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ABSTRACT

The reliable detection of the global 21-cm signal, a key tracer of Cosmic Dawn and the Epoch of Reionization, requires
meticulous data modelling and robust statistical frameworks for model validation and comparison. In Paper I of this series,
we presented the Beam-Factor-based Chromaticity Correction (BFCC) model for spectrometer data processed using BFCC to
suppress instrumentally induced spectral structure. We demonstrated that the BFCC model, with complexity calibrated by Bayes
factor-based model comparison (BFBMC), enables unbiased recovery of a 21-cm signal consistent with the one reported by
EDGES from simulated data. Here, we extend the evaluation of the BFCC model to lower amplitude 21-cm signal scenarios
where deriving reliable conclusions about a model’s capacity to recover unbiased 21-cm signal estimates using BFBMC is
more challenging. Using realistic simulations of chromaticity-corrected EDGES-low spectrometer data, we evaluate three signal
amplitude regimes — null, moderate, and high. We then conduct a Bayesian comparison between the BFCC model and three
alternative models previously applied to 21-cm signal estimation from EDGES data. To mitigate biases introduced by systematics
in the 21-cm signal model fit, we incorporate the Bayesian Null-Test-Evidence-Ratio (BaNTER) validation framework and
implement a Bayesian inference workflow based on posterior odds of the validated models. We demonstrate that, unlike BFBMC
alone, this approach consistently recovers 21-cm signal estimates that align with the true signal across all amplitude regimes,
advancing robust global 21-cm signal detection methodologies.
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1 INTRODUCTION probe directly the initial stages of structure formation, and to char-
acterise the properties of the first stars, proto-galaxies, and accreting
black holes during Cosmic Dawn (CD) and the Epoch of Reionisa-
tion (e.g. Bevins et al. 2024; Pochinda et al. 2024; Cang et al. 2024;
Gessey-Jones et al. 2025). However, to achieve this, the cosmological
21-cm signal must be extracted from spectrometer data containing
astrophysical foreground emission, dominated by synchrotron radi-
ation, that, depending on the frequency range and field observed, is
3-6 orders of magnitude brighter.

Global 21-cm experiments operating in the frequency range 10 <
v < 230 MHz, corresponding to a redshift range! 150 < z < 5,
aim to provide conclusive and unbiased measurements of the sky-
averaged redshifted 21-cm hyperfine line radiation emitted by neutral
hydrogen in the high-redshift Universe. Observations of the 21-cm
signal during the Universe’s Dark Ages have the potential to provide
precision cosmological constraints (e.g. Mondal & Barkana 2023;
Mondal et al. 2024; Gessey-Jones et al. 2024; Naik et al. 2025), to

The foreground emission is intrinsically spectrally smooth and
thus separable from the more spectrally structured global 21-cm sig-
nal. However, even low-level spectral structure in the instrumental
transfer function mixes the foreground emission into the narrower

* E-mail: psims3 @asu.edu
! The 21-cm hyperfine line of neutral hydrogen has a rest-frame frequency
of vo1 =~ 1420.4 MHz. Due to the expansion of the Universe, the wavelength

of radiation is stretched, which reduces its frequency and establishes a one-
to-one mapping between the observation frequency, vops, and the redshift, z,
at which the 21-cm line is emitted: vops = vo1/(1 + z).
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spectral scales relevant for 21-cm signal detection complicating this
separation in the measured data. For such structure to be treated as
negligible requires that the instrument transfer function is smooth
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at the approximately2 103 : 1 foreground-to-noise ratio in the data,
which is challenging to achieve in practice. Consequently, accurately
accounting for spectral structure induced by instrumental chromati-
city on scales relevant for 21-cm signal detection, remains one of the
most significant challenges to achieving robust signal estimates. A
primary contributor to this effect is the frequency-dependent weight-
ing of the sky by the instrument beam. The Experiment to Detect
the Global Epoch of Reionisation Signature (EDGES; Bowman et al.
2018a, hereafter B18) has pioneered a beam-factor-based Chromati-
city Correction (BFCC) approach to mitigate this effect by dividing
the calibrated spectrometer data by an estimated sky-weighted beam
response.

If BFCC perfectly removed instrumental chromaticity, unbiased
recovery of the global 21-cm signal would be possible by directly fit-
ting an intrinsic astrophysical model to the corrected data. However,
in Paper I of this series (Sims et al. 2023), it was demonstrated that
while BFCC reduces the impact of instrumental chromaticity un-
der realistic assumptions about the spectral structure of foregrounds,
the correction is only partial, leaving residual spectral systematics
that must be carefully modelled to avoid biases in signal estimation.
To account for residual instrumental structure in BFCC data, we
derived a flexible closed-form model for beam-factor chromaticity-
corrected spectrometer data (hereafter the BFCC model) and demon-
strated how to optimise the model’s complexity for a given data-
set using Bayes factor-based model comparison (BFBMC). Using
realistic simulations of time-averaged EDGES data, we showed that
when embedding a simulated 21-cm signal consistent with the deep
(A= 5003%% mK) best fitting absorption trough reported in B18,
fitting the data with an intrinsic sky model — one that describes the
spectrum in the absence of chromatic effects (hereafter, the Intrinsic
model) — yields biased estimates of the underlying 21-cm signal. In
contrast, the BECC model enables unbiased recovery of the simulated
global 21-cm signal.

While the results of Paper I are encouraging, the 21-cm signal
reported in B18 is deeper than expected at redshift 17 under standard
cosmological assumptions (e.g. B18; Barkana 2018). Additionally,
reanalyses of the data in B18, using alternate data models, have
since been carried out that suggest either a lower amplitude 21-cm
signal than reported in B18 or the absence of a detectable 21-cm
signal altogether (e.g., Hills et al. 2018; Bradley et al. 2019; Singh &
Subrahmanyan 2019; Sims & Pober 2020; Bevins et al. 2021; Cang
et al. 2024). Accounting for this possibility, in this work, we extend
our evaluation of the BFCC model to data sets with lower amplitude
21-cm signal and additional comparison models for which it is more
challenging to draw reliable conclusions about the model’s ability to
recover unbiased estimates of the 21-cm signal using BFBMC alone.
Specifically, we consider two additional scenarios for the amplitude
of the 21-cm signal in the data:

(1) a null signal, which we use to validate the models within the
Bayesian Null-Test-Evidence-Ratio (BaNTER) validation framework
(Sims et al. 2025a; hereafter, S25),

(i1) a signal with a lower amplitude compared to that reported in B18,

consistent with expectations for the 21-cm absorption trough associ-
ated with CD at redshift 17 under the standard cosmological assump-
tion that the background brightness temperature at CD is dominated

2 The sky-averaged brightness temperature observed by the EDGES 2 in-
strument, when the Galaxy is low in the beam, is approximately 5000 K at
50 MHz (e.g. Bowman et al. 2018a). For a noise level of ~ 20 mK - con-
sistent with that reported in Bowman et al. (2018a) — this corresponds to a
foreground-to-noise ratio of 2.5 x 10°.
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by the Cosmic Microwave Background (CMB) and the minimum
hydrogen gas temperature is determined by adiabatic cooling after
decoupling from the radiation temperature.

Furthermore, we analyse the data using two additional compar-
ison models for the non-21-cm component of the publicly available
EDGES data. This nuisance component may, itself, be composed
of multiple subcomponents describing, for example, astrophysical
foregrounds, ionospheric effects and instrumental systematics. How-
ever, for brevity, here we refer to the non-21-cm component as the
‘foreground’ model with the understanding that they are intended to
describe the full range of non-21-cm structure in the data. These mod-
els are the linearised physical model (hereafter, ’LinPhys’ model) and
the more general polynomial foreground model (hereafter, ’MultLin’
model) used in the analysis carried out in B18 (see Section 4 for
details).

When analysing simulated data, preferred models can be directly
evaluated by comparing the input and inferred signal of interest. How-
ever, when analysing instrumental data where the detailed structure of
the signal is a priori unknown, robust inference requires accounting
for both the uncertainty in parameter estimates within models and the
uncertainty in the model itself. Ignoring model uncertainty can lead
to underestimated uncertainties in inferences and biased conclusions
due to improperly weighted model-averaged parameter posteriors.
Bayesian model comparison offers a unified and statistically consist-
ent framework to address both sources of uncertainty (e.g., Jeffreys
1935, 1939 and Kass & Raftery 1995; hereafter, KR95).

In the context of 21-cm cosmology, Bayes-factor-based model
comparison distinguishes between models that offer a compact ex-
planation of the data (i.e., a good fit using relatively few effective
degrees of freedom) and those that do not. However, it does not
distinguish between:

(i) models in which the 21-cm signal component and the nuisance com-

ponent (e.g., foregrounds, ionosphere, and instrument systematics)
are each accurate, enabling unbiased recovery of the 21-cm signal,
and

(i) models in which the nuisance component is inaccurate, but its de-

ficiencies are absorbed by the 21-cm signal model, still yielding a
high Bayesian evidence fit — albeit with a biased signal estimate.

