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Dispersive nodal fermions along
grain boundaries in Floquet
topological crystals

Daniel J. Salib & Bitan Roy™*

Driven quantum materials often feature emergent topology, otherwise absent in static crystals.
Dynamic bulk-boundary correspondence, encoded by nondissipative gapless modes residing near
the Floquet zone center and/or boundaries, is its most prominent example. Here we show that
topologically robust gapless dispersive modes appear along the grain boundaries, embedded in
the interior of Floquet topological crystals, when the Floquet-Bloch band inversion occurring at a
finite momentum (Kqu) and the Burgers vector (b) of the constituting array of dislocations satisfy

mv
Kanlf} - b = 7 (modulo 27). Such nondissipative gapless states can be found near the center and/or
edges of the Floquet Brillouin zone, irrespective of the drive protocol. We showcase these general
outcomes for two-dimensional driven time-reversal symmetry breaking insulators. Promising
experimental platforms hosting such dynamic topological dispersive bands in real materials are

discussed.

Defects are ubiquitous in crystals, such as dislocations and grain boundaries. They are responsible for crystal
melting that takes place through proliferation of lattice defects, which can be either pointlike, such as edge
dislocations in two-dimensional (2D) crystals or extended, such as screw dislocations and grain boundaries.
Furthermore, line defects can often be constructed by stacking point defects. For example, an array of edge
dislocations gives rise to a grain boundary'. In recent time, such geometric lattice defects have gained a revived
interest in the context of topological quantum materials>*. Under conducive environments, they can harbor
robust topological modes in their vicinity that are, most importantly, immune to interface contamination* 3. As
lattice defects locally break the translational symmetry in the bulk of crystals, topological phases harboring such
defect modes are thus named translationally active. While lattice defects in static topological materials have been
scrutinized thoroughly over the span of last few years, their role as smoking gun probe of dynamic topological
phases is still at its infancy!®2L.

Here we showcase emergence of one-dimensional (1D) dynamic topological dispersive nodal fermions along
the grain boundary of a 2D Floquet topological crystal. For simplicity, we consider a system that in the static
limit features both topological insulators (TIs) and atomic or normal insulators (NIs) at the cost of the time-
reversal symmetry. In particular, when the band inversion of the TT takes place at a momentum Kijny in the
Brillouin zone such that along with the Burgers vector of the underlying constituting dislocation b, it satisfies
Kiny - b = 7 (modulo 27)%, 1D dispersive states appear along the grain boundary'!. They form a miniband
within the bulk topological band gap along the line defect. See Fig. 1and Fig. S1 of Supplemental Information
(SD). It is worth noting that this topological criterion also applies to static higher-order topological crystals,
where dispersive bands typically emerge at finite energies while remaining protected by symmetries?*.

Irrespective of the periodic drive protocol, we show that such a system features a plethora of topological
and normal insulating phases in the dynamic realm even when its static counterpart describes a NI, imprinted
within the corresponding global phase diagrams shown in Fig. 2, depending on the drive frequency (w) and
its amplitude. The time translational symmetry then gives birth to the Floquet Brillouin zone (FBZ) within the
quasienergy i1 € (—w/2,w/2)*7%. So, all the quasienergy spectra are shown within the range of (—w/2,w/2)
with the w values specified explicitly, whenever appropriate. The FBZ is distinct from the regular Brillouin
zone in the space of spatial momenta (k). The inversion of the Floquet-Bloch bands, taking place at spatial
momentum KiFnlf, thus can occur near the FBZ center and/or near its boundaries. Under this circumstance,
the K - b rule for the dispersive grain boundary modes extends to dynamic systems, but in terms of KIFDI\? And
we display the appearance of nondissipative dispersive (a) normal 1D dynamic modes around the FBZ center
and zero quasienergy, (b) anomalous 1D dynamic modes around the FBZ boundaries and quasienergies +w/2
, and (c) mixed 1D dynamic modes, simultaneously featuring both normal and anomalous dynamic dispersive
nodal fermions along the grain boundary. These generic outcomes are explicitly shown for the kick [Fig. 3], step
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Fig. 1. (a) Phase diagram of the static Hamiltonian Hs¢at [Eq. (1)] in terms of the Chern number (C) [Eq. (3)].
(b) Energy (Er) spectra of Hstat in a periodic system with a pair of grain-antigrain boundary each containing
10 (anti)dislocations, with the Burgers vector b = taé; for t1 = to = 1 and mo = —1.5, such that the system
is in the translationally active M phase. Here # is the energy eigenvalue index, and the system contains total
6290 sites. One-dimensional dispersive states (blue dots in lower inset) then appear along the line defects, as
can be seen from their Fourier transformation as a function of the conserved momentum &, (upper inset). (c)
Local density of states of these modes is highly localized along the line defects. (d) An illustration of a single
grain-antigrain boundary pair with three (anti)dislocations. Their cores are shown in red. Throughout, the
distance between two successive dislocation cores is 2d.

