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Driven quantum materials often feature emergent topology, otherwise absent in static crystals. 
Dynamic bulk-boundary correspondence, encoded by nondissipative gapless modes residing near 
the Floquet zone center and/or boundaries, is its most prominent example. Here we show that 
topologically robust gapless dispersive modes appear along the grain boundaries, embedded in 
the interior of Floquet topological crystals, when the Floquet-Bloch band inversion occurring at a 
finite momentum (KFlq

inv ) and the Burgers vector (b) of the constituting array of dislocations satisfy 
KFlq

inv · b = π (modulo 2π). Such nondissipative gapless states can be found near the center and/or 
edges of the Floquet Brillouin zone, irrespective of the drive protocol. We showcase these general 
outcomes for two-dimensional driven time-reversal symmetry breaking insulators. Promising 
experimental platforms hosting such dynamic topological dispersive bands in real materials are 
discussed.

Defects are ubiquitous in crystals, such as dislocations and grain boundaries. They are responsible for crystal 
melting that takes place through proliferation of lattice defects, which can be either pointlike, such as edge 
dislocations in two-dimensional (2D) crystals or extended, such as screw dislocations and grain boundaries. 
Furthermore, line defects can often be constructed by stacking point defects. For example, an array of edge 
dislocations gives rise to a grain boundary1. In recent time, such geometric lattice defects have gained a revived 
interest in the context of topological quantum materials2,3. Under conducive environments, they can harbor 
robust topological modes in their vicinity that are, most importantly, immune to interface contamination4–23. As 
lattice defects locally break the translational symmetry in the bulk of crystals, topological phases harboring such 
defect modes are thus named translationally active. While lattice defects in static topological materials have been 
scrutinized thoroughly over the span of last few years, their role as smoking gun probe of dynamic topological 
phases is still at its infancy16,21.

Here we showcase emergence of one-dimensional (1D) dynamic topological dispersive nodal fermions along 
the grain boundary of a 2D Floquet topological crystal. For simplicity, we consider a system that in the static 
limit features both topological insulators (TIs) and atomic or normal insulators (NIs) at the cost of the time-
reversal symmetry. In particular, when the band inversion of the TI takes place at a momentum Kinv in the 
Brillouin zone such that along with the Burgers vector of the underlying constituting dislocation b, it satisfies 
Kinv · b = π (modulo 2π)4, 1D dispersive states appear along the grain boundary11. They form a miniband 
within the bulk topological band gap along the line defect. See Fig. 1and Fig. S1 of Supplemental Information 
(SI). It is worth noting that this topological criterion also applies to static higher-order topological crystals, 
where dispersive bands typically emerge at finite energies while remaining protected by symmetries24.

Irrespective of the periodic drive protocol, we show that such a system features a plethora of topological 
and normal insulating phases in the dynamic realm even when its static counterpart describes a NI, imprinted 
within the corresponding global phase diagrams shown in Fig. 2, depending on the drive frequency (ω) and 
its amplitude. The time translational symmetry then gives birth to the Floquet Brillouin zone (FBZ) within the 
quasienergy µ ∈ (−ω/2, ω/2)25–29. So, all the quasienergy spectra are shown within the range of (−ω/2, ω/2) 
with the ω values specified explicitly, whenever appropriate. The FBZ is distinct from the regular Brillouin 
zone in the space of spatial momenta (⃗k). The inversion of the Floquet-Bloch bands, taking place at spatial 
momentum KFlq

inv , thus can occur near the FBZ center and/or near its boundaries. Under this circumstance, 
the K · b rule for the dispersive grain boundary modes extends to dynamic systems, but in terms of KFlq

inv . And 
we display the appearance of nondissipative dispersive (a) normal 1D dynamic modes around the FBZ center 
and zero quasienergy, (b) anomalous 1D dynamic modes around the FBZ boundaries and quasienergies ±ω/2
, and (c) mixed 1D dynamic modes, simultaneously featuring both normal and anomalous dynamic dispersive 
nodal fermions along the grain boundary. These generic outcomes are explicitly shown for the kick [Fig. 3], step 
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[Fig. 4 and Fig. S2 of the SI] and sinusoidal [Fig. 5] drives. They are qualitatively similar for small angle grain 
boundaries (SAGBs) and their large angle counterparts. See Fig. S3-S5 of the SI. It should be noted that the lattice 
with grain and anti-grain boundaries does not possess any crystal symmetry, such as reflections about x and y 
axes, inversion, or four-fold rotation about z axis. See Fig. 1(d). Thus, the existence of the dispersive modes along 
the line defects rests on a single and robust topological criterion KFlq

inv · b = π (modulo 2π). In the presence 
of isolated dislocation lattice defects, all results remain valid; however, the dispersive bands are replaced by 
localized modes around such pointlike crystal defects16.