Here, we refer to the 21-cm signal component as the model of
interest, and to the combination of all other components (e.g., astro-
physical foregrounds, ionospheric effects, and residual instrumental
systematics) as the nuisance model. While the nuisance model may
itself have multiple subcomponents, we are concerned only with the
possibility that inaccuracies in the nuisance model could correlate
with the 21-cm signal model in a way that biases its inference.

Scenario (ii), above, can occur when a composite model has a
nuisance model that fails to fully describe the nuisance signal com-
ponent of the data, but is paired with a 21-cm model capable of
fitting the sum of the true 21-cm signal and the residual systematics
resulting from inaccuracies in the nuisance model. In this case, the
composite model can provide a good fit to the data, but the 21-cm
signal estimates it yields will be biased by the systematic residuals.

This situation introduces a form of model-level degeneracy (here-
after, model degeneracy), analogous to parameter degeneracy in con-
ventional parameter estimation, but arising at the level of composite
models. In such cases, different combinations of component models
may provide similarly good fits to the data in aggregate, even though
only some combinations yield accurate and unbiased recovery of the
21-cm signal.

To account for this phenomenon, two categories of composite



model comparison were defined in S25. Let the full set of models
under consideration be denoted M = { Mjpac, Mac}, where Mipac
contains models that do not provide accurate or predictive fits to
the data, and Mjyc contains models that do. The key distinction
between the two categories lies in the nature of the accurate models
in Myc. In category I model comparison, all accurate models are
only capable of fitting the data when their component sub-models are
also accurate - no component can compensate for the inaccuracies
of another. In this case, BFBMC is sufficient to distinguish between
models that recover the true component signals and those that do
not. Conversely, in category II model comparison, My includes
models that achieve high evidence fits by absorbing the inaccuracies
of one component into another (e.g. a 21-cm signal component fitting
residual foreground structure). In such cases, BFBMC alone leads
to biased model-averaged inferences, and model validation becomes
essential.

To address this issue, S25 introduced the BaNTER validation
framework, which uses a Bayesian null test to derive model priors
through comparison of a single component model and a composite
model for single-component validation data set. This test is designed
to identify composite models that, while fitting the data well over-
all, yield biased signal inferences, enabling these poorly performing
models to be downweighted or excluded a priori. Combining the
BaNTER validation framework with Bayesian model comparison for
observational data allows one to derive the model-validated posterior
odds. This approach enables selection for models that are accurate
and predictive of the data in aggregate and, crucially for unbiased
21-cm signal recovery, are composed of accurate and predictive com-
ponent models.

In this work, we apply the BaNTER validation framework to derive
model priors and use the model-validated posterior odds to compare
the BFCC model with the Intrinsic, LinPhys, and MultLin models.
We analyse realistic simulations of BFCC EDGES-low spectrometer
data across null, moderate, and high amplitude 21-cm signals and
demonstrate that this approach:

(i) favours the BEFCC model over the alternatives, and

(ii) in contrast to using BFBMC-alone, reliably recovers 21-cm signal

estimates consistent with the true signal in the data across all signal-
amplitude regimes.

The remainder of the paper is organised as follows. In Section 2, we
describe the Bayesian inference and BaNTER validation frameworks
used to analyse the data and compare models. Section 3 summar-
ises the simulations of BFCC EDGES-low data developed in Paper
I and updates to the 21-cm signals included in the simulations in
this work. In Section 4, we describe the models we fit to the data.
Section 5 presents the analysis results of the simulated data sets
and compares Bayesian model selection based on BFBMC-alone
and the BaNTER-validated posterior-odds as methods for identify-
ing preferred models for recovery of unbiased estimates of the 21-cm
signal. In Section 6, we discuss the performance of the BFCC model
relative to the Intrinsic, LinPhys, and MultLin models under differ-
ent signal amplitude assumptions and emphasise the importance of
model validation for deriving reliable inferences from the compar-
ison of composite models for global 21-cm signal data. Finally, in
Section 7, we summarise our findings and present our conclusions.
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2 BAYESIAN INFERENCE AND MODEL VALIDATION
FRAMEWORK

2.1 Bayesian inference
2.1.1 Bayes’ theorem

Bayesian inference provides a consistent approach to estimate a set
of parameters, @, from a model, M, given a set of data, D. Using
Bayes’ theorem we can write the posterior probability density of the
parameters of the model as:
P(D|O,M) P(O|M) i
P(DIM) @
Here, P(D|0O, M) = L(0) is the likelihood of the data, P (O|M) =
7(@) is the prior probability density of the parameters and
PDIM)=Z = f L(0)7(0)d"0 is the Bayesian evidence, where
n is the dimensionality of the parameter space.

P(O|D, M) =

2.1.2 Bayesian model comparison

Comparison of competing models in the light of observed data is a
fundamental scientific goal. When one has a set of models for the data,
M = {M|,M;,---, My}, preferred models can be determined
from their marginal probabilities. Bayes’ theorem for the marginal
probability of a model gives:
P (D|Mi, M)P (M| M)

P(M;|D, M) = PDIM) . 2)
Here, P(DIM) = YN P(D|M, M)P (M| M) is the mar-
ginal probability of the data over the models and their parameters,
P(D|M;, M) is the Bayesian evidence of M; and P (M;| M) is the
probability of M; prior to analysing the data. For brevity, we leave
the conditioning of the probability densities on M implicit going
forward.

Bayesian methodology addresses model comparison between two
possible models, M; and M, for a data set, D, via consideration of
Rij, the posterior odds in favour of M; over M ;. Using Equation (2)
we can write this as:

_ PM;|D)  PDIM;)P(M,)

P(M;|D) PDIM;)P(M;) "
Here, P(M;|D) is the posterior probability of model M;,
P(DIM;)/P(D|M;j) = 8B;j is the Bayes factor between the models,
P(D|M;) = Z; and P(D|M;) = Z; are the Bayesian evidences of
models M; and M ;, respectively, and P (M;)/P (M) is the ratio of
the prior probabilities of the two models before any conclusions have
been drawn from the data.

As the model-prior-weighted average of the likelihood over the
parameters priors, the marginal probability of a model is larger if the
model is probable a priori and more of its parameter space is likely
given the data; it is smaller for a model that is improbable a priori or
if large areas of its parameter space have low likelihood values, even
if the likelihood function is very highly peaked. It thus represents
an updating of one’s prior credence in the model, given the data,
and automatically incorporates an ‘Occam penalty’ against a more
complex theory with a broad parameter space. As such, in absence
of an a priori reason to prefer it over a simpler alternative, it will be
favoured only if it is significantly better at explaining the data.

In this work, we adopt the mapping of qualitative terms describ-
ing the relative preference for one model over another defined in
$253. Specifically, we describe posterior odds in the range 1-3

Rij 3)

3 The mapping of qualitative terms defined in S25 generalises to Rij the

MNRAS 000, 1-25 (2021)
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(0 < In(R;j) < 1) as a weak preference for M; over M, posterior
odds in the range 3-20 (1 < In(R;;) < 3) as a moderate preference,
posterior odds in the range 20-150 (3 < In(R;;) < 5) as a strong
preference, and posterior odds of greater than 150 (5 < In(R;;)) as
a decisive preference. When we have no information that lends addi-
tional credibility to one model over the other in advance of analysing
the data, we set the prior odds to unity; therefore, the posterior odds
are equal to the Bayes factor between the models (R;; = B;;). In
this case, for the purpose of defining our qualitative descriptions, the
Bayes factor between models takes the place of the posterior odds.

2.2 BaNTER validation

When the set of competing models under consideration includes at
least one model capable of providing accurate and predictive fits to
the data using biased component fits, the Bayes factor between such
models and those in the subset of interest — those containing models
with accurate and predictive subcomponent models — is insufficient
to distinguish them. Comparison of models for global 21-cm data
can fall under this scenario (S25). In such a category II model com-
parison, BFBMC enables one to separate models that are predictive
of the data in aggregate from those that are not, but informative prior
odds on the models are necessary to separate predictive composite
models that also have accurate and predictive component fits to the
data from those that do not.

In this work, we use the BaANTER validation framework for com-
posite models introduced in S25 to validate our composite models
for the data and derive informative model priors. For a detailed de-
scription of general BANTER validation, we refer the reader to S25.
Here, we provide a brief overview of the method in the context of
global 21-cm cosmology.

2.2.1 Global 21-cm data
Consider a global 21-cm signal data set of the form:
D :f((')Zl,@Fg)"'” ’ (4)

where f(@21, OFg) is the sum of global 21-cm signal and foreground
emission in the data, n is the noise and @, and O, are paramet-
ers underlying the physical processes producing the 21-cm signal
and foreground emission. The function f(.) captures the generative
processes of the signal components, the propagation effects between
the source of emission and the instrument (such as ionospheric ab-
sorption and refraction), the instrument transfer function, and any
corrections applied to the data, such as beam factor chromaticity
correction (see Paper I).

