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Abstract

Objective analytical identification methods are still a minority in the praxis of

paleobiological sciences. Subjective interpretation of fossils and their modifications

remains a nonreplicable expert endeavor. Identification of African bovids is a crucial

element in the reconstruction of paleo-landscapes, ungulate paleoecology, and, even-

tually, hominin adaptation and ecosystemic reconstruction. Recent analytical efforts

drawing on Fourier functional analysis and discrimination methods applied to occlusal

surfaces of teeth have provided a highly accurate framework to correctly classify

African bovid tribes and taxa. Artificial intelligence tools, like computer vision, have

also shown their potential to be objectively more accurate in the identification of

taphonomic agency than human experts. For this reason, here we implement some of

the most successful computer vision methods, using transfer learning and ensemble

analysis, to classify bidimensional images of African bovid teeth and show that 92%

of the large testing set of images of African bovid tribes analyzed could be correctly

classified. This brings an objective tool to paleoecological interpretation, where bovid

identification and paleoecological interpretation can bemore confidently carried out.
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INTRODUCTION

African bovids make up one of the most morphologically varied and

ecologically diverse ungulate groups.1–3 Most of the paleoecological

reconstructions of recent African Neogene and Quaternary paleon-

tological and archaeological localities rest on bovid macrommamal

faunas.4–22 Accurate identification of the bovid tribes to which fossils
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belong is, thus, essential for paleoecological reconstructions. Although

several postcranial features can differentiate some bovid tribes, it is in

thedentition that themost reliable identificationof tribe andgenus can

be made.1,23,24 Most paleoecological reconstructions using bovids are

made at the tribe level. Within some bovid tribes, there are taxa that

are ecologically diverse and whose ecological niches do not overlap.

A substantial amount of paleoecological information is, thus, missing
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because of our inability to identify fossil bovid teeth to the taxon.

Recently, a study of the shape of the occlusal outline of the molar den-

tition of bovids, through a combination of Fourier functional analysis,

principal component analysis (based on covariance matrix), and dis-

criminant function analysis, has achieved high rates of success (>85%
of accuracy) in classifying teeth to species within the main African

bovid tribes.24–26 This opens a new window of opportunity for refin-

ing paleoecological analyses. This type of analytical approach to bovid

identification is necessary to overcome the current praxis of subjective

classification by experts.

No study to date shows howbovid tribe identification differs among

analysts. However, it should be emphasized that such an identifi-

cation process is subject to the analyst’s experience and, in many

cases, identification can be equivocal. Differences in the identifi-

cation of bovid teeth among experts are common. Brophy et al.26

report examples of different analysts in South Africa performing

different identifications of bovids, using the same faunal assem-

blage, leading to divergent paleoenvironmental reconstructions. Such

a subjective approach to character determination is common in pale-

ontology and taphonomy. The controversial identification and use

of bone surface modifications (BSMs) is one of the most widely

known examples.27 This has recently led to the adoption of machine

learning methods, channeled through computer vision (CV) tech-

niques, in order to achieve an objective way of approaching the

identification of marks on bones. CV was shown to excel expert

taphonomists by >50% in identifying cut and trampling marks.28

The use of deep convolutional neural networks (DCNNs) in deep

learning (DL) frameworks has allowed the successful discrimination

of cut marks imparted on fleshed or defleshed bones,29 the dis-

crimination of timing in cut mark modification by biostratinomic

abrasive processes,30 the differentiation of carnivore agency when

analyzing tooth mark types,31–34 and the objective interpretation of

controversial BSMs from various sites across the globe.35 Recently,

this experimental carnivore tooth mark database has been applied

to an ensemble of tooth marks from the early Pleistocene site of

David’s Site (DS, Olduvai Gorge, Bed I), and a CV analysis showed

that most of the carnivore modifications were attributable to hye-

nas, as would be expected if carnivore damage was mostly the

result of postdepositional hyenid intervention after hominin exploita-

tion of carcass resources.36 At the slightly younger deposit of

FLK North 3, felid and hyenid interactions were also successfully

defined on a pilot study applying CV methods to that archaeofau-

nal assemblage,37 supporting the previous taphonomic interpreta-

tion of the site as a felid-hyenid palimpsest with marginal hominin

input.38

Given the powerful discrimination obtained in controlled experi-

mentation by DL methods, we thought that they could be expanded

to other areas of research. For example, they could also contribute to

objectively identifyingbovid tribes through image classificationof their

teeth. Here, we implement these methods, and show that they do not

only provide a more objective analytical approach to bovid classifica-

tion than traditional expert identification, but probably a substantially

more accurate one.

