Between Wind and Water: Trade-offs
of Irrigation and Wind Projects
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Abstract: Development of the abundant wind energy across the Great Plains of the
United States has been relatively slow. We present a novel factor for the lag: the
Ogallala Aquifer. Trade-offs between colocated natural resources are complicated
by incongruencies between the scale and technology associated with each. This study
considers how irrigation, especially by center pivots, has affected wind power genera-
tion. To study the relationship, we combine data on wind projects with center pivot
locations derived from a deep learning model using satellite imagery. We find that cen-
ter pivot fields are 64% less likely to have a wind turbine, and wind projects nearer to
center pivots produce 26% less electricity, potentially due to turbine placement that
minimizes interference with center pivots or irrigation’s microclimate effects on wind.
This tension in the food-energy-water nexus can be exacerbated or ameliorated by pol-

icy choices.
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The Great Plains has been called the “Saudi Arabia of Wind Energy” because its resources
for wind power are so immense, but development of those resources has been slow.

—Ernest Callenbach, in Encyclopedia of the Great Plains

MANY HAVENOTED THE RELATIVE LACK of installed wind generation capacity in

the Great Plains of the United States given its abundance of wind energy (e.g.,
Callenbach 2011; Vokoun 2019). The potential far exceeds the local demand, and
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the expense to move the generated electricity to more populous regions with higher load
demands helps explain the slow uptake (Lu et al. 2009). We put forth an additional,
novel factor that has not received attention: the presence (and use) of the Ogallala Aqui-
fer. Natural resources are often colocated, and the development and use of each one
may be shaped by the other due to the mix of respective technologies, market values,
and property rights. The Great Plains is associated with both wind and water, and both
have shaped agriculture in the region. The Dust Bowl of the 1930s saw the wind, along
with poor farming practices, decimate the region (Hansen and Libecap 2004). The wa-
ter beneath helped with recovery and protection from later winds; with the advent of
center pivot irrigation systems (CPIS) and arrival of rural electrification, the agricul-
tural sector of the region blossomed with its newly irrigated lands (Hornbeck and
Keskin 2014; Edwards and Smith 2018). Progress in the power sector means that
the wind now offers a rich source of renewable energy, and utility scale projects pro-
duced over 330 million megawatt-hours (MWh) in 2020, or 8.4% of US electricity
(US EIA 2021). With this growing energy sector, the Great Plains is looked to as a
region to invest in, but little attention has been paid to the interactions of wind power
and irrigated agriculture.

We assess how the development of water and wind are in conflict with one another
given the existing technologies, values, and property rights. Specifically, we explain and
quantify how historic irrigation development, with special attention to CPIS, now in-
fluences wind turbine siting and electricity production across the Great Plains. This
region is of particular interest both because the wind generation potential is massive
and because differential access to the Ogallala Aquifer provides quasi-random irriga-
tion development relative to wind resources.

A given plot of land can be endowed with multiple resources such as soil, trees, min-
erals, wind, and water. This can lead to complementarities for productive activity on
the land—good soil and water for irrigation increase agricultural productivity—but
colocated resources can also create conflicts where one activity precludes another, such
as open-pit mining and agricultural activity. Often a landowner does not face an all-or-
nothing trade-off. For instance, oil and gas wells can operate on a portion of a field while
agricultural production can continue on most of the remainder (Fitzgerald et al. 2020).
The decision to pursue one activity over the other, or the mix of activities, is determined

by the owner, who presumably picks the highest valued combination.
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Achieving the right mix of production on a piece of land can rely on contracting be-
tween parties with comparative advantages in the different industries (Cheung 1973).
Matters are complicated when there is a mismatch of the scales of production and prop-
erty rights between the resources, introducing externalities and additional transaction
costs (Bradshaw and Leonard 2020). These incongruent property right structures be-
tween two resources can impede the efficient development of one or both (Libecap and
Wiggins 1984; Leonard and Parker 2021). However, wind power generation and farm-
ing can generally coexist. Large farmland expanses are conducive to wind project devel-
opment due to the relative open space for turbines and, when large areas are owned by a
single operator, lower transaction costs (Winikoff and Parker 2024). In fact, agricul-
tural land is by far the most common place to find wind turbines, accounting for 93%
in the United States (Xiarchos and Sandborn 2017). We hypothesize, however, that
irrigation alters joint siting possibilities over the Ogallala Aquifer region, particularly
where CPIS are utilized, through multiple channels.

Irrigated land is often more valuable, driving up the compensation necessary to cover
alandowner’s reservation price for siting a wind turbine on their property. The predic-
tions are further complicated by the ubiquitous CPIS often deployed as the irrigation
technology of choice. CPIS are associated with even higher land values (Cooley et al.
2021), and the mechanical workings of CPIS further increase costs due to a nonlinear
relationship with the land forced out of (irrigated) production. Simply put, wind tur-
bines will block the circular path of the sprinkler as it inscribes the field, forcing a “slice”
to be beyond its reach. While turbines can feasibly be placed in the nonirrigated cor-
ners, this spacing constraint may adversely impact the productivity of the wind project
by causing deviations from the preferred turbine configuration. Furthermore, cropping
patterns and irrigation nearby can alter local wind patterns, affecting turbine output
(Vanderwende and Lundquist 2016; Phillips et al. 2022).

In this study, we empirically explore the ways in which development of the aquifer
for irrigation—which mostly predates any large-scale wind power development—ex-
erts influence on wind projects. First, we consider how the location and timing of wind
projects relate to irrigation at the county level around the Ogallala Aquifer. Second, we
drill down to the specific plots using sections (square miles) from the Public Land
Survey System (PLSS) as units of analysis to garner insights into the micro-location
choices for wind turbines. Third, we consider the wind projects themselves as units
of observation to assess whether those located near and around CPIS are more or less
productive than their counterparts without CPIS nearby.

In order to conduct these analyses we compile a wide range of data, including output
from a machine learning process to locate CPIS across the study region. Using a meth-
odology developed by Cooley et al. (2021), we process satellite images in a manner that
identifies the locations of CPIS at 30-meter resolution. Relative to widely available
county-level irrigation data, our novel dataset proves essential to our results in at least

two ways. First, CPIS have a distinct effect from irrigation by other means, underscoring
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that the technology in use matters. Second, county-level results on their own would
lead to a conclusion that contrasts the section-level analysis, underscoring the impor-
tance of the subcounty spatial resolution.

We find that irrigated land helps to explain the smaller and later presence of wind
projects in the Great Plains. However, holding irrigation constant, center pivot technol-
ogy specifically ameliorates a significant portion of the negative relationship between
irrigation and wind projects at the county level. Supplementary analysis suggests that
this mitigating effect of CPIS on wind project development likely occurs through in-
direct channels such as policy preferences for smaller setbacks. At the section level, ir-
rigated areas are less likely to have wind turbines, even within small spatial neigh-
borhoods. At this scale, the use of CPIS deters wind development more than other
irrigation. Furthermore, the likelihood of turbine placement is reduced by the number
of neighboring sections with CPIS, highlighting the disparity of spatial scales between
wind projects and irrigated agriculture. Our wind-project-level analysis offers another
compelling reason why wind projects avoid placement near CPIS: they produce about
26% less electricity over a year relative to their installed capacity, whether due to layout
constraints or microclimate effects stemming from irrigation.

Our research provides insights into the food-energy-water nexus. Rather than fo-
cusing on how land-use patterns and irrigation are altered following the development
of energy resources (Allred et al. 2015; Hitaj et al. 2020; Fitzgerald and Giberson
2021), our efforts focus on how existing land use and irrigation influence where energy
resources are tapped into. Our investigation of the role of irrigation identifies a factor
not yet considered in depth as a determinant of siting choices for wind projects and does
so at a finer spatial scale than much of the existing economic literature on turbine place-
ment that is limited to larger spatial units like the state or county (e.g,, Hitaj 2013;
Winikoff and Parker 2024). Given that the nonlinear land use trade-off associated
with CPIS is a large factor, our results also speak to the influence of setback policy
on wind turbine placement (Winikoff 2022) and energy-resource development more
broadly (Ericson et al. 2020).

Furthermore, our findings that wind projects nearer CPIS produce less electricity
provides empirical support to related literatures on wind effects. To the extent that
the result is driven by layout constraints imposed by the CPIS, the findings provide
empirical weight to the largely theoretical literature on optimal wind project layout
and wake effects of the wind turbines themselves (Kaffine and Worley 2010; Meyers
and Meneveau 2012; Gonzilez et al. 2014; Stevens et al. 2017).1 Alternatively, the ev-
idence may be among the first to empirically detect economically significant microcli-
mate effects of irrigation on wind patterns. While scientists have recognized the influ-

ence of land use (cropping and irrigation) on temperature and precipitation (Lobell

1. Lundquist et al. (2019) produce empirical evidence of negative downwind wake effects
between two wind projects in a case study.
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et al. 2008; DeAngelis et al. 2010; Mueller et al. 2016), only recently have economists
taken note and connected these effects directly to economic outcomes like crop yields
(Braun and Schlenker 2023; Grosset et al. 2023). Less evidence has been compiled on
how wind patterns are affected.” Exceptions include Vanderwende and Lundquist
(2016), who conduct simulations which find that wind speeds—and subsequently
wind power production—are influenced by crop choice, and Phillips et al. (2022), who
recently report evidence that irrigation reduces upslope winds in the Great Plains.