In many practical cases, the function f(-) can be approximated
as nearly linear over the relevant parameter ranges (see Section 3)%.
Under this approximation, the data model in Equation (4) reduces to:

D2521+Spg+n, (5)

where S31 and S represent the apparent global 21-cm signal and

mapping for B;; introduced in KR95. When model priors are uninformative,
it reduces to the model-odds thresholds established in KR95.

4 Tonospheric absorption, as well as instrumental losses, act multiplicatively
on both the astrophysical foregrounds and 21-cm signal. However, these
effects are typically at the sub-10% level, and since their fits are dominated by
foreground emission 4-6 orders of magnitude brighter than the 21-cm signal,
the induced coupling is expected to be negligible in practice.
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foreground components in the data, respectively. This linearised form
provides intuitive insight into the data structure, although it is not a
prerequisite for the validity of the BANTER framework.

2.2.2 Foreground, 21-cm signal, and composite models

Now, assume we have a definitive model for the signal component,
denoted M5(®;1), where @y represents the true values of the
model parameters to be determined from the data.’ In this case, the
set of models for Sy is given by:

My = {M21(02))} . (6)

For the foreground component, we define a competing set of mod-
els as the union of different foreground model classes, including
BFCC, Intrinsic, LinPhys, and MultLin models. Explicitly, the set of
all foreground models is:

Mgg = {M; | M; € (MrccY MinginsicY MLinPhys Y MMulwin) }
@)

where Mprcc, Mintrinsics MLinPhys> and MyuieLin are the sets of
BFCC, Intrinsic, LinPhys, and MultLin models, respectively. These
sets vary in size, ranging from single models in Miyrinsic and
MLinphys to multiple models with varying complexity in Mpgcc
and Mpuiin (see Section 4). Each model in ME; is of the form
Mg (0;Fg), where ©;pg are the parameters of the ith foreground
model.

Finally, given M3 and Mg, we define a set of composite models
as:

Me={M;c |i=1,...,Nc}, (8)
where each composite model is of the form:
Mic = (021, O;rg) . )

Here, g(0;1, 9;Fg) is a model for f(®,,®pg) and N represents
the total number of composite models in the set. In the linearised
case M. simplifies to:

M. = My + Mipg , (10)

with M3 (@,;) being the model for the 21-cm signal component and
Mg (O;Fg) being the ith model for the foreground component.

2.2.3 Bayesian null test

The BaNTER validation framework provides a means of separating
models in M that are able to accurately describe the data with
accurate component models from those that provide accurate fits
to the data but lead to biased inferences for the parameters of the
21-cm signal model, M1, if present in the data. In the general (non-
linear) case, this is achieved by comparing the Bayesian evidence of
a composite model, M¢ (@1, Opg), against that of a foreground-only
model, Mgy (®F,), for a foreground-only validation data set of the
form:

an

Since the validation data used in this comparison is constructed to
contain only a foreground component, any preference for the com-
posite model over the foreground-only model indicates that the signal

DV:SFg+n.

5 See S25 for a discussion on how the BaNTER validation framework can
be generalised to cases where both S| and SEg are uncertain.



model is absorbing residual structure due to an inaccurate foreground
model.

In this work, we use high-fidelity simulated foreground-only obser-
vations as the Sg; component of our validation data (see Section 3.3).

Given Dy and a composite-foreground pair of models, M;. and
M;gg, the BaNTER validation proceeds by fitting each model to the
validation data and computing the null-test evidence ratio (Bayes
factor):

ln(BZFg) =In (Z—s) , (12)
Fg

where Z! = P(Dvy|M;) and Zgg = P(Dv|M;gg) are the Bayesian
evidences for the composite model M, and its foreground compon-
ent M;Fg, respectively.

When ln(B:F g) > 0, the composite model fits the validation data
better than the foreground-only model. Since the validation data
contains only foregrounds, this preference indicates that the 21-cm
component is absorbing systematic residuals from an imperfect fore-
ground model. For example, if a foreground model inadequately de-
scribes chromatic instrumental effects, the 21-cm component might
fit both the true signal and these residual systematics, yielding a good
overall fit to the data in aggregate but biased 21-cm signal estimates.

The validation metric ln(Bé’Fg) becomes large only when the fore-
ground model is insufficiently accurate in describing the foreground
component of the data and when a spurious fit of the 21-cm sig-
nal model absorbs residual structure in the validation data that the
foreground model alone cannot fit.

The composite model is deemed to fail the null test if ln(BZFg) >
ln(BchreShol 4)» Where ln(Bchmsho1 4) 1s a predefined threshold. We
interpret different ranges of ln(BZFg) as follows:

e < (: Foreground-only model preferred. This is expected for
foreground-only validation data.

e (0 — 3: Moderate systematic contamination likely to bias signal es-
timates if a 21-cm signal is present.

e > 3: Severe systematic contamination likely both to bias 21-cm
signal recovery, if a 21-cm signal is present, or produce a false
detection, if not.

Specifically, for 0 < ln(B:Fg) < 3, the composite model provides
a better fit to the validation data than the foreground-only model.
In the context of global 21-cm signal datasets, this suggests that
inaccuracies in the foreground model are sufficient to bias estimates
of the 21-cm signal, if present. However, under a Bayesian 21-cm
detection criterion that requires strong evidence in favour of the
composite model over the foreground-only model (In(B¢re) = 3;
see Section 2.4), these inaccuracies are too small to produce a false
detection of the 21-cm signal, when it is absent.

For ln(BCVF ) > 3, the composite model provides a substantially
better fit to the validation data than the foreground-only model, in-
dicating that foreground model inaccuracies are severe enough to
significantly bias 21-cm signal estimates, if present, or to lead to a
false detection, if absent.

In this work, we follow S25 and adopt a conservative approach by
setting 1n(Bt‘;1resho1 d) = 0. We treat the prior odds of failed composite
models yielding unbiased estimates of the 21-cm signal in a global
dataset as negligible when compared to models that successfully pass
BaNTER validation.
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2.2.4 Model comparison categorisation

The possibility exists for composite models that are predictive of
the data in aggregate to obtain accurate fits with biased component
models. However, in the absence of informative model priors, it
is uncertain whether models of this type are included in the set
of models under consideration. Following S25, we categorize the
Bayesian comparison of composite models in M, as a category I
model comparison problem if M contains no such models, and a
category Il model comparison problem if such models are present.

For a category I model comparison problem, model validation
is incidental to the recovery of unbiased 21-cm signal estimates
through Bayesian analysis of the data. In contrast, for a category
1I model comparison problem, model validation becomes essential.
Thus, understanding which of these categories applies to the Bayesian
comparison of a given set of composite models is key to determining
whether model validation is necessary for drawing robust inferences
with them and, equivalently, for assessing the degree of confidence
that can be placed in the conclusions drawn from the comparison of
unvalidated models.

We use the BaNTER validation framework to determine whether
the Bayesian comparison of the models considered here falls under
category I or category Il in Section 5.

2.3 Data likelihood

Let the data, vectorised over frequency, be denoted as D, and define
a corresponding vectorised model, parameterised by ©, as M (0).
We assume the noise in the data follows a zero-mean Gaussian dis-
tribution, uncorrelated between frequency channels. Consequently,
we model the noise covariance matrix, N, as diagonal, with elements
given by:
Nij = <I’llnj> = 6ij0'2 s (13)
where (-) denotes the expectation value, and o is the root-mean-
square (RMS) noise level in the data.
Defining the residuals between the data and model as R = D —
M (0), the Gaussian likelihood function for R is given by:

P(D|0O) = exp —%R(G))TN‘IR(G)) .14

1
v/ (27) Nehan det(N)
When fitting the data in Section 5, D represents vectorised, simu-
lated beam factor chromaticity-corrected data (see Section 3.1). For
a spectrum X(v), we define the vectorisation operator vec(-) such
that:
vee(X(v) = [ X0, X1+ XNl " (15)

where X; is the value of X at frequency channel i, and N pay is the
total number of channels in the dataset.

2.4 21-cm signal detection

We propose that a robust detection of the 21-cm signal should satisfy
the following criteria:

(1) The subcomponents of the model must provide an accurate de-

scription of their respective signal components. This requirement
prevents errors in one model component from being absorbed by
another, which could result in an accurate fit to the data in aggregate
but a biased recovery of the 21-cm signal.

MNRAS 000, 1-25 (2021)
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(i1)) The model incorporating the 21-cm signal must provide an accurate

description of the data, such that the residuals are consistent with the
expected noise level.

(iii) There must be strong Bayesian evidence favouring models that

include a 21-cm signal component over those that do not.