In noninterating and isolated Floquet crystals (decoupled from any dissipative bath), all the quasimodes 
(including the gapless dispersive ones near the grain boundaries) are nondissipative, due to their 
conserved quasienergies, as there is no gain or loss of energy in the system25–29. Inter-particle interactions 
cause dissipation leading to heating or thermalization, which however occurs beyond a time scale 
τ⋆ ∼ exp[ω/interaction strength]30–32. Therefore, in the high frequency regime and/or weakly interacting 
systems, the thermalization takes place only at sufficiently long time, and at any time scale shorter than τ⋆, the 
system is well approximated by the effective Floquet Hamiltonian and its nondissipative states, now describing 
the transient dynamics in a pre-thermalized state. Therefore, our “dissipationless” grain boundary modes can 
be observed in real systems as transient states at time scale shorter than τ⋆. Recently, Floquet-Bloch states has 
been observed as transient states in graphene (a weakly interacting system) within an experimentally achievable 
time scale that is shorter than τ⋆33,34. However, these couplings are absent in classical dynamic metamaterials, 
featuring bosonic or classical analogues of topologically protected dispersive grain boundary modes.

Model
A pedagogical overview on the static system and grain boundaries therein will benefit the forthcoming 
discussion on the role of such line defects in Floquet crystals. The Hamiltonian for the static system is given by 
Hstat = τ · d(k⃗)35, where ⃗k is spatial momenta, [4]

	
d(k⃗) =

(
t1 sin(kxa), t1 sin(kya), m0 − t0

∑
j=x,y

cos(kja)
)

,� (1)

and a is the lattice spacing. Vector Pauli matrix τ  operates on orbitals. Two component spinor reads 
Ψ⊤(k⃗) = [c+(k⃗), c−(k⃗)], where cτ (k⃗) is the fermionic annihilation operator on orbital with parity τ = ± 
and momentum k⃗. This model supports TIs (NIs) within the parameter range |m0/t0| < 2 (|m0/t0| > 2). 
Within the topological regime, the inversion of the Bloch bands (Kinv) takes place near the Γ = (0, 0) and the 
M = (1, 1)π/a points of the Brillouin zone for 0 < m0/t0 < 2 and −2 < m0/t0 < 0, respectively, and are 
named the Γ phase and M phase. The band inversion momentum can be recognized from the band structure 

Fig. 1.  (a) Phase diagram of the static Hamiltonian Hstat [Eq. (1)] in terms of the Chern number (C) [Eq. (3)]. 
(b) Energy (En) spectra of Hstat in a periodic system with a pair of grain-antigrain boundary each containing 
10 (anti)dislocations, with the Burgers vector b = ±aê1 for t1 = t0 = 1 and m0 = −1.5, such that the system 
is in the translationally active M phase. Here n is the energy eigenvalue index, and the system contains total 
6290 sites. One-dimensional dispersive states (blue dots in lower inset) then appear along the line defects, as 
can be seen from their Fourier transformation as a function of the conserved momentum ky  (upper inset). (c) 
Local density of states of these modes is highly localized along the line defects. (d) An illustration of a single 
grain-antigrain boundary pair with three (anti)dislocations. Their cores are shown in red. Throughout, the 
distance between two successive dislocation cores is 2d.
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of Hstat in a semi-infinite system with only kx or ky  as a good quantum number. The edge modes then cross 
the zero energy at momentum Kinv. See Sec. S1 and Fig. S1 of the SI. These two TIs are also characterized by 
distinct first Chern number (C) computed in the following way36,37. We neglect the particle-hole asymmetry 
(proportional to two-dimensional identity matrix τ0), as it does not play any role in topology as long as the 
system is a bulk insulator.

