Table), and the Range-Partition Bi-

nary Search Tree (RP-BST), whose details are presented in

[29]. Chord utilizes a ring-like hashing space to manage key-

value pairs and is highly efficient for single-key lookups due

to its logarithmic routing efficiency. However, it struggles with

range queries, which often require traversing multiple nodes

sequentially, thereby increasing latency and message cost. We

also implemented DBST [24] as an RP-BST overlay. Each node

maintained a BST interval and two routing pointers (left/right).

We evaluated the number of messages required to complete

range queries and their memory overhead — critical metric

affecting response time and the efficiency of data retrieval in

distributed environments. The experimented system includes

100 nodes with 200 million key-value pairs from the ‘osmc64’

dataset (described in Section IV-A) and executed range queries

for a range covering 2,000 keys after a given key. As depicted in

Fig. 1, the centralized table substantially reduces the number of

messages required to resolve range queries compared to DHT;

however, it imposes a higher memory burden on the system. RP-

BST–style overlays also improve messaging efficiency; how-

ever, they incur considerable memory consumption and control-

plane complexity. Crucially, they offer limited resilience to

network churn and impose high costs for index maintenance.

Furthermore, both the centralized table and RP-BST overlay

require a dedicated coordinator to maintain and synchronize

metadata, introducing an additional bottleneck in distributed

deployments. This underscores the necessity for a solution like

LEAD, which aims to merge the advantages of both solutions.

III. LEAD DESIGN

A. System Overview

The section describes the LEAD system. It details the

methodologies employed in LEAD for key mapping using its

Learned Hash Function, addressing peers during node joins

and departures, data retrieval mechanisms tailored for queries,

and balancing the loads. Additionally, the protocol outlines

stabilization and recovery strategies to handle system dynamics.

Fig. 2 presents the system design of LEAD. At a high level,

physical nodes within the system are virtualized into multiple

virtual nodes, each functioning as independent peers within a

structured overlay network. Central to each peer is the learned

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on November 13,2025 at 04:50:17 UTC from IEEE Xplore. Restrictions apply.

r1_v3

r1_v1

r1_v2

r2_v3

r2_v2

r2_v3

r3_v3

r3_v1

r3_v2

Node r1

Virtual Node r1_v1

Virtual Finger Table

Learned
Hash

Function
In-memory
DatabaseRecursive

Model

Virtual Node r1_v2

Virtual Node r1_v3

LEAD
Overlay

Fig. 2. LEAD System Design

Key

Position

CDF of Key-value Pairs

Learned Hash Function

Hashing
Space

Map

Recursive ModelTrainKey

Distribute

Hash Value

LEAD Overlay

Fig. 3. Key mapping with a learned hash function

Model
Initialization

r1_v2

r2_v3r2_v2

r3_v1

LEAD
Overlay ...

Update
Leaf Model Parameters�

Key K

Model Aggregation

Model Aggregation

Model Aggregation

Fig. 4. Decentralized Model Update

model utilized for efficient and in-order key mapping. This

is complemented by a consistent hashing function employed

specifically for peer addressing. Each peer also maintains a

virtual finger table, the component for storing updated routing

information and facilitating effective data queries. Additionally,

peers are equipped with an in-memory database dedicated to

the storage and rapid retrieval of key-value pairs.

B. Key Mapping with a Learned Hash Function
LEAD uses a learned hash function for key mapping, as

showed in Fig. 3. Unlike traditional hash functions, which

aim to map keys to random values within a specified range,

the learned hash function strategically maps keys to order-

preserving values in a hashing space. Utilizing the cumulative

distribution function (CDF) of keys managed on the network,

it maintains the inherent order of these keys while mapping

them to a hashing space. This preservation of key relationships

enhances systems with the capability for in-order data retrieval.

We employ the Recursive Model Indexes (RMI) structure [28]

to implement the learned hash function in LEAD. In Section

IV-C9, we will show that RMI provides the lowest latency

compared to other learned models. The RMI structure is a

hierarchy of models, where at each stage the model determines

the appropriate child model to engage for a specified key. At the

leaf level, models predict the relative position of a key within a

dataset. A scale factor, S, is then applied to translate this relative

position into a hashing space comprising H hash values. For

instance, considering a two-stage RMI trained on N key-value

pairs, the learned hash function, denoted as LearnedHASH ,

can be articulated as follows:

LearnedHASH(key) = �N
H

× f
�B

a×f1(x)
b

N �
2 (K)� (1)

aB referred to as the branching factor that determimines the number of
"buckets" that data is divided into by the stage-one model

bfi referred to as the ith stage model

LearnedHASH is trained by optimizing the parameters

of the given model by minimizing the squared error of

its predictions. Specifically, a model k at stage ρ, denoted

by f
(k)
ρ , is trained with the following loss function [27]:

Lρ =
∑

(x,y)
a
(f

�Mρ
b×fρ−1(x)

N �
ρ (x)− y)2 (2)

ax is the key, y ∈ [0, N) is its relative position within a dataset
bNumber of models at stage ρ

We introduce three systems-level optimizations that are
critical for a fully-decentralized overlay for the vanilla
RMI: (i) Auto-Model Selection. At bootstrap time a peer

runs a lightweight mountain-climbing probe adapted from

the learned-index tuner —that trains candidate leaf predictors

on a 1% sketch of its local key sample, ranks them by

99-th-percentile prediction error and instantiates the for an

optimal trade-off between model size and prediction error. (ii)

The vanilla RMI assumes a fixed target domain. In practice,

node joins and virtual-node churn change the effective density

of the overlay, so a leaf that once mapped to may need only

half that span an amount of updates later. Each peer therefore

attaches a 2-field anchor 〈offset,scale〉 to its leaf model: the

on-line gradient update adjusts offset to keep the median key

centered and dials scale up/down with a 2-bit PID controller

so the 95 % key-quantile always ends near the right edge of

the peer’s virtual-ID window. (iii) LEAD integrates a Federated

Recursive Model (FRM) within its Learned Hash Function,

enabling collaborative learning among peers for dynamic model

updates. This decentralized design ensures load balancing and

seamless request handling during model updates, as detailed

in Section III-E3. LearnedHASH maps each key to a hash

value within the same hashing space used for peer addressing.

While hash collisions for different keys are permissible, the

hash value’s primary role is to distribute the key across the

network, not to serve as a unique identifier. Each key-value

pair, identified by the key K, is assigned to the first peer whose

V ID (as detailed in Section III-D) either equals or follows the

hash value produced by LearnedHASH(K).