SAMPLE AND METHODS

Sample

A sample of 2879 images of the occlusal surface of African bovid teeth,

belonging to the upper and lower dentition, from the B.O.V.I.D. (Bovid

Occlusal Visual IDentification) database (https://doi.org/10.17605/

OSF.IO/R5HSW), were used.39 These images display different teeth

aligned on the same horizontal plane. This is not a conditioning factor

for the DL models built, since these tend to learn item identification

under different positions. As a matter of fact, one of the protocols of

data augmentation (see below) requires generating cloned item images

with a large array of vertical and horizontal orientations.

Five tribesof bovidswere selected fromBrophyandMatthew’s orig-

inal image database: Alcelaphini (Damaliscus dorcas, Alcelaphus busela-

phus, Connochaetes gnu, Connochaetes taurinus), Antilopini (Antidorcas

marsupialis), Hippotragini (Oryx gazelle, Hippotragus equinus, Hippotragus

niger), Reduncini (Redunca arundinum, Redunca fulvorufula, Kobus leche,

Kobus ellipsiprymnus), and Tragelaphini (Tragelaphus scriptus, Tragela-

phus strepsiceros, Taurotragus oryx). This encompasses almost all the

typical African bovid tribes spanning the small and large antelopes.

These tribes were selected because they are also themost abundant in

the early Pleistocene East African paleontological and archaeofaunal

records.1,40 They were also selected because they encompass most of

the bovid types documented in the Olduvai Pleistocene paleontologi-

cal record on which the research of some of us is focused. The target

was bovid classification at the tribe level. Bovini were not included

because DCNN and CV methods require large data sets for prop-

erly learning object features and the Bovini sample in the B.O.V.I.D.

data set was the smallest of all the tribes, and amounted to only 153

highly variable teeth. Our intention with this referential analysis is to

provide a solid analytical framework for bovid identification. Images

from the B.O.V.I.D. database were cropped to show only the tooth’s

occlusal surface (Figure 1). The modified data set can be found in

Harvard’s Dataverse public repository (https://doi.org/10.7910/DVN/

TMLXGW). The analysis was performedwith all the images in color.

DL analysis

DL methods applied to images, through what is commonly called com-

puter vision (CV), were selected. Here, we used DCNNs from transfer

learning (TL) (i.e., pretrained architectures) models. TL models are

built from original models that are trained from scratch, sometimes

with more than one million images and with a thousand different

objects. Such training is intensive and requires weeks of computation.

By generating models using such a large number of objects, the algo-

rithms are fine-tuned in detecting subtle characteristics that separate

each of these hundreds of objects from one another. This fine-tuned

architecture can be reused (or retrained) over a new set of different

objects by freezing the trainedmodel layers (or a selection thereof) and

adding new ones on top, with the goal of turning the old features into

predictions for the new objects during training.
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F IGURE 1 Examples of images of teeth from each bovid tribe used for training the deep learningmodels.

The TL models used here are similar to those that we used pre-

viously for BSM analysis.29,32–35 The architectures selected in the

present analysis included sequential, densely connected, and resid-

ual networks: ResNet-50 (version 1.0),41 VGG19,42 DenseNet-201,43

and EfficientNet-B7.44 Sequential networks (VGG19) are based on the

stacking of successive layers, each of them containing single input and

output tensors. Densely connected networks (DenseNet-201) follow a

sequential arrangement of layers, but each layer is connected to every

other layer. Residual networks use a similar sequential structure, but

they skip successive connections that create identity mappings, and

are successful in very deep architectures, where sequential concatena-

tion ofmultiple layers can lead to underperformance. Here, ResNet-50
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andEfficientNet-B7were theonly residual networks used, but they are

significantly different. In the case of EfficientNet-B7, this architecture

is built on a baseline network that optimized efficiency and accuracy

(through the implementation of compound scaling), using the AutoML

MNAS framework (to search for themost efficient neural architecture)

and including a mobile inverted bottleneck convolution in a residual

block format.44

The four TL architectures listed above were used to obtain individ-

ual models. These particular TL architectures were selected because

they yielded highly accurate models in previous work on the identifi-

cation of agency in BSMs.30–37 The bovid sample image classification

was performed individually for each of these models, which were used

in a competitive framework, to derive the best classifier. Subsequently,

the fourmodelswere used in a cooperative framework through ensem-

ble learning (EL). EL consists of bringing together different algorithms

andmaking them jointly converge in the production of predictions. The

EL methods used here consisted of using the four regularized models

as the base learners, and then a stacking process was implemented by

alternatively using a random forest and an extremely randomized gra-

dient tree algorithm as the meta-learners. The number of estimators

used in hyperparameter tuning was 100. Extremely randomized trees,

in contrast with random forests, do not resample observations or use

best splitswhenbuilding trees.45 They create split points for predictors

by randomly choosing splitting and selecting the best resulting ones.