We consider a discrete 2D Brillouin zone, containing reciprocal lattice points kℓ = (kj1 , kj2 ), where 
kjµ = (2πjµ/Nµ) − π, jµ = 0, . . . , Nµ − 1 and µ = 1, 2. For simplicity, here we take N1 = N2 = N
. The Brillouin zone is restricted within |kjµ | < π. A U(1) link variable for kℓ → kℓ + µ̂ is defined as 
Uµ(kℓ) ≡ ⟨n(kℓ)|n(kℓ + µ̂)⟩/Aµ(kℓ), where |n(kℓ)⟩ is the normalized eigenstate of band n of Hstat at 
momentum kℓ, Aµ(kℓ) = |⟨n(kℓ)|n(kℓ + µ̂)⟩| and µ̂ = (2π/N)êµ. A counter-clockwise path around a unit 
plaquette in the reciprocal space is then represented by [4]

	 P12(kℓ) = U1(kℓ)U2(kℓ + 1̂)U1(kℓ + 2̂)−1U2(kℓ)−1,� (2)

yielding lattice field strength F12(kℓ) = ln P12(kℓ) with −π ≤ −iF12(kℓ) ≤ π. The corresponding Chern 
number [4]

Fig. 2.  Global phase diagrams of time reversal odd insulators, subject to (a) kick [Eq. (4)], (b) step [Eq. (5)] 
and (c) sinusoidal [Eq. (6)] drives, schematically shown in the corresponding upper panel, with T as the 
period of the drives. Here ω = 2π/T  is the drive frequency. Phases are colored (numbered) according to 
the Floquet Chern number CFlq (total number of edge modes in the Floquet Brillouin zone or winding 
number W27). Insulators supporting normal, anomalous and mixed (with both normal and anomalous) 
one-dimensional dynamic gapless fermionic modes along the grain boundary are marked by ⊙, ⊗ and ⊕
, respectively. See Figs. 3-5, and Supplemental Information. Here we set t1 = t0 = 1, and (a) m0 = 3, (b) 
m0 = 3, m1 = m3 = 2, and (c) V = 3. Lower panel: A heat-map of the bulk gap (G) in the phase diagram 
shown in the middle panel, showing that the bulk gap vanishes only at the phase boundaries (yellow dashed 
line) between topologically distinct insulators.
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Cn = 1

2πi

∑
ℓ

F12(kℓ)� (3)

typically converges for N = 30. Throughout, we compute it for the valence band and set Cn = C  for brevity, 
leading to C = +1 (−1) in the Γ (M) phase.

When an edge dislocation is introduced in an otherwise square lattice system through the Volterra cut-and-
paste procedure, an electron encircling the core of such lattice defect picks up a hopping phase Φdis = Kinv · b 
(modulo 2π). The Burgers vector b measures the missing translation around the defect core across the line of 
missing atoms. Here we take b = aê1. Then, in the M phase Φdis = π, while Φdis = 0 in the Γ phase. Thus only 
in the M phase a nontrivial π-flux threads the dislocation core and the system supports a localized topological 
mode in its close vicinity7, pinned at zero energy due to an antiunitary particle-hole symmetry of Hstat, namely 
{Hstat, Θ} = 0 where Θ = τ1K and Kis the complex conjugation38.

Once a grain boundary is created from the array of such edge dislocations, tunneling among the zero energy 
modes bound to each dislocation core causes hybridization among them. As a result, a 1D dispersive miniband 
develops within and separated from the bulk band gap11. Such 1D topological dispersive modes reside along 
the grain boundary. Their dispersive nature can be anchored from the corresponding Fourier transformation 
in terms of the conserved momentum ky  along the grain boundary for b = aê1. When the dislocation modes 
hybridize, besides maintaining high localization at the defect core they also develop comparable spectral weight 
in between them. For this reason, while performing their Fourier transformation, we denote the distance between 
two successive defect cores by 2d. These results are summarized in Fig. 1. The grain boundary is characterized 