Criteria (i) and (ii) can be assessed using BaNTER-validated
posterior-odds-based model comparison (Sections 2.1 and 2.2.3) and
an analysis of model residuals (see Appendix C), respectively. Given
observational data D and a composite-foreground pair of models,
M, and Mg, criterion (iii) is satisfied if the following threshold
for 21-cm signal detection is met:

In(Beg) > 3. (16)

Here, In(B.gg) = In(Zc/ZFg) is the log Bayes factor in favour of the
composite model, where Z. = P(D|M;.) and Zggs = P (D|M;F,)
denote the Bayesian evidences for the composite model M;; and
its foreground-only counterpart M;g,, respectively. This threshold
corresponds to odds of at least 20:1 in favour of the composite model,
providing strong evidence for the presence of a 21-cm signal in the
data.

To test for the presence of a 21-cm signal in the data, we apply the
criteria outlined above in Section 5 and define the full set of models
under consideration as:

M={M; | M; € (McU Mpg)} . an

2.5 Computational techniques
2.5.1 Probability densities

In Section 5, when analysing the data, we estimate model evidences
and sample from the posteriors on the model parameters, given the
data, using nested sampling as implemented by the PoLyCHORD
algorithm (Handley et al. 2015b,a). Given samples from the pos-
terior distribution of the parameters, (@|D, M), one can estimate
P(y|®, v, D, M), the posterior predictive density (posterior PD) of a
function y = f(@, v) by calculating the corresponding set of samples
from P (y|®, v, D, M). We derive contour plots of prior and posterior
PDs using the FGIvENnx software package (Handley 2018).

2.5.2 Summary statistics

Many of the aforementioned parameter posteriors will be character-
ised by non-Gaussian probability density functions (PDFs). There-
fore, following Sims et al. (2025b), we use the highest probabil-
ity density estimates (HPDEs) and highest probability density in-
tervals (HPDIs; e.g. Hyndman 1996), Xppp|©%* as informative
summary statistics of these distributions. Here, Xgpp is the HPDE
value of the PDF of a parameter (or set of parameters), X, and
o+ = |Xuppi+ — Xgpp| characterises its width, with Xgppr, and
Xyppi- the upper and lower bound of the HPDI, respectively.

3 SIMULATED DATA

We construct realistic simulations of time-averaged BFCC data fol-
lowing the approach described in Paper I; for a detailed description
we refer the reader to that work. In this section, we provide a summary
of the approach including the updates to the 21-cm signal component
in the simulations used here.
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3.1 Spectrometer data in the snapshot limit

Working in the reference frame of the antenna, under the assumption
that the integration time, At, is sufficiently short for the measurement
to be accurately approximated as an instantaneous snapshot at the
central time of the integration (Ar < 10 mins for EDGES 2), a

calibrated autocorrelation spectrum derived from a zenith-pointing
antenna, such as EDGES, can be written as (see Paper I):

Tgata (v, 1) = / B(v, Q)Tgy (v, Q,1) dQ +n . (18)
Q+

Here, Tyy (v, €, 1) represents the time-dependent sky brightness tem-
perature distribution above the antenna, dQ is a solid angle element, n
denotes instrumental noise and Q™ is the skyward hemisphere centred
on zenith. The term B(v, Q) = D;mD( v, Q) describes the frequency
and direction-dependent antenna beam. It is normalised such that
the beam pattern integrates to 1 over the skyward hemisphere with
D(v, Q) the antenna directivity pattern and Do+ = /Q+ D(Q)dQ.
For an instrument incorporating a large ground plane below the
antenna, such as EDGES, the region Q* encompasses nearly the full
integral antenna directivity. Specifically, for the H2 configuration of
the EDGES 2 low-band instrument with a 30 m x 30 m sawtooth
ground plane, detailed electromagnetic simulations of the antenna
directivity (e.g. Mahesh et al. 2021) indicate that the fractional dir-
ectivity towards the nadir-centred hemisphere at a fixed frequency is
1 = Do+ /Dy = 1073, Here, Dy = f04” D(Q)dQ is the integral
antenna directivity over the full sphere. In this work, we assume that
the fractional directivity towards the ground, on the order of 1073,
has been accurately accounted for through ground-loss correction
(e.g. Rogers & Bowman 2012; Monsalve et al. 2017b). Addition-

"
ally, the data has been calibrated such that fOQ B(v,Q)dQ =1 and
T4ata (v, 1) is an absolute temperature measurement.

3.2 Beam factor chromaticity correction

For the purpose of global 21-cm signal data analysis, we can write
the sky brightness temperature in the 10 < v < 230 MHz frequency
range as the sum of two components:

(1) A bright but spectrally smooth non-21-cm component comprised

of synchrotron emission from the Galaxy and extragalactic sources,
with a smaller contribution from Galactic free-free emission, and
thermal emission from the Earth’s ionosphere.

(i) A redshifted 21-cm signal component with less smooth spectral

structure determined in detail by the sky-averaged evolution with
redshift of the ionization and temperature state of hydrogen and the
relative coupling strength of the neutral hydrogen spin temperature
to its kinetic temperature and the background radiation temperature.

Additionally, the Earth’s ionosphere refracts and absorbs both of
these components in a frequency-dependent manner (e.g. Vedantham
et al. 2014; Shen et al. 2021).

Despite a dynamic range of several orders of magnitude between
these two components, in the absence of instrumental effects and
barring a significant level of Faraday rotated polarised foreground
emission (e.g. Spinelli et al. 2019), the effective foreground after
passing through the ionosphere is expected to be spectrally separ-
able from the 21-cm signal. However, instrumental chromaticity, if
unaccounted for and in excess of the dynamic range between the
foregrounds and 21-cm signal, will eliminate this separation of char-
acteristic spectral scales and will introduce foreground systematics



greater than or equal in amplitude to the 21-cm signal of interest,
biasing its recovery by spectral means.

The impact of instrumental chromaticity on the separation of the
21-cm signal from the non-21-cm component of the data can be sig-
nificantly mitigated (although not entirely removed) by dividing the
calibrated autocorrelation spectrum by a beam chromaticity correc-
tion factor, By,cior, that describes the average spectral structure of the
beam weighted by the brightness temperature distribution of the sky
at a given reference frequency (see Paper I for details). In the short
integration snapshot limit, By, 1 given by (e.g. Mozdzen et al.
2017, 2019),

Jor B™ (v, QT (ve, .1)dQ

Biactor (v, 1) = , (19)
o e T (e .10
g
and the BFCC data has the form,
Teorrected (V> 1) = Tdata (Vs 1)/ Bfactor (V5 1). (20)

Time-averaged BFCC data, T, orected(v). such as that analysed in
B18 and also the subject of the analysis here, is formed by averaging
Teorrected (v, 1) over t.

Here, as in Paper I, we focus on the effectiveness of BFCC when
one has an accurate model for B™ and Tf‘;(vc, Q,1). In upcoming
work we will explore how 21-cm signal recovery with the BFCC
model derived in Paper I is impacted by realistic deviations from the
assumption of an error-free model for Tfrg(vc, Q.1) and B™.

3.3 Simulations

To construct Teoprected(v), We first construct simulated time-
dependent EDGES-low spectrometer data, Ty, (v,t), following
Equation (18), at 120 times, spaced by 6 minute intervals, in the
LST range 0 < LST < 12 h, selected to match the LST window of
the publicly available EDGES-low data, when the Galactic plane is
relatively low in the beam. We simulate data over a 50 — 100 MHz
spectral band, assuming a 1 MHz channel width and observation of
a sky model composed of:

foregrounds with realistic spatially dependent spectral structure,
spectrally-dependent absorption by the ionosphere,

ionospheric emission, and

a flattened Gaussian redshifted 21-cm signal profile.

We simulate our sky model including the aforementioned compon-
ents as,

Toky (v, Q1) = [(ng(v, Q,1) +T21]e’Tion(V)

+Te(1— e Tn0)) - (21)

where T¢ and Ty, are the temperature of electrons and opacity of the
ionosphere, respectively. Here, following Paper I, we use, T, = 450K
and Tioy = T0(v/ve) "2, with 79 = 0.014 at reference frequency
ve = 75 MHz (e.g. Rogers et al. 2015). The foreground brightness
temperature distribution is given by,

v\ Pa

Tie (v, Q, 1) = Tj Q1) | — +7T,. (22
fg(V ) fe (Ve ) (Vc) y (22)
Here, ng(vc, Q, 1) is the spectral power law component of the fore-
ground brightness temperature at reference frequency ve. fg ; is
the spatially dependent spectral index distribution characterising the
power law structure of that emission. T, = 2.725 K is the CMB

temperature and 75 is the 21-cm signal in the data.
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Following Paper I, we derive ng(vc, Q, 1) as a spectral extrapol-
ation from the Haslam 408 MHz all-sky map (Haslam et al. 1981,
1982) reprocessed by Remazeilles et al. (2015) and Bq ; as a spatially
dependent spectral index distribution derived from the global sky
model (GSM; Zheng et al. 2017). Furthermore, we model the global
21-cm signal as a flattened-Gaussian absorption trough, matching
the model parametrisation used in B18:

] —emTel
T = A|——— 23
21(v) =l (23)
where,
4(v - vg)? 1 l+e 7
By = 2000 | g (1HT) ] (24)
w2 T 2

and A, vg, w and 7 describe the amplitude, central frequency, width
and flattening of the absorption trough, respectively.