[Fig. 4 and Fig. S2 of the SI] and sinusoidal [Fig. 5] drives. They are qualitatively similar for small angle grain
boundaries (SAGBs) and their large angle counterparts. See Fig. S3-S5 of the SI. It should be noted that the lattice
with grain and anti-grain boundaries does not possess any crystal symmetry, such as reflections about x and y
axes, inversion, or four-fold rotation about z axis. See Fig. 1(d). Thus, the existence of the dispersive modes along
the line defects rests on a single and robust topological criterion K 3 b = 7 (modulo 27). In the presence
of isolated dislocation lattice defects, all results remain valid; however, the dispersive bands are replaced by
localized modes around such pointlike crystal defects!®.

In noninterating and isolated Floquet crystals (decoupled from any dissipative bath), all the quasimodes
(including the gapless dispersive ones near the grain boundaries) are nondissipative, due to their
conserved quasienergies, as there is no gain or loss of energy in the system?>~2°. Inter-particle interactions
cause dissipation leading to heating or thermalization, which however occurs beyond a time scale
7" ~ explw/interaction strength]**=32. Therefore, in the high frequency regime and/or weakly interacting
systems, the thermalization takes place only at sufficiently long time, and at any time scale shorter than 7%, the
system is well approximated by the effective Floquet Hamiltonian and its nondissipative states, now describing
the transient dynamics in a pre-thermalized state. Therefore, our d1551pat10n1ess grain boundary modes can
be observed in real systems as transient states at time scale shorter than 7*. Recently, Floquet-Bloch states has
been observed as transient states in graphene (a weakly interacting system) within an experimentally achievable
time scale that is shorter than 7334, However, these couplings are absent in classical dynamic metamaterials,
featuring bosonic or classical analogues of topologically protected dispersive grain boundary modes.

Model

A pedagogical overview on the static system and grain boundaries therein will benefit the forthcoming
discussion on the role of such line defects in Floquet crystals. The Hamiltonian for the static system is given by
Hgar = 7 - d(k)%®, where k is spatial momenta, [4]

d(k) = <t1 sin(kza), t1 sin(kya), mo — to Z cos(kja)>, (1)

J=zy

and a is the lattice spacing. Vector Pauli matrix 7 operates on orbitals. Two component spinor reads
\I/T(k) [c+(k),c—(k)], where c; (k) is the fermionic annihilation operator on orbital with parity 7 = +
and momentum k. This model supports TIs (NIs) within the parameter range |mo/to| < 2 (|mo/to| > 2).
Within the topological regime, the inversion of the Bloch bands (Kinv) takes place near the I' = (0, 0) and the
M = (1,1)n/a points of the Brillouin zone for 0 < mo/to < 2 and —2 < mg/to < 0, respectively, and are
named the I' phase and M phase. The band inversion momentum can be recognized from the band structure
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Fig. 2. Global phase diagrams of time reversal odd insulators, subject to (a) kick [Eq. (4)], (b) step [Eq. (5)]
and (c) sinusoidal [Eq. (6)] drives, schematically shown in the corresponding upper panel, with T as the
period of the drives. Here w = 27 /T is the drive frequency. Phases are colored (numbered) according to
the Floquet Chern number CFriq (total number of edge modes in the Floquet Brillouin zone or winding
number W?). Insulators supporting normal, anomalous and mixed (with both normal and anomalous)
one-dimensional dynamic gapless fermionic modes along the grain boundary are marked by ®, ® and &