Model initialization and re-training. We assume the system

starts with a small number (<10) of nodes with a limited amount

of data. Hence, the very first model training can be conducted on

an arbitrary node without causing a scalability problem. Then

more nodes and data join the system, hence one of the key
contribution of LEAD is to adjust the network for newly
joined nodes and re-train the learned model for new data.

The re-training mechanism will be detailed in Sec. III-E3.

C. Load balancing with virtual nodes
Achieving balanced load distribution in distributed key-value

systems remains challenging. These systems contain heteroge-

neous nodes, with varied storage capacity and network band-

width. Additionally, nodes may experience resource shortages

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on November 13,2025 at 04:50:17 UTC from IEEE Xplore. Restrictions apply.

due to higher-priority tasks or hotspots (popular data items that

attract many requests). These factors undermine the randomiza-

tion and uniformity that consistent hashing aims for, leading to

uneven load distribution, bottlenecks, and inefficiencies within

the system. To address these challenges, LEAD employs a

load balancing model called Shadow Balancer, which utilizes

virtual nodes to optimize key distribution across the network

and alleviate hotspot effects. As illustrated in Fig. 2, each

physical node is virtualized into multiple virtual nodes, with

each operating as an independent peer within the network. To

facilitate efficient peer addressing and data retrieval processes,

this design also leverages consistent hashing to ensure that these

virtual peers are distributed as evenly as possible across the

hashing space. The operational policy of the Shadow Balancer
is formalized as follows:

(1) Each node virtualizes itself into k virtual peers, where k
is adjustable according to the node’s capabilities.

(2) In response to resource bottlenecks, a node plans the

departure of virtual peers that manage fewer requests.

Even in resource-constrained environments, the Shadow Bal-

ancer adds minimal overhead. See [29] for its detailed analysis.
D. Peer Addressing

Along with the learned hash function, LEAD employs a

consistent hashing mechanism known as PeerHASH to

assign an m-bit identifier, denoted as V ID, to each peer

in the network. Specifically, our implementation of LEAD

utilizes a universal hash function as PeerHASH . Each

physical node, referred to as N , hosts one or more virtual

nodes, collectively called V . These virtual nodes are assigned

unique port numbers, enabling direct inter-peer communication

without intermediaries. The V ID for each peer can be derived

by hashing a concatenation of the corresponding node’s IP

address and its port number using PeerHASH . Every V
maintains its own set of network routing information in a

structure known as virtual finger table. In a hashing space

holding h hashing values, the table holds �log h� entries, with

each entry comprising a V ID and the corresponding node’s

IP address. Similar to Chord, each ith entry in the virtual

finger table of a virtual node V identifies the first node, S, that

succeeds V by at least 10i−1 positions in the hashing space for

peer addressing. We defines the Successor(x) as the first peer

whose V ID is equal to or follows a hash value x in the peer

addressing space. Consequently, the ith entry of the virtual

finger table of V , denoted as vfinger(i), can be formalized as

vfinger(i) = successor(V ID + 10i−1) (3)

1) Node Joins and Departs: To maintain the status of V in

a dynamic network, each peer V must preserve the status of its

successor. The process for a node (N) to join the network is

outlined in the following procedures:

(1) Initialization: A new node initializes itself either as the

first node in an empty network or by obtaining information

about an existing peer (V0) that is part of the network.

(2) Node virtualization: The node N creates n virtual nodes

(V s) and assigns them n unique ports. Their Virtual IDs

(V IDs) are then generated using the PeerHASH .

(3) Successor Discovery: Each virtual node V dispatches

a Remote Procedure Call (RPC) to V0 to lookup for

Successor(V ID) and obtain its knowledge of the net-

work, including the successor’s predecessor, successor,

and virtual finger table. The lookup mechanics for

Successor(V ID) are further detailed in Section III-E1.

(4) Status Acknowledge: Upon identifying its successor peer

Successor(V ID), the virtual node V establishes itself

within the network by setting Successor(V ID) as its

immediate successor and adopting Successor(V ID)’s
current predecessor as its own. Subsequently, V issues

RPC to Successor(V ID) instructing it to update its

predecessor record to V . Concurrently, V sends another

RPC to the predecessor of Successor(V ID), requesting

an update of its successor record to V . Moreover, V copies

the 2nd to ith entries of the virtual finger table from

Successor(V ID), which accelerates its initialization and

stabilizes its initial operations within the network.

(5) Key Transfer: Once the virtual node V has successfully

joined the network, it initiates the key transfer process:

V requests Successor(V ID) to transfer the appropriate

key-value pairs that fall within its responsibility range.

For planned node departures, the node N notifies the imme-

diate successors and predecessors of its managed virtual nodes

V . Subsequently, these virtual nodes V transfer their key-value

pairs to their predecessors.

2) Virtual Finger Table Update: Accurate and up-to-date

routing information is crucial for the efficiency and reliability

of LEAD. LEAD maintains the peer addressing information in

virtual finger tables. Periodically, each peer updates its virtual

finger table by sending RPCs across the network to obtain each

entry’s latest successor and their status. Additionally, events

such as node joins, departures, and failures trigger the affected

nodes to update their virtual finger tables.

E. Data Retrieval
1) Single Key Lookup: The distributed single key lookup

process in LEAD aims to locate the immediate successor of

a key by identifying the first peer on the network whose VID

equals or follows the hash value of the given key in the hashing

space. P consults its virtual finger table to execute an optimal

jump towards the key’s hash identifier. This involves selecting

the farthest preceding peer in the finger table that does not

exceed the key’s identifier, assuming this peer possesses closer

or direct knowledge of the key. The query is then routed to this

selected node, which follows the same procedure. This iterative

process continues until the query reaches the peer responsible

for managing the key, denoted as S. Upon locating the key,

S dispatches an RPC directly back to P with the requested

data, effectively completing the retrieval process with enhanced

efficiency and minimized latency.

2) Range query: LEAD leverages the Learned Hash Function

to distribute keys across the network while preserving their

relationships in order-preserving hash values. Range queries in

LEAD are handled based on the order-preserving key mapping

by the Learned Hash Function. To execute a range query for a

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on November 13,2025 at 04:50:17 UTC from IEEE Xplore. Restrictions apply.