In the simulated data sets analysed in this work, we incorporate ab-
sorption profiles with position and shape parameters: vy = 78 MHz,
w = 19 MHz and 7 = 8 matching the 21-cm signal shape parameters
considered in Paper 1, for ease of comparison®. For the amplitude of
the signal, we consider three cases:

(i) A null-amplitude 21-cm signal (A = 0 mK). We use this as a null-

test to identify models that lead to spurious signal detection through
joint estimation of a 21-cm signal with an insufficiently accurate
foreground and ionosphere model.

(ii)) A moderate-amplitude 21-cm signal (A = 150 mK), with a signal

amplitude consistent with expectations under standard cosmological
assumptions regarding cooling of the hydrogen gas during the Dark
Ages and a background radiation temperature during CD dominated
by the CMB.

>iii) A high-amplitude 21-cm signal (A = 500 mK), consistent with the

best-fit recovered in B18 and explainable in a physically motivated
manner with additional cooling of the hydrogen gas beyond that due
to adiabatic expansion and/or an additional radio background raising
the total radio background temperature in excess of the CMB.

We construct our time-dependent beam factor model, Bgacior (Vs 1),
and BFCC data, T¢orrected (Vs 1) , in the manner outlined in Section 3.2.
For our beam model, B(v, ), we use the FEKO EM simulation of
the EDGES-low blade dipole antenna with a 30 m x 30 m sawtooth
ground plane from Mahesh et al. (2021). We calculate our time-
averaged BFCC data, T.orected(V), by averaging Teorrected (Vs 1) =
Tata (Vs 1)/ Beactor (v, 1) over the simulated snapshot spectra. We add
noise to the data at a level such that the resultant noise in the BFCC
data, after time-averaging, is Gaussian and white, with an RMS
amplitude of 20 mK that is comparable to estimates of the noise in
the publicly available EDGES-low data (e.g. Singh & Subrahmanyan
2019). In all of our simulations, we assume the receiver calibration
of the data is unbiased and uncertainty free (see Murray et al. 2022
for a discussion of the impact of uncertainty and bias in the receiver
calibration parameter estimation).

Figure 1 illustrates the key astrophysical components of our sim-
ulated data sets. Our intrinsic foreground brightness temperature
distribution model, evaluated at the centre of our simulated spectral
band, T¢; (75 MHz, [, b), is shown in Figure 1a. Our model for the
foreground spectral index distribution 8(Z, b) is shown in Figure 1b.

6 Given that there are potentially correlated effects that would result from
varying both amplitudes and shape simultaneously, by taking this approach we
are able to explicitly isolate and test the effect of underlying 21-cm amplitude
on signal recovery.
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Table 1. Priors on the parameters of the global 21-cm signal model component
of the models fit in Section 5.

Parameter  Prior

A U©,1)K

) U(55,95) MHz
w U (5,30) MHz
T U (0, 20)

Figure 1c shows the output simulated time-averaged, beam factor
chromaticity corrected spectrum and Figure 1d illustrates the injec-
ted 21-cm signals in the data in the three signal amplitude regimes
we consider.

4 DATA MODELS & LIKELIHOOD

We consider four classes of composite models, each assuming the
data is composed of 21-cm signal and non-21-cm signal compon-
ents and instrumental noise (Equation (4)). The non-21-cm signal
component models (i) astrophysical foreground emission following
propagation through the ionosphere, where it undergoes chromatic
absorption, (ii) ionospheric emission, and (iii) any residual instru-
mental effects in the data not perfectly correct by beam-factor-based
chromaticity correction. For brevity, we use ‘foreground component’
as a shorthand for the non-21-cm signal component going forward.

4.1 Signal model

In each case, following B18, we model the 21-cm signal component
of the data as a flattened Gaussian model (Equation (23)). We assume
priors on the amplitude, central frequency, width and flattening of
the absorption trough as listed in Table 1.

When fitting the data, we jointly estimated the 21-cm signal com-
ponent model with one of four foreground components. The first is
the BFCC model, which is the model we developed in Paper I of this
series. The second is the Intrinsic model, which is a physically motiv-
ated parametrisation of the foreground component of the sky signal
after propagation through the ionosphere. The third is the LinPhys
model, which is a linear approximation to the Intrinsic model with
uninformative priors on the parameters of the model. The fourth is
the MultLin model, which is a more general polynomial foreground
model also used as the foreground model in some recovered 21-cm
signal estimates in B18, again assuming uninformative priors on the
parameters of the model. We describe the four models in more detail
below.

4.2 BFCC foreground model

In Paper I of this series we derived the BFCC model: a flexible
closed-form model for BFCC spectrometer data. The BFCC model
explicitly accounts for and models:

o the effect of realistic spatially dependent spectral structure of fore-
ground emission,

o frequency dependent absorption of the foreground and 21-cm emis-
sion while propagating through the ionosphere,

e emission by high-temperature electrons in the ionosphere, and

o re-weighting of all components of the data, including the 21-cm
signal and noise during BFCC.
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In Paper I, the BFCC model is shown to enable unbiased recovery
of a high-amplitude simulated global 21-cm signal. For a detailed
derivation of the model, we refer the reader to that work. Here, we
quote the final form of the model:

N, pert

~ v\ Po v\
TmO (V_) 1+ Zpaln(v—)
a=1 ¢

C

(1 } (Vlc)_ﬁo) T {3

B factor (V) B factor (V)

model _
TBFCC,fg(") =

e_Tion(V)

Te

+ =" (1= Ty (25)
Bfactor (v)

The first and second terms in Equation (25) describe the spatially-
isotropic and -anisotropic subcomponents of the power-law compon-
ent of the foreground emission, respectively. The third term accounts
for the beam-factor weighted (following BEFCC) CMB temperature,
along with the spatially isotropic subcomponent of the foreground
emission where the beam-factor does not cancel during BFCC. The
fourth term represents the beam-factor weighted global 21-cm signal
temperature. The common product of the terms in square brackets,
e~ Ton () models ionospheric absorption, with the effective iono-
spheric optical depth modelled as Tjon = 7o(v/ve) 2. Finally, the
fifth term models the beam-factor weighted net emission from hot
electrons in the ionosphere.

Equation (25) has Npert + 2 foreground parameters, 2 ionospheric
parameters and Np; 21-cm model parameters. Of the foreground
model parameters, T, describes the time- and sky-averaged non-21-
cm-signal component of the sky brightness temperature at reference
frequency v¢. B describes the mean temperature spectral index of
the power law component of the foreground emission. p o describes
the fractional amplitude of the ath log-polynomial model vector for
describing spectral fluctuations about the sky-averaged spectrum of
the foreground brightness temperature field, normalised to the frac-
tional amplitude of the perturbation relative to the mean brightness
temperature at the reference frequency v.. We use Bayesian model
comparison to determine the preferred number of log-polynomial
model vectors to describe the data, Npert. The two free parameters
of the ionospheric model, 7. and 7y describe the temperature of
ionospheric electrons and the effective ionospheric optical depth at
ve, respectively. For the flattened Gaussian 21-cm absorption trough
considered in this work, Np; = 4 and the parameters of the model
are the amplitude, A, central frequency, vy, width, w and flattening,
7, of the absorption trough (see Equation (23)).

Of the above parameters, one can define physical priors for T, 80,
T and iy, based on existing observations (see Paper I and references
therein for details). The p, parameters correspond to the temperat-
ures of individual perturbation spectral model vectors at reference
frequency v¢ = 75 MHz. The fraction of the antenna temperature de-
scribed by these terms is expected to be small relative to Tmo. In Paper
1, it was found that limiting individual perturbation model vectors to
10% absolute fractional perturbations provided sufficient flexibility
to accurately model simulated foreground-only BFCC data, without
adding a significant degree of superfluous flexibility. We adopt the
same range here.

Following Paper I, we incorporate this information when fitting
Equation (25) to the simulated data in Section 5, in a conservative
manner, using broad physical priors on the parameters of the model
as listed in Table 2.
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Figure 1. Astrophysical components of our simulated data sets. Figure 1a: Our intrinsic foreground brightness temperature distribution model, evaluated at
the centre of our simulated spectral band, Ti, (75 MHz, I, b). Figure 1b: The spatially-dependent foreground spectral index distribution B(I, b) used when
constructing simulated observational data. Figure 1c: Simulated time-averaged, beam factor chromaticity corrected spectrum resulting from time-averaging
simulated BFCC EDGES low-band data over 120 simulated snapshot spectra derived at 6 minute intervals in the LST range 0 < LST < 12 h, matching the
LST window of the publicly available EDGES low-band data. Figure 1d: Input 21-cm signal, in the simulated BFCC data, in the three signal amplitude regimes
analysed in Section 5.

