2025 IEEE 33rd International Conference on Network Protocols (ICNP) | 979-8-3315-0376-5/25/$31.00 ©2025 IEEE | DOI: 10.1109/ICNP65844.2025.11192384

A Distributed LLearned Hash Table

Shengze Wang', Yi Liu', Xiaoxue Zhang?, Liting Hu', Chen Qian'
"University of California Santa Cruz, ?University of Nevada Reno
{shengze, yliu634, liting, cqian12} @ucsc.edu, xiaoxuez@unr.edu

Abstract—Distributed Hash Tables (DHTSs) are pivotal in numer-
ous high-impact key-value applications built on distributed net-
worked systems, offering a decentralized architecture that avoids
single points of failure and improves data availability. Despite their
widespread utility, DHTs face substantial challenges in handling
range queries, which are crucial for applications such as LLM
serving, distributed storage, databases, content delivery networks,
and blockchains. To address this limitation, we present LEAD, a
novel system incorporating learned models within DHT structures
to significantly optimize range query performance. LEAD utilizes a
recursive machine learning model to map and retrieve data across
a distributed system while preserving the inherent order of data.
LEAD includes the designs to minimize range query latency and
message cost while maintaining high scalability and resilience to
network churn. Our comprehensive evaluations, conducted in both
testbed implementation and simulations, demonstrate that LEAD
achieves tremendous advantages in system efficiency compared to
existing range query methods in large-scale distributed systems,
reducing query latency and message cost by 80% to 90%+. Fur-
thermore, LEAD exhibits remarkable scalability and robustness
against system churn, providing a robust, scalable solution for
efficient data retrieval in distributed key-value systems.

I. INTRODUCTION

Key-value data management across distributed computing
systems plays a crucial role in supporting large-scale Internet
applications, including the emerging area of large language
model (LLM) serving [1]-[6]. Distributed Hash Tables (DHTs)
have been widely used for decentralized data management [7]—
[9]. A DHT is a distributed data structure adept at performing
storage and retrieval operations of key-value pairs across a de-
centralized network of nodes. DHTs mitigate the limitations of
centralized architectures by eliminating single points of failure
and distributing data loads across numerous nodes, thereby en-
hancing data availability and network efficiency [10]. State-of-
the-art systems like InterPlanetary File System (IPFS) [11], Cas-
sandra [12], [13], Tor [14], Namecoin [15], and Bittorrent [16],
have exemplified the integration of DHTSs in ensuring scalable
and fault-tolerant data management in distributed networked
systems.

The problem. Despite their widespread adoption and in-
herent advantages, DHT-based systems encounter significant
challenges, particularly when handling complex queries such
as range queries, which are important functions in applica-
tions such as KV-cache sharing in LLM serving [2]-[4], [17],
distributed file systems and databases [11], [12], edge-cloud
systems [18], [19], and blockchain systems [20], [21]. Current
DHT systems are primarily optimized for single-key lookups.
DHTs use a uniformly random hash function to distribute keys
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into random locations, hence similar keys will be mapped to
completely different storage locations. This feature of DHT
will introduce two major limitations for range queries. First,
all keys in the queried range need to be searched to ensure the
completeness of the query. Second, these keys will be mapped
to different locations based on the hash function. Accessing
these locations will cause a high cost of network traffic. In
the literature, efforts to improve range query performance in
distributed systems have led to limited solutions. Armada [22]
uses a partition tree model within the FissionE topology [23].
DBST [24] integrates binary search trees for range queries.
MARQUES [25] employs space-filling curves in a multi-level
overlay structure, bringing increased overhead and scalability
issues. RQIOT [26] explores the idea of using order-preserving
hashing to improve range query efficiency, yet how to design
such a hash method, especially in a dynamic distributed system,
is unclear. These solutions cannot completely resolve the two
limitations of range queries in DHT.

Our solution. To address the critical issue — enabling efficient
range queries for distributed networked systems — we introduce
LEAD (LEArned DHT), a novel system that first integrates
machine learning models with DHT frameworks to enhance
the performance of range queries evidently. Drawing on the
learned indexes proposed in recent years [27], which suggests
that indexes could be conceptualized as "models" that predict
the position of a key within a dataset, we argue that a learned
model can replace the hash function to distribute keys in
networked systems. By learning the cumulative distribution
function (CDF) of keys, we can maintain the inherent order
of these keys while mapping them to a decentralized group
of nodes, making similar keys be placed in close locations.
Hence the two limitations of random hash functions can be
completely resolved. To minimize inference overhead and re-
duce the prediction error, we adapt the Recursive Model Index
(RMI) structure [28] to train the learned model.

However, the idea of learning models to maintain the key
relationships while disturbing keys consistently in DHT-based
systems poses several challenges. First, we need to devise a
strategy for managing key mapping and peer addressing, as
well as utilizing the relationships between keys to conduct
range queries efficiently. Second, the distributed environment is
highly dynamic and characterized by frequent network churns;
this requires the protocol to quickly adapt to network changes.
Third, as the network expands and new data are introduced, the
previously established Cumulative Distribution Function (CDF)
on which the model was trained may no longer accurately
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represent the new data distribution. Consequently, the learned
model might not distribute data as uniformly as traditional hash
functions, posing additional challenges for load balancing.

In response to these challenges, our protocol, LEAD, elabo-
rates on the methodologies for applying learned models within
DHT-based systems, focusing on the following aspects:

(1) We first introduce the concept of the Learned Hash Func-
tion under the realm of distributed key-value systems. We
detail the strategy to map and retrieve keys with learned
models for DHT-based systems. This approach renovates
traditional hash functions that map keys to random posi-
tions, allowing LEAD to maintain the inherent order of
keys and enhance range query performance.