Fig. 3.  Dynamic dispersive modes along the grain-antigrain boundary stemming from a kick drive [Eq. (4)]. 
(a) Quasienergy (µn) spectra in a system with periodic boundary conditions and a grain-antigrain boundary 
pair, each containing 10 (anti)dislocations, for ω = 12.8, m1 = −1.8 producing normal dynamic nodal 
fermions near the Floquet zone center (blue dots). (b) Their local density of states (LDOS) is highly localized 
along the line defects. (c) Fourier transformation of the same set of states confirms their dispersive nature. 
Panels (d), (e) and (f) are similar to (a), (b) and (c), respectively, however for ω = 10.8, m1 = −5.2 giving rise 
to anomalous dynamic nodal fermions (red dots) near the Floquet zone boundary. Panel (g) is similar to (a), 
but for ω = 1.94, m1 = −4.5 hosting both normal (blue) and anomalous (red) gapless fermionic modes, for 
which the LDOS are respectively shown in (h) and (i). (j) Fourier transformation pins their dispersive nature 
near the Floquet zone center and boundary. We set m0 = 3 and t1 = t0 = 1. In panels (a), (d) and (g), n is the 
quasienergy eigenvalue index, and the system contains total 6290 sites.
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by the angle θ = sin−1(a/d). For SAGBs we set d = 5a, yielding θ = 11.54◦ < 15◦. Throughout, we consider 
a single grain-antigrain boundary pair to impose periodic boundary conditions in all directions. The ends of the 
grain and antigrain boundaries are separated by a distance 20a for SAGBs, so the modes bound to them do no 
overlap. Appearance of the dispersive fermionic modes can be observed when (anti)grain boundary contains 
more than 5–7 (anti)dislocation cores, such that hybridization takes place among a large number of defect 
modes. The width of the system in the x direction is kept sufficiently large such that the (anti)grain boundaries 
are buried in the deep interior of the crystal, although we impose periodic boundary conditions in all directions.

Driven system
With the stage being set, we now focus on the same system under periodic drives. In particular, here we consider 
three drives. (a) A kick drive with [4]

	
V (t) = m1τ3

∞∑
n=−∞

δ(t − nT )� (4)

where n is an integer, (b) a step drive given by [4]

	
V (t) =

{
m1τ3 nT < t < nT + T/4,
m2τ3 nT + T/4 < t < nT + 3T/4
m3τ3 nT + 3T/4 < t < (n + 1)T,

,� (5)

Fig. 4.  Dynamic dispersive modes along the grain-antigrain boundary with a step drive [Eq. (5)]. (a) 
Quasienergy (µn) spectra in a system with a grain-antigrain boundary pair, each containing 10 (anti)
dislocations, and periodic boundary conditions for ω = 3.5, m2 = −2.5 producing normal dynamic nodal 
fermions near the Floquet zone center (blue dots). (b) Their local density of states (LDOS) displays strong 
localization along the line defects. (c) Fourier transformation of the same set of states, confirming their 
dispersive nature. Panels (d), (e) and (f) are similar to (a), (b) and (c), respectively, however for ω = 7.6, 
m2 = −2.8 supporting anomalous dynamic dispersive modes (in red) near the Floquet zone boundary. (g) 
is similar to (a), but for ω = 2.7, m2 = −2.9 hosting both normal (blue) and anomalous (red) dispersive 
fermionic modes, whose LDOS are respectively shown in (h) and (i). (j) Their Fourier transformation shows 
dispersive nature near both the Floquet zone center and boundary. Here we set m0 = 3, m1 = m3 = 2 and 
t1 = t0 = 1. In panels (a), (d) and (g), n is the quasienergy eigenvalue index, and the system contains total 
6290 sites.
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where we set m1 = m3 only for simplicity and taking m1 ̸= m3 does not change the results qualitatively [see 
Fig. S2 of the SI], and (c) a sinusoidal drive with [4]

	 V (t) = V cos(2πt/T )τ3.� (6)

The drive frequency is ω = 2π/T . See Fig. 2(top row). The corresponding time ordered (TO) Floquet unitary 
operator is [4]

	
U(k, t) = TO

(
exp

[
−i

∫ t

0
[Hstat(k) + V (t)] dt

])
.� (7)