This study also adds to the literature on the effects of irrigation uptake around
the Ogallala (Hornbeck and Keskin 2014) and the externalities of its development
(Pfeiffer and Lin 2012; Hornbeck and Keskin 2015; Braun and Schlenker 2023). More
generally, our findings contribute to a literature on colocated resources and how the
mix of technologies, values, and property rights affects their respective development,
inclusive of spatial and cross-sectoral externalities (Libecap and Wiggins 1984; Lewis
2019; Bradshaw and Leonard 2020; Bellanger et al. 2021; Leonard and Parker 2021;
Alston and Smith 2022). Finally, the methods deployed also contribute to a burgeoning
area of using machine learning to enhance economic research (see Gogas and Papa-
dimitriou 2021).

1. WIND AND IRRIGATION ON THE GREAT PLAINS

The Great Plains region is closely associated with both wind and water. Wind may be
most linked with the human-environmental disaster known as the Dust Bowl. The
erosion stemming from high winds and poor farming practices (Hansen and Libecap
2004) destroyed farms and uprooted settlement during the 1930s. While erosion
control has improved, the high winds remain. Given that power production is a cubic
function of wind velocity (Kaffine and Worley 2010), the Plains offer a significant en-
ergy resource. Figure 1 shows the wind classes across the continental United States.
The central plains, spanning from Canada to Mexico, have higher wind classes than
other regions.

Figure 1 also provides the outline of the Ogallala Aquifer. It was widely developed
for irrigation shortly after the Dust Bowl when rural electrification, cheaper energy,
advances in centrifugal pumps, and center pivot technology came on to the scene in the
1940s. Across the arid western United States, groundwater development accounted
for 90% of the growth that occurred in agricultural production after 1940 (Edwards
and Smith 2018). For the Ogallala specifically, the value of the underlying water was
capitalized into land values at $25 billion (Hornbeck and Keskin 2014). However, un-
der (mostly) open access, the aquifer has experienced widespread depletion (Konikow

2013).

2. Notably, to the extent that wind is affected by land use, relying on its exogeneity to identify

causal impacts of those same land use choices on precipitation and temperature is less compelling,
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Figure 1. Wind power class and the Ogallala Aquifer. This figure shows the wind power
classes (1-7) across the United States and the extent of the Ogallala Aquifer. Wind power class
is from the National Renewable Energy Laboratory (NREL 2015), and darker shades indicate
higher wind classes. The Ogallala Aquifer border is from USGS (2003).

In table 1, we show that irrigated cropland across the Ogallala states remains more
valuable than nonirrigated cropland today.” The more arid states have larger price pre-
miums for irrigated lands. On average, irrigated land is worth $2,360 more per acre
than nonirrigated cropland, a 128% premium. These premiums are not strictly causal,
as more productive land is more likely to warrant irrigation investment.

Also shown in table 1, much of the irrigation is done by sprinkler. In total, 76% of
the irrigated land is by sprinkler across these states, although shares are higher in the
states most over the Ogallala.* Gravity, or flood irrigation, makes up the majority of the
remaining share with micro (drip) irrigation comprising just under 2%. The final col-
umns of table 1 estimate the nominal premium of center pivot irrigated cropland over
cropland deploying other types of irrigation technologies. It decomposes the overall ir-
rigation premium based on the share of sprinkler acreage in each state and the estimate
from Cooley et al. (2021) that sprinkler technology has a 63% premium of land value
over nonsprinkler technology in the Ogallala region. The bottom line is that sprinkler
irrigated cropland is estimated to be around $1,080 more valuable per acre than other

irrigated land in the region.

3. The USDA report on cropland value by irrigated status is only reported down to the state
level (USDA NASS 2021), meaning that counties beyond the Ogallala region are contributing
to the figures. Furthermore, data for Iowa, Oklahoma, and South Dakota, all in our sample,
were not reported.

4. These figures are also only available at the state level. Additionally, it is possible that
“sprinklers” include technology other than CPIS, such as side rollers, but we expect that share
to be relatively small.
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Figure 2. Linkages of irrigation to wind turbine placement, section-level aggregation. This
figure is akin to a directed acyclic graph representing potential channels through which irrigation

and center pivots may relate to turbine siting decisions observed at the field level. all else equal.

At the field level, this extant irrigation development stands to affect wind generation
capacity through at least three channels, all mapped in figure 2. First, given that irri-
gated land is more valuable, the reservation price for a landowner to agree to a turbine
to be sited on their irrigated cropland will be higher than on other farmland, dissuading
placement there, all else equal. CPIS specifically drives up the reservation price per acre
further. Second, CPIS also creates nonlinear acreage effects owing to the circular ge-
ometry of the technology. This creates a trade-off in which the wind project can disturb
more irrigated land or accept a more constrained area to place turbines, that is, in the
“corners.” Third, irrigation influences microclimates, creating cooling effects (Lobell
et al. 2008), altering precipitation (DeAngelis et al. 2010), and reducing upslope winds
in the region (Phillips et al. 2022). All of these channels suggest that installation of
wind generation capacity on irrigated land, particularly where CPIS is used, is less likely
to be observed.

Because wind projects’ spatial scales are well beyond the typical field size, aggregat-
ing up these potential channels to larger units is warranted but less straightforward and
yielding more ambiguities (shown in fig. Al; figs. A1-A5, D1-D3, E1-E3 are avail-
able online). It remains that higher irrigation shares will mean higher farmland values,
and the microclimate effects will persist and be even more pronounced at larger ge-
ographies due to nonlinear aggregate effects and spatial spillovers. The complications
emerge more so through indirect effects. For instance, the presence of irrigation and
CPIS may alter the agricultural sector’s structure (e.g,, total farmland, cropland, average
farm size, and tenancy) both within farms and on nearby lands via general equilibrium
effects. More farmland is attractive for turbines, but more cropland, all else equal, is
itself less attractive given that turbines would displace crop production.” The pres-

ence of larger farms reduces the number of parties the wind project needs to negotiate

5. Across the United States, 54% of turbines are on rangeland and 39% on cropland
(Xiarchos and Sandborn 2017).
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with, lowering transaction costs (Winikoff and Parker 2024).® Whether or not higher
tenancy is good or bad for turbines is ambiguous, as the landowner may be more likely
to accept turbines, experiencing none of the negative externalities themselves, or be
more sensitive to disturbing their current farm tenants.” More importantly for the net
ambiguities, we lack research on how irrigation affects these farm characteristics.

Irrigation can also affect local policy preferences. Most pertinent to our setting is that
many counties adopt setback requirements for wind turbines. These setbacks can deter
wind projects, but the magnitudes of setbacks are also associated with local factors such
as farm sizes (Winikoff 2022). We expand on the potential connection to setback policy
here because it also serves as a useful tool to illustrate the additional trade-offs emanating
from the circular geometry of CPIS.

Setbacks exist for both property lines and structures, and they are often a function
of the turbine height. Given current turbine technology, this has led to setbacks be-
tween zero and 2,000 feet, averaging around 500 feet (Winikoff 2022)‘8 In figure 3,
we provide an illustration of how the presence of CPIS would interact with setbacks
for a single turbine. At initially small property setbacks, there is no effect on the center
pivot (left panel) because the turbine can remain beyond its reach, allowing irrigation to
proceed unencumbered. As the setback increases and compels the turbine to be sited
within the circle, its presence forces a “slice” of land out of irrigation beyond the actual
turbine footprint owing to the inability for the center pivot to complete the circle. This
slice continues to grow until the setback forces the turbine sufficiently close to the center
to preclude the center pivot from reaching about a quarter of the once irrigated circle.

In figure 4A, we illustrate the nonlinear effect setbacks would have on a 160-acre
field with a CPIS, assuming a 0.1 acre wind turbine pad is required.9 The turbine re-
mains beyond the center pivot until around 350 feet. By 390 feet the slice is already
1.4 acres, or 14 times the turbine pad size itself. A little over 4 acres are lost by
1,000 feet and the effect begins to quickly increase. At 1,250 feet the slice is about
18 acres (14% of the irrigated field) and grows to 30 acres by 1,285 feet. Using the crop-
land values from table 1, we can estimate the value of the land forced out of center pivot
irrigation; at 1,000 feet the excess premium of reduced irrigation is $11,400 if switched
to dry land crops and $19,010 if no production occurs in the slice.'® With a 1,285 foot

6. This would also influence plot-level decisions, targeting those owned by a larger, willing
landowner, but we lack plot-level information of ownership patterns to test and control for this.