Reply

r1_v5

r1_v4

r1_v3

r1_v1

Lookup Key K
Lookup Key Kr1_v2

r2_v3
If didn't get
all N keys

r2_v2

r2_v3

Lookup Key K

r2_v5
r2_v4

r3_v3

r3_v1
r3_v5

r3_v2

r3_v4

LEAD
Overlay

Routing

Virtual
Finger Table

Key K��

Routing
Virtual�

Finger Table

Virtual�
Finger Table

Hash K using
Learned Hash Function

Range Query for�

N keys after Key K�

In-Memory
Range Query

Fig. 5. Range Query in LEAD

sequence of n successive key-value pairs starting from key K,

the initiating peer P first applies the Learned Hash Function to

hash K (as shown in Fig. 5), yielding the hash value LK . Using

the single-key lookup mechanism described in Section III-E1, P
locates the peer S responsible for K. Once the query reaches S,

S performs a local range query within its in-memory database

to retrieve the sequence of key-value pairs. If S holds only

a portion of the required sequence, it forwards the remaining

query to its successor. This forwarding process is repeated,

moving through the chain of successors, until all n keys are

retrieved. The final peer to fulfill the range query then sends

the complete set of results back to the initiating peer P .

3) Model Update: While the learned hash function in LEAD

efficiently distributes new key-value pairs across the network,

challenges arise when this model no longer aligns with the

overall Cumulative Distribution Function (CDF) of the keys

managed across the network. Such misalignment can lead to

increased hash collisions and an uneven distribution of key-

value pairs, potentially overloading specific network peers. As

detailed in Section IV-C10, the Learned Hash does not neces-

sitate updates until new key-value pairs constitute up to 40%

of the network’s storage for the tested datasets. Sub-optimized
learned hash functions do not impact the correctness of
system operations, but they may affect load balancing if there

is a significant logarithmic discrepancy between the learned

hash function and the current data distribution. Model updates

can help optimize the workload balancing across the network.

To effectively manage these discrepancies, LEAD is proposed

with the Federated Recursive Model (FRM) within its Learned

Hash Function, promoting decentralized and cooperative learn-

ing among peers for dynamic model updates. As showed in

Fig. 4, FRM incorporates the hierarchical structure of Recursive

Models, with each peer in the network incrementally refining

its segment of the leaf models based on locally observed data

changes. The L0 layer in the FRM structure performs approxi-

mate predictions to identify the leaf model for specific keys. The

hierarchical structure maintains stability in the L0 parameters

when the model captures the approximate CDF of existing data.

As such, when new keys are integrated into the network, the

focus of FRM is on refining the corresponding leaf models

for the unlearned keys. Each peer operates with two versions

of the Recursive Model: one active in the current Learned

Hash Function and another reserved for updates. The system

continuously monitors key distribution across the network in

a decentralized manner through the tracking of the proportion

of new key-value pairs integrated since the last model update

at the peer level. When a new key-value pair is introduced

to the network, the corresponding peer calculates the median

index of keys it manages to determine the relative index for

training, using its copy of the model designated for updates. The

peer then selects the appropriate leaf model based on L0 layer

predictions. Once the leaf model is identified, the peer refines

this model. The relative index for training each new key is

calculated by determining the median index of immediate keys

currently managed by the peer. Given a network comprising

n peers, with k keys distributed through the Learned Hash

Function, we explore the scenario where m additional keys

are introduced. To ascertain the proportion of these new keys

observed by any given peer causes the total new keys on the

network to exceed a predefined threshold t, we can model this

expectation as m
k+m , assuming a relatively balanced load across

the network. Then, we can achieve the threshold at t of the

new key-value pairs observed by a peer, where the total new

keys on the network exceed t of the total keys managed on

the network since the last update with high probability. During

the early phase of the LEAD network, when only a few peers

are present, a randomly selected training peer is designated to

initialize FRM. This initial coordinator is selected based on

criteria such as computational power and network load. Once

chosen, all peers in the network transfer their key-value pairs

to this node. The central node then performs batch training to

establish the initial parameters for the learned hash function.

The process begins with a lightweight Model-Scout module

that benchmarks multiple candidate leaf families (e.g., Linear,

RadixSpline). A quick mountain-climbing search is then used

to tune the model parameters, aiming for an optimal trade-

off between model size and prediction error. Upon successful

training, the model is adopted by other peers on the network

through the stabilization process as discussed below. Peers are

actively monitoring the proportion of new key-value pairs joined

since the last model update. Once the proportion of new key-

value pairs observed exceeds a threshold - specifically, 40%

as identified in our empirical study in Section IV-C10, the

peer flags the readiness status for the model update as true in

its heartbeat message. Upon a peer being ready for a model

update and detecting that a majority of its neighbors on the

successor and predecessor list (e.g., 90%) are also flagged for

updates, it takes the role of a transient coordinator. Then, it

sends the flagged neighbors a Remote Procedure Call (RPC)

to request confirmation of status and transfer of parameters.

When such RPC is received by a peer, it pushes the updated leaf

parameters to the transient coordinator, acknowledges readiness

for the model update, and then resets its update-ready status,

ensuring no redundant or conflicting update processes occur.

During the parameter transfer, only the segments that have
changed are pushed to minimize data transfer size—for
instance, only about 12 KB for approximately 1000 linear
leaf model parameters and their segments stored in 32-bit

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on November 13,2025 at 04:50:17 UTC from IEEE Xplore. Restrictions apply.

format. After receiving acknowledgments from its neighbors,

the transient coordinator aggregates the updated leaf model

parameters from these peers through the averaging operation.

Once the new model is consolidated, a new version number will

be assigned to facilitate network-wide recognition and adoption.

Peers in LEAD periodically check for the latest model version

via heartbeat messages with their neighbors. The sectional

transient inconsistency caused by updates does not compromise

the continuous service of the LEAD system, as peer-addressing

relies on an independent hash function. Moreover, during
cooperative model updates, the system remains operational;
only a subset of peers performs asynchronous updates on the

leaf models. This is targeted at specific key segments and occurs

until significant data changes are detected. Thus, the integrity

of the system is preserved.

F. Stabilization and Failures Recovery

Handling system churn – where nodes frequently join or

depart – is crucial for sustaining system integrity and perfor-

mance. LEAD is designed to adapt rapidly to these changes

through robust stabilization and failure recovery mechanisms.

The correctness of LEAD is dependent on the current knowl-

edge of its successors and predecessors within the network.

Additionally, the efficiency of query handling is contingent

upon the timeliness and accuracy of the virtual finger tables.

To maintain this information, each peer periodically stabilizes

themselves in the network through successor and predecessor

verification, heartbeat communications, and virtual finger table

maintenance. Building on its stabilization mechanisms, LEAD

incorporates resilient failure recovery strategies to address peer

failures. The details are presented in the [29].