, respectively. See Figs. 3-5, and Supplemental Information. Here we set t; = to = 1, and (a) mo = 3, (b)
mo = 3, m1 = m3 = 2,and (c) V = 3. Lower panel: A heat-map of the bulk gap (G) in the phase diagram
shown in the middle panel, showing that the bulk gap vanishes only at the phase boundaries (yellow dashed
line) between topologically distinct insulators.

of Hgtat in a semi-infinite system with only k. or ky as a good quantum number. The edge modes then cross
the zero energy at momentum Kiy,y. See Sec. S1 and Fig. S1 of the SI. These two TIs are also characterized by
distinct first Chern number (C) computed in the following way®**”. We neglect the particle-hole asymmetry
(proportional to two-dimensional identity matrix 7o), as it does not play any role in topology as long as the
system is a bulk insulator.

We consider a discrete 2D Brillouin zone, containing reciprocal lattice points k¢ = (kj,, kj,), where
kj, = (27j./Nu) —m, ju=0,...,N,—1 and p =1,2. For simplicity, here we take N1 = No = N
. The Brillouin zone is restricted within |k;,| < m. A U(1) link variable for k; — k¢ 4 fi is defined as
U,(ke) = (n(ke)|n(ke + 1)) /Au(ke), where |n(ke)) is the normalized eigenstate of band n of Hgat at
momentum k¢, A, (k) = |[{(n(ke)|n(ke + 1)) and i = (27/N)€,. A counter-clockwise path around a unit
plaquette in the reciprocal space is then represented by [4]

Pio(ke) = Ur(ke)Usz(ke + 1)Us (ke +2) ' Us (ko) 7, 2)

yielding lattice field strength Fi2(k¢) = In Pia(k¢) with —m < —iFi2(k¢) < 7. The corresponding Chern
number [4]
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Fig. 3. Dynamic dispersive modes along the grain-antigrain boundary stemming from a kick drive [Eq. (4)].
(a) Quasienergy (un) spectra in a system with periodic boundary conditions and a grain-antigrain boundary
pair, each containing 10 (anti)dislocations, for w = 12.8, m1 = —1.8 producing normal dynamic nodal
fermions near the Floquet zone center (blue dots). (b) Their local density of states (LDOS) is highly localized
along the line defects. (c) Fourier transformation of the same set of states confirms their dispersive nature.
Panels (d), (e) and (f) are similar to (a), (b) and (c), respectively, however for w = 10.8, m1 = —5.2 giving rise
to anomalous dynamic nodal fermions (red dots) near the Floquet zone boundary. Panel (g) is similar to (a),
but for w = 1.94, m1 = —4.5 hosting both normal (blue) and anomalous (red) gapless fermionic modes, for
which the LDOS are respectively shown in (h) and (i). (j) Fourier transformation pins their dispersive nature
near the Floquet zone center and boundary. We set mo = 3 and {1 = to = 1. In panels (a), (d) and (g), n is the
quasienergy eigenvalue index, and the system contains total 6290 sites.

1
Cn = Tm;Fm(kZ) 3)

typically converges for N = 30. Throughout, we compute it for the valence band and set C,, = C for brevity,
leading to C' = +1 (—1) in the I' (M) phase.