7. Aesthetics and low frequency noise have been linked to lower levels of well-being and
higher incidence of suicide (Krekel and Zerrahn 2017; Zou 2017).

8. See fig. A2 for the full distribution of our subsample.

9. Farm operators we visited stated that they could get CPIS within 40 feet of a turbine,
which would be at a minimum equivalent to a 3,200 square foot pad, which is approximately equal
to the 0.07 acres estimated to be taken up by a turbine pad in the report by Denholm et al. (2009).

10. See tables A3, A4 for scaling by percentage and land values.
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Figure 3. Property line setbacks and center pivots. This figure depicts the conceptual effect
of setbacks from property lines for wind turbines on the area a center pivot can service within a

square section.

setback, those values would balloon to $83,910 and $139,850, respectively. The effect
of setbacks is muted with the less-common 640-acre section served by a single center
pivot, as shown in figure 4B.

Even without setbacks, siting turbines in the corners of center pivot fields can in-
duce costs on wind projects. This is because there are important downwind interac-
tions among wind turbines, and specific wind project layouts, which may be impeded
by the CPIS, can produce more electricity (Kaffine and Worley 2010; Meyers and
Meneveau 2012; Stevens et al. 2017). While each wind- and land-scape is distinct, a
general rule of thumb is that turbines should be around 8—10 rotor diameters apart
in the downwind direction and half that in the crosswind direction (Pao and Johnson
2009).

Figure 5 summarizes the trade-offs CPIS can create. Figure 5A shows a simple 10-

turbine project across a landscape with 160-acre plots where the wind is predominantly

A B

Acres Reduced
15 20 25
20

Acres Reduced
15

10

10

1000 500
Setback (fect) Setback (fect)

CPIS ————- Irrigation CPIS —==—-—- Irrigation

Figure 4. Setback influence on a wind turbine’s effect on irrigated land. This figure shows the
acres of the irrigated field that would be taken out of production to accommodate a wind tur-

bine across a range of property line setback distances in a landscape of quarter-sized (160 acre)

CPIS (panel A) and section-sized (640 acre) CPIS (panel B).
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Figure 5. Irrigation-wind project trade-offs. This figure shows the ideal placement of 10 tur-
bines of average diameter size (300 feet) according to general rules of thumb (Pao and Johnson

2009) and trade-offs when CPIS are present.

out of the southwest. The spacing is scaled to the wind turbines in the sample having an
average rotor diameter of around 300 feet. In figure 5B, we populate the landscape with
CPIS and maintain the optimal spacing of the turbines. This layout causes large slices
to be made inaccessible for many of the CPIS, incurring the large reservation costs akin
to the setbacks above. Instead, the wind project could opt to stay in the corners, leading
the turbine placement to be altered, as in figure 5C.1H1 Although reducing the royalty
payments that would be required, this layout will potentially reduce the amount of elec-
tricity produced by the wind project. Either way, the net revenues stand to be reduced
by the presence of CPIS.

Rarely will the landscape be fully populated by CPIS as is shown in figure 5. How-
ever, given that wind projects’ footprints extend across multiple farms (roughly 8.5 farms
based on averages in the sample), coordination across landowners is necessary. This has
its own transaction costs independent of irrigation, but the opportunity cost of the land
needed for the entire project is notably subject to the irrigation status of neighboring
sections. Additionally, nearby irrigation may adversely alter microclimates. All else
equal, more plots nearby that have CPIS will dissuade wind turbine placement on a
given field whether or not it has a center pivot.

The notion that irrigation, or at least the Ogallala Aquifer, is negatively correlated
with installed wind generation capacity can be seen in figure 6.'> Because the geological

11. In fig. A5 we provide zoomed-in satellite images in the region showing actual examples
of wind project patterns relative to cropland and CPIS. We also provide similar images from
Illinois to contrast patterns among cropland predominantly not irrigated.

12. Following Hornbeck and Keskin (2014), we limit the geography to counties within
100 km, or about 62 miles, of the Ogallala. We show below that this maintains reasonable over-
lap of covariates whereas counties beyond increasingly have distinct characteristics. We also
show that results are not qualitatively sensitive to this sample choice.
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Figure 6. Installed wind generation capacity in the Ogallala region. This figure depicts the
location and timing of wind turbines and extent of the Ogallala Aquifer. Panel A provides a
spatial overview for the counties within 62 miles (100 km) of the Ogallala border. The border
is shown along with a plus or minus 20 mile (32 km) buffer around that border. Turbine lo-
cations are from Hoen et al. (2018), and the Ogallala border is from USGS (2003). Panel B
provides the temporal variation of when wind generation capacity, scaled by area, was installed

in the three delineated regions.

extent of the aquifer does not begin to account for the variation in saturation or water
depth, we have created a buffer zone around the border where wind resources may be
similar to what we call the central Ogallala, but where worse water access has not allowed
for as much irrigation clevelopment13 First, we note that the central Ogallala has notably
fewer wind turbines by number and capacity per acre. What wind generation capacity
development has occurred over and around the Ogallala tends to be within 20 miles of
the edge, where irrigation uptake has likely been lower. Second, seen in figure 6B, what
installed wind capacity has developed over the central Ogallala did not begin until after
2010, whereas the surrounding development began closer to 2000.

2. DATA AND RESOURCE COLOCATION

2.1. Data

For wind project turbine siting locations and characteristics—the primary outcomes—
we use the US Wind Turbine Database produced by USGS (Hoen et al. 2018). We

are primarily concerned with turbine location, year installed, capacity, height, and rotor

13. The size of this buffer, 64 km or 40 miles, is arbitrary and for descriptive purposes only,
although in table 2 we confirm that the buffer does have similar wind resources and less irriga-
tion uptake.
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swept area. We have also gathered annual electricity production by the wind projects
for 11 years (2010 through 2020) from the Energy Information Administration (EIA
2021). To account for the general quality of the wind resources at a location, we utilize
the wind power class from the National Renewable Energy Laboratory (NREL 2015),
which categorizes discrete classes (1-7).

For county-level analysis, based on 2010 county borders (Minnesota Population
Center 2011), we rely on censuses of agriculture and irrigation conducted by the US De-
partment of Agriculture for farm and irrigation data, digitized by Haines et al. (2018).
We utilize the 2007 census to provide a snapshot close to, but before, when wind proj-
ects began appearing widely in the area. The primary variables from this source are
farm, crop, and irrigated acres, all of which are expressed as a share of a county’s total
acreage.

We also conduct analyses at the section level, which are the first divisions of the na-
tional Public Land Survey System and are typically 640 acres (1 square mile) (Bureau
of Land Management 2020). Notably, the national PLSS grid does not extend into
Texas, meaning that Texas is not included in the section-level analysis. For this finer
scale, we draw on CropScape data from USDA NASS (2019b) to calculate cropland.
We use land coverage in 2008 as this is the first year the CropScape data covered the
entirety of our sample region. Unfortunately, CropScape does not distinguish between
irrigated and nonirrigated cropland. To get some traction on irrigation at the section
level, we draw on MIrAD data that derive irrigation at the 250 m resolution by taking
county-level USDA irrigated acreage in 2007 and assigning spatial locations based on
spikes in the Normalized Difference Vegetation Index across different crops (Pervez
and Brown 2010). This down sampling creates some measurement errors and is at
a coarser spatial aggregation than our other data sources at this level.'*

The locations of CPIS specifically are not uniformly available across administrative
units. The USDA census reported sprinkler-irrigated acreage at the county level in
their 1959 and 1969 reports, but not since. T'o overcome this, we adapt a deep learning
model developed in Saraiva et al. (2020) to identify CPIS from satellite imagery and
deploy it across the Ogallala region (see Cooley et al. 2021). The modified U-Net
model was trained with Landsat satellite imagery pulled from Google Earth Engine
and a hand-coded key of CPIS in Nebraska taken from 2005 aerial imagery to identify
the presence of CPIS at the 30 m X 30 m level. To develop the model, we divided Ne-
braska into 13 nonoverlapping regions from which nine were randomly selected for
training, two for validation, and two for testing. Training occurred using a 25-gigabyte
share of a P-100 GPU on Google Colab Pro, processing 40 epochs in less than six
hours.

14. For a square mile, MIrAD 250 m resolution data will have around 40 cells compared to
2,900 cells for 30 m resolution data like CropScape and our own CPIS data.
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Figure 7. Machine learning output. This figure depicts the machine learning output at two
scales. A, Predicted CPIS versus ground truth. B, Predicted CPIS in the Ogallala region. Panel A
provides a close up of western Nebraska where ground truth is available. Panel B provides the
model output for the entire Ogallala Aquifer region with black pixels representing predicted lo-
cations of CPIS.