(2) LEAD is designed to adapt dynamically to frequent
changes in the system such as database size increases,
node joins, and departures. It employs mechanisms that
rapidly update the overlay routing tables and maintain the
learned models, ensuring the system remains robust and
efficient even in highly volatile environments. We propose
a distributed model update method termed the Federated
Recursive Model (FRM).

(3) LEAD incorporates a load-balancing model called Shadow
Balancer using virtual nodes to allocate keys in an even
manner that prevents overloading specific nodes, thus en-
hancing overall system performance and scalability.

(4) We conduct comprehensive evaluations of LEAD’s perfor-
mance in both implementation on real networked systems
and simulations. The evaluation spans various network
conditions, scales, and topologies, along with diverse
datasets and data volumes. Our assessment demonstrates
LEAD significantly outperforms existing baseline methods
in range query efficiency, reducing latency by more than
tenfold compared to traditional methods in current DHT-
based systems. Additionally, LEAD exhibits remarkable
scalability and resilience to network churn, maintaining
logarithmic efficiency in single-key query performance.

(5) We conduct two timely case studies demonstrating LEAD’s
effectiveness in real-world applications that require effi-
cient range queries: key-value cache management for LLM
serving and the InterPlanetary File System (IPFS).

Beyond the immediate motivation of accelerating
range queries in classical DHT deployments, the same
order-preserving learned hash that powers LEAD unlocks
a diverse set of emerging workloads: it can collocate
semantically close embeddings in vector databases that serve
retrieval-augmented LLMs, shard the rapidly growing key—value
caches and adapter weights of distributed transformer inference
without a central router, deliver geo-temporal [oT telemetry and
edge-Al models to nearby gateways for low-latency analytics,
adapt CDN object placement to shifting popularity skew in
real time, and provide an range index across heterogeneous
blockchains. These broader scenarios underscore LEAD’s
potential as a general storage substrate for next-generation,
data-intensive distributed networked systems and motivate the
design choices detailed in the rest of the paper.
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Fig. 1. Micro benchmark of Range Query Performance
II. BACKGROUND AND MOTIVATION

We conducted a focused micro-benchmark to expose the
inherent trade-offs of three representative baselines: DHT-based
key-value system with Chord [7] (DHT), the centralized range-
location mapping table (C-Table), and the Range-Partition Bi-
nary Search Tree (RP-BST), whose details are presented in
[29]. Chord utilizes a ring-like hashing space to manage key-
value pairs and is highly efficient for single-key lookups due
to its logarithmic routing efficiency. However, it struggles with
range queries, which often require traversing multiple nodes
sequentially, thereby increasing latency and message cost. We
also implemented DBST [24] as an RP-BST overlay. Each node
maintained a BST interval and two routing pointers (left/right).
We evaluated the number of messages required to complete
range queries and their memory overhead — critical metric
affecting response time and the efficiency of data retrieval in
distributed environments. The experimented system includes
100 nodes with 200 million key-value pairs from the ‘osmc64’
dataset (described in Section IV-A) and executed range queries
for a range covering 2,000 keys after a given key. As depicted in
Fig. 1, the centralized table substantially reduces the number of
messages required to resolve range queries compared to DHT;
however, it imposes a higher memory burden on the system. RP-
BST-style overlays also improve messaging efficiency; how-
ever, they incur considerable memory consumption and control-
plane complexity. Crucially, they offer limited resilience to
network churn and impose high costs for index maintenance.
Furthermore, both the centralized table and RP-BST overlay
require a dedicated coordinator to maintain and synchronize
metadata, introducing an additional bottleneck in distributed
deployments. This underscores the necessity for a solution like
LEAD, which aims to merge the advantages of both solutions.

III. LEAD DESIGN
A. System Overview

The section describes the LEAD system. It details the
methodologies employed in LEAD for key mapping using its
Learned Hash Function, addressing peers during node joins
and departures, data retrieval mechanisms tailored for queries,
and balancing the loads. Additionally, the protocol outlines
stabilization and recovery strategies to handle system dynamics.

Fig. 2 presents the system design of LEAD. At a high level,
physical nodes within the system are virtualized into multiple
virtual nodes, each functioning as independent peers within a
structured overlay network. Central to each peer is the learned
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Fig. 2. LEAD System Design

model utilized for efficient and in-order key mapping. This
is complemented by a consistent hashing function employed
specifically for peer addressing. Each peer also maintains a
virtual finger table, the component for storing updated routing
information and facilitating effective data queries. Additionally,
peers are equipped with an in-memory database dedicated to
the storage and rapid retrieval of key-value pairs.

B. Key Mapping with a Learned Hash Function

LEAD uses a learned hash function for key mapping, as
showed in Fig. 3. Unlike traditional hash functions, which
aim to map keys to random values within a specified range,
the learned hash function strategically maps keys to order-
preserving values in a hashing space. Utilizing the cumulative
distribution function (CDF) of keys managed on the network,
it maintains the inherent order of these keys while mapping
them to a hashing space. This preservation of key relationships
enhances systems with the capability for in-order data retrieval.