When an edge dislocation is introduced in an otherwise square lattice system through the Volterra cut-and-
paste procedure, an electron encircling the core of such lattice defect picks up a hopping phase ®qis = Kinv - b
(modulo 27). The Burgers vector b measures the missing translation around the defect core across the line of
missing atoms. Here we take b = aé;. Then, in the M phase ®4;s = 7, while ®qis = 0 in the I" phase. Thus only
in the M phase a nontrivial 7-flux threads the dislocation core and the system supports a localized topological
mode in its close vicinity’, pinned at zero energy due to an antiunitary particle-hole symmetry of Hgtat, namely
{Hstat, ©} = 0 where © = 71 K and Kis the complex conjugation’®.

Once a grain boundary is created from the array of such edge dislocations, tunneling among the zero energy
modes bound to each dislocation core causes hybridization among them. As a result, a 1D dispersive miniband
develops within and separated from the bulk band gap!!. Such 1D topological dispersive modes reside along
the grain boundary. Their dispersive nature can be anchored from the corresponding Fourier transformation
in terms of the conserved momentum k, along the grain boundary for b = aé;. When the dislocation modes
hybridize, besides maintaining high localization at the defect core they also develop comparable spectral weight
in between them. For this reason, while performing their Fourier transformation, we denote the distance between
two successive defect cores by 2d. These results are summarized in Fig. 1. The grain boundary is characterized
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Fig. 4. Dynamic dispersive modes along the grain-antigrain boundary with a step drive [Eq. (5)]. (a)
Quasienergy (un) spectra in a system with a grain-antigrain boundary pair, each containing 10 (anti)
dislocations, and periodic boundary conditions for w = 3.5, ma2 = —2.5 producing normal dynamic nodal
fermions near the Floquet zone center (blue dots). (b) Their local density of states (LDOS) displays strong
localization along the line defects. (c) Fourier transformation of the same set of states, confirming their
dispersive nature. Panels (d), (e) and (f) are similar to (a), (b) and (c), respectively, however for w = 7.6,
meo = —2.8 supporting anomalous dynamic dispersive modes (in red) near the Floquet zone boundary. (g)
is similar to (a), but for w = 2.7, m2 = —2.9 hosting both normal (blue) and anomalous (red) dispersive
fermionic modes, whose LDOS are respectively shown in (h) and (i). (j) Their Fourier transformation shows
dispersive nature near both the Floquet zone center and boundary. Here we set mo = 3, m1 = m3 = 2 and
t1 = to = 1. In panels (a), (d) and (g), » is the quasienergy eigenvalue index, and the system contains total
6290 sites.

by the angle § = sin~ ' (a/d). For SAGBs we set d = 5a, yielding § = 11.54° < 15°. Throughout, we consider
a single grain-antigrain boundary pair to impose periodic boundary conditions in all directions. The ends of the
grain and antigrain boundaries are separated by a distance 20a for SAGBs, so the modes bound to them do no
overlap. Appearance of the dispersive fermionic modes can be observed when (anti)grain boundary contains
more than 5-7 (anti)dislocation cores, such that hybridization takes place among a large number of defect
modes. The width of the system in the x direction is kept sufficiently large such that the (anti)grain boundaries
are buried in the deep interior of the crystal, although we impose periodic boundary conditions in all directions.

Driven system
With the stage being set, we now focus on the same system under periodic drives. In particular, here we consider
three drives. (a) A kick drive with [4]

oo

V() =mirs »  8(t—nT) (4)

n=-—oo

where # is an integer, (b) a step drive given by [4]

mors nT +T/4<t<nT+3T/4 , (5)

mits nT <t<nT+T/4,
V(t) =
mats nT +3T/4<t<(n+1)T,
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Fig. 5. Dynamic dispersive band along the grain-antigrain boundary with a sinusoidal drive [Eq. (6)]. (a)
Quasienergy (ur) spectra in a system with periodic boundary conditions and a grain-antigrain boundary
pair, each containing 10 (anti)dislocations, for w = 3.10, mo = 2.42, yielding a normal gapless band near