For sinusoidal drive, U(k, t)is computed employing the Trotter-Sujuki approximation39,40. We are mostly 
interested at the stroboscopic time t = T , at which the effective Floquet Hamiltonian is given by [4]

	 HFlq(k) = i ln(U(k, T ))/T = dFlq(k, T ) · τ .� (8)

For the explicit form of dFlq(k, T ) see Sec. S2 of the SI. The global phase diagram of such a system can be 
constructed in terms of the Chern number for HFlq(k), employing the method discussed earlier for Hstat
. See Fig. 2 (middle row). In the high-frequency regime, each phase occupies a larger parameter space in the 
drive amplitude and frequency plane, whereas in the low-frequency regime, the parameter space for individual 
phases shrinks due to increased system complexity. However, in contrast to the phase diagrams for the kick 
and step drives, the Chern number flips under m0 → −m0 for the sinusoidal drive. This occurs because, 
when during the first half of the drive period, V(t) is positive (negative), during the second half, it becomes 
negative (positive). Consequently, the Chern number reverses under m0 → −m0, as this transformation causes 
d3

Flq(k⃗, T ) → −d3
Flq(k⃗, T ).

We also show that the bulk gap (G) in the Floquet system vanishes only at the phase boundaries between 
topologically distinct insulating phases in Fig.  2(bottom row) in both high and low frequency regimes. 
Irrespective of the drive frequency and amplitude, as the bulk Floquet spectrum is always gapped and gapless 

Fig. 5.  Dynamic dispersive band along the grain-antigrain boundary with a sinusoidal drive [Eq. (6)]. (a) 
Quasienergy (µn) spectra in a system with periodic boundary conditions and a grain-antigrain boundary 
pair, each containing 10 (anti)dislocations, for ω = 3.10, m0 = 2.42, yielding a normal gapless band near 
the Floquet zone center (blue dots). Their (b) local density of states (LDOS) is highly localized along the line 
defects and (c) Fourier transform depicts the dispersive nature. Time evolution of (d) quasienergy spectra and 
(e) normalized density of states (NDOS) near Floquet zone center (D0) in a system with 5 (anti)dislocations 
forming the grain-antigrain boundary pair for the same parameters as in (a). Panels (f)-(j) are similar to (a)-
(e), respectively, but for ω = 5.08, m0 = −2.79, producing an anomalous (red) dispersive band along the 
line defects. Here Dπ  denotes the NDOS near the Floquet zone boundary. Panel (k) is similar to (a), but for 
ω = 3.06, m0 = 1.33, giving rise to both normal (blue) and anomalous (red) dispersive nodal fermions along 
the line defects. Their LDOS are respectively shown in (l) and (m), while (n) Fourier transformation shows 
dispersive nature near both the Floquet zone center and boundary. Time evolution of (o) quasienergy spectra 
and (p) NDOS near the Floquet zone center (blue) and boundary (red) in a system as in (d). We set V = 3 
and t1 = t0 = 1. In panels (a), (f) and (k), n is the quasienergy eigenvalue index, and the system contains total 
6290 sites.
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modes (when exist) live only along the 1D grain boundary. Thus, the noninteracting and isolated Floquet system 
is always in the dissipationless regime26.

When periodically driven, the inversion of the Floquet-Bloch bands can take place near the center and/
or boundaries of the FBZ. Recall, a static TI with the band inversion at the Γ (M) point leads to C = +1 (−1
), tunable by the mass term proportional to τz . The same conclusions hold for the Floquet insulators when 
mass term becomes time periodic with the the band inversion occurring near the FBZ center. By contrast, the 
correspondence between the Chern number and band inversion momentum gets reversed when it takes place 
near the boundaries of the FBZ. The net Chern number for Floquet insulators is given by CFlq = CFZC + CFZB
, where CFZC (CFZB) denotes the Chern number stemming from the FBZ center (boundaries). Therefore, 
combinations of CFZC and CFZB yield a variety of Floquet insulators with integer CFlq ranging from −2 to 2 
[Fig. 2], as its static counterpart permits insulators with C = 0, ±1 [Fig. 1]. This is a generic feature of the phase 
diagrams, allowing Floquet insulators with |CFlq| ≤ 2, when the mass term is driven in a time-periodic fashion, 
irrespective of the exact drive protocol. Consequently, it is now also conceivable to find trivial Floquet insulators 
with CFlq = 0, which support topological edge modes at same momentum near the center and boundaries of 
the FBZ.