We employ the Recursive Model Indexes (RMI) structure [28]
to implement the learned hash function in LEAD. In Section
IV-C9, we will show that RMI provides the lowest latency
compared to other learned models. The RMI structure is a
hierarchy of models, where at each stage the model determines
the appropriate child model to engage for a specified key. At the
leaf level, models predict the relative position of a key within a
dataset. A scale factor, S, is then applied to translate this relative
position into a hashing space comprising H hash values. For
instance, considering a two-stage RMI trained on N key-value
pairs, the learned hash function, denoted as LearnedH ASH,

can be articulated as follows: )
Ba>< )

N f1(
LearnedHASH (key) = LE X fQL N J(K)j (1)

“B referred to as the branching factor that determimines the number of
"buckets" that data is divided into by the stage-one model

b f; referred to as the ith stage model
LearnedHASH is trained by optimizing the parameters
of the given model by minimizing the squared error of
its predictions. Specifically, a model k£ at stage p, denoted
by fék), is trained with the following loss function [27]:
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Fig. 4. Decentralized Model Update

We introduce three systems-level optimizations that are
critical for a fully-decentralized overlay for the vanilla
RMI: (i) Auto-Model Selection. At bootstrap time a peer
runs a lightweight mountain-climbing probe adapted from
the learned-index tuner —that trains candidate leaf predictors
on a 1% sketch of its local key sample, ranks them by
99-th-percentile prediction error and instantiates the for an
optimal trade-off between model size and prediction error. (ii)
The vanilla RMI assumes a fixed target domain. In practice,
node joins and virtual-node churn change the effective density
of the overlay, so a leaf that once mapped to may need only
half that span an amount of updates later. Each peer therefore
attaches a 2-field anchor (offset,scale) to its leaf model: the
on-line gradient update adjusts offset to keep the median key
centered and dials scale up/down with a 2-bit PID controller
so the 95 % key-quantile always ends near the right edge of
the peer’s virtual-ID window. (iii) LEAD integrates a Federated
Recursive Model (FRM) within its Learned Hash Function,
enabling collaborative learning among peers for dynamic model
updates. This decentralized design ensures load balancing and
seamless request handling during model updates, as detailed
in Section III-E3. LearnedH ASH maps each key to a hash
value within the same hashing space used for peer addressing.
While hash collisions for different keys are permissible, the
hash value’s primary role is to distribute the key across the
network, not to serve as a unique identifier. Each key-value
pair, identified by the key K, is assigned to the first peer whose
VID (as detailed in Section III-D) either equals or follows the
hash value produced by LearnedHASH (K).

Model initialization and re-training. We assume the system
starts with a small number (<10) of nodes with a limited amount
of data. Hence, the very first model training can be conducted on
an arbitrary node without causing a scalability problem. Then
more nodes and data join the system, hence one of the key
contribution of LEAD is to adjust the network for newly
joined nodes and re-train the learned model for new data.
The re-training mechanism will be detailed in Sec. III-E3.

C. Load balancing with virtual nodes

Achieving balanced load distribution in distributed key-value
systems remains challenging. These systems contain heteroge-
neous nodes, with varied storage capacity and network band-
width. Additionally, nodes may experience resource shortages
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due to higher-priority tasks or hotspots (popular data items that
attract many requests). These factors undermine the randomiza-
tion and uniformity that consistent hashing aims for, leading to
uneven load distribution, bottlenecks, and inefficiencies within
the system. To address these challenges, LEAD employs a
load balancing model called Shadow Balancer, which utilizes
virtual nodes to optimize key distribution across the network
and alleviate hotspot effects. As illustrated in Fig. 2, each
physical node is virtualized into multiple virtual nodes, with
each operating as an independent peer within the network. To
facilitate efficient peer addressing and data retrieval processes,
this design also leverages consistent hashing to ensure that these
virtual peers are distributed as evenly as possible across the
hashing space. The operational policy of the Shadow Balancer
is formalized as follows:

(1) Each node virtualizes itself into k virtual peers, where k

is adjustable according to the node’s capabilities.
(2) In response to resource bottlenecks, a node plans the
departure of virtual peers that manage fewer requests.

Even in resource-constrained environments, the Shadow Bal-

ancer adds minimal overhead. See [29] for its detailed analysis.
D. Peer Addressing
Along with the learned hash function, LEAD employs a

consistent hashing mechanism known as PeerHASH to
assign an m-bit identifier, denoted as VID, to each peer
in the network. Specifically, our implementation of LEAD
utilizes a universal hash function as PeerHASH. Each
physical node, referred to as N, hosts one or more virtual
nodes, collectively called V. These virtual nodes are assigned
unique port numbers, enabling direct inter-peer communication
without intermediaries. The V' ID for each peer can be derived
by hashing a concatenation of the corresponding node’s IP

address and its port number using PeerHASH. Every V

maintains its own set of network routing information in a

structure known as virtual finger table. In a hashing space

holding h hashing values, the table holds |logh] entries, with
each entry comprising a VID and the corresponding node’s

IP address. Similar to Chord, each it" entry in the virtual

finger table of a virtual node V' identifies the first node, .S, that

succeeds V by at least 10°~! positions in the hashing space for

peer addressing. We defines the Successor(x) as the first peer

whose VID is equal to or follows a hash value = in the peer

addressing space. Consequently, the ith entry of the virtual

finger table of V, denoted as v finger(i), can be formalized as
vfinger(i) = successor(VID + 10°1) 3)

1) Node Joins and Departs: To maintain the status of V in

a dynamic network, each peer V' must preserve the status of its

successor. The process for a node (V) to join the network is

outlined in the following procedures:

(1) Inmitialization: A new node initializes itself either as the
first node in an empty network or by obtaining information
about an existing peer (V) that is part of the network.

(2) Node virtualization: The node N creates n virtual nodes

(V's) and assigns them n unique ports. Their Virtual IDs
(VIDs) are then generated using the Peer HASH.

(3) Successor Discovery: Each virtual node V dispatches
a Remote Procedure Call (RPC) to Vj to lookup for
Successor(VID) and obtain its knowledge of the net-
work, including the successor’s predecessor, successor,
and virtual finger table. The lookup mechanics for
Successor(VID) are further detailed in Section III-E1.