the Floquet zone center (blue dots). Their (b) local density of states (LDOS) is highly localized along the line
defects and (c) Fourier transform depicts the dispersive nature. Time evolution of (d) quasienergy spectra and
(e) normalized density of states (NDOS) near Floquet zone center (Do) in a system with 5 (anti)dislocations
forming the grain-antigrain boundary pair for the same parameters as in (a). Panels (f)-(j) are similar to (a)-
(e), respectively, but for w = 5.08, mo = —2.79, producing an anomalous (red) dispersive band along the
line defects. Here D, denotes the NDOS near the Floquet zone boundary. Panel (k) is similar to (a), but for

w = 3.06, mg = 1.33, giving rise to both normal (blue) and anomalous (red) dispersive nodal fermions along
the line defects. Their LDOS are respectively shown in (1) and (m), while (n) Fourier transformation shows
dispersive nature near both the Floquet zone center and boundary. Time evolution of (o) quasienergy spectra
and (p) NDOS near the Floquet zone center (blue) and boundary (red) in a system as in (d). Weset V' =3
and t1 = to = 1. In panels (a), (f) and (k), n is the quasienergy eigenvalue index, and the system contains total
6290 sites.

where we set m1 = ms3 only for simplicity and taking m1 # ma does not change the results qualitatively [see
Fig. S2 of the SI], and (c) a sinusoidal drive with [4]

V(t) = V cos(2nt/T) 3. (6)

The drive frequency is w = 27 /T See Fig. 2(top row). The corresponding time ordered (TO) Floquet unitary
operator is [4]

Uk,t) =TO (eXp [—i /t [Hstat (k) + V()] dt:|) : (7)

For sinusoidal drive, U(k,t)is computed employing the Trotter-Sujuki approximation®+’. We are mostly
interested at the stroboscopic time ¢ = T, at which the effective Floquet Hamiltonian is given by [4]

Hqu(k) = iln(U(k, T))/T = dplq(k7 T) - T. (8)

For the explicit form of driq(k,T") see Sec. S2 of the SI. The global phase diagram of such a system can be
constructed in terms of the Chern number for Hriq(k), employing the method discussed earlier for Hggas
. See Fig. 2 (middle row). In the high-frequency regime, each phase occupies a larger parameter space in the
drive amplitude and frequency plane, whereas in the low-frequency regime, the parameter space for individual
phases shrinks due to increased system complexity. However, in contrast to the phase diagrams for the kick
and step drives, the Chern number flips under mo — —my for the sinusoidal drive. This occurs because,
when during the first half of the drive period, V(t) is positive (negative), during the second half, it becomes
negati_\_le (positive). Cor_{sequently, the Chern number reverses under mg — —my, as this transformation causes
d%lq(k7 T) - _dglq(k7 T)

We also show that the bulk gap (G) in the Floquet system vanishes only at the phase boundaries between
topologically distinct insulating phases in Fig. 2(bottom row) in both high and low frequency regimes.
Irrespective of the drive frequency and amplitude, as the bulk Floquet spectrum is always gapped and gapless
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modes (when exist) live only along the 1D grain boundary. Thus, the noninteracting and isolated Floquet system
is always in the dissipationless regime?®.

When periodically driven, the inversion of the Floquet-Bloch bands can take place near the center and/
or boundaries of the FBZ. Recall, a static TI with the band inversion at the I' (M) point leads to C' = +1 (-1
), tunable by the mass term proportional to 7.. The same conclusions hold for the Floquet insulators when
mass term becomes time periodic with the the band inversion occurring near the FBZ center. By contrast, the
correspondence between the Chern number and band inversion momentum gets reversed when it takes place
near the boundaries of the FBZ. The net Chern number for Floquet insulators is given by Criqy = Crzc + Crzs
, where Crzc (Crzg) denotes the Chern number stemming from the FBZ center (boundaries). Therefore,
combinations of Crzc and Crzp yield a variety of Floquet insulators with integer Criq ranging from —2 to 2
[Fig. 2], as its static counterpart permits insulators with C' = 0, =1 [Fig. 1]. This is a generic feature of the phase
diagrams, allowing Floquet insulators with |Cr1q| < 2, when the mass term is driven in a time-periodic fashion,
irrespective of the exact drive protocol. Consequently, it is now also conceivable to find trivial Floquet insulators
with Cr1q = 0, which support topological edge modes at same momentum near the center and boundaries of
the FBZ.