The original 2879 image data set was divided into a training set

(70% = 2009 images) and a testing set (30% = 870 images). Images

were randomly allocated to both sets. Despite the original sample size,

the architectureswere usedwith image augmentation to improve their

training by reducing the chances of overfitting.46 The training image

data set was augmented through the following procedures: random

shifting of width and height (20%), of shear and zoom range (20%),

horizontal flipping, and a rotation range of 40◦. Image standardiza-

tion, using bidimensional matrices for standardization and centering,

was carried out using each architecture’s preprocessing functions. The

DCNNmodels were elaborated using the Keras (2.4.3) application pro-

gramming interface with a Tensorflow (2.3.0) backend. Computation

was carried out on aGPUHPZ6Workstation using aCUDAcomputing

(cuDNN) environment. All code was made using Python 3.7 (available

at: https://doi.org/10.7910/DVN/TMLXGW).

In each of the TLmodels used, the activation function for every layer

was a rectified linear unit (ReLU). The last fully connected layer of the

network used a “softmax” activation. The loss function selected was

categorical cross-entropy. Cross-entropymeasures distances between

probability distributions and predictions.46 The optimizer used was

stochastic gradient descendwith a learning rate of 0.001 and amomen-

tum of 0.9. Accuracy was the metric selected for the classification

process. F1 score values were also obtained to assess balanced accu-

racy, given the imbalanced nature of the original data set. Training

was done using mini-batch kernels of size 32. Testing was made

using mini-batch kernels of size 20. Weight update was done using a

backpropagation process of 100 epochs.

Training graphs for accuracy and loss were also used to assess

over- and underfitting processes. The architectures implemented reg-

TABLE 1 Accuracy, loss, and F1 score of the four DL architectures
used in the classification of African bovid tribes.

Accuracy Loss F1 score

ResNet-50 0.92 0.24 0.92

VGG19 0.84 0.48 0.85

EfficientNet-B7 0.89 0.28 0.89

DenseNet-201 0.91 0.29 0.91

ularization methods based on Dropout.47 Dropout consists of the

random dropping (i.e., ignoring) of selected neurons during training.

This results in DCNN networks that are less reactive to specific neu-

ron weights, producing a network that is more adapted to implement

better generalization and less likely to overfit from the training data.

Saliency is a term that refers to specific features in an image that

depict identifying locations. A saliency map is a bidimensional topo-

graphical representation of those identifying features. Saliency maps

can be created from every convolutional layer in a DL network, but

they usually are generated using the last convolutional layer prior to

the flattening process. There are several types of saliency algorithms.

In the present work, we used a gradient weighted activation mapping

algorithm (Grad-CAM) in order to detect the features that influenced

classification. This method overlays a heatmap on the original image

based on gradients of the predicted class derived from the last con-

volutional feature map. The Grad-CAM algorithm highlights areas of

the image that aremost relevant for its identification. Here, we applied

Grad-CAM to a selection of tooth images from different bovid tribes in

order to detect features of the teeth that were determinant for their

identification and classification. For this purpose, we selected themost

accurate (ResNet-50) and the least accurate (VGG19) models, since

both would represent the range ends of the resulting saliencymaps.

RESULTS

The ResNet-50 model yielded the highest accuracy (92%) and lowest

loss in the classification of the 870 images of the testing set, fol-

lowed by DenseNet-201 (91%), EfficientNet-B7 (89%), and VGG19

(84%) (Table 1). The F1 score values for all the models indicate a fairly

balanced classification of all the tribes. In the ResNet-50 model, the

Tragelaphini, Antilopini, and Alcelaphini are the most accurately clas-

sified (F1> 95%), followed very closely by Reduncini (F1 = 89%) and

Hippotragini (84%) (Table 2). The same order of the highest F1 values

(>90%) for Antilopini, Tragelaphini, and Alcelaphini was documented

for the VGG19, EfficientNet-B7, and DenseNet-201 models (Table 2).