(4) Status Acknowledge: Upon identifying its successor peer
Successor(VID), the virtual node V establishes itself
within the network by setting Successor(VID) as its
immediate successor and adopting Successor(VID)’s
current predecessor as its own. Subsequently, V' issues
RPC to Successor(VID) instructing it to update its
predecessor record to V. Concurrently, V' sends another
RPC to the predecessor of Successor(VID), requesting
an update of its successor record to V. Moreover, V' copies
the 2nd to i*" entries of the virtual finger table from
Successor(VID), which accelerates its initialization and
stabilizes its initial operations within the network.

(5) Key Transfer: Once the virtual node V' has successfully
joined the network, it initiates the key transfer process:
V' requests Successor(VID) to transfer the appropriate
key-value pairs that fall within its responsibility range.

For planned node departures, the node N notifies the imme-
diate successors and predecessors of its managed virtual nodes
V. Subsequently, these virtual nodes V' transfer their key-value
pairs to their predecessors.

2) Virtual Finger Table Update: Accurate and up-to-date
routing information is crucial for the efficiency and reliability
of LEAD. LEAD maintains the peer addressing information in
virtual finger tables. Periodically, each peer updates its virtual
finger table by sending RPCs across the network to obtain each
entry’s latest successor and their status. Additionally, events
such as node joins, departures, and failures trigger the affected
nodes to update their virtual finger tables.

E. Data Retrieval

1) Single Key Lookup: The distributed single key lookup
process in LEAD aims to locate the immediate successor of
a key by identifying the first peer on the network whose VID
equals or follows the hash value of the given key in the hashing
space. P consults its virtual finger table to execute an optimal
jump towards the key’s hash identifier. This involves selecting
the farthest preceding peer in the finger table that does not
exceed the key’s identifier, assuming this peer possesses closer
or direct knowledge of the key. The query is then routed to this
selected node, which follows the same procedure. This iterative
process continues until the query reaches the peer responsible
for managing the key, denoted as S. Upon locating the key,
S dispatches an RPC directly back to P with the requested
data, effectively completing the retrieval process with enhanced
efficiency and minimized latency.

2) Range query: LEAD leverages the Learned Hash Function
to distribute keys across the network while preserving their
relationships in order-preserving hash values. Range queries in
LEAD are handled based on the order-preserving key mapping
by the Learned Hash Function. To execute a range query for a
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Fig. 5. Range Query in LEAD

sequence of n successive key-value pairs starting from key K,
the initiating peer P first applies the Learned Hash Function to
hash K (as shown in Fig. 5), yielding the hash value L. Using
the single-key lookup mechanism described in Section III-E1, P
locates the peer S responsible for K. Once the query reaches .S,
S performs a local range query within its in-memory database
to retrieve the sequence of key-value pairs. If .S holds only
a portion of the required sequence, it forwards the remaining
query to its successor. This forwarding process is repeated,
moving through the chain of successors, until all n keys are
retrieved. The final peer to fulfill the range query then sends
the complete set of results back to the initiating peer P.

3) Model Update: While the learned hash function in LEAD
efficiently distributes new key-value pairs across the network,
challenges arise when this model no longer aligns with the
overall Cumulative Distribution Function (CDF) of the keys
managed across the network. Such misalignment can lead to
increased hash collisions and an uneven distribution of key-
value pairs, potentially overloading specific network peers. As
detailed in Section IV-C10, the Learned Hash does not neces-
sitate updates until new key-value pairs constitute up to 40%
of the network’s storage for the tested datasets. Sub-optimized
learned hash functions do not impact the correctness of
system operations, but they may affect load balancing if there
is a significant logarithmic discrepancy between the learned
hash function and the current data distribution. Model updates
can help optimize the workload balancing across the network.
To effectively manage these discrepancies, LEAD is proposed
with the Federated Recursive Model (FRM) within its Learned
Hash Function, promoting decentralized and cooperative learn-
ing among peers for dynamic model updates. As showed in
Fig. 4, FRM incorporates the hierarchical structure of Recursive
Models, with each peer in the network incrementally refining
its segment of the leaf models based on locally observed data
changes. The LO layer in the FRM structure performs approxi-
mate predictions to identify the leaf model for specific keys. The
hierarchical structure maintains stability in the LO parameters
when the model captures the approximate CDF of existing data.
As such, when new keys are integrated into the network, the
focus of FRM is on refining the corresponding leaf models
for the unlearned keys. Each peer operates with two versions
of the Recursive Model: one active in the current Learned
Hash Function and another reserved for updates. The system