In Floquet insulators, nondissipative edge modes cross zero and/or £w/2 quasienergies at the Floquet-Bloch
band inversion momentum (KiF,}j) when its occurs at the FBZ center and/or boundaries, respectively. It can
be anchored from the band structure of the time evolution operator U(k,T") in a semi-infinite system with
ks or ky as a good quantum number in terms of its eigenmodes |1, ) with quasienergy pi,,, together satisfying
Uk, T)|pun) = exp(—ipnT)|pn). Explicit results are shown in Figs. $3-S5 of the SI. Notice that the global
phase diagrams [Fig. 2] support insulators with identical Criq and total number of edge modes (set by the
winding number W?) that respond distinctly to translational symmetry breaking in the bulk of a Floquet
crystal (sensitive to Kinlf) realized by introducing dislocations or grain boundaries in the system. Therefore,
together the Floquet Chern number, winding number and responses to grain boundaries, a direct probe of K},
, provide a complete classification of Floquet insulators. Gapless modes at the grain boundaries appear whenever
K9 b = 7 (modulo 2r) is satisfied.

As an illustrating example, consider two sets of Floquet insulators realized for (a) (m1,w) = (-9, 10)
, (m2,w)=1(6,7) and (mo,w)=(—0.5,5), and (b) (mi,w)=(-11,10), (m2,w)=(3,8) and
(mo,w) = (3,5), respectively for the kick, step and sinusoidal drives. See Fig. 2. Notice that Criq = 1 and
W =1 for both sets, and as far as the known topological invariants are concerned (Criq and W) there is no
distinction between them. However, only the set (a) features grain boundary modes, while the set (b) is devoid
of it. This is so because the Floquet Bloch band inversion takes place near the I'" point of the FBZ for (b), thus
yielding {9 - b = 0. By contrast, for (a) KL% is at the M point near the FBZ boundary, yielding K¢ - b = 7.
Hence, these two sets of dynamic T1s are distinct phases of matter, which can only be resolved by grain boundary
defects. Similar conclusions hold for Criq = —1, +2 Floquet TIs, which can be seen from the phase diagrams
in Fig. 2. In these phase diagrams, we also find Floquet insulators that by virtue of featuring the Floquet Bloch
band inversion at the M point near the center and boundary of the FBZ simultaneously, thus yielding Criq = 0
, support both normal and anomalous extended grain boundary modes (marked by @). See, for example,
Floquet insulators at (m1,w) = (—2,2), (m2,w) = (—0.5,2) and (mo,w) = (—3.5, 2) for the kick, step and
sinusoidal drives, respectively.

The requisite topological criteria for the existence of 1D dynamic dispersive bands along the 1grain boundary
in Floquet crystals extends directly from its counterpart in the static systems, but in terms of K}, . For example,
when the Floquet-Bloch band inversion occurs at the M point and Floquet zone center (boundary), normal
(anomalous) dynamic 1D dispersive fermionic modes appear along such line defects, pinned around the zero
(+w/2) quasienergy as the unitary time evolution operator satisfies © U (k, T)® = U(k, T'). On the other
hand, when the Floquet-Bloch band inversion occurs at the M point and simultaneously near the center and
boundaries of the FBZ, grain boundaries harbor mixed 1D dynamic dispersive states, an admixture of both
normal and anomalous gapless modes. These outcomes are insensitive to the drive protocol. We arrive at
qualitatively similar outcomes for the kick [Fig. 3], step [Fig. 4] and sinusoidal [Fig. 5] drives. Although, here
we present these results for SAGBs, qualitatively similar conclusions hold for large angle grain boundaries as
well (see SI). In all these cases, the static system corresponds to a NI, such that the emergence of 1D dynamic
dispersive grain boundary modes can solely be attributed to the periodic drives.