IV. EVALUATION

This section presents the evaluation of LEAD through both

testbed implementation and large-scale simulations, along with

real-world case studies.

A. Methodology

Hardware and environments. The testbed implementation

comprises nine virtual machines in public clouds, including

three types of machines: one with two Intel Xeon Silver 4314

2.40 GHz 16-Core CPUs and 128GB of DDR4 2666MHz

memory; one with an Intel Xeon E5-2687W v4 3.00GHz 12-

Core CPU and 32GB of DDR4 2400MHz memory; and the

other with an Intel Core i7-7700 3.60GHz 4-Core CPU and

16GB of DDR4 2400MHz memory. They communicate through

the Internet. Each virtual machine runs 10 virtual nodes in the

overlay hence the overlay includes 90 peers in total. We utilize

Redis for in-memory key-value storage on peers.

The simulator we built, called p2psim+, is based on a

publicly-available discrete event-driven simulator p2psim [30]

running on an Ubuntu 22.04 LTS desktop with an AMD Ryzen 7

3700X 3.6 GHz 8-Core CPU, complemented by 32GB of DDR4

3200MHz RAM across two 16GB modules. P2psim is widely

recognized and utilized within the community [31]. We added

over 3,000 lines of C++ code to enhance the simulator. These

extensions include the integration of LEAD, the support for

user-defined network topologies, customized network behavior

observers, and scalability enhancements for large experiments.

We utilize the implementation of RMIs in Rust [28]. We will

publish p2psim+ upon the acceptance of this paper.

Datasets. We leverage four real-world datasets from the SOSD

benchmark [32], each consisting of 200 million 64-bit unsigned

integers as keys. The datasets encapsulate a broad spectrum of

data distributions and sources, described as follows:
(1) ‘osmc64’: uniformly sampled OpenStreetMap Cell IDs

(2) ‘face64’: randomly sampled Facebook user IDs

(3) ‘amzn64’: Amazon book sale popularity data

(4) ‘wiki64’: Wikipedia article edit timestamps
To accurately emulate real-world network topologies in our

simulations, we incorporate the PlanetLab Dataset from the

Network Latency Datasets [33]. This dataset captures round-trip

times (RTTs) between 490 nodes dispersed across the PlanetLab

network. Specifically, we employ the "PlanetLabData_1" as the

latency model to construct the PlanetLab topology.

Baselines. We use four baseline methods in our experiments:

the batch query approach on Chord [7] DHT with batch sizes

of either 100 or 1000, and the recent work Marques [25].

We let Chord batch single-key queries together and send them

as one or multiple consolidated requests across the network.

Marques [25] is a recent enhancement on Chord [7] for range

query efficiency. We exclude DBST [24] from direct com-

parison, as it relies on a centrally constructed binary search

tree and incurs high overhead—analyzed in Section II—that

renders it unsuitable for decentralized environments. Similarly,

RQIOT [26] assumes centralized order-preserving hashing with-

out providing a decentralized construction mechanism. Neither

DBST nor RQIOT offer open-source implementations, further

limiting their applicability in reproducible and fair comparison

within our distributed system framework.

B. Testbed Performance

Fig. 6 presents the latency benchmark results obtained from

the real-machine testbed implementation. For LEAD, a pre-

trained two-layer model incorporating both linear and cubic

layers is employed. For each experimental run, we inserted

200 million 64-bit unsigned integers from each of the four

datasets. Then, we conducted range queries for ranges with

varying numbers of keys, from 500 to 10,000, subsequent to

a specified key. To ensure the reliability of the results, each

query was repeated ten times, and we calculated the average

latency for each data point. As demonstrated in Fig. 6, as the

query range expands, LEAD maintains near-constant latency

for range queries. In contrast, both the Batch Query method

and Marques exhibit rapidly increasing latencies. For instance,

in the experiment using the ’osmc64’ dataset, a range query

for 500 keys resulted in latencies of 259 ms for Batch Query

with a batch size of 1000 and 557 ms for Marques, while

LEAD efficiently resolved the query in just 145 ms. As the

query range extended to 4,000 keys, the latency for Batch Query

escalated to over 1,300 ms and for Marques to over 750 ms.

Such latencies become prohibitive for most high-throughput

applications. LEAD continued to deliver results in less than

150 ms, showcasing its superior performance and scalability.

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on November 13,2025 at 04:50:17 UTC from IEEE Xplore. Restrictions apply.

(a) osmc64 (b) face64 (c) amzn64 (d) wiki64

Fig. 6. Latency of range queries on various datasets in the real-machine testbed

(a) osmc64 (b) face64 (c) amzn64 (d) wiki64

Fig. 7. Latency of range queries on various datasets from large-scale simulations

(a) osmc64 (b) face64 (c) amzn64 (d) wiki64

Fig. 8. Number of messages of each range query on various datasets.

(a) Single Key Lookup (b) Network Churns (c) Network Scales (d) Network Topology

Fig. 9. Latency of range queries under various conditions

C. Simulation Results

The simulated system consists of 490 nodes configured

according to the PlanetLab topology. Each node operates 10

virtual nodes. By default, we employed the pretrained two-

layer models for LEAD, which incorporates both linear and

cubic layers. Each simulation spanned a logical duration of

120 minutes. To emulate the dynamic nature of real-world

distributed systems, node lifetimes were modeled with a uni-

form distribution, averaging 80 logical minutes. The network

dynamics were initiated by exiting nodes from the network

after their lifespan concluded and rejoining them following a

uniformly distributed interval, averaging 10 logical minutes.

Each time a node exited and rejoined, its routing state was

reset to preserve network integrity. Furthermore, to adapt to

network changes effectively, the stabilization timer for each

peer was set to 1000 logical ms, enabling regular updates to

their finger tables and stabilization of their successor states.

Range queries were conducted at regular intervals of five logical

minutes throughout the simulation. Each query aimed to retrieve

a sequence of N keys subsequent to a specified key M . For

each query, we documented both the latency and the number

of routing steps incurred. Following the completion of each test

run, we calculated the average values for these metrics.