continuously monitors key distribution across the network in
a decentralized manner through the tracking of the proportion
of new key-value pairs integrated since the last model update
at the peer level. When a new key-value pair is introduced
to the network, the corresponding peer calculates the median
index of keys it manages to determine the relative index for
training, using its copy of the model designated for updates. The
peer then selects the appropriate leaf model based on LO layer
predictions. Once the leaf model is identified, the peer refines
this model. The relative index for training each new key is
calculated by determining the median index of immediate keys
currently managed by the peer. Given a network comprising
n peers, with k keys distributed through the Learned Hash
Function, we explore the scenario where m additional keys
are introduced. To ascertain the proportion of these new keys
observed by any given peer causes the total new keys on the
network to exceed a predefined threshold ¢, we can model this
expectation as 77", assuming a relatively balanced load across
the network. Then, we can achieve the threshold at ¢ of the
new key-value pairs observed by a peer, where the total new
keys on the network exceed ¢ of the total keys managed on
the network since the last update with high probability. During
the early phase of the LEAD network, when only a few peers
are present, a randomly selected training peer is designated to
initialize FRM. This initial coordinator is selected based on
criteria such as computational power and network load. Once
chosen, all peers in the network transfer their key-value pairs
to this node. The central node then performs batch training to
establish the initial parameters for the learned hash function.
The process begins with a lightweight Model-Scout module
that benchmarks multiple candidate leaf families (e.g., Linear,
RadixSpline). A quick mountain-climbing search is then used
to tune the model parameters, aiming for an optimal trade-
off between model size and prediction error. Upon successful
training, the model is adopted by other peers on the network
through the stabilization process as discussed below. Peers are
actively monitoring the proportion of new key-value pairs joined
since the last model update. Once the proportion of new key-
value pairs observed exceeds a threshold - specifically, 40%
as identified in our empirical study in Section IV-C10, the
peer flags the readiness status for the model update as true in
its heartbeat message. Upon a peer being ready for a model
update and detecting that a majority of its neighbors on the
successor and predecessor list (e.g., 90%) are also flagged for
updates, it takes the role of a transient coordinator. Then, it
sends the flagged neighbors a Remote Procedure Call (RPC)
to request confirmation of status and transfer of parameters.
When such RPC is received by a peer, it pushes the updated leaf
parameters to the transient coordinator, acknowledges readiness
for the model update, and then resets its update-ready status,
ensuring no redundant or conflicting update processes occur.
During the parameter transfer, only the segments that have
changed are pushed to minimize data transfer size—for
instance, only about 12 KB for approximately 1000 linear
leaf model parameters and their segments stored in 32-bit
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format. After receiving acknowledgments from its neighbors,
the transient coordinator aggregates the updated leaf model
parameters from these peers through the averaging operation.
Once the new model is consolidated, a new version number will
be assigned to facilitate network-wide recognition and adoption.
Peers in LEAD periodically check for the latest model version
via heartbeat messages with their neighbors. The sectional
transient inconsistency caused by updates does not compromise
the continuous service of the LEAD system, as peer-addressing
relies on an independent hash function. Moreover, during
cooperative model updates, the system remains operational;
only a subset of peers performs asynchronous updates on the
leaf models. This is targeted at specific key segments and occurs
until significant data changes are detected. Thus, the integrity
of the system is preserved.

F. Stabilization and Failures Recovery

Handling system churn — where nodes frequently join or
depart — is crucial for sustaining system integrity and perfor-
mance. LEAD is designed to adapt rapidly to these changes
through robust stabilization and failure recovery mechanisms.
The correctness of LEAD is dependent on the current knowl-
edge of its successors and predecessors within the network.
Additionally, the efficiency of query handling is contingent
upon the timeliness and accuracy of the virtual finger tables.
To maintain this information, each peer periodically stabilizes
themselves in the network through successor and predecessor
verification, heartbeat communications, and virtual finger table
maintenance. Building on its stabilization mechanisms, LEAD
incorporates resilient failure recovery strategies to address peer
failures. The details are presented in the [29].

IV. EVALUATION

This section presents the evaluation of LEAD through both
testbed implementation and large-scale simulations, along with
real-world case studies.

A. Methodology

Hardware and environments. The testbed implementation
comprises nine virtual machines in public clouds, including
three types of machines: one with two Intel Xeon Silver 4314
240 GHz 16-Core CPUs and 128GB of DDR4 2666MHz
memory; one with an Intel Xeon E5-2687W v4 3.00GHz 12-
Core CPU and 32GB of DDR4 2400MHz memory; and the
other with an Intel Core i7-7700 3.60GHz 4-Core CPU and
16GB of DDR4 2400MHz memory. They communicate through
the Internet. Each virtual machine runs 10 virtual nodes in the
overlay hence the overlay includes 90 peers in total. We utilize
Redis for in-memory key-value storage on peers.

The simulator we built, called p2psim+, is based on a
publicly-available discrete event-driven simulator p2psim [30]
running on an Ubuntu 22.04 LTS desktop with an AMD Ryzen 7
3700X 3.6 GHz 8-Core CPU, complemented by 32GB of DDR4
3200MHz RAM across two 16GB modules. P2psim is widely
recognized and utilized within the community [31]. We added
over 3,000 lines of C++ code to enhance the simulator. These
extensions include the integration of LEAD, the support for

user-defined network topologies, customized network behavior
observers, and scalability enhancements for large experiments.
We utilize the implementation of RMIs in Rust [28]. We will
publish p2psim+ upon the acceptance of this paper.

Datasets. We leverage four real-world datasets from the SOSD
benchmark [32], each consisting of 200 million 64-bit unsigned
integers as keys. The datasets encapsulate a broad spectrum of

data distributions and sources, described as follows:
(1) ‘osmc64’: uniformly sampled OpenStreetMap Cell IDs

(2) ‘face64’: randomly sampled Facebook user IDs
(3) ‘amzn64’: Amazon book sale popularity data

(4) ‘wiki64’: Wikipedia article edit timestamps
To accurately emulate real-world network topologies in our

simulations, we incorporate the PlanetLab Dataset from the
Network Latency Datasets [33]. This dataset captures round-trip
times (RTTs) between 490 nodes dispersed across the PlanetLab
network. Specifically, we employ the "PlanetLabData_1" as the
latency model to construct the PlanetLab topology.

Baselines. We use four baseline methods in our experiments:
the batch query approach on Chord [7] DHT with batch sizes
of either 100 or 1000, and the recent work Marques [25].
We let Chord batch single-key queries together and send them
as one or multiple consolidated requests across the network.
Marques [25] is a recent enhancement on Chord [7] for range
query efficiency. We exclude DBST [24] from direct com-
parison, as it relies on a centrally constructed binary search
tree and incurs high overhead—analyzed in Section II—that
renders it unsuitable for decentralized environments. Similarly,
RQIOT [26] assumes centralized order-preserving hashing with-
out providing a decentralized construction mechanism. Neither
DBST nor RQIOT offer open-source implementations, further
limiting their applicability in reproducible and fair comparison
within our distributed system framework.