In Floquet insulators, nondissipative edge modes cross zero and/or ±ω/2 quasienergies at the Floquet-Bloch 
band inversion momentum (KFlq

inv ) when its occurs at the FBZ center and/or boundaries, respectively. It can 
be anchored from the band structure of the time evolution operator U(k, T ) in a semi-infinite system with 
kx or ky  as a good quantum number in terms of its eigenmodes |µn⟩ with quasienergy µn, together satisfying 
U(k, T )|µn⟩ = exp(−iµnT )|µn⟩. Explicit results are shown in Figs. S3-S5 of the SI. Notice that the global 
phase diagrams [Fig.  2] support insulators with identical CFlq and total number of edge modes (set by the 
winding number W27) that respond distinctly to translational symmetry breaking in the bulk of a Floquet 
crystal (sensitive to KFlq

inv ) realized by introducing dislocations or grain boundaries in the system. Therefore, 
together the Floquet Chern number, winding number and responses to grain boundaries, a direct probe of KFlq

inv
, provide a complete classification of Floquet insulators. Gapless modes at the grain boundaries appear whenever 
KFlq

inv · b = π (modulo 2π) is satisfied.
As an illustrating example, consider two sets of Floquet insulators realized for (a) (m1, ω) = (−9, 10)

, (m2, ω) = (6, 7) and (m0, ω) = (−0.5, 5), and (b) (m1, ω) = (−11, 10), (m2, ω) = (3, 8) and 
(m0, ω) = (3, 5), respectively for the kick, step and sinusoidal drives. See Fig.  2. Notice that CFlq = 1 and 
W = 1 for both sets, and as far as the known topological invariants are concerned (CFlq and W) there is no 
distinction between them. However, only the set (a) features grain boundary modes, while the set (b) is devoid 
of it. This is so because the Floquet Bloch band inversion takes place near the Γ point of the FBZ for (b), thus 
yielding KFlq

inv · b = 0. By contrast, for (a) KFlq
inv  is at the M point near the FBZ boundary, yielding KFlq

inv · b = π. 
Hence, these two sets of dynamic TIs are distinct phases of matter, which can only be resolved by grain boundary 
defects. Similar conclusions hold for CFlq = −1, ±2 Floquet TIs, which can be seen from the phase diagrams 
in Fig. 2. In these phase diagrams, we also find Floquet insulators that by virtue of featuring the Floquet Bloch 
band inversion at the M point near the center and boundary of the FBZ simultaneously, thus yielding CFlq = 0
, support both normal and anomalous extended grain boundary modes (marked by ⊕). See, for example, 
Floquet insulators at (m1, ω) = (−2, 2), (m2, ω) = (−0.5, 2) and (m0, ω) = (−3.5, 2) for the kick, step and 
sinusoidal drives, respectively.

The requisite topological criteria for the existence of 1D dynamic dispersive bands along the grain boundary 
in Floquet crystals extends directly from its counterpart in the static systems, but in terms of KFlq

inv . For example, 
when the Floquet-Bloch band inversion occurs at the M point and Floquet zone center (boundary), normal 
(anomalous) dynamic 1D dispersive fermionic modes appear along such line defects, pinned around the zero 
(±ω/2) quasienergy as the unitary time evolution operator satisfies Θ−1U(k, T )Θ = U(k, T ). On the other 
hand, when the Floquet-Bloch band inversion occurs at the M point and simultaneously near the center and 
boundaries of the FBZ, grain boundaries harbor mixed 1D dynamic dispersive states, an admixture of both 
normal and anomalous gapless modes. These outcomes are insensitive to the drive protocol. We arrive at 
qualitatively similar outcomes for the kick [Fig. 3], step [Fig. 4] and sinusoidal [Fig. 5] drives. Although, here 
we present these results for SAGBs, qualitatively similar conclusions hold for large angle grain boundaries as 
well (see SI). In all these cases, the static system corresponds to a NI, such that the emergence of 1D dynamic 
dispersive grain boundary modes can solely be attributed to the periodic drives.