1) Range query performance: Fig. 7 illustrates the range

query latency obtained from the simulation. Each experimen-

tal cycle involved inserting 200 million 64-bit unsigned in-

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on November 13,2025 at 04:50:17 UTC from IEEE Xplore. Restrictions apply.

tegers from one of four distinct datasets: ’osmc64’, ’face64’,

’amzn64’, and ’wiki64’. As the query range extends, the near-

constant latency exhibited by LEAD underscores its substantial

superiority in query latency compared to other baseline methods

across all datasets tested. Again, the results show that LEAD

significantly reduces the range query latency.
2) Query messages: To complement our latency analysis,

we quantified the number of messages for each range query

executed. Fig. 8 depicts the number of messages for range

queries required across various test configurations, elucidating

LEAD’s optimized path efficiency for range queries. LEAD

costs much fewer messages compared to the other baselines.

For example, when the query range is 5000, LEAD only costs

< 15 messages per query, while Marques needs > 50 messages

and Chord, even with batching, requires > 200 messages for

size 1000 and > 1000 messages for size 100. LEAD reduces
the query messages by over 80%. We observe that LEAD

typically incurs an amount of messages similar to those of a

single-key lookup, which is logarithmic relative to network size.
3) Single-key performance: Alongside evaluating range

query performance, we scrutinized the single-key lookup perfor-

mance of each baseline method, utilizing the ‘osmc64’ dataset

as a representative example. Fig. 9(a) demonstrates LEAD up-

holds competitive performance with Chord in single-key query

latency. This is attributed to its adherence to the foundational

design of Chord. On the other hand, Marques’s multi-level

overlay structure introduces more than a 50% increase in latency

for single-key queries compared to the original Chord.
4) Network churn resistance: As illustrated in Fig. 9(b),

the resilience of LEAD is demonstrated through its ability to

maintain continuous service performance under various network

churn conditions. The test setup involved populating the system

with 200 million key-value pairs from the ‘osmc64’ dataset and

executing range queries for 4,000 keys. Then we emulated the

network dynamics through exiting nodes from the network after

their lifespan concluded and rejoining them in intervals that

followed uniform, exponential, or Pareto distributions.
5) Network scale: To assess scalability, we varied the net-

work size from 100 to 490 nodes. We utilized the ’osmc64’

dataset, which consists of 200 million key-value pairs, to

measure latency by executing range queries for 4,000 keys.

Fig. 9(c) illustrates that LEAD consistently outperforms other

baseline methods across all network sizes evaluated.
6) Network topology: Fig. 9(d) demonstrates that LEAD

consistently surpasses other baseline methods in range query

latency across all evaluated network topologies. In continuation

of our scalability testing, with the network size held constant

at 490 nodes, we assessed the performance of LEAD across

three synthetic network topologies: 1) Euclidean, in which the

latencies between nodes were modeled by their distances in

a two-dimensional Euclidean space; 2) Random graph; and

3) Random sampling, in which the inter-node latencies were

randomly assigned within a range.
7) Load balancing: Figure 10 compares the load distribution

of a traditional Chord DHT setup against LEAD integrated

with our Shadow Balancer, which enables 10 virtual nodes

(a) Chord (b) LEAD
Fig. 10. Comparison of Key-Value Pair Distribution

per physical node. The heat map representation shows that

LEAD significantly enhances load balancing within the net-

work. LEAD with Shadow Balancer exhibits a more uniform

green color across the network, indicating a well-balanced load

among nodes. As depicted in Fig. 11, increasing the number

of virtual nodes decreases the standard deviation, suggesting

better load dispersion. Specifically, the inflection point at 10

virtual nodes per node in the PlanetLab topology indicates an

optimized balance. Beyond this point, additional virtual nodes

do not significantly improve load balancing, thereby identifying

10 virtual nodes per node as an ideal configuration for the

established network.
TABLE I

RECURSIVE MODEL EVALUATION

Model Maximum Log2 Error Average Log2 Error Size (Mb)
Linear 25.79 18.51 0.75
Radix 21.28 12.79 1.75
Cubic 18.63 9.82 12.00

8) Learned models: LEAD leverages the Recursive Mode

structure for fast and accurate order-preserving key mapping

with the learned hash function. Selecting the optimal model

type during the training phase is crucial to minimize the

prediction error, thereby ensuring LEAD achieves optimal load

distribution. Fig. 12 illustrates the results of range query latency

on the ‘osmc64’ dataset for queries ranging from 500 to 10,000

keys using three typical models as detailed in Table I. For the

‘osmc64’ dataset, our evaluations revealed that both the Radix

and Cubic models can aptly fit its distribution, showcasing

effective performance in managing range queries. In contrast,

although the linear model offers benefits in terms of smaller

model size, it results in increased error bounds, which can

adversely affect the system performance.

9) Learned Indexes with LEAD: In formulating the learned

model for LEAD, we assessed various learned index structures,

including RMI [27], Radix Spline Indexes [34], and Piece-

wise Geometric Model Indexes (PGM) [35]. Our evaluations,

depicted in Figure 13, highlight the Recursive Model structure’s

consistent performance advantage across various query ranges

when integrated with LEAD. Consequently, the Recursive

Model structure is the preferred choice for LEAD, ensuring

efficient and accurate range query handling.

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on November 13,2025 at 04:50:17 UTC from IEEE Xplore. Restrictions apply.

Fig. 11. Node Storage Standard Deviation (SD.) Fig. 12. Latency vs. RMI Models Fig. 13. Latency vs Learned Indexes

Fig. 14. SD. of Storage with Model Update Fig. 15. KV Cache Management Fig. 16. CDFs of the message cost in IPFS

10) Model Update: We randomly selected a portion of the

’osm’ dataset as the training set, treating the remainder as

unlearned, new key-value pairs. These new pairs were then

distributed across the network, alongside the existing data. To

quantify the impact of introducing new data on network load

balancing, we recorded the standard deviation of key-value pairs

stored per node as the proportion of new entries increased. This

metric was assessed for both versions of LEAD: one without

model updates and one with dynamic model updates enabled.

Fig. 14 illustrates the effects of new key-value pair integration

on load balancing across the network. The results indicate that

the key mapping with our learned hash function remains stable,

with minimum impacts on load balancing, even as new key-

value pairs constitute up to 40% of the network’s storage.

Fig. 14 also shows that our dynamic model update mechanism

sustains optimal load balance across the network, demonstrating

LEAD’s robust adaptability to data changes within the network.

Our real-world testbed confirms that maintaining LEAD’s
learned hash function adds only marginal overhead to a
vanilla Chord control plane. At the evaluated scale—one

RMI instance per peer collectively managing 200 million 64-bit

key–value pairs—the Linear and Radix models occupy under

2 MB of DRAM, while the Cubic model remains below 12

MB. Model Update is likewise cheap and invoked only
after the system observes a 40 % drift in new keys:

every key insertion triggers a gradient update that averages

2.1 μs on our testbed—roughly 0.2 % of end-to-end insertion

latency and completely hidden by network delay. The model re-

synchronisation exchanging ≤ 60 KB—about one-third of the

bytes a peer already spends during a finger-table refresh cycle.