An example image is provided in figure 7A, showing both the model predictions
and the ground truth for a portion of Nebraska. The model has an accuracy rating—
the rate of correctly identified pixels—of 98% in the test images. Additionally, the model
achieved a specificity rating of 99% and a recall rating of 88%. Specificity measures how
well the model categorizes negative (non-CPIS) pixels while recall measures how well
the model categorizes positive (CPIS) pixels. In other words, we are slightly more likely
to miss a CPIS pixel than to mislabel a non-CPIS pixel as one. The recall rate is pulled
down by the difficulty the model has when interpreting the precise location of the bor-
ders of CPIS where the inscribed circular patterns meet the surrounding land but
usually captures the presence, if not the exact extent, of CPIS.P® Finally, we procured
Landsat images of the entire Ogallala region from 2008—aligning with the earliest

15. The lower recall rate means that when we aggregate the raster up to the county, PLSS
section, and wind project levels we are likely to slightly understate the center pivot share and

overstate distances from the edge of a center pivot.
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CropScape data available across the entire region—and used the model to detect CPIS
throughout. The visual of the model output is provided in figure 7B.

We collect additional controls for topography, soil quality, surface water, weather,
population, and transmission lines (USGS 1996, 2014; PRISM Climate Group 2004;
USDA NRCS 2006; US Census Bureau 2012; US DHS 2017), constructing appropri-
ate measures for each spatial unit of observation: 2010 counties (Minnesota Population
Center 2011); PLSS sections (Bureau of Land Management 2020); and wind project
footprints, delineated by the smallest convex hull containing all of a project’s turbines.
Below we provide county-level summary statistics, but we also provide more complete
explanations and summary statistics for each unit of observation in tables B1-B3 (ta-
bles B1-B3, C1-C9, D1-D7, E1-E7 are available online).

2.2. Resource Colocation
Table 2 provides descriptive evidence that the Ogallala Aquifer region has more wind
than the surrounding counties but also more irrigation development and less installed
wind generation capacity. Column 1 provides the averages for the entire sample (coun-
ties with borders within 100 km of the Ogallala). Column 2 considers only counties
with more than 50% over the aquifer while columns 3 and 4 further break that subsam-
ple into portions over the central aquifer (20 miles within the border) and counties on
the outer ring. Column 5 summarizes the counties beyond the Ogallala Aquifer, and
column 6 provides the additional counties that are within the Ogallala Aquifer states
but farther than 100 km from the aquifer boundary. Once again, we emphasize that
these spatial zones are somewhat arbitrary and for illustrative purposes only; the for-
mal analysis does not rely on these zones other than defining the sample.'®

First we note that the average wind power class across the Ogallala counties is
3.73, or about 12% higher than counties beyond the aquifer. Still, anything above 3 is
considered to be a commercially viable wind resource for power production. Notably,
counties beyond the main sample have an average wind power class closer to 2. Maximum
wind power class is more similar across the sample but, once again, lower beyond.'” Sec-
ond, as expected, irrigation—measured as the share of all county acres irrigated—is
much larger across the Ogallala region, at 0.171 compared to just 0.0242 beyond. These

general patterns hold when looking at the center pivot share from our deep learning

16. We do show that our main county-level results are robust to the inclusion of all counties
in the Ogallala states and to smaller subsamples such as only counties above the Ogallala Aqu-
ifer and the exclusion of Texas, which is not included in the PLSS section-level analysis.

17. Using the share of county ¢ overlying the Ogallala Aquifer (OG,) and the nested share
over the central Ogallala (CentOG,) as the main control variables, we also provide regression
results from a framework akin to the analysis in Hornbeck and Keskin (2014). Details and re-
sults are in table C1 and show that many of the distinctions are statistically significant, even

when accounting for covariates.
g
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model as well.'"® Furthermore, in the central aquifer, irrigated acreage shares are nearly
twice that of the counties nearer the edge, confirming that this central region has been
developed more for irrigation. We highlight this because, third, the installed wind capac-
ity, while lower across the Ogallala on the whole compared to neighboring counties, is
only 0.0618 kilowatts (kW) per acre in the central portion compared to 0.216 kW in the
outer ring, more similar to counties completely beyond the Ogallala borders (0.207 kW
per acre). In other words, the Ogallala region does not systematically have fewer wind
turbine installations until reaching the central Ogallala, where wind availability is similar
but irrigation uptake is greater.

Although we emphasize the distinct levels of irrigation development as a crucial ex-
planation to the lower installed wind capacity, there are other differences as well. In
general, the whole study sample also has lower populations and fewer transmission
lines. Not only is this true of the whole region, but the Ogallala counties have just
0.177 miles of transmission lines per square mile in the county compared to 0.242 miles
in the counties immediately surrounding. The population density is just 13.89 per
square mile across the Ogallala counties, but 66.17 per square mile beyond the Ogallala.
In other words, these factors—lower local demand and higher costs to export electricity—
help to explain the lower and delayed installed wind capacity in this region. Hence, we
wish to look more directly at the association of irrigation development and turbine siting,

controlling for these other factors in a regression framework.

3. COUNTY-LEVEL ANALYSIS
3.1. County-Level Empirical Strategy
To look at the role of irrigation and center pivots in influencing wind projects more

directly, we begin by estimating the following equation:
turbe; = frirre + foCPIS, + Bsfarm, + fycrop. + oW, + VX, +6 + e, (1)

where turb.; is the turbine activity in county ¢ of state s and spatial region j. We mea-
sure turbine activity in two ways. First, we measure total kW capacity of wind power
generation installed per acre as of 2020. Because a large number of counties have zero
wind projects (57%), we estimate that outcome with a Tobit model. Second, we con-
sider the year of the first turbine in the county in an ordinary least squares (OLS) re-
gression.”” The main variables of interest are irr, (irrigated share) and CPIS, (center
pivot share), which we include separately and together in different specifications to as-
sess the distinction between the two measures of irrigation. When both measures are

included, we interpret the coefficient on center pivot share as an interaction effect since

18. It is worth highlighting that the ratio of center pivot irrigation to total irrigation for the
entire sample is 0.75(= 0.0677/0.0901), which aligns quite close to the 76% of irrigated acre-
age served by sprinklers across the sample states based on USDA numbers reported in table 1.
In other words, our model detecting CPIS appears accurate, on average.

19. An alternative duration (Cox) model specification yields qualitatively similar results.
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center pivot share is nested within irrigated share. We also control for the share of the
county in farmland (farm,) and cropland (crop,). In addition, we include W to account
for the quality of the underlying wind resources, including both the county spatial av-
erage wind power class and the county maximum wind power class.

The term X, includes additional covariates: transmission line density, population
density, elevation, elevation variation, soil class, presence of large streams, average tem-
perature, average precipitation, and county centroid latitude and longitude. To account
for state-level policies that influence investment in renewable energy, we include state
fixed effects (§,). Finally, we cluster standard errors by spatial region j. This follows the
approach put forth by Bester et al. (2011) to address inference of spatially and tempo-
rally dependent data and recently deployed in similar contexts by Bazzi et al. (2020)
and Leonard and Smith (2021). Specifically, we construct an arbitrary grid of 93 mile
(150 km) by 93 mile squares and use the counties’ centroids to assign spatial regions.

To cover our sample, this yields 60 regions‘20

3.2. County-Level Results
Results from estimating equation (1), provided in table 3, indicate that irrigation is as-
sociated with less and later wind power development, and center pivot irrigation mit-
igates the effect at the county level. Looking at column 1, we find that increasing the
county irrigated share reduces the installed kilowatt capacity per acre. For some sense
of scale we decompose the effect on the latent variable into the effects on the observed
variable and scale it to a one-standard-deviation increase in a county’s share irrigated
(0.134)." The one-standard-deviation increase of share irrigated reduces the proba-
bility of any wind capacity installed by 7 percentage points, or 16% of the underlying
probability. Conditional on having some wind generation capacity, the same one stan-
dard deviation in irrigated share reduces the expected capacity per acre by 0.0489 kW,
or 28% of the average kW per acre in the sample. Furthermore, from column 4, we also
see that a one standard deviation in the share of irrigated acres delays the first turbine by
an average of 1.27 years. We emphasize that these results are conditional on wind power
class, which hastens and increases installed wind generation capacity.

For additional context, we consider the relative scale of the irrigation effect com-
pared to the estimated effect of transmission line infrastructure, one of the dominant
explanations for the relatively slow development.”* The estimated effect on installed

wind capacity of a one-standard-deviation increase of irrigation share is equivalent to

20. Results are robust to spatial heteroskedasticity and autocorrelation consistent (HAC)
standard errors as well (Conley 2008; Hsiang 2010).

21. We report the three average marginal effects (0 Pr(y > 0)/0x, OE[y|y > 0]/0x, and
OE[y]/0x) for the two irrigation measures in table C2.