4.3 Intrinsic foreground model e by = Tmye~Ton(") s the (attenuated) mean amplitude of the fore-

. . L - . round power-law emission at the reference frequency v..
A detailed description and derivation of the Intrinsic sky model is g P d y e

given in Paper 1. Here, we quote the final form of the model: * b1 =25 o, with fo ~ 2.5 the power-law spectral index of the

radio foreground emission, in the 50 < v < 190 MHz band, when

2.5+by+by log(vi) e _ the Galactic Centre is i'n Fhe sky (e.g. Mozdzen et al. 2017, 2019),
TEE?:SIE fg(V) ~ bo (l) c e—lg(;) +hy (l) ) and b represents a deviation from this value.
’ Ve Ve e by = o—é /2, where (T/% is the variance of the spectral index across the
(26) sky. This term encodes the amount of foreground spectral curvature
In this construction, b; with i € [0,--- ,4] are foreground and generated by averaging over the spatially dependent spectral index
ionospheric parameters to be determined in the fit of the model to distribution visible to the instrument.

the data and they acquire direct interpretations in terms of physical ~ ® b3 = 7 gives the ionospheric opacity at v (with frequency scaling
properties of the foreground sky and the ionosphere in Equation (25) as [v/ve] ™).
as follows (see Paper I, Appendix E for details). o by =T, with T, as the electron temperature.
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Table 2. Priors on the parameters of the foreground and ionospheric models defined in Section 4 and fit in Section 5.

Model Parameter ~ Model component Prior
BFCC Ting foreground U (1000, 6000) K
Bo foreground U(2.0,3.0)
Pa foreground U(-0.1,0.1)
T ionosphere U (100, 800) K
k) ionosphere U(0.005, 0.025)
Intrinsic by foreground U (1000, 6000) K
b foreground U(-0.5,0.5)
by foreground U(0,0.2)
b3 ionosphere U(0.005, 0.025)
by ionosphere U(0.5,20.0) K
LinPhys  ao foreground + ionosphere U (1000, 6000) K
ap..q foreground + ionosphere U (—10%, 10%)
MultLin ¢y foreground + ionosphere U (1000, 6000) K
ci foreground + ionosphere U (—10%, 10%)

The priors we use when fitting Equation (26) are listed in Table 2.
They are set to be equivalent to the priors on Ty, B0, Te and Tjo, in
the BFCC model.

4.4 LinPhys foreground model

Assuming b; < 1 with i € [1,2,3], the linearisation of Equa-
tion (26), over these parameters, will accurately approximate the full
non-linear model. Performing this linearisation yields the polyno-
mial foreground model used for recovery of the 21-cm signal in B18
(their Equation 1),

-2.5 -2.5
v v v
Tn.wdel,v =ag|— +a;|— log|— |+
LmPhys( ) 0 Ve 1 Ve g Ve

,\ 25 v\ 12 v\ 43 v\ 2
a2 o ()] san () rai(Z) e

Ve c

A more detailed discussion of the linearisation of Equation (26)
can be found in Hills et al. (2018, hereafter H18). In brief, this lin-
earisation is performed by Taylor expanding Equation (26) about the
point b; = 0 with i € [1,2, 3] and retaining terms up to second order
in these parameters. The resulting linearised model is a polynomial
in v with coeflicients a;, which are related to the coeflicients of the
non-linear Intrinsic model, b;, and thus the physical parameters of
the BFCC model, Equation (25), as follows:

ap = bo — Te_Tion(V) ,

ay = bObl = (2.5 —ﬁO)Te_Ti"“(V) s

Te~Tn (") [(2.5 - By)* + 5]
3 s

(28)

ay = bo(b3/2+by) =

a3 = —bgobz = —To’fe_TiO“(V) s
ay =by =Ty .

From Equation (28), it can be seen that for Equation (27) to provide
a physical model for the emission components it describes, it is
necessary that a; with i € [0,2,4] are strictly positive and a3 is
strictly negative. These constraints were not imposed when fitting
the EDGES-low data in B18. As such, the component of the data fit
using Equation (27) was not limited to astrophysical and ionospheric
effects. The increased flexibility of Equation (27) in the absence of
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physical priors increases the level of correlation between the nominal-
foreground and 21-cm components of the model; however, it has
the benefit that the LinPhys has some additional flexibility to model
systematics such as those expected to arise from imperfect correction
of the data for antenna chromaticity (Paper I)”.

The fact that the maximum likelihood parameters of this nominal-
foreground component of the sky model, recovered when jointly
fitting it with a flattened Gaussian 21-cm model in B18, do not
respect the physicality constraints given above (see e.g. Hills et al.
2018) indicates that these parameters are indeed being used, in part,
to model systematic structures in the data in the fits presented in
B18. However, given that the LinPhys model is not explicitly tailored
to fitting the non-intrinsic sky structure remaining after BFCC, it is
unclear, a priori, whether this additional flexibility is sufficient to
model such systematics. This will be tested in Section 5, where we
will fit realistic simulated EDGES low-band data with Equation (27)
using the broad priors listed in Table 2.

4.5 MultLin foreground model

For a number of 21-cm signal recovery tests, in place of Equa-
tion (27), B18 use a more general polynomial model (their Equation
2). This model has the form,

N-1

model _ n-2.5
TMultLin(V) - Z Cnv .
n=0

(29)

Here, the exponent —2.5 is chosen for the same reason as in the
Intrinsic model: to enable more accurate modelling of the domin-
ant synchrotron component of the foreground emission. Additional
terms aim to model higher order spectral structure in the foreground
emission and can also partially capture some instrumental effects,
such as additional spectral structure from chromatic beams or small
errors in calibration (B18).

7 Receiver calibration error has also been identified as a possible source of
systematic structure (e.g. Bowman et al. 2018b; Murray et al. 2022); however,
we leave more detailed investigation of this possibility to future work.
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Table 3. BaNTER model validation results. Bayes factors between M;. and
M g, as models for the validation data, where i runs over the models defined
in Section 4. A positive ln(BCVF ) indicates that the composite model, M., is
preferred over the foreground model, Mg, for the foreground-only validation
data, D, and the model has failed the BaNTER null test. The reverse is true
when In(8BY;, ) is negative.

3 4 ) 6 7 8 9 10
N

Figure 2. Bayes factors (B;max) of model M; relative to the highest-evidence
model M, for the foreground-only validation data set D. The parameter
count N denotes the number of terms in the model component with a priori
unknown complexity (see main text). In the flexible-complexity BFCC and
MultLin parametrisations, models that include a 21-cm signal are connected
by solid lines, and those without a 21-cm signal are connected by dotted
lines. In both these and the fixed-complexity Intrinsic and LinPhys models,
the presence or absence of a 21-cm signal is also indicated by large and small
symbols, respectively (see legend). Models with maximum total evidence in
the BFCC and MultLin classes are marked by vertical dashed lines in blue
and pink, respectively.

5 RESULTS

Table Al of Appendix A summarises the 21-cm signal detection
and parameter inference for the four models — BFCC, Intrinsic, Lin-
Phys, and MultLin — across three simulated 21-cm signal amplitude
scenarios (null test, moderate amplitude, and high amplitude). We
describe the results in detail below.

5.1 BaNTER validation results
5.1.1 Null test

Figure 2 shows the Bayes factors (8;max) between model M; and
Max for the validation data generated as described in Section 3.3.
Here, i runs over all models in M, we perform BFBMC over models
including (solid lines and/or large symbols) and excluding (dotted
lines and/or small symbols) a 21-cm signal component, and the val-
idation data contains simulated observations of foreground emission
and noise, corresponding to a scenario where no observable 21-cm
signal exists within the observation band of interest. Such a situation

cFg

Model In( B(\:,Fg ) Pass/Fail Comment

BFCC (N =3) 203.3 Fail Spurious signal detection

BFCC (N =4) 4.7 Fail Spurious signal detection

BFCC (N =5) -3.0 Pass

BFCC (N =6) 2.4 Pass

BFCC (N =17) -2.3 Pass

BFCC (N =8) 2.1 Pass

BFCC (N =9) 24 Pass

BFCC (N =10) -3.0 Pass

MultLin (N = 3) 8396.4 Fail Spurious signal detection

MultLin (N =4) 769.3 Fail Spurious signal detection

MultLin (N =5) 40.6 Fail Spurious signal detection

MultLin (N =6) -0.8 Pass

MultLin (N =7) -1.5 Pass

MultLin (N = 8) -1.6 Pass

MultLin (N =9) -1.9 Pass

MultLin (N =10) -2.6 Pass

LinPhys (N =5) 1.9 Fail Moderate preference for M. over
M g, but below the spurious
signal detection threshold

Intrinsic (N = 3) 134 Fail Spurious signal detection

could arise, for instance, if the first stars had not yet formed during the
redshift interval corresponding to the frequency range of the data8.