B. Testbed Performance

Fig. 6 presents the latency benchmark results obtained from
the real-machine testbed implementation. For LEAD, a pre-
trained two-layer model incorporating both linear and cubic
layers is employed. For each experimental run, we inserted
200 million 64-bit unsigned integers from each of the four
datasets. Then, we conducted range queries for ranges with
varying numbers of keys, from 500 to 10,000, subsequent to
a specified key. To ensure the reliability of the results, each
query was repeated ten times, and we calculated the average
latency for each data point. As demonstrated in Fig. 6, as the
query range expands, LEAD maintains near-constant latency
for range queries. In contrast, both the Batch Query method
and Marques exhibit rapidly increasing latencies. For instance,
in the experiment using the ‘osmc64’ dataset, a range query
for 500 keys resulted in latencies of 259 ms for Batch Query
with a batch size of 1000 and 557 ms for Marques, while
LEAD efficiently resolved the query in just 145 ms. As the
query range extended to 4,000 keys, the latency for Batch Query
escalated to over 1,300 ms and for Marques to over 750 ms.
Such latencies become prohibitive for most high-throughput
applications. LEAD continued to deliver results in less than
150 ms, showcasing its superior performance and scalability.
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C. Simulation Results

The simulated system consists of 490 nodes configured
according to the PlanetLab topology. Each node operates 10
virtual nodes. By default, we employed the pretrained two-
layer models for LEAD, which incorporates both linear and
cubic layers. Each simulation spanned a logical duration of
120 minutes. To emulate the dynamic nature of real-world
distributed systems, node lifetimes were modeled with a uni-
form distribution, averaging 80 logical minutes. The network
dynamics were initiated by exiting nodes from the network
after their lifespan concluded and rejoining them following a
uniformly distributed interval, averaging 10 logical minutes.
Each time a node exited and rejoined, its routing state was

reset to preserve network integrity. Furthermore, to adapt to
network changes effectively, the stabilization timer for each
peer was set to 1000 logical ms, enabling regular updates to
their finger tables and stabilization of their successor states.
Range queries were conducted at regular intervals of five logical
minutes throughout the simulation. Each query aimed to retrieve
a sequence of N keys subsequent to a specified key M. For
each query, we documented both the latency and the number
of routing steps incurred. Following the completion of each test
run, we calculated the average values for these metrics.

1) Range query performance: Fig. 7 illustrates the range
query latency obtained from the simulation. Each experimen-
tal cycle involved inserting 200 million 64-bit unsigned in-
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tegers from one of four distinct datasets: ‘osmc64’, "face64’,
’amzn64’, and wiki64’. As the query range extends, the near-
constant latency exhibited by LEAD underscores its substantial
superiority in query latency compared to other baseline methods
across all datasets tested. Again, the results show that LEAD
significantly reduces the range query latency.

2) Query messages: To complement our latency analysis,
we quantified the number of messages for each range query
executed. Fig. 8 depicts the number of messages for range
queries required across various test configurations, elucidating
LEAD’s optimized path efficiency for range queries. LEAD
costs much fewer messages compared to the other baselines.
For example, when the query range is 5000, LEAD only costs
< 15 messages per query, while Marques needs > 50 messages
and Chord, even with batching, requires > 200 messages for
size 1000 and > 1000 messages for size 100. LEAD reduces
the query messages by over 80%. We observe that LEAD
typically incurs an amount of messages similar to those of a
single-key lookup, which is logarithmic relative to network size.

3) Single-key performance: Alongside evaluating range
query performance, we scrutinized the single-key lookup perfor-
mance of each baseline method, utilizing the ‘osmc64’ dataset
as a representative example. Fig. 9(a) demonstrates LEAD up-
holds competitive performance with Chord in single-key query
latency. This is attributed to its adherence to the foundational
design of Chord. On the other hand, Marques’s multi-level
overlay structure introduces more than a 50% increase in latency
for single-key queries compared to the original Chord.

4) Network churn resistance: As illustrated in Fig. 9(b),
the resilience of LEAD is demonstrated through its ability to
maintain continuous service performance under various network
churn conditions. The test setup involved populating the system
with 200 million key-value pairs from the ‘osmc64’ dataset and
executing range queries for 4,000 keys. Then we emulated the
network dynamics through exiting nodes from the network after
their lifespan concluded and rejoining them in intervals that
followed uniform, exponential, or Pareto distributions.

5) Network scale: To assess scalability, we varied the net-
work size from 100 to 490 nodes. We utilized the ’osmc64’
dataset, which consists of 200 million key-value pairs, to
measure latency by executing range queries for 4,000 keys.
Fig. 9(c) illustrates that LEAD consistently outperforms other
baseline methods across all network sizes evaluated.

6) Network topology: Fig. 9(d) demonstrates that LEAD
consistently surpasses other baseline methods in range query
latency across all evaluated network topologies. In continuation
of our scalability testing, with the network size held constant
at 490 nodes, we assessed the performance of LEAD across
three synthetic network topologies: 1) Euclidean, in which the
latencies between nodes were modeled by their distances in
a two-dimensional Euclidean space; 2) Random graph; and
3) Random sampling, in which the inter-node latencies were
randomly assigned within a range.