22. We caution that these estimated effects are not causal, particularly for the transmission
line density as these data are a snapshot from 2020 and thus likely include lines constructed for
the wind projects.



Table 3. Installed Wind Generation Capacity and Irrigated Land, Counties

Wind Capacity per Acre

First Turbine Year

(1 2

(5) (6)

Irrigated share -916™**
(:349)
Center pivot share -.570
(.594)
Average wind 285%F*F - 277
(.0908)  (.0893)
Max wind .108* 122%*

(.0568) (.0612)

Transmission line

density 1.227*%%* 1.268***
(387)  (.380)

Observations 371 384
Adjusted/pseudo

R-squared 251 240
Mean dependent

variable 175 .180
Censored

observations 210 218
Farm/cropland X b'e
Geographic controls X X
Spatial fixed effect State State
Total no. fixed effects 9 9
Standard error

clusters (93 miles®) 60 60
Model Tobit  Tobit

9.440*

-8.391*

10.17

(8.231)
8356 ~1.001
(6.494) (9.788)
-.876 -.876

(1.042) (1.033)

—3.137%%  —2.965"*  -3.138***

(473) (491)
-8.094*  -8.392*
(4.375) (4.333)

166 161

339 363

2009.9 2010.1

X X
X X
State State
9 9
48 48
OLS OLS

Note. This table presents the results of estimating eq. (1). Measures are at the county level for counties

within 62 miles of the Ogallala. Columns 1-3 measure wind power development by the installed kW in

2020 per county acre. Columns 4—6 measure wind power development timing by the first turbine year

for the counties with some capacity installed. Column 1 controls for irrigation share as the total irrigated

land in 2007 divided by county acres. Column 2 measures center pivot share as measured by our machine

learning process in 2008 and divided by county area. Column 3 uses both in which the center pivot share is

interpreted as an additional effect to irrigated share. Columns 4—6 are analogous. The geographic controls

included in the regressions are average elevation, standard deviation of elevation, soil class, presence of large

streams, average temperature and precipitation, population density, and county centroid latitude and lon-

gitude. The farm/cropland controls are the shares of the county area in farmland and cropland. Robust

standard errors, clustered by arbitrary spatial neighborhoods (93 miles squared), in parentheses.

*p<..
* p <.05.
e p <01



Between Wind and Water Smith and Cooley 125

60% of the effect of a one-standard-deviation decrease in transmission line density. For
timing, the one-standard-deviation increase of irrigation share is equivalent to 91% of
the delay associated with a one-standard-deviation decrease in transmission density. In
other words, irrigation is not an alternative explanation, but it is a sizable additional
explanation, particularly for variation within the Great Plains.

Looking at columns 2 and 5, where we measure irrigation by CPIS only, the esti-
mated effects are smaller and less precise. Turning to column 3, the center pivot share
coefficient, which we interpret as an interaction term of irrigation by CPIS in this spec-
ification, is statistically distinct and reduces the lion’s share of irrigation’s negative effect.
This aligns with the smaller, noisier effect of CPIS in column 2: without controlling
for non-center-pivot-irrigated acreage, the coefficient on center pivot share is averaging
the larger negative effect of irrigation on wind generation capacity with the smaller
negative effect of CPIS. The distinction in timing of the first turbine (col. 6) is less
pronounced.

These results stand up to a battery of robustness checks (see app. C; apps. A—E
are available online).”> Our findings are consistent with irrigated land driving up op-
portunity costs but seemingly inconsistent with our theory that those issues are accen-
tuated, both in value per acre and scale of affected acreage, by CPIS. Accordingly, we
consider indirect effects that CPIS could have at the county level that we identify in
figure Al: (1) setback policy, (2) farm structure, and (3) microclimates. Here we sum-
marize the findings of these auxiliary analyses, leaving the details to appendix C.

Drawing on county-level wind turbine setback data from Winikoff (2022), we find
evidence that property line setbacks are considerably smaller in counties with larger
center pivot shares (see table C7). A one-standard-deviation increase in center pivot
share reduces property setbacks by 273 feet, or 50% of the average setback in the sam-
ple, while irrigation share on its own has no statistically significant relationship. This is
consistent with center pivot dense counties choosing policy that is cognizant of the non-
linear land effects on center pivot fields, maintaining the ability to place turbines in
the corners, which also reduces constraints at all potential sites across the county. Ad-
ditional regression specifications confirm that larger setbacks are deterrents to wind
projects and that the smaller negative effects of CPIS in our main results could be con-
sistent with an omitted-variable bias that CPIS indirectly benefits wind turbine instal-
lation at the county level through advocacy for smaller setbacks.”*

23. Results are robust to a Cox-duration model (table C3), OLS model for installed capacity
and spatial standard errors (table C4), sample restrictions (table C5), and the inclusion or ex-
clusion of various covariates (table C6).

24, Winikoff’s (2022) efforts to gather setback data covered the north central portion of the
United States, meaning overlap with our sample draws from Colorado, Iowa, Kansas, Ne-

braska, and Wyoming, leaving only one-third of the observations from our main sample.
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Second, we consider how irrigation and CPIS influence farm characteristics, like farm-
land value, farm sizes, and land use choices, that then may influence turbine installation
decisions. These exercises are presented in detail in tables C8 and C9 but overall do
not generate much insight. It is true that irrigation and CPIS do covary with many of
the farm characteristics: farmland and crop production values are greater with irrigation,
especially center pivot irrigation; tenancy rates increase no matter the irrigation technology
used; and, for center pivots specifically, associated farm shares and crop shares are higher.
No pattern is found with average farm size, but the rate of change since 1959 indicates that
farm size did increase more where center pivot expansion was greater. More importantly,
as covariates in the main estimating equation of total wind capacity installed per acre, the
coefficients on these farm characteristics are not statistically significant while the coeffi-
cients on irrigation share and center pivot share remain robust. In other words, collectively
these associations between farm characteristics and irrigation do not explain away the ir-
rigation and CPIS effects on installed wind capacity at the county level.

The third indirect channel we highlight is microclimate effects on wind due to irri-
gation. While the wind power class data we utilize do show that installed wind capacity
is sensitive to the quality of the underlying resource, these constructed data on power
class likely average over any “micro” effects produced by irrigation. With little research
or data on wind effects specifically, directly probing this mechanism here at the county
scale is beyond the scope of this study. However, our wind project results below do

yield indirect evidence that this channel is likely relevant.

4. SECTION-LEVEL ANALYSIS

4.1. Section-Level Empirical Strategy

Our second empirical objective is to characterize the relationship between the presence
of irrigation and center pivots with turbine siting decisions at a finer spatial resolution
by using the first division sections of the Public Land Survey System (one square mile).

For this endeavor we estimate the following equation:
1[turb;,] = £(CPIS;) + g(irr;) + y/CS,- + o'W, + VX, +« + ¢ (2)

The outcome is an indicator variable equal to one if a wind turbine is present on section i
in county ¢ and spatial region r as of 2020. The variables of interest are CPIS;, which
is the share of section i that is irrigated by a center pivot, and irr;, which is the share of
the section irrigated by any means. For our main analysis, we specify f{CPIS)) as 7y,
CPIS;, meaning we control for the share of center pivot irrigation on section i linearly.
Similatly, we begin by specifying g(itr;) = 72irr;. This specification mirrors the ap-
proach taken at the county level where we try both metrics as alternative measures
of irrigation independently and also include both in a single regression. When both
are included, we interpret y; as the additive effect of center pivot irrigation beyond

irrigation generally, and 7y, + 7y, provides the total effect of center pivot irrigation
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relative to nonirrigated land. While a useful exercise, recall that the underlying irriga-
tion data are far coarser spatially and less precise than our CPIS data (62,500 square
meters vs. 900 square meters). To be cognizant of this coarseness, in many specifica-
tions we utilize a simpler indicator function for g(-) set equal to one if 0.05 or more
of the section is irrigatecL25

At this spatial resolution, we control for the share of the section that is cropland,
with trees, and “developed” as classified by the CropScape data (CS;). Like the
county-level regressions, we also control for the quality of the wind resource with a
function of average wind and maximum wind power class (W), and a similar set of
geographic covariates (X;), including latitude and longitude, elevation (mean and stan-
dard deviation), distance to nearest stream, average temperature and precipitation, and
distance to transmission lines.

In addition, we utilize a series of spatial fixed effects that progressively get smaller
for . to address policies and local features we do not directly measure. We begin with
state fixed effects, moving to county fixed effects (our preferred specification), followed
by township fixed effects. Townships are the preceding division in the PLSS and con-
sist of 36 sections in a 6 mile by 6 mile area. We further divide the townships into
thirds, fourths, and ninths for even finer scale spatial fixed effects. At that smallest
fixed effect (one-ninth of a township), there are but four observations within each spa-
tial unit to generate the identifying variation. Across our main specifications, standard

errors are clustered at the county level.