Note that inclusion of a constant particle-hole symmetry breaking term τ0m̃0 in the static Hamiltonian 
Hstat causes an overall shift of all the energy eigenvalues, without affecting its eigenvectors and the resulting 
topology, as [τ0, τ ] = 0. Similarly, in Floquet systems such a term causes an overall shift of all the quasienergies 
along the frequency axis by ω0 = m̃0, without affecting the eigenmodes |µn⟩ of the time evolution operator, as 
[exp(−im̃0t), U(k, t)] = 0 for any t and V(t) [see Eq. (7)], yielding the eigenvalue equation at the stroboscopic 
time

	

U0(T )U(k, T )|µn⟩ = U0(T ) exp(−iµnT )|µn⟩
≡ exp(−iT [m̃0 + µn])|µn⟩,

� (9)

where U0(T ) = exp(−iT m̃0). All our conclusions remains unaffected but within a shifted FBZ of width ω 
within frequency range (−ω/2 + ω0, ω/2 + ω0). However, such a constant shift is unimportant as the FBZ 
is always defined within the range (−ω/2, ω/2) up to an overall translation in the frequency axis due to 
the time translational symmetry. In the SI, we show the stability of the grain boudnary modes against more 
general particle-hole symmetry breaking term of the form τ0[m̃0 + t̃0{cos(kxa) + cos(kya)}], for which 
[U0(k⃗, T ), U(k, T )] = 0, where U0(k⃗, T ) = exp[−iT τ0d0(k⃗)]. Results are shown in Table S1 and Fig. S8 of 
the SI.
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The robustness of the topological criterion, namely KFlq
inv · b = π (modulo 2π), for the emergence of the grain 

boundary modes, is further substantiated by considering a trivial static insulator, subject to time periodic 
hopping amplitude between the orbitals of opposite parities realized by taking t1 → t1(t) in the d(k⃗)-vector 
from Eq.  (1). Resulting Floquet phases have no analog in the static system, as topology is insensitive to the 
magnitude of t1 therein. We consider time periodic kick, step and sinusoidal variations of t1(t), and show that 
the phase diagrams support Floquet insulator with a wide range of the Floquet Chern numbers (CFlq). Even in 
such system, dynamic dispersive grain boundary modes emerges at the FBZ center and/or boundaries whenever 
the condition KFlq

inv · b = π (modulo 2π) is satisfied near it. The results are shown in Fig. S7 of the SI.
The band width of the dispersive grain boundary states (WGB) is tunable by its characteristic angle θ or 

equivalently 2d, the distance between two successive (anti)dislocation cores within the extended (anti)grain 
boundary defect. A smaller d implies a larger θ, and a stronger hybridization between the individual localized 
(anti)dislocation modes. Therefore, as d (θ) is reduced (increased), WGB increases in Floquet crystals. See 
Fig. 6(a)-(d). The same conclusion holds in the static system as shown in Fig. S1(e) of the SI. We also note that as 
the distance between the ends of the grain and anti-grain boundaries (S) is reduced, the hybridization between 
the dispersive modes bound to individual extended line defect gets stronger. As a result WGB increases as S 
is reduced and becomes comparable to a few lattice spacing. These outcomes for small and large angle grain 
boundaries are shown in panels (e)-(h) and (i)-(l) of Fig. 6, respectively.

Discussions
To summarize, here we show that irrespective of the drive protocol, Floquet insulators accommodate topologically 
robust one-dimensional gapless dispersive fermionic modes along grain boundaries whenever inversion of 
the underlying Floquet-Bloch bands takes place at a finite momentum (KFlq

inv ) that together with the Burgers 
vector of the constituting dislocations (b) satisfies KFlq

inv · b = π (modulo 2π). Otherwise, such dissipationless 
dispersive states appear near zero and/or ±ω/2 quasienergies when in our model KFlq

inv = (π, π)/a near the 
Floquet zone center and/or boundary. These conclusions hold for both small angle [Figs. 3- 5] as well as large 
angle grain boundaries (see SI). Furthermore, as our findings rests on a robust topological criterion (the KFlq

inv · b 
rule), it should be applicable to driven systems belonging to arbitrary symmetry class in arbitrary dimensions, 