Overall, CPU, memory, and network overheads for the RMI

instance stay below 4 %, 0.1 %, and 3 %, respectively.

D. Case study I : KV Cache Management for LLM Severing.

In LLM serving, key–value (KV) caches retain the atten-

tion keys and values of earlier tokens for reuse rather than

recomputation. Hence how to share and re-use existing KV

caches is a crucial problem [2]–[4], [17], [36]. We consider a

distributed LLM inference system where multiple nodes (GPU

workers) collaboratively serve incoming queries. Each node

caches KV blocks [36] from sequences it has processed, and

nodes cooperate to serve future queries that may need those

cached blocks, similar to a CDN. The goal is to leverage the

existing KV cache instead of recomputing from scratch, by

retrieving cached KV blocks from the network. KV blocks

belonging to the same shared prefix can be stored on the

same or nearby nodes. Since an LLM needs the KV for all

prior tokens in the sequence, LEAD can fetch a whole span

of positions in one efficient range query. That query is routed

only to the node(s) responsible for that contiguous key range,

obviating any need for system-wide broadcasts or gathers. We

experiment a distributed inference system consisting of eight

worker nodes—each equipped with a single NVIDIA A100 80

GB GPU running the Llama-3 8B model. The KV cache is

managed using the PagedAttention scheme with a fixed 16-

token block size [36]. Every token is issued a composite key.

Our evaluation workload is Long-DocQA [37], which comprises

776 lengthy documents paired with 6,400 questions. LooGLE

constructs each prompt by prefixing a full document to its

associated question; after Zipf-0.6 sampling, prompts average

10,985 tokens [17], [38]. We simulate a production environ-

ment where cold KV blocks can be offloaded to host RAM,

resulting in over 500 million KV blocks under management.

In the absence of local shared-prefix caching, each inference

request must retrieve on average more than 700,000 blocks

from the network. We compare LEAD against two baselines:

(i) Centralized KV Router: maintains a global index of KV

locations across all workers. (ii) Chord-based DHT: uses a

distributed hash table overlay for KV storage. Assuming a

10 GbE TCP/IP data-center network with a 100 μs average

round-trip latency, we measure each system’s average block-

lookup latency, total message count, and cache-hit rate. As

Fig. 15 illustrates, LEAD only add a marginal latency increase

to the ideal centralized case, while delivering the resilience

and scalability of a fully decentralized design—dramatically

outperforming a traditional DHT. Notably, the centralized router

suffers from severe query load imbalance, as evidenced by a

high query CoV—the coefficient of variation in the number

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on November 13,2025 at 04:50:17 UTC from IEEE Xplore. Restrictions apply.

of messages handled per node during range queries. All three

systems achieve comparable cache hit rates under identical

query correctness guarantees. These results highlight LEAD’s

foundation for enabling workload-aware, multi-tiered caching

across heterogeneous GPU clusters, supporting dynamic in-

ference pipelines and fault-tolerant, network-aware KV-cache

management in scalable LLM serving infrastructures.

E. Case study II : InterPlanetary File System (IPFS).

InterPlanetary File System (IPFS) [11] is a distributed content

delivery network that stores, retrieves, and locates data based on

the Content Identifiers (CIDs) of its actual content rather than

its name or location. With millions of daily content retrievals,

IPFS supports numerous third-party applications, demonstrating

its broad utility and impact. However, the traditional DHTs

used in IPFS, i.e., Kademlia [39], face challenges in handling

range queries, which are essential for efficiently retrieving

sequences of data blocks or related files. To gauge LEAD’s

benefit in a production-style CDN, we forked the reference

go-ipfs daemon [40] and replaced only its routing module with

a LEAD overlay, leaving libp2p, Bitswap, and the block-store

unmodified. We emulated an IPFS network with 100 peers

using the PlanetLab topology. We generated 100 million syn-

thetic key-value pairs to represent the logical units structuring

the metadata of resources (files). For LEAD, the CIDs were

managed by the learned hash function within SHA-1’s hashing

space. The key operation tested was a typical user request

for a resource. In this scenario, an edge server retrieves all

the blocks containing the metadata for the requested resource,

which consists from 1,000 to 3,000 blocks in our test case. For

the emulated IPFS, the server divided the 1,000 lookup queries

into 10 batches and sent them over the network. In contrast, for

LEAD, the query was optimized as a supported meta-operation

range query. We recorded the number of hops required to resolve

the request for both systems. As illustrated in Fig. 16, the CDFs

of the retrieval hops for the emulated IPFS and LEAD indicate

a significant reduction in the number of messages required to

complete data block sequences retrieval when using LEAD.

V. RELATED WORK

Range query in DHTs. Current DHT systems have sig-

nificant limitations in handling range queries. These systems

are inherently designed for exact key-based queries, and there-

fore, their hashing mechanisms lose the semantic relationship

between keys—necessary for range queries. Significant efforts

to facilitate efficient range queries in distributed networked

systems have introduced innovative concepts while also reveal-

ing inherent limitations. Early attempts to reconcile hash-based

load-balancing with ordered access bolted auxiliary data struc-

tures onto a vanilla DHT: Prefix-Hash-Trees (PHT) [41] and

Range Search Trees [42] layer Chord-style fingers with a try

that must be eagerly split and merged on every insert, leading

to high control traffic per update and poor churn tolerance.

Armada [22] utilizes a partition tree model and a tailored

algorithm within the FissionE [23] topology to enhance range

query efficiency. Nevertheless, its reliance on a customized

DHT scheme restricts its broader applicability. Similarly, DBST

system [24] integrates binary search tree structures to provide

efficient range queries for ordered data. These tree constructions

are assumed to be centralized and are not applicable to large-

scale distributed systems. MARQUES [25] employs space-

filling curves within a multi-level overlay structure derived from

Chord [7], targeting enhanced performance for range queries.

Nonetheless, the complexity involved in managing this struc-

tured network overlay can substantially introduce overheads and

pose scalability challenges. The latest work, RQIOT [26], tried

to employ order-preserving hashing to handle range queries.

However, how to implement such a hash method, especially in

a dynamic distributed system, is unclear.