7) Load balancing: Figure 10 compares the load distribution
of a traditional Chord DHT setup against LEAD integrated
with our Shadow Balancer, which enables 10 virtual nodes
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per physical node. The heat map representation shows that
LEAD significantly enhances load balancing within the net-
work. LEAD with Shadow Balancer exhibits a more uniform
green color across the network, indicating a well-balanced load
among nodes. As depicted in Fig. 11, increasing the number
of virtual nodes decreases the standard deviation, suggesting
better load dispersion. Specifically, the inflection point at 10
virtual nodes per node in the PlanetLab topology indicates an
optimized balance. Beyond this point, additional virtual nodes
do not significantly improve load balancing, thereby identifying
10 virtual nodes per node as an ideal configuration for the

established network.
TABLE 1

RECURSIVE MODEL EVALUATION

Model ~ Maximum Log2 Error ~ Average Log2 Error  Size (Mb)
Linear 25.79 18.51 0.75
Radix 21.28 12.79 1.75
Cubic 18.63 9.82 12.00

8) Learned models: LEAD leverages the Recursive Mode
structure for fast and accurate order-preserving key mapping
with the learned hash function. Selecting the optimal model
type during the training phase is crucial to minimize the
prediction error, thereby ensuring LEAD achieves optimal load
distribution. Fig. 12 illustrates the results of range query latency
on the ‘osmc64’ dataset for queries ranging from 500 to 10,000
keys using three typical models as detailed in Table 1. For the
‘osmc64’ dataset, our evaluations revealed that both the Radix
and Cubic models can aptly fit its distribution, showcasing
effective performance in managing range queries. In contrast,
although the linear model offers benefits in terms of smaller
model size, it results in increased error bounds, which can
adversely affect the system performance.

9) Learned Indexes with LEAD: In formulating the learned
model for LEAD, we assessed various learned index structures,
including RMI [27], Radix Spline Indexes [34], and Piece-
wise Geometric Model Indexes (PGM) [35]. Our evaluations,
depicted in Figure 13, highlight the Recursive Model structure’s
consistent performance advantage across various query ranges
when integrated with LEAD. Consequently, the Recursive
Model structure is the preferred choice for LEAD, ensuring
efficient and accurate range query handling.
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10) Model Update: We randomly selected a portion of the
’osm’ dataset as the training set, treating the remainder as
unlearned, new key-value pairs. These new pairs were then
distributed across the network, alongside the existing data. To
quantify the impact of introducing new data on network load
balancing, we recorded the standard deviation of key-value pairs
stored per node as the proportion of new entries increased. This
metric was assessed for both versions of LEAD: one without
model updates and one with dynamic model updates enabled.
Fig. 14 illustrates the effects of new key-value pair integration
on load balancing across the network. The results indicate that
the key mapping with our learned hash function remains stable,
with minimum impacts on load balancing, even as new key-
value pairs constitute up to 40% of the network’s storage.
Fig. 14 also shows that our dynamic model update mechanism
sustains optimal load balance across the network, demonstrating
LEAD’s robust adaptability to data changes within the network.

Our real-world testbed confirms that maintaining LEAD’s
learned hash function adds only marginal overhead to a
vanilla Chord control plane. At the evaluated scale—one
RMI instance per peer collectively managing 200 million 64-bit
key—value pairs—the Linear and Radix models occupy under
2 MB of DRAM, while the Cubic model remains below 12
MB. Model Update is likewise cheap and invoked only
after the system observes a 40 % drift in new Keys:
every key insertion triggers a gradient update that averages
2.1 ps on our testbed—roughly 0.2 % of end-to-end insertion
latency and completely hidden by network delay. The model re-
synchronisation exchanging < 60 KB—about one-third of the
bytes a peer already spends during a finger-table refresh cycle.
Overall, CPU, memory, and network overheads for the RMI
instance stay below 4 %, 0.1 %, and 3 %, respectively.

D. Case study I : KV Cache Management for LLM Severing.

In LLM serving, key—value (KV) caches retain the atten-
tion keys and values of earlier tokens for reuse rather than
recomputation. Hence how to share and re-use existing KV
caches is a crucial problem [2]-[4], [17], [36]. We consider a
distributed LLM inference system where multiple nodes (GPU

Fig. 15. KV Cache Management

Fig. 16. CDFs of the message cost in IPFS

workers) collaboratively serve incoming queries. Each node
caches KV blocks [36] from sequences it has processed, and
nodes cooperate to serve future queries that may need those
cached blocks, similar to a CDN. The goal is to leverage the
existing KV cache instead of recomputing from scratch, by
retrieving cached KV blocks from the network. KV blocks
belonging to the same shared prefix can be stored on the
same or nearby nodes. Since an LLM needs the KV for all
prior tokens in the sequence, LEAD can fetch a whole span
of positions in one efficient range query. That query is routed
only to the node(s) responsible for that contiguous key range,
obviating any need for system-wide broadcasts or gathers. We
experiment a distributed inference system consisting of eight
worker nodes—each equipped with a single NVIDIA A100 80
GB GPU running the Llama-3 8B model. The KV cache is
managed using the PagedAttention scheme with a fixed 16-
token block size [36]. Every token is issued a composite key.
Our evaluation workload is Long-DocQA [37], which comprises
776 lengthy documents paired with 6,400 questions. LooGLE
constructs each prompt by prefixing a full document to its
associated question; after Zipf-0.6 sampling, prompts average
10,985 tokens [17], [38]. We simulate a production environ-
ment where cold KV blocks can be offloaded to host RAM,
resulting in over 500 million KV blocks under management.
In the absence of local shared-prefix caching, each inference
request must retrieve on average more than 700,000 blocks
from the network. We compare LEAD against two baselines:
(i) Centralized KV Router: maintains a global index of KV
locations across all workers. (ii) Chord-based DHT: uses a
distributed hash table overlay for KV storage. Assuming a
10 GbE TCP/IP data-center network with a 100 us average
round-trip latency, we measure each system’s average block-
lookup latency, total message count, and cache-hit rate. As
Fig. 15 illustrates, LEAD only add a marginal latency increase
to the ideal centralized case, while delivering the resilience
and scalability of a fully decentralized design—dramatically
outperforming a traditional DHT. Notably, the centralized router
suffers from severe query load imbalance, as evidenced by a
high query CoV—the coefficient of variation in the number
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of messages handled per node during range queries. All three
systems achieve comparable cache hit rates under identical
query correctness guarantees. These results highlight LEAD’s
foundation for enabling workload-aware, multi-tiered caching
across heterogeneous GPU clusters, supporting dynamic in-
ference pipelines and fault-tolerant, network-aware KV-cache
management in scalable LLM serving infrastructures.