Fig. 6.  Variation of the band width (WGB) of the pure normal [(a), (e) and (i)], pure anomalous [(b), (f) and 
(j)], and the normal [(c), (g) and (k)] and the anomalous [(d), (h) and (l)] components of the mixed grain 
boundary dispersive modes with (a)-(d) the separation between two successive (anti)dislocation cores in (anti)
grain boundary 2d (in units of a) for a fixed distance between the ends of the grain and anti-grain boundary 
defects S = 10a, and with S for small angle with d = 5a [(e)-(h)] and large angle with d = 2a [(i)-(l)] grain 
boundary defects for kick, step and sinusoidal drives, respectively [Eq. (4)-(6)]. Therefore, WGB increases with 
decreasing 2d and S. At a few missing data points, we encounter numerical instability in Python. The parameter 
values are the same as in Fig. 3, Fig. 4 and Fig. 5 for the kick, step and sinusoidal drives, respectively.
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including Floquet topological superconductors hosting dispersive Majorana modes at the core of grain boundary, 
dislocation loops resulting from combinations of edge and screw dislocations to name a few, which are left for 
future investigations. For example, the model in Eq. (1) also describes a lattice-regularized p + ip paired state 
for which the two-component Nambu spinor reads Ψ⊤(k⃗) = [c(k⃗), c†(−k⃗)] with t1as the pairing amplitude3,41. 
In such a system, the τ  matrices operate on the Nambu or particle-hole index, and any particle-hole anisotropy 
term proportional to τ0 is forbidden due to the conserved fundamental charge conjugation symmetry. All our 
results for the dynamically generated dispersive grain boundary modes therefore directly apply to such a system, 
where these modes are constituted by Majorana fermions.

In Floquet crystals grain boundary modes are (a) dispersive, shown from their Fourier transformation, (b) 
extended, showing LDOS along the entire defect, and (c) gapless (see the quasi-energy spectra), altogether 
suggesting their metallic nature. These states are robust against weak disorder as shown in Fig. S6 of the SI. 
Therefore, in the future it will be worthwhile computing the transport quantities associated with the dispersive 
fermionic grain boundary modes from existing formalism42–45, which can also be measured in experiments46. 
Robustness and responses of the grain boundary modes, when the Flqouet crystal is coupled to external 
dissipative baths is yet another avenue to explore in the future47.

With the recent progress in engineering Floquet topological phases in driven quantum crystals48, cold 
atomic lattices49,50and dynamic classical metamaterials51–56our proposal should be within the reach of currently 
achievable experimental setups, where dislocation lattice defects12–14as well as grain boundaries57have already 
been demonstrated as tools to detect topological phases of matter in terms of robust modes bound to them. 
In quantum materials the grain boundary modes are fermionic in nature, whereas metamaterials habor their 
classical analogues. While defects are ubiquitous in quantum crystals, they can be engineered externally by 
suitably arranging optical waveguides58and mechanical resonators59 in photonic and mechanical lattices, 
respectively. Each dislocation defect, and subsequently an array of it (grain boundaries), can be created by 
removing a line of microwave resonators or photonic waveguides or electrical nodes up to the dislocation center, 
and the requisite πhopping phase across the line of missing sites can be manipulated locally59–61. The hallmark 
LDOS of the topological grain boundary modes can be detected via scanning tunneling microscope in quantum 
crystals, two point pump probe or reflection spectroscopy in photonic lattices and mechanical susceptibility in 
acoustic lattices, and their gapless nature can be established from fast Fourier transformations, as shown in this 
work. As the number of (anti)dislocation cores in (anti)grain boundary defects is much smaller than the system 
size they are not expected to produce any appreciable additional heating effects. Given that Floquet topological 
phases have already been observed on a number of platforms despite potential heating effects48–56, the predicted 
extended defect modes should also be observed in these systems.

Data availibility
The datasets used and/or analysed during the current study are available from the corresponding authors and 
Daniel J. Salib (djs421@lehigh.edu) on reasonable request. Main codes and the data for generating the figures 
presented in the main text and Supplementary Information are already available at ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​5​2​8​1​/​z​e​n​
o​d​o​.​1​0​8​1​9​5​4​7​.​​
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