Learned Index Structures and Hash Functions. Recent

research has reimagined traditional indexing by conceptualizing

indexes as predictive models that estimate the position of a

key within a dataset [27], [35], [43]–[47]. These learned index

structures combine machine learning techniques with classical

data structures to accelerate key lookups. Kraska et al. [27]

proposed the Recursive Model Index (RMI) to address the

inaccuracy of using a single model to approximate the dataset’s

CDF. There has been growing interest in learned hash functions,

where models are trained to map keys to hash buckets in a

data-aware manner. Prior works on locality-sensitive hashing

(LSH) [48]–[50] have explored model-driven hash functions for

approximate nearest neighbor search. More recently, Sabek et al.

[51] demonstrated that learned models can achieve comparable

or even fewer hash collisions than traditional hash functions.

However, while these approaches show promise, integrating

learned index structures or hash functions into decentralized sys-

tems such as Distributed Hash Tables remains unexplored—an

opportunity that LEAD seeks to address.

VI. CONCLUSION

This paper introduces LEAD, a novel distributed key-value

storage and lookup system designed to enhance the efficiency

of range queries by incorporating learned models with DHTs.

LEAD includes the detailed design of training and updating

learned models, implementing single-key and range queries,

achieving load balancing, and dealing with system churns.

Extensive evaluations on both testbed implementation and simu-

lations demonstrate that LEAD significantly reduces the latency

and message cost of performing range queries by by 80%
to 90%+, compared to existing DHT-based solutions. LEAD

can maintain system consistency under dynamic changes and

various system conditions.

We believe LEAD opens a completely new field for further

research on integrating learned models with distributed systems.

The implementation details and supplementary material are

available at https://github.com/ShengzeWang/LEAD and [29].

ACKNOWLEDGMENT

The authors were partially supported by NSF Grants

2322919, 2420632, 2426031, and 2426940. We thank the

anonymous shepherd and reviewers for their valuable com-

ments.

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on November 13,2025 at 04:50:17 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] Y. Wang, Y. Chen, Z. Li, Z. Tang, R. Guo, X. Wang, Q. Wang, A. C.
Zhou, and X. Chu, “Towards efficient and reliable llm serving: A real-
world workload study,” arXiv e-prints, pp. arXiv–2401, 2024.

[2] W. Kwon, Z. Li, S. Zhuang, Y. Sheng, L. Zheng, C. H. Yu, J. Gonzalez,
H. Zhang, and I. Stoica, “Efficient memory management for large language
model serving with pagedattention,” in Proceedings of the 29th Symposium
on Operating Systems Principles, 2023, pp. 611–626.

[3] L. Zheng et al., “Sglang: Efficient execution of structured language model
programs,” in Proc. of NeurIPS, 2024.

[4] Y. Cheng, K. Du, J. Yao, and J. Jiang, “Do large language models need
a content delivery network?” arXiv preprint arXiv:2409.13761, 2024.

[5] Y. Liu, H. Li, Y. Cheng, S. Ray, Y. Huang, Q. Zhang, K. Du, J. Yao,
S. Lu, G. Ananthanarayanan, M. Maire, H. Hoffmann, A. Holtzman, and
J. Jiang, “Cachegen: Kv cache compression and streaming for fast large
language model serving,” in Proceedings of the ACM SIGCOMM 2024
Conference, 2024.

[6] F. Fang, Y. Hua, S. Wang, R. Zhou, Y. Liu, C. Qian, and X. Zhang,
“Gentorrent: Scaling large language model serving with an overley
network,” 2025. [Online]. Available: https://arxiv.org/abs/2504.20101

[7] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for internet applications,”
ACM SIGCOMM, vol. 31, no. 4, 2001.

[8] J. Zarrin, R. L. Aguiar, and J. P. Barraca, “Resource discovery for
distributed computing systems: A comprehensive survey,” Journal of
parallel and distributed computing, vol. 113, pp. 127–166, 2018.

[9] A. Passarella, “A survey on content-centric technologies for the current
internet: Cdn and p2p solutions,” Computer Communications, vol. 35,
2012.

[10] M. Coluzzi, A. Brocco, P. Contu, and T. Leidi, “A survey and comparison
of consistent hashing algorithms,” in 2023 IEEE ISPASS, 2023.

[11] D. Trautwein, A. Raman, G. Tyson, I. Castro, W. Scott, M. Schubotz,
B. Gipp, and Y. Psaras, “Design and evaluation of ipfs: a storage layer
for the decentralized web,” in ACM SIGCOMM 2022, 2022, pp. 739–752.

[12] Apache, “Apache cassandra: Open source nosql database.” [Online].
Available: https://cassandra.apache.org/

[13] A. Lakshman and P. Malik, “Cassandra: a decentralized structured storage
system,” ACM SIGOPS, vol. 44, no. 2, pp. 35–40, 2010.

[14] “The Tor Project | Privacy & Freedom Online — torproject.org,” https:
//www.torproject.org/, [Accessed 13-05-2025].

[15] Namecoin, “Namecoin.” [Online]. Available: https://www.namecoin.org/
[16] L. BitTorrent, “Bittorrent: The world’s most popular torrent client.”

[Online]. Available: https://www.bittorrent.com/
[17] V. Srivatsa, Z. He, R. Abhyankar, D. Li, and Y. Zhang, “Preble: Ef-

ficient distributed prompt scheduling for llm serving,” arXiv preprint
arXiv:2407.00023, 2024.

[18] M. Chiang and T. Zhang, “Fog and IoT: An Overview of Research
Opportunities,” IEEE Internet of Things Journal, 2016.

[19] X. Li, M. Wang, S. Shi, and C. Qian, “VERID: Towards Verifiable IoT
Data Management,” in Proceedings of ACM/IEEE IoTDI, 2019.

[20] D. Marijan and C. Lal, “Blockchain verification and validation: Tech-
niques, challenges, and research directions,” Computer Science Review,
vol. 45, p. 100492, 2022.

[21] Z. Nie, J. Li, F. Duan, and Y. Lu, “A collaborative ledger storing
model for lightweight blockchains based on chord ring,” The Journal of
Supercomputing, vol. 80, no. 4, pp. 5593–5615, 2024.

[22] D. S. Li, J. Cao, X. C. Lu, and K. C. C. Chan, “Efficient range query
processing in peer-to-peer systems,” IEEE Transactions on Knowledge
and Data Engineering, vol. 21, no. 1, pp. 78–91, 2009.

[23] D. Li, X. Lu, and J. Wu, “Fissione: a scalable constant degree and low
congestion dht scheme based on kautz graphs,” in IEEE INFOCOM 2005,
2005.