4.2, Section-Level Results

Results provided in table 4 show that irrigation is a strong deterrent to wind turbine
siting at the section level and that CPIS specifically strongly drives the result. These
estimates of equation (2) all include county-level fixed effects. Looking at column 1,
a section completely irrigated is estimated to reduce the likelihood of a turbine being
sited there by 1.66 percentage points. When irrigation is captured by CPIS only in col-
umn 2, the effect is larger, reducing the likelihood by 2.24 percentage points. Because
no 640-acre section is completely irrigated by CPIS, we consider the effect of an aver-
age center pivot section—which has a mean share of 0.19 or roughly one complete
quarter section. This average center pivot section reduces the chance of a wind turbine
by 33% ([(0.0224 x 0.19)/0.0129] x 100). When we introduce both irrigated share
and center pivot share in column 3, we see that irrigated land alone does not have a
statistically significant effect. In contrast, the additional effect of irrigation by a center
pivot is statistically distinct (from irrigation alone and from zero) and about four times

the magnitude of the irrigation point estimate. These general results hold in columns 4

25. This 0.05 share roughly aligns with two cells of the 42 per square mile having irrigation
and also corresponds to the area a center pivot would irrigate if operating on one-quarter of a

quarter section.



Table 4. Wind Turbines and Irrigation, PLSS Sections

1[Turbine]
(1) 2 (3) (4) (5) (6)
Irrigated share -.0166** -.00573  -1.246** -.360
(.00773) (.00733) (.494) (.588)
Center pivot share —.0224%*  —.0191*** —-1.648"** —1.436™**
(.00770)  (.00725) (.:365) (.427)
Cropland share .0109** 0111** .0121** 317% 342% 384%*
(.00464)  (.00453)  (.00481) (.166) (.176) (.169)
Average wind 01129 01117 01127+ 1.272%*%*  1.268*** 1.268***
(.00248)  (.00249)  (.00249) (.225) (:224) (.225)
Max wind .00497*** .00503*** .00500***  .389** 392%* 393%*
(.00169)  (.00169)  (.00169) (.188) (.189) (.189)
Observations 275,303 275,283 275,282 131,451 131,441 131,441
Adjusted/pseudo
R-squared .073 073 .073 337 339 339
Mean dependent
variable .0129 0129 .0129 .0270 .0270 .0270
MEM of irrigation
share -.0272 -.0078
MEM of center pivot
share -.0358 -.0312
Geographic controls X X b X X X
Forest/developed
share X b'e X X X X

Spatial fixed effect County County County County ~ County  County

Total no. fixed effects 303 303 303 113 113 113
SE clusters, counties 303 303 303 113 113 113
Model OLS OLS OLS Logit Logit Logit

Note. This table presents the results of estimating eq. (2) with a linear specification for irrigation and
center pivot share. Measures are at the PLSS section level for those within 62 miles of the Ogallala, exclud-
ing Texas, which is not part of the PLSS. The outcome variable is an indicator equal to one if the section has
a wind turbine on it by 2020. Column 1 reports results deploying irrigation share calculated from MIrAD as
0f 2007 as the main independent variable, col. 2 reports results deploying center pivot share calculated from
our machine process in 2008, and col. 3 reports results including both in which the center pivot share is
interpreted as an additional effect to irrigated share. Columns 4—6 are analogous but from logit estimates.
All columns use county fixed effects. The geographic controls included are average elevation, standard de-
viation of elevation, soil class, distance to large streams, average temperature and precipitation, centroid lat-
itude and longitude, and distance to a transmission line. Forest/developed shares are those land type shares
from CropScape data. MEM is the marginal effect at the mean. Robust standard errors, clustered at the
county level, in parentheses.

*p<.L

** p <.05.

we < 01,
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through 6 where we repeat the exercise with a logit model.2° Additionally, we note that
cropland, our best proxy for farmland at this scale, generally makes wind turbine siting
more likely. Finally, higher wind power classes, even here based on within-county var-
iation, make wind turbine siting more likely on a section.

Figure 8 shows that this result is generally robust across alternative spatial fixed ef-
fects. The plot provides point estimates arising from specifications like that in column 3
of table 4, but the CPIS estimate is shown as the total effect (y; + v2).>” The esti-
mated CPIS effect is always larger than the irrigation by other means effect across spa-
tial fixed effects. Furthermore, aside from the state-level fixed effects, the total CPIS
effect is always statistically distinct from zero. That said, the magnitude does diminish
once we consider only variation within townships, but we also note that the underlying
variation for turbine placement within those areas is much smaller as many units that
size do not have wind turbines on any sections. Additionally, within township thirds
and township ninths, irrigation by non-CPIS means does have a statistically significant
reduction in turbine siting and the additional CPIS effect, though more negative, is not
statistically distinct. Evidence below suggests that these smaller effects in small neigh-
borhoods are driven by the need to place turbines throughout the landscape and a CPIS
nearby can negatively affect the odds for all sections in the neighborhood to receive a
turbine.

These results, that CPIS deters placement of turbines on sections and more so than
irrigation by other means, are robust to alternative specifications. This includes irriga-
tion as an indicator function and alternative standard error clustering (table D2), the
logit model with various spatial fixed effects (table D3), turbine count rather than an
indicator (table D4), and restricting the sample to only sections above the Ogallala
Aquifer (table D5).

Additionally, when we specify f{CPIS;) as a flexible semi-parametric model where
we include five indicator functions that capture how many equivalent quarter sections
are inscribed by a center pivot on the section, we find that most of the effect arises with
just a single quarter-section center pivot.”” Even having less than one full quarter sec-
tion irrigated by CPIS immediately reduces the odds of a wind turbine placed on the
section. The effect of having one full quarter under center pivot irrigation is larger and

statistically distinct: a one-quarter section center pivot reduces the odds of wind turbine

26. The number of observations is reduced because the logit model excludes spatial units,
counties in this case, with no variation in the outcome.

27. See table D1, for tabular results and additional specifications with irrigation and CPIS
only.

28. For example, after accounting for county-level fixed effects, 131,451 observations offer
within-county variation of the outcome variable, or roughly half the sample. With township
fixed effects, only 15,679 sections provide meaningful variation in turbine siting.

29. See figs. D1-D3, table D6, and surrounding discussion in app. D for full details.
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Figure 8. Estimated effects of irrigation on turbine siting. This figure plots the coefficient
estimates and 90th percentile confidence intervals for the effect non-center pivot and center
pivot irrigation shares of a section. Coefficients are from estimating equation (2) with increas-
ingly smaller spatial fixed effects. The tabular version of the results is available in table D1,

panel C. Confidence intervals are based on robust standard errors clustered at the county level.

by 58% ((0.00744/0.0129) x 100), nearly twice the effect implied by the linear esti-
mates. Once two quarters are fully serviced by CPIS, the predicted reduction in turbine
placement is 1.08 percentage points, or 84% of the underlying probability. Although
the point estimates continue to grow in magnitude for sections with three and four
quarters serviced by CPIS, they are not statistically distinct from the effect of having
just one complete quarter with a center pivot.

It remains that even nearby CPIS may be sufficient to dissuade wind turbine place-
ment, particularly given the scale of wind projects and desire to coordinate across the
landscape. In figure 9, we show that neighboring sections’ center pivot use does influ-
ence wind turbine siting, and we see that the magnitude of the effect is conditional on a
section’s own center pivot use.’ Two general trends are worth attention. First, sections
with a center pivot are generally less likely to have a turbine than their non-CPIS coun-

. . 31
terparts regardless of neighbors’ center pivot statuses.” However, once surrounded by

30. We define a center pivot section as one with at least 2 0.05 center pivot share (equivalent
to one-fourth of a quarter-section circle) and consider the number of neighboring sections, po-
tentially eight in the typical PLSS grid, that have center pivots by this definition. Full details are
provided in app. D, and tabular results are provided in table D7 for the coefficients shown
(cols. 8 and 9) as well as alternative specifications that capture nearby CPIS activity differently.

31. The gap is statistically distinct for CPIS sections vs. non-CPIS sections for neighbor
counts of 3, 4, 5, and 7.
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Figure 9. Estimated effects of neighbors’ CPIS on turbine siting. This figure plots the coef-
ficient estimates and 90th percentile confidence intervals for the effect of the number of neigh-
boring sections with CPIS on the probability the section has a wind turbine. Coefhicients are
from estimating equation (2) with county fixed effects. The tabular version of the results is
available in table D7, columns 8 and 9. The reference group is sections with center pivot shares
of less than 0.05 and zero neighbors with CPIS. Confidence intervals are based on robust stan-
dard errors clustered at the county level.

eight neighbors, the section’s odds of a turbine are severely and similarly reduced no
matter its own CPIS status. Second, as more neighboring sections have CPIS, the odds
of a turbine on section i generally decline. For center pivot sections, the neighbor effect
first emerges with two CPIS neighbors and generally grows from there. Seldom does
a single additional neighbor have a statistically distinct effect, but having four neighbors
is distinct from having two or six.>? Beyond six neighboring CPIS, additional neighbors
do not have a statistically distinct effect. For non-CPIS sections it is not until four
neighboring sections have CPIS that the impact is statistically distinguishable from
zero. The effect grows statistically larger going from five to six neighboring CPIS, but
further distinctions beyond that are not detected.