E. Case study II : InterPlanetary File System (IPFS).

InterPlanetary File System (IPFS) [11] is a distributed content
delivery network that stores, retrieves, and locates data based on
the Content Identifiers (CIDs) of its actual content rather than
its name or location. With millions of daily content retrievals,
IPFES supports numerous third-party applications, demonstrating
its broad utility and impact. However, the traditional DHTSs
used in IPFS, i.e., Kademlia [39], face challenges in handling
range queries, which are essential for efficiently retrieving
sequences of data blocks or related files. To gauge LEAD’s
benefit in a production-style CDN, we forked the reference
go-ipfs daemon [40] and replaced only its routing module with
a LEAD overlay, leaving libp2p, Bitswap, and the block-store
unmodified. We emulated an IPFS network with 100 peers
using the PlanetLab topology. We generated 100 million syn-
thetic key-value pairs to represent the logical units structuring
the metadata of resources (files). For LEAD, the CIDs were
managed by the learned hash function within SHA-1’s hashing
space. The key operation tested was a typical user request
for a resource. In this scenario, an edge server retrieves all
the blocks containing the metadata for the requested resource,
which consists from 1,000 to 3,000 blocks in our test case. For
the emulated IPFS, the server divided the 1,000 lookup queries
into 10 batches and sent them over the network. In contrast, for
LEAD, the query was optimized as a supported meta-operation
range query. We recorded the number of hops required to resolve
the request for both systems. As illustrated in Fig. 16, the CDFs
of the retrieval hops for the emulated IPFS and LEAD indicate
a significant reduction in the number of messages required to
complete data block sequences retrieval when using LEAD.

V. RELATED WORK

Range query in DHTs. Current DHT systems have sig-
nificant limitations in handling range queries. These systems
are inherently designed for exact key-based queries, and there-
fore, their hashing mechanisms lose the semantic relationship
between keys—necessary for range queries. Significant efforts
to facilitate efficient range queries in distributed networked
systems have introduced innovative concepts while also reveal-
ing inherent limitations. Early attempts to reconcile hash-based
load-balancing with ordered access bolted auxiliary data struc-
tures onto a vanilla DHT: Prefix-Hash-Trees (PHT) [41] and
Range Search Trees [42] layer Chord-style fingers with a try
that must be eagerly split and merged on every insert, leading
to high control traffic per update and poor churn tolerance.
Armada [22] utilizes a partition tree model and a tailored
algorithm within the FissionE [23] topology to enhance range
query efficiency. Nevertheless, its reliance on a customized

DHT scheme restricts its broader applicability. Similarly, DBST
system [24] integrates binary search tree structures to provide
efficient range queries for ordered data. These tree constructions
are assumed to be centralized and are not applicable to large-
scale distributed systems. MARQUES [25] employs space-
filling curves within a multi-level overlay structure derived from
Chord [7], targeting enhanced performance for range queries.
Nonetheless, the complexity involved in managing this struc-
tured network overlay can substantially introduce overheads and
pose scalability challenges. The latest work, RQIOT [26], tried
to employ order-preserving hashing to handle range queries.
However, how to implement such a hash method, especially in
a dynamic distributed system, is unclear.

Learned Index Structures and Hash Functions. Recent
research has reimagined traditional indexing by conceptualizing
indexes as predictive models that estimate the position of a
key within a dataset [27], [35], [43]-[47]. These learned index
structures combine machine learning techniques with classical
data structures to accelerate key lookups. Kraska et al. [27]
proposed the Recursive Model Index (RMI) to address the
inaccuracy of using a single model to approximate the dataset’s
CDE. There has been growing interest in learned hash functions,
where models are trained to map keys to hash buckets in a
data-aware manner. Prior works on locality-sensitive hashing
(LSH) [48]-[50] have explored model-driven hash functions for
approximate nearest neighbor search. More recently, Sabek et al.
[51] demonstrated that learned models can achieve comparable
or even fewer hash collisions than traditional hash functions.
However, while these approaches show promise, integrating
learned index structures or hash functions into decentralized sys-
tems such as Distributed Hash Tables remains unexplored—an
opportunity that LEAD seeks to address.

VI. CONCLUSION

This paper introduces LEAD, a novel distributed key-value
storage and lookup system designed to enhance the efficiency
of range queries by incorporating learned models with DHTs.
LEAD includes the detailed design of training and updating
learned models, implementing single-key and range queries,
achieving load balancing, and dealing with system churns.
Extensive evaluations on both testbed implementation and simu-
lations demonstrate that LEAD significantly reduces the latency
and message cost of performing range queries by by 80%
to 90%-+, compared to existing DHT-based solutions. LEAD
can maintain system consistency under dynamic changes and
various system conditions.

We believe LEAD opens a completely new field for further
research on integrating learned models with distributed systems.
The implementation details and supplementary material are
available at https://github.com/ShengzeWang/LEAD and [29].
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