[24] S. Ahmed, A. Shome, and M. Biswas, “Dbst: A scalable peer-to-peer
distributed information system supporting multi-attribute range query,” in
2021 ICSCT, 2021, pp. 1–6.

[25] A. Sen, A. S. M. S. Islam, and M. Y. S. Uddin, “Marques: Distributed
multi-attribute range query solution using space filling curve on dths,” in
2015 NSysS, 2015, pp. 1–9.

[26] B. Djellabi, M. Younis, and M. Amad, “Effective peer-to-peer design
for supporting range query in internet of things applications,” Computer
Communications, vol. 150, pp. 506–518, 2020.

[27] T. Kraska, A. Beutel, E. H. Chi, J. Dean, and N. Polyzotis, “The case for
learned index structures,” in ACM SIGMOD 2018, 2018, pp. 489–504.

[28] R. Marcus, E. Zhang, and T. Kraska, “Cdfshop: Exploring and optimizing
learned index structures,” in ACM SIGMOD 2020, ser. SIGMOD ’20.
New York, NY, USA: Association for Computing Machinery, 2020.

[29] S. Wang, Y. Liu, X. Zhang, L. Hu, and C. Qian, “A distributed learned
hash table,” 2025. [Online]. Available: https://arxiv.org/abs/2508.14239

[30] T. Gil, F. Kaashoek, J. Li, R. Morris, and J. Stribling, “p2psim, a simulator
for peer-to-peer protocols,” 2003.

[31] J. Risson and T. Moors, “Survey of research towards robust peer-to-peer
networks: Search methods,” Computer Networks, vol. 50, no. 17, 2006.

[32] A. Kipf, R. Marcus, A. van Renen, M. Stoian, A. Kemper, T. Kraska, and
T. Neumann, “Sosd: A benchmark for learned indexes,” arXiv preprint
arXiv:1911.13014, 2019.

[33] R. Zhu, B. Liu, D. Niu, Z. Li, and H. V. Zhao, “Network latency esti-
mation for personal devices: A matrix completion approach,” IEEE/ACM
Transactions on Networking, vol. 25, no. 2, pp. 724–737, 2017.

[34] A. Kipf, R. Marcus, A. van Renen, M. Stoian, A. Kemper, T. Kraska, and
T. Neumann, “Radixspline: a single-pass learned index,” in Proceedings
of the Third International Workshop on Exploiting Artificial Intelligence
Techniques for Data Management, ser. aiDM ’20. New York, NY, USA:
Association for Computing Machinery, 2020.

[35] P. Ferragina and G. Vinciguerra, “The pgm-index: a fully-dynamic com-
pressed learned index with provable worst-case bounds,” VLDB 2020,
2020.

[36] W. Kwon, Z. Li, S. Zhuang, Y. Sheng, L. Zheng, C. H. Yu, J. Gonzalez,
H. Zhang, and I. Stoica, “Efficient memory management for large language
model serving with pagedattention,” in Proceedings of the 29th Symposium
on Operating Systems Principles, 2023, pp. 611–626.

[37] J. Li, M. Wang, Z. Zheng, and M. Zhang, “Loogle: Can long-
context language models understand long contexts?” arXiv preprint
arXiv:2311.04939, 2023.

[38] F. Fang, Y. Hua, S. Wang, R. Zhou, Y. Liu, C. Qian, and X. Zhang, “Gen-
torrent: Scaling large language model serving with an overley network,”
arXiv preprint arXiv:2504.20101, 2025.

[39] P. Maymounkov and D. Mazieres, “Kademlia: A peer-to-peer information
system based on the xor metric,” in International Workshop on Peer-to-
Peer Systems. Springer, 2002, pp. 53–65.

[40] Ipfs, “Ipfs/kubo: An ipfs implementation in go.” [Online]. Available:
https://github.com/ipfs/kubo

[41] S. Ramabhadran, S. Ratnasamy, J. M. Hellerstein, and S. Shenker, “Prefix
hash tree: An indexing data structure over distributed hash tables,” in
Proceedings of the 23rd ACM symposium on principles of distributed
computing, vol. 37. St. John’s Newfoundland, Canada, 2004.

[42] J. Gao and P. Steenkiste, “An adaptive protocol for efficient support of
range queries in dht-based systems,” in Proceedings of the 12th IEEE
International Conference on Network Protocols, 2004. ICNP 2004. IEEE,
2004, pp. 239–250.

[43] J. Ding, U. F. Minhas, J. Yu, C. Wang, J. Do, Y. Li, H. Zhang,
B. Chandramouli, J. Gehrke, D. Kossmann et al., “Alex: an updatable
adaptive learned index,” in ACM SIGMOD 2020, 2020, pp. 969–984.

[44] B. Lu, J. Ding, E. Lo, U. F. Minhas, and T. Wang, “Apex: a
high-performance learned index on persistent memory,” arXiv preprint
arXiv:2105.00683, 2021.

[45] J. Wu, Y. Zhang, S. Chen, J. Wang, Y. Chen, and C. Xing, “Updatable
learned index with precise positions,” arXiv preprint arXiv:2104.05520,
2021.

[46] C. Tang, Y. Wang, Z. Dong, G. Hu, Z. Wang, M. Wang, and H. Chen,
“Xindex: a scalable learned index for multicore data storage,” in 25th
ACM SIGPLAN, 2020, pp. 308–320.

[47] P. Li, Y. Hua, J. Jia, and P. Zuo, “Finedex: a fine-grained learned index
scheme for scalable and concurrent memory systems,” VLDB 2021, 2021.

[48] J. Wang, T. Zhang, N. Sebe, H. T. Shen et al., “A survey on learning to
hash,” IEEE transactions on pattern analysis and machine intelligence,
vol. 40, no. 4, pp. 769–790, 2017.

[49] M. Turčaník and M. Javurek, “Hash function generation by neural
network,” in 2016 NTSP, 2016, pp. 1–5.

[50] J. Wang, J. Wang, N. Yu, and S. Li, “Order preserving hashing for
approximate nearest neighbor search,” in 21st ACM Multimedia, 2013,
pp. 133–142.

[51] I. Sabek, K. Vaidya, D. Horn, A. Kipf, M. Mitzenmacher, and T. Kraska,
“Can learned models replace hash functions?” Proc. VLDB Endow.,
vol. 16, no. 3, p. 532–545, nov 2022.

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on November 13,2025 at 04:50:17 UTC from IEEE Xplore. Restrictions apply.