Reduncini and Hippotragini display slightly lower F1 scores, ranging

between 69% (VGG19) and 86% (DenseNet-201), according to the

model (Table 2).

The accuracy/loss graphs for the 100 epochs during training

show that the regularization dropout method worked efficiently at

avoiding overfitting. The validation learning curve follows the train-

ing curve closely and outperforms it (Figure 2). Out of the four
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F IGURE 2 Progress graphs showing the performance of the training and validation sets. Accuracy for eachmodel is shown in the left column,
and loss values are displayed in the right column.
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TABLE 2 F1 score for the classification of the five bovid tribes used in the present analysis according to DLmodel.

ResNet-50 VGG19 EfficientNet-B7 DenseNet-201

Alcelaphini 0.95 0.90 0.91 0.92

Antilopini 0.96 0.97 0.93 0.95

Hippotragini 0.84 0.69 0.86 0.86

Reduncini 0.89 0.77 0.82 0.85

Tragelaphini 0.96 0.92 0.95 0.97

architectures, it was EfficientNet-B7 that provided the best fit

between the training and testing learning curves, with the latter con-

verging with the former during the last steps of the process (Figure 2).

With such a high accuracy for each of the learning models, it was

expected that an ensemble analysis would yield a solid, high, final accu-

rate model. The EL resulting from the combination of the four models

as the base learners was carried out using a stacking procedure. The

meta-learners used for the upper layer were a random forest and extra

randomized trees algorithm. Both yielded the same result, with 92% of

the testing set being accurately classified.

When projecting the final result of the most (ResNet-50) and

the least (VGG19) accurate models for saliency topographies, we

observed that both models coincide in focusing on object detec-

tion by using mostly the occlusal surface of the teeth. ResNet-50

encompasses wider areas of the tooth, whereas VGG19 seems to

focus more specifically on the enamel and infundibula of the lobes

(Figure 3). This latter feature could partially explain the lower accu-

racy ofVGG19and the higher resolution of ResNet-50. ForAlcelaphini,

these saliency methods show that the shape of the lobe and the

infundibulum are targeted. For Antilopini, ResNet-50 focuses on the

mesial outline shape, and both models identify the infundibular shape

as very diagnostic. For Hippotragini and Reduncini, the lobe shape,

the infundibula, the ribs, and the basal pillar are selected as diagnos-

tic. For Reduncini, even VGG19 widens its scope by selecting most

of the central occusal area. For Tragelaphini, whereas VGG19 targets

infundibular shape, ResNet-50 focuses more specifically on lobular

shape, and especially on the vestibular pointed sections of the lobes

(Figure 3).

DISCUSSION

Previous work on objective analytical identification of bovid occlusal

surface teeth, using elliptical Fourier analysis (EFA), showed an overall

accuracy >85% (for most groups 100%) of correct taxonomic iden-

tification of modern experimental dental samples.24 A more recent

reanalysis of the data using a machine learning approach also yielded

variably a high accuracy and a low loss depending on the algorithm. For

the lower molars, results ranged from 82% accuracy in tribe identifi-

cation (LDA, linear discriminant analysis) to 89% (RF, random forest),

depending on tooth type (M1, M2, and M3). For the upper poste-

rior dentition (M1, M2, and M3), results ranged between 80% (NN,

neural network) to 92% accuracy (RF).48 Results varied according to

molar type. RF was better at identifying M1-M
1 than the other molar

types.

These results, based on Fourier analysis of occlusal tooth surfaces,

are unparalleled in the identification of modern bovid faunas. Com-

parisons of the determination accuracy of completely crowned teeth

with minimal attrition (>85% of the crown height) with highly worn

teeth from aged individuals (<85% of the crown height), testing the

null hypothesis of occlusal outline consistency through the lifespan

of an animal, showed that all tribes could still be classified correctly>60% of the time (>75% of the time in the case of Alcelaphini and

Tragelaphini).26 This indicated a substantial decrease in accuracy with

worn teeth compared with more completely crowned teeth, whose

occlusal outlines were more discriminant: all tribes were correctly

classified, with an accuracy >85% (with Alcelaphini and Reduncini

correctly classified>90% of the time).26

The number of tooth specimens per taxon in the B.O.V.I.D. database

is insufficient to properly train DCNNs for taxonomic classification.