Following Paper I, we plot the Bayes factor as a function of N, the
number of parameters associated with the component of the model
whose complexity is a priori unknown. In models that incorporate
a foreground component designed to describe a combination of ef-
fects that cannot be physically separated (the LinPhys and MultLin
models), N corresponds to the complexity of this component. In
models where the foreground can be explicitly decomposed into
physically motivated ionospheric and astrophysical subcomponents
(the Intrinsic and BFCC models), with only the complexity of the
astrophysical foreground subcomponent being a priori unknown, N
refers to the complexity of the latter subcomponent. Mm,x is the
model with the highest Bayesian evidence for the data, which we
find to be the BFCC model with N = 5 terms and no 21-cm signal
component.

Table 3 lists the corresponding values of ln(B:Fg), the Bayes
factors between M. and M, iFg as models for the validation data, D+.
For positive ln(BCVFg), M is preferred over M. Since Sy is the
only signal component present in Dy, a preference for M;. indicates
inaccuracy of M;pg and any detection of S in the validation data
is necessarily spurious.

5.1.2 Spurious signal detection and bias predictions with
unvalidated models

Using the composite model validation criteria defined in Sec-
tion 2.2.3, we find that the Intrinsic model, LinPhys model, and
variants of the BFCC with N < 5, as well as variants of the MultLin
model with N < 6 foreground terms, exhibit evidence in favour of

8 z= 2L _ 1, with vp; =~ 1420.4 MHz.

Yobs
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including a spurious 21-cm component when fitting the non-21-cm
simulated validation data. These models thus fail the null test.

It follows from this result that, if these models were used to analyse
an equivalent data set containing a significant 21-cm signal, they
would fit a combination of the true 21-cm signal and the systematics
that caused them to fail BaNTER validation. As a result, these models
would produce biased estimates of the 21-cm signal. The extent of
this bias depends on the degree to which the sum of the true 21-cm
signal and the systematics are fittable with the 21-cm model. This, in
turn, depends on the level of systematics in the data, the amplitude
and shape of the true 21-cm signal, and the flexibility of the 21-cm
model.

In Table 3, we note that most models failing the BaNTER null
test do so with sufficiently large ln(BCVFg) values to yield spurious
signal detections in a foreground-only data set. The exception is the
LinPhys (N = 5) model, which fails the BANTER null test with only a
moderate preference for M;c over M;pg, but below the spurious signal
detection threshold (ln(Bé’Fg) = 3) defined in Section 2.2.3. This
suggests that we should expect this model to yield biased inferences
of the 21-cm signal, but with the level of that bias being lower than
for the other models that fail the BANTER null test.

5.1.3 BaNTER validation results as binary model priors

Based on the BaNTER null test results, we judge the Intrinsic and
LinPhys models, as well as variants of the BFCC with N < 5 and
variants of the MultLin model with N < 6 foreground terms as inad-
equate for reliably recovering unbiased estimates of the 21-cm signal.
To confirm this conclusion, we perform two model comparison ana-
lyses in Sections 5.2 and 5.3:

(1) Bayesian model comparison with uninformative model priors: An
unvalidated model comparison analysis is conducted, where the null
testis not applied, and all models are treated as equally likely a priori.

(i) BaNTER-validated posterior-odds-based Bayesian model compar-

ison: In this case, models that fail the BANTER null test are assigned
negligible prior odds of yielding unbiased 21-cm signal estimates
and are excluded from M. We denote the resulting validated subset
as My. Models in My are treated as equally likely a priori and are
weighted by their Bayesian evidence as models for the observational
data a posteriori.

5.2 Moderate amplitude 21-cm signal
5.2.1 Bayesian model comparison with uninformative model priors

In Figure 3 (left), we present the Bayes factors (In(8;max )) comparing
models M; to the highest-evidence model, Mpax, for the data set
Teorrected- Here, Teorrected cOrresponds to the moderate-amplitude
21-cm signal scenario with A = 150 mK, i runs over all models in
the set M (i.e. including both the models that pass and those that
fail BaNTER validation), and My is the BFCC composite model
with N = 4.

We find that a subset of models — including the Intrinsic composite
model and BFCC composite models with N = 3 and N = 5-10 —
describe the data comparably well to the highest-evidence model
(N = 4), with no strong Bayesian evidence favouring one over the
others. Relative to this subset, the remaining models are decisively
disfavoured (In(8) > 5 when comparing any model in the high-
evidence subset to models outside it; see Table Al).

Among the high-evidence models, the Intrinsic model and BFCC
models with N = 3 and 4 are the highest-evidence candidates, with
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the Intrinsic model and BFCC model with N = 3 being only weakly
disfavoured relative to Mpyax. All three models strongly support the
inclusion of a 21-cm component (In(B.gg) > 3.0).

The remaining models in the preferred subset are moderately dis-
favoured relative to Mpy,x. Two of them provide strong evidence for
a 21-cm detection, while the others show no detection.

The LinPhys and MultLin models are decisively disfavoured by
the Bayesian evidence. The only model in the LinPhys class and the
highest-evidence models in the MultLin class (MultLin N = 5 and 6)
yield detections of the 21-cm signal. The remaining MultLin models
show a mix of detections and non-detections.

In general, weaker detections or non-detections are more probable
in higher-complexity foreground models, as their greater flexibility
allows them to fit both the foregrounds and a significant fraction
of the 21-cm signal simultaneously. Consequently, the difference in
Bayesian evidence between models with and without a 21-cm signal
decreases, eventually falling below the detection threshold.

5.2.2 BaNTER-validated posterior-odds-based model comparison

In Figure 3 (right), we present the posterior odds (In(R;max); c.f.
Section 5.1.3 for our binary prior odds) comparing models M; to the
highest posterior odds model, Mpax,v, for the moderate amplitude
21-cm signal data set. The highest posterior odds model for this data
set is the BFCC composite model with N = 5 foreground terms. We
treat the prior odds of models that failed the BaNTER null test as
negligible, excluding them from the analysis. Consequently, selecting
the highest posterior odds model in M corresponds to selecting the
highest evidence model in the validated subset, M.

The validated posterior-odds-based model comparison shows that
the BFCC composite models with N = 6—10 describe the data com-
parably well to My, v, With no strong preference for one model over
the others (Rimax < 3). The remaining models in My, outside this
subset, are decisively disfavoured.

Among the highest posterior odds models, the BFCC composite
models with N = 5 and 6 have the greatest evidence as models
for the data. Both yield detections of the 21-cm signal (In(B.gg) >
3.0). The higher complexity BFCC models are weakly to moderately
disfavoured relative to Mmax,v and do not detect the 21-cm signal.

MultLin is the other model class that passes BANTER validation;
however, these models are decisively disfavoured by BFBMC relative
to the BFCC models. None of the validated MultLin models detect
the 21-cm signal in the moderate amplitude 21-cm signal data.

When comparing the conclusions drawn from the BaNTER-
validated Bayesian model comparison and the Bayesian model com-
parison with uninformative priors, we observe the following differ-
ences in preferred models:

(i) Unvalidated workflow: The Intrinsic model and BFCC models with

N = 3 and 4 are the highest-evidence models. All three of these mod-
els provide strong support for the inclusion of a 21-cm component
(In(Bcgg) > 3.0).

(ii) BaNTER-validated workflow: The three highest-evidence models

from the unvalidated workflow fail the BaNTER null test and are
thus excluded from the validated model set. The BFCC models with
N =5 and 6 are the highest posterior odds models for the moderate
amplitude 21-cm signal data. Both of these models provide strong
support for the detection of the 21-cm signal (In(Bcgg) > 3.0).
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Figure 3. Results of the Bayesian comparison of models for simulated data incorporating a moderate amplitude 21-cm signal (A = 150 mK). Left: Bayes factors
(Bimax) comparing model M; to the maximum evidence model, Myax. Here, i runs over all models in the set M, which includes both the models that pass and
those that fail BaANTER validation). Right: Posterior odds (R;max) of model M; over the validated model M ,x, v. Here, Max and Myax, v represent the models
with the highest Bayesian evidence and posterior odds, respectively. Symbols and solid and dashed lines have the same meanings as in Figure 2. The subset of
models that are present in the left panel but are absent in the right represent the set of models that failed the BaNTER null test. The number of foreground terms
with the highest evidence (left) and highest posterior odds (right) for these models are indicated by blue and pink vertical, dashed lines, respectively.