In sum, irrigation deters wind turbine siting at the section level and mostly where
CPIS are deployed. The evidence further indicates that it is not solely the higher op-
portunity cost of center pivot land on a particular section, but the increased costs at
the wind project level due to CPIS in the region, either driving up the aggregate reserva-

tion costs, limiting the layout options that would reduce those explicit costs, microclimate

32. Having two neighbors is statistically distinct from one, as is going from five to six neigh-
bors for CPIS sections.
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effects, or some combination thereof. While counties with more CPIS have attracted
relatively more turbine investment compared to other irrigation, it has occurred away
from CPIS sections within those counties—further suggesting that that county-level
effect is operating through indirect mechanisms. As initial sites have been developed
for wind generation, future development may require that wind projects consider siting
closer to the CPIS themselves. The next section considers the trade-offs this presents

for electricity production based on what investment has occurred near and around

CPIS.

5. WIND PROJECT ANALYSIS

5.1. Wind Project Empirical Strategy

Only a little less than 6% of turbines in the sample are sited on a section with a center
pivot. These specific turbines are far more likely to be placed at distances corresponding
to “corners” than turbines on other sections.>> In these instances, it is clear that the lay-
out is affected by the CPIS, but even when not on center pivot sections specifically,
wind projects across the Ogallala region remain quite close to CPIS. Over 50% of wind
projects in the sample have at least one turbine within a quarter mile of a center pivot.
Figure 10 shows the distribution of average turbine-to-center-pivot distance for wind
projects in the sample. Forty percent of the wind projects have turbines that are just one
to two sections removed from a center pivot on average.

Does avoiding those center pivot sections nearby mean the turbine locations are sub-
optimal? Does the nearby irrigation affect wind flows? Although we are limited in our
ability to parse out the mechanism, we do explore how the proximity of CPIS affects a
wind project’s ability to convert wind resources into electricity. Our analysis focuses on
actual electricity output, holding installed capacity constant, over the period from 2010
to 2020. In other words, the precise reason for departures in production given the
installed capacity is not readily identifiable, but we can observe whether there is a de-
tectable effect related to the proximity of CPIS. To do so, we estimate the following

equation:
CapacityFactor,g, = h(CPIS,) + frcrop, + o'W, + XX, + 1 + iy + &, (3)

The outcome metric is the capacity factor in year y for wind project p located in state s
and with vintage year k. Capacity factor is the share of the theoretical total electricity
production based on the nameplate capacity and running continuously at that capac-
ity over the entire year. For the Ogallala region wind projects, the average annual

capacity factor is 0.35, which aligns closely with the average for utility-scaled wind

33. See fig. E1, which plots the density distribution for turbine distances from section cen-

troids across different levels of CPIS presence and surrounding discussion in app. E.
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Figure 10. Wind projects’ distances from CPIS. This figure plots the distribution for wind
projects’ distances from CPIS. The variable is the distance of each turbine from its nearest cen-
ter pivot averaged over the turbines in the wind project; 252 wind projects are shown. T'o main-
tain a legible x-axis, another 24 projects are excluded that have average distances greater than
12 miles (topping out at 29.6 miles). The dashed lines provide the quintile breaks for the entire
sample used in the analysis.

projects across the whole United States.”* We specify alternative forms of h(CPIS,)
to capture a wind project’s proximity to CPIS. We prefer a semi-parametric approach
that bins the projects by their average turbine distance into quintiles (as shown in
fig. 10), omitting the furthest (beyond 6.3 miles) as the reference group. As alterna-
tives, we also consider deciles, bins by miles, indicators whether the wind project
is “close” to CPIS (average distance < 1.5 miles) or “closer” to CPIS (average distance
< 0.6 miles), and the share of the enlarged wind project’s footprint overlapping CPIS.

While our outcome variable provides temporal variation, many of the covariates are
cross-sectional. As with the empirical specifications at the other scales, we again control
for the share of the wind project that encompasses cropland (crop,), the wind power
class (W), and the additional covariates (X;), including latitude and longitude, eleva-
tion (mean and standard deviation), distance to a stream, and average temperature and
precipitation, all calculated for the convex hull of the wind project’s turbines. To ad-
dress the temporal component, we include two sets of fixed effects in our main speci-
fication. First, recognizing that wind turbine technology has evolved over the past
20 years, we include a project-vintage-year (k) fixed effect for each year (y). In other

34. See table 6.07.B, Capacity Factors for Utility Scale Generators Primarily Using Non-
Fossil Fuels, https://www.eia.gov/electricity/monthly/epm_table_grapher.php’t=epmt_6
_07_b.


https://www.eia.gov/electricity/monthly/epm_table_grapher.php?t=epmt_6_07_b
https://www.eia.gov/electricity/monthly/epm_table_grapher.php?t=epmt_6_07_b
https://www.eia.gov/electricity/monthly/epm_table_grapher.php?t=epmt_6_07_b
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words, pi, accounts for the dynamic evolution in power production common to proj-
ects of similar vintage across time. Second, we also include 7, to soak up state s specific
production trends in year y that may be related to state-level policy or general weather
trends.>®> We conduct robustness checks for the inclusion or exclusion of these fixed
effects and other controls and find that the results are quite robust. To account for
spatial and temporal correlation, we cluster the standard errors by the same arbitrary
93 mile squared grids as used in the county regressions, noting that these contain

around 10 wind projects each.

5.2. Wind Project Results

In figure 11, we show that wind projects nearer CPIS tend to produce less electricity.
The graph shows the estimated effect of wind projects’” distances from CPIS, binned
into quintiles and relative to the fifth quintile from estimating equation (3).*® Wind
projects in the closest quintile, where turbines are within 0.6 miles of a center pivot
on average, have capacity factors 0.09 lower than projects in the fifth quintile. Relative
to the average capacity factor in the sample of 0.346, this is a substantial reduction of
26%. As projects are further removed from CPIS, performance improves, Those in the
second quintile, out to 1.5 miles away on average, have capacity factors only 0.044 lower
(13% of the average). Beyond this, performance continues to improve and the third and
fourth quintiles do not show any statistical distinctions from the fifth quintile. These
general patterns hold for alternative binning of the distances by deciles and by miles (see
figs. E2, E3).

We conduct our robustness checks comparing the two closest quintiles to the rest of
the sample by creating an indicator variable equal to one if the average distance to CPIS
of the turbines in the project is less than 1.5 miles. At that distance, these “close” proj-
ects have turbines that are at most one PLSS section removed from a center pivot on
average. Shown in table 5, the result for lower capacity factors is robust across covariate
selection. The effect ranges between 0.037 and 0.068 lower capacity factors and is al-
ways statistically significant. Additional robustness checks are provided in appendix E.
The results are robust to looking at the “closer” wind projects (less than 0.6 miles, see
table E2). The time period and use of panel data do not drive the result and are sup-
ported by cross-sectional versions (table E3) for each year and the overall average. The
lower capacity factor is found in every individual year and with statistical significance
other than in 2010, when few projects were yet sited close to CPIS. Results are also
robust to using spatial HAC standard errors (Conley 2008; Hsiang 2010) (see table E4).

35. County-level fixed effects are not fruitful due to the relatively low number of counties
with multiple projects. However, we do include an indicator equal to one for the small number
of projects that span two different counties or two different states.

36. For point estimates in tabular form, see table E1. We also provide estimates for the dec-

ile version and 10 bins based on miles in that table.
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Figure 11. Capacity factor and proximity of wind projects to CPIS. This figure plots the
coefficient estimates and 90th percentile confidence intervals for the effect of proximity to CPIS
on annual capacity factor. Coefficients are from estimating equation (3) using quintile bins of
average turbine-to-center-pivot distance. The reference group is the furthest bin (> 6.3 miles
from CPIS). The tabular version of the results is available in table E1, column 1. Confidence

intervals are based on robust standard errors clustered at an arbitrary 93 by 93 mile spatial grid.

For a final robustness check, we measure CPIS presence as a share of the convex
hull of the turbines included in the wind project, but to capture the nearby CPIS,
we add a 1.5 mile buffer to that area. This technique also allows us to bring in the share
of irrigation, no matter the technology, as calculated from the MIrAD data with the
same cautions from the section-level analysis pertaining to its spatial coarseness relative
to the CPIS data. Presented in table E5, we again find that higher presence of CPIS
lowers the capacity factor. Furthermore, the coefficient for irrigation by other means
is half the size and statistically indistinguishable from zero. We also note that the CPIS
estimate, while statistically distinct from zero, is not statistically distinguishable from
other irrigation. To the extent that microclimate effects from irrigation are unrelated
to the application technology being used, these results would imply that CPIS reduce
capacity factors of wind projects through their influence on project layout and design
constraints. However, whether the irrigation technology used influences the microcli-
mate effect of irrigation has not been documented. Alternatively then, the findings here
may be among the first evidence that technology utilized does have an influence and
further investigation is warranted.