Note that inclusion of a constant particle-hole symmetry breaking term 7o/ in the static Hamiltonian
Hitat causes an overall shift of all the energy eigenvalues, without affecting its eigenvectors and the resulting
topology, as [0, 7] = 0. Similarly, in Floquet systems such a term causes an overall shift of all the quasienergies
along the frequency axis by wo = 1M, without affecting the eigenmodes |r) of the time evolution operator, as
[exp(—imnot), U(k,t)] = O for any t and V() [see Eq. (7)], yielding the eigenvalue equation at the stroboscopic
time

Uo(T)U(, T)|ttn) = Uo(T) exp(—iginT) 1tn)

= exp(—iT [0 + fin])l1in), ©
where Up(T) = exp(—iTmo). All our conclusions remains unaffected but within a shifted FBZ of width w
within frequency range (—w/2 + wo,w/2 + wo). However, such a constant shift is unimportant as the FBZ
is always defined within the range (—w/2,w/2) up to an overall translation in the frequency axis due to
the time translational symmetry. In the SI, we show the stability of the grain boudnary modes against more
general particle-hole symmetry breaking term of the form_ro[rmo + fo{cos(kza) + cos(kya)}], for which
[Uo(k,T),U(k,T)] = 0, where Up(k,T) = exp[—iT'1odo(k)]. Results are shown in Table S1 and Fig. S8 of
the SL
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Fig. 6. Variation of the band width (Wgg) of the pure normal [(a), () and (i)], pure anomalous [(b), (f) and
()], and the normal [(c), (g) and (k)] and the anomalous [(d), (h) and (I)] components of the mixed grain
boundary dispersive modes with (a)-(d) the separation between two successive (anti)dislocation cores in (anti)
grain boundary 2d (in units of a) for a fixed distance between the ends of the grain and anti-grain boundary
defects S = 10a, and with S for small angle with d = 5a [(e)-(h)] and large angle with d = 2a [(i)-(1)] grain
boundary defects for kick, step and sinusoidal drives, respectively [Eq. (4)-(6)]. Therefore, Wag increases with
decreasing 2d and S. At a few missing data points, we encounter numerical instability in Python. The parameter
values are the same as in Fig. 3, Fig. 4 and Fig. 5 for the kick, step and sinusoidal drives, respectively.

The robustness of the topological criterion, namely K} - b = 7 (modulo 27), for the emergence of the grain
boundary modes, is further substantiated by considering a trivial static insulator, subject to time_periodic
hopping amplitude between the orbitals of opposite parities realized by taking ¢1 — ¢1(t) in the d(k)-vector
from Eq. (1). Resulting Floquet phases have no analog in the static system, as topology is insensitive to the
magnitude of ¢; therein. We consider time periodic kick, step and sinusoidal variations of ¢; (¢), and show that
the phase diagrams support Floquet insulator with a wide range of the Floquet Chern numbers (Criq). Even in
such system, dynamlc dispersive grain boundary modes emerges at the FBZ center and/or boundaries whenever
the condition K q - b = 7 (modulo 27) is satisfied near it. The results are shown in Fig. S7 of the SL

The band width of the dispersive grain boundary states (Wgg) is tunable by its characteristic angle 6 or
equivalently 2d, the distance between two successive (anti)dislocation cores within the extended (anti)grain
boundary defect. A smaller d implies a larger 0, and a stronger hybridization between the individual localized
(anti)dislocation modes. Therefore, as d () is reduced (increased), Wap increases in Floquet crystals. See
Fig. 6(a)-(d). The same conclusion holds in the static system as shown in Fig. S1(e) of the SI. We also note that as
the distance between the ends of the grain and anti-grain boundaries (S) is reduced, the hybridization between
the dispersive modes bound to individual extended line defect gets stronger. As a result Wggp increases as S
is reduced and becomes comparable to a few lattice spacing. These outcomes for small and large angle grain
boundaries are shown in panels (e)-(h) and (i)-(I) of Fig. 6, respectively.