This is why we adopted the tribe approach. Additionally, successful

dental classification using the occlusal outline also depends on cor-

rectly identifying first the specific tooth within its dental series (i.e.,

M1, M2, M3. . . ). Fragmented teeth may complicate molar type iden-

tification. Furthermore, in some cases, the attribution of the first and

secondmolars is not straightforward for many analysts. In these cases,

an alternativemethod toEFA likeDCNNCVwouldbeanadequate sub-

stitute or complement. A recent study of partial curves of the occlusal

tooth surface, based on EFA, yielded extremely low log-loss values,49

ensuring that partial preservation of occlusal surfaces could be enough

to allow tribe (and even species) distinction.

TheTLmodels usedherewere trainedusing allmolar teeth together,

without distinction of molar type (upper or lower series). The ELmeth-

ods used, combining the four independent models, yielded an accuracy

of 92% correct classification of an extensive testing set composed of

870 images. Single model accuracy was also high, with at least one

model also showing 92%accurate identification. This is as high an accu-

racy as that resulting from the best ML model applied to the EFA, with

the added advantage that it is sustained throughout all themolar tooth

types, including the upper and lower series.

The high accuracy obtained in this analysis, as well as its balanced

distribution among the five tribes, shows that this objective DL clas-

sification method can be reliably used to identify bovid tribes in the

fossil record. This impacts the confidence with which paleoecolog-

ical interpretations based on bovid identifications can be made. It

also removes the burden of authority-based protocols in the praxis of
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F IGURE 3 Saliency topographic heat maps overlaid on the original dental images for (A) Alcelaphini (Connochaetes gnou), (B) Antilopini
(Antidorcas marsupialis), (C) Hippotragini (Oryx gazella), (D) Reduncini (Kobus ellipsiprymnus), and (E) Tragelaphini (Taurotragus oryx). The examples
shown here belong to the left secondmolar of the inferior dental series. The left column shows the original images. The central column displays the
saliency heat map from the ResNet-50model. The right column displays the saliency heat map from the VGG19model.

fossil identification. Additionally, it brings a replicable tool with which

probabilities in the reliability of identification can be provided. Future

work should target exploring classificationusing3Dmodeling. It should

also use data augmentation methods (i.e., generative adversarial net-

works or GANs) to augment taxon-specific image samples to attempt

discrimination at the taxon level. These data augmentation protocols

would be necessary, because the downside of DL methods is that they

require substantially large data sets, and these are currently limited

for individual bovid species. If taxon-specific accurate models using DL

methods could be obtained, a proper comparison with occlusal out-

line Fourier methods, which have been the only ones that successfully

discriminated not only among tribes, but also among taxa, could be

thus established.24,25 The application of DL techniques to taphonomic

research is creating an analytical taphonomy, based on objective and

quantitative replicable methods. The present study shows that these

methods could also successfully transform traditional paleontological

research, which has lacked controlledways of taxonomic classification,

into an analytical paleontology, by expandingmethodological protocols

in the current praxis of paleobiology.

During our research, we considered surveying the performance of

human experts for comparison. However, there were some method-

ological issues that prevented us from doing it properly. One is the

assessment of the degree of experience of the expert. An anonymous

method of assessment would be making an image data set available

for volunteer analysts, who would have to self-assess themselves for

their degree of experience. The inconvenience of this method is that

analysts may overestimate their degree of experience and knowledge

and provide a false (or unjustified) assessment of their expertise. The

othermethodwould be to nonrandomly select a groupofwidely known

experts and ask them to perform the identification. Thiswas attempted

initially by one of us unsuccessfully.When a research design can finally

be implemented that would guarantee the assessment of the ana-

lyst’s experience, the present work would then stand as a comparative

framework for testing human andmachine performance.

CONCLUSIONS

A data set of>2000 images of the occlusal surfaces of upper and lower

molar dentition from African bovid tribes was used to train four differ-

ent DCNN sequential and residual architectures, resulting in a range

of classification accuracy of a testing sample of 870 images of 84%

(VGG19) to 92% (ResNet-50). An EL analysis involving stacking meth-

ods with random forest and extra randomized trees as meta-learners

equally yielded an accuracy of 92% of correct classification of the

testing image data set. These results are a nice complement to the

accuracy estimates obtained in the application of a Fourier functional

analysis of dental outline on the same image sample.24–26 Both meth-

ods contribute to analytical approaches to bovid identification that

are both objective and reliable, since they can implement confidence
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estimators by adding probabilities to their classifications. This con-

tributes to the scientific assessment of bovid identification beyond the

subjective interpretation of experts, and provides a computational tool

that both experts and nonexperts can use to identify their modern and

prehistoric samples.
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