As a small step in that direction, we conduct ancillary analysis to probe for distinct
properties of wind projects nearer CPIS. Details are provided in appendix E. As noted
previously, turbines are far more likely to be in the corners of sections with CPIS than

of those without CPIS, indicating that corners are not preferable locations but that
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CPIS do compel their use. While placement of wind turbines in suboptimal patterns is
the most obvious effect of CPIS, many other decisions are made simultaneously—
number of turbines, height, swept area, capacity, and so forth—that can potentially
compensate for the placement constraint. At the wind project level, we find some sup-
port that those closer to CPIS have fewer and smaller turbines, combining to have
smaller aggregate generation capacities. But these results are sensitive to how we deter-
mine “closeness,” and other wind project characteristic estimates are swamped by im-
precision (table E6). The lack of any discernible pattern could be due to the jointness of
these choices and that wind projects make different trade-offs. Turbine-level analysis
does yield stronger statistical evidence that proximity to CPIS is associated with smaller
turbines (see table E7). However, even controlling for these ex ante wind project
choices does not account for the lower capacity factor of wind projects nearer CPIS
ex post (col. 11 of table 5). There remains something about wind projects closer to
CPIS that we are unable to explicitly measure and that contributes to lower capacity
factors, giving credence to the notion that microclimate impacts of irrigation on the

wind resource could be a relevant factor.

6. DISCUSSION
More irrigation in an area tends to reduce and delay installed wind generation capac-
ity and lower electricity output. Using the semi-parametric regression results (col. 2,
table D6) to predict the number of sections with turbines having removed all irrigation,
we find that 472 additional sections would have turbines, or a 13% increase in the study
region. This abstracts from capital constraints and general equilibrium effects among
other things, meaning it is an upper bound that almost certainly overstates a true coun-
terfactual. Furthermore, the thought exercise is extreme, removing all CPIS off of
50,000 sections in the region to net 472 more with wind turbines. If we instead con-
sider targeting 472 sections to remove their CPIS and install wind turbines, we would
reduce water withdrawals by an estimated 74,000 to 295,000 acre-feet, depending on
how many quarter-section CPIS those sections operate.”” This is between 0.8% and
3.3% of estimated annual withdrawals from the Ogallala.38

Beyond the effect on installed wind capacity, we can consider an alternative counter-

factual in which the total installed capacity remains the same and we instead approximate

37. Determining the specific 472 sections to target is a complicated matter. The empirical
model itself contains a lot of noise, and sections with the predicted highest probability are not
necessarily those that are closest to the margin in practice. Furthermore, policies could target
those closest to the margin, sections more ideal for wind projects or sections with higher water
use, depending on the policy’s goals.

38. Because most states do not collect or report on field-level water use, these numbers are
based on Cooley et al. (2021) that apply the Kansas average of 161 acre-feet per year per center
pivot across the Ogallala region. This likely underestimates use in drier, hotter regions and over-

estimates use in relatively wetter, cooler regions.
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how much more electricity would be produced if we “moved” the existing wind projects
to the third quintile distance from CPIS (3.1 miles away). We calculate that production
would have been 5.9 million MWh higher in 2020. For context, this amounts to 5% of
annual production for wind projects in the sample in 2020 and roughly 1.7% of all wind
project production in the United States.”® This lower capacity factor compounds the
fact that wind turbines closer to CPIS also tend to have lower nameplate capacities.

Between the higher lost value of crop production and the lower electricity produc-
tion, it is not clear which side of the market, those with the wind turbines or those with
land, drives the equilibrium we observe. One expert in securing land rights for energy
projects stated that their clients generally ask to avoid center pivot locations, explaining
that corner placement can limit the height and size of the turbines to meet setback
rules. This is consistent with our finding that turbines of smaller stature are associated
with closeness to CPIS. We spoke to an engineer on a wind project in western Kansas,
who reported not having an issue. In the data, this project, in fact, does not exhibit a
lower capacity factor.* However, it is notable that the largest landowner involved in
that project told the wind company not to worry about placing turbines within center
pivot circles, reckoning that “with two turbines the most I lose is half a circle and the
revenue from two turbines makes up for the smaller profit after switching to dry-land
cropping.”*! In other words, the layout can be improved if the lost irrigation can be
compensated for, but the potential for this will depend on the wind rents available
to the landowner and the differential value between irrigated and nonirrigated agricul-
ture in the specific region.

Finally, the results also speak to the importance of considering local farming prac-
tices in policy debates related to wind projects. For instance, the effect of setbacks is
likely to be more severe in areas with CPIS in a nonlinear fashion that may quickly dis-
suade wind projects altogether. However, given that the Ogallala Aquifer is commonly
characterized by overdraft due to its common-pool nature, efforts and policies could
target more effective investment in wind generation capacity that also decreases aquifer

use to create win-wins.

7. CONCLUSION
In addition to the relatively low local load demand and expense of constructing transmis-

sion lines, we have identified another factor that helps explain the slower development

39. Back-of-the-envelope calculations utilize estimates in col. 1 of table E1. The predicted
capacity factor based on the estimates is converted to implied annual production and then com-
pared to predictions having changed all wind projects in the first two quintile bins to the third
quintile bin. The total US percentage is based on the EIA estimate of 338 million MWh from
wind in 2020 (US EIA 2021).

40. This was assessed by looking at the residual capacity factor after controlling for the other
covariates besides CPIS proximity.

41. Confidential conversation during interviews.
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of the wind resources across the Great Plains: irrigation. Furthermore, irrigation tech-
nology in place matters. At the county level, irrigation by center pivot technology ame-
liorates the negative effect, likely through indirect channels such as smaller setbacks. At
the section level, however, wind turbines are far less likely to be placed on sections with
CPIS or sections surrounded by CPIS compared to nonirrigated or even flood irrigated
land. Furthermore, the evidence suggests that wind projects nearer to CPIS produce
less electricity on average. In other words, CPIS make siting turbines costlier, either
in terms of lost food production or reduced electricity output. This means that future
development of wind projects in the Great Plains may face increased costs and chal-
lenges given that the choice non-CPIS areas have already been developed.

Our findings invite additional research. For instance, while we present suggestive
evidence for mechanisms that CPIS have a smaller effect than other irrigation at the
county level, it is not conclusive, and more probing of these and other channels is war-
ranted. We also do not identify a clear mechanism to explain our robust result that
wind projects nearer to CPIS tend to produce less electricity. While our estimates
are of a similar magnitude to the effect switching crops has on wind project output
due to aerodynamic effects (e.g., 14% found by Vanderwende and Lundquist [2016]),
little evidence as to irrigation’s effect on wind patterns has been compiled (see Phillips
etal. [2022] for a recent exception). Evidence here is among the first to suggest that there
may be meaningful economic effects, but the lower electricity production may also stem
from turbine placement constraints. A better understanding could emerge through more
structural engineering models and simulations of wind projects. We also limited the
scope of our study to how the preexisting use of water affects the development of wind
projects, and we did not begin to address how wind projects subsequently affect land
and water use. Finally, we have also focused on a particular pair of colocated resources
in a certain region, meaning insights from other settings and resources are needed to
better assess the generalizability of the findings.

Still, our results underscore how use of one natural resource at a given location and
scale can shape and constrain the development of another resource at the same location,
More nuanced is that the constraint is shaped by the technology in place. Given the
potential trade-offs, an important question is which use of the land is more valuable;
is society better off with a center pivot field or its conversion to better accommodate
wind turbines? Nothing in this analysis spoke to this; rather it identified that trade-offs
are present. Additional research is needed to assess whether the deterred investment in
wind power is suboptimal, especially considering external effects, positive and negative,
of wind projects.

On a larger spatial scale, it is not necessary to consider a dichotomous choice be-
tween CPIS and wind projects, and more effective contracting between parties could
bring about the right spatial distribution and mix of both (Cheung 1973). Indeed, given
the externalities of the shared Ogallala (Pfeiffer and Lin 2012) and resulting depletion

(Konikow 2013), it seems likely that there are potential win-wins for irrigation and
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wind projects. Subsidizing alternative irrigation technology that is less physically con-
straining for turbines or using turbines and their associated royalty payments to help
subsidize landowners to fallow fields could at once reduce the overuse of the aquifer
and underuse of the wind. Thoughtful attention to policy and technological change

could reduce the tension between wind and water on the Great Plains and elsewhere.
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