Discussions

To summarize, here we show that irrespective of the drive protocol, Floquet insulators accommodate topologically
robust one-dimensional gapless dispersive fermionic modes along grain boundarles whenever inversion of
the underlying Floquet-Bloch bands takes place at al finite momentum (K; q) that together with the Burgers
vector of the constituting dislocations (b) satisfies K f} b = 7 (modulo 277) Otherw1se, such dissipationless
dispersive states appear near zero and/or 4-w/2 quasienergies when in our model K}'% = (7, 7)/a near the
Floquet zone center and/or boundary. These conclusions hold for both small angle [Figs. 3- 5] as well as large
angle grain boundaries (see SI). Furthermore, as our findings rests on a robust topological criterion (the K['% - b

inv

rule), it should be applicable to driven systems belonging to arbitrary symmetry class in arbitrary dimensions,
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including Floquet topological superconductors hosting dispersive Majorana modes at the core of grain boundary,
dislocation loops resulting from combinations of edge and screw dislocations to name a few, which are left for
future investigations. For example, the model in Eq. (1) also describes a lattice-regularized p + ip paired state
for which the two-component Nambu spinor reads ¥ ' (k) = [c(k), ¢' (—k)] with ¢, as the pairing amplitude>*.,
In such a system, the 7 matrices operate on the Nambu or particle-hole index, and any particle-hole anisotropy
term proportional to 7 is forbidden due to the conserved fundamental charge conjugation symmetry. All our
results for the dynamically generated dispersive grain boundary modes therefore directly apply to such a system,
where these modes are constituted by Majorana fermions.

In Floquet crystals grain boundary modes are (a) dispersive, shown from their Fourier transformation, (b)
extended, showing LDOS along the entire defect, and (c) gapless (see the quasi-energy spectra), altogether
suggesting their metallic nature. These states are robust against weak disorder as shown in Fig. S6 of the SI
Therefore, in the future it will be worthwhile computing the transport quantities associated with the dispersive
fermionic grain boundary modes from existing formalism*2-%>, which can also be measured in experiments“S.
Robustness and responses of the grain boundary modes, when the Flqouet crystal is coupled to external
dissipative baths is yet another avenue to explore in the future?’.

With the recent progress in engineering Floquet topological phases in driven quantum crystals*, cold
atomic lattices***%and dynamic classical metamaterials®'~>°our proposal should be within the reach of currently
achievable experimental setups, where dislocation lattice defects!>-!4as well as grain boundaries*’have already
been demonstrated as tools to detect topological phases of matter in terms of robust modes bound to them.
In quantum materials the grain boundary modes are fermionic in nature, whereas metamaterials habor their
classical analogues. While defects are ubiquitous in quantum crystals, they can be engineered externally by
suitably arranging optical waveguides®®and mechanical resonators® in photonic and mechanical lattices,
respectively. Each dislocation defect, and subsequently an array of it (grain boundaries), can be created by
removing a line of microwave resonators or photonic waveguides or electrical nodes up to the dislocation center,
and the requisite Thopping phase across the line of missing sites can be manipulated locally**-¢!. The hallmark
LDOS of the topological grain boundary modes can be detected via scanning tunneling microscope in quantum
crystals, two point pump probe or reflection spectroscopy in photonic lattices and mechanical susceptibility in
acoustic lattices, and their gapless nature can be established from fast Fourier transformations, as shown in this
work. As the number of (anti)dislocation cores in (anti)grain boundary defects is much smaller than the system
size they are not expected to produce any appreciable additional heating effects. Given that Floquet topological
phases have already been observed on a number of platforms despite potential heating effects*®~>, the predicted
extended defect modes should also be observed in these systems.

Data availibility

The datasets used and/or analysed during the current study are available from the corresponding authors and
Daniel J. Salib (djs421@lehigh.edu) on reasonable request. Main codes and the data for generating the figures
presented in the main text and Supplementary Information are already available at https://doi.org/10.5281/zen
0d0.10819547.
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