5.2.3 21-cm signal estimates

Having identified the preferred model using Bayes factors and pos-
terior odds, we now examine whether these preferences align with the
ground truth, as determined by the consistency of the recovered para-
meter posteriors with the true input parameters of the 21-cm signal
in the data. Figure 4 illustrates the fit results for all composite models
in M that exhibit strong evidence for a 21-cm signal detection. For
each model, the figure shows the posterior PDs of: (i) the residuals
obtained by fitting the data using only the foreground component of
the model, (ii) the residuals obtained by fitting the data using the full
model, and (iii) the recovered 21-cm signal derived from fitting the
data with the full model.

The first seven subplots (Figures 4a to 4d and 4g to 4i) show results
for models that failed the BaNTER validation. While the majority
of these models achieve reasonable fits to the data (evidenced by
the relative consistency between the full model residuals and the
expected noise level in the data; see Figures 4c to 4d and 4g to 4i,
middle panels), they nevertheless yield substantial (Figures 4d, 4h
and 4i) to very substantial (Figures 4a to 4c and 4g) biases in their
recovered 21-cm signals (amplitudes, location or shape parameters
inconsistent with the underlying parameters of the 21-cm signal in
the data at 95% credibility; see Table A1).

Additionally, models that most severely failed the BaNTER null
test — the MultLin model with N = 3 and 4, and the BFCC model with
N = 3 (see Table 3) — also exhibit the most biased 21-cm signal recov-
ery. Furthermore, the MultLin model with N = 3 and 4 provides poor

fits to the data, even with biased 21-cm signal modelling absorbing
some structure due to foreground systematics.

In contrast, barring biased recovery of the flatness parameter, 7,
the 21-cm signal recovered with the LinPhys model, which failed the
BaNTER null test by the smallest margin, shows 21-cm parameter
estimates that are consistent with the underlying 21-cm signal in the
data at 95% credibility.

By comparison, models that passed the BaNTER validation and
detected the 21-cm signal yield fully unbiased recovery of the 21-cm
signal in the data (Figures 4e and 4f and Table A1), with all 95%
credibility HPDI parameter estimates consistent with the true signal
parameters (Table Al).

Comparing the consistency of the recovered 21-cm signals (rep-
resented by the contours in the bottom panels of each subfigure) with
the true 21-cm signal data (indicated by the dashed black lines) in
Figure 4 yields the ground truth efficacy of our models (also see
Table Al). By comparing this true efficacy to the expected efficacy
based on the BaNTER-validated Bayesian model comparison and
the Bayesian model comparison with uninformative priors, we draw
the following conclusions regarding these two model comparison
methodologies:

(1) Unvalidated workflow: The three highest-evidence models (the In-

trinsic model and BFCC models with N = 3 and 4), as determined by
the BFBMC analysis, yield biased estimates of the underlying 21-cm
signal in the data. This bias demonstrates that comparison of the full
set of models considered in the analysis, as judged by BFBMC, is
insufficient to identify models that yield unbiased recovery of the
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Figure 4. Signal recovery plots for models detecting a 21-cm signal in simulated data containing a moderate amplitude signal (A = 150 mK). Each subplot
shows posterior probability densities of foreground-only residuals (top), full-model residuals (middle), and recovered 21-cm signal (bottom). Dotted lines in
the top and middle panels indicate the noise level; the dashed black line shows the true input signal. Models are arranged by increasing Bayesian evidence
(lowest evidence in top-left, highest in bottom-right). Background colours distinguish BaNTER validation results: red backgrounds indicate failed validation and
blue backgrounds indicate passed validation. We highlight models using bold for highest evidence models (those with In(B;max) > —3) and italic for highest
BaNTER-validated posterior odds models (those with In(Rimax) = —3). Models meeting both criteria appear in bold italic. Subfigure captions indicate the
model type and foreground complexity (V).

MNRAS 000, 1-25 (2021)



21-cm signal. This conclusion is particularly driven by the inclusion
of the Intrinsic model and the BFCC models with N = 3 or 4 in
the set of models under consideration (see Appendix B1 for details).
This result implies that the comparison of models in the unvalidated
model set for the moderate amplitude 21-cm signal data constitutes
a category Il model comparison problem for which the conclusions
drawn from BFBMC alone are not robust.

(i1) BaNTER-validated workflow: All models shown to yield biased

estimates of the 21-cm signal in Figure 4 were correctly identified
and excluded from the validated model set by the BaNTER null test.
The highest posterior odds models with 21-cm signal detections in
the BaNTER-validated posterior-odds-based analysis are correctly
identified as the BFCC models with N = 5 and 6. These models are
found to be the only ones that yield unbiased estimates of the 21-cm
signal in the data in Figure 4.

The excellent agreement between the expected performance of the
models, based on the results of BaNTER validation in Section 5.1,
and the validity of the recovered 21-cm signal estimates demonstrates
the necessity and efficacy of the BaNTER-validated posterior-odds-
based analysis in the context of the moderate amplitude 21-cm signal
scenario.

5.3 High amplitude 21-cm signal
5.3.1 Bayesian model comparison with uninformative model priors

In Figure 5 (left), we show the Bayes factors for the high-amplitude
21-cm signal scenario (A = 500 mK), comparing each model M;
to the highest-evidence model, Mmax, for T.orrected- As in the un-
validated moderate-amplitude 21-cm signal analysis, i runs over all
models in the set M. Here, we find that My, is the BFCC composite
model with N = 5.

In contrast to the moderate-amplitude 21-cm signal scenario, all
composite models in M show strong support for the inclusion of a
21-cm signal component in the high-amplitude case (In(B.gg) = 3.0;
see Table Al). Additionally, the subset of highest-evidence models
for the high-amplitude data set is smaller. Specifically, similar to
the moderate-amplitude regime, the BFCC composite models with
N =4 and 5 remain comparably probable, with no strong Bayesian
evidence favouring one over the other (In(B;max) < 3). However, sev-
eral models that were in the highest-evidence subset for the moderate-
amplitude case are now absent. These include the Intrinsic composite
model and the BFCC composite models with N = 3 and 6 to 10.

The decrease in In(B;pax) for the BEFCC composite models with
N = 6 to 10 can be attributed to the Occam penalty associated with
their increased complexity (see Section 2.1.2), combined with the
minimal improvement in their ability to fit the high-amplitude data
relative to Mmax (see Figures 6k, 6m to 6p and 6r, middle panels).

In contrast, the decrease in In(B;max) of the BFCC composite
model with N = 3 and of the Intrinsic model is driven by their
poorer performance in fitting the high-amplitude 21-cm signal data
set. The most significant difference in Bayes factor between the two
data sets is observed for the BFCC composite model with N =
3, which transitions from being in the highest-evidence subset for
the moderate-amplitude 21-cm signal data set to being decisively
disfavoured for the high-amplitude 21-cm signal data. Specifically,
we find that for the high-amplitude signal data, In(B;max) decreases
by ~ 17 (see Table A1), corresponding to odds in favour this model
relative to Myax of worse than 1 : 107.

To understand this difference, recall that the BFCC composite
model with N = 3 failed the BaNTER null test in Section 5.1. This
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failure indicates that when this model is used to fit a data set con-
taining a non-zero 21-cm signal, the 21-cm component necessarily
fits the combined contribution of both the 21-cm signal and the fore-
ground systematics. In the moderate-amplitude regime, while the
foreground model imperfectly describes the foregrounds, it also cap-
tures a significant fraction of the 21-cm signal. This behaviour allows
a biased fit of the 21-cm model component to absorb residual sys-
tematics, leading to a relatively better fit to the data in aggregate.
In contrast, in the high-amplitude regime, a smaller fraction of the
21-cm signal is described by the foreground model. As a result, the
parameters of the 21-cm model are more strongly constrained by
the remaining 21-cm component, reducing its flexibility to absorb
residual foreground systematics.

It follows from this explanation that one should expect the re-
duction in Bayes factor to be accompanied by a decrease in the
accuracy of the BFCC composite model with N = 3 in the high-
amplitude 21-cm signal regime relative to the moderate-amplitude
case. To quantify this decrease, we use the model accuracy statistic
introduced in S25 (see Appendix C). Indeed, we find that this ex-
pectation holds: specifically, in the moderate-amplitude regime, we
obtain Qg g99(A) =~ 2, which satisfies the S25 accuracy condition
(Q0.999(1) > 0). However, in the high-amplitude case, this value
drops to Q¢.999(1) = —17, implying that the fit residuals are incon-
sistent with the expected noise distribution in the data and are thus
contaminated by residual systematics.

The same reasoning applies to the Intrinsic model, which also
failed the BaANTER null testin Section 5.1. Here, we observe a similar
but less pronounced decrease in model accuracy when transitioning
from the moderate- to high-amplitude 21-cm signal data sets.

5.3.2 BaNTER-validated posterior-odds-based model comparison

In Figure 5 (right), we show the posterior odds (In(R;max)), com-
paring models M; to the highest posterior odds model, Mmax,v, for
the high-amplitude 21-cm signal data set. The highest posterior odds
model in this case is the BFCC composite model with N = 5 fore-
ground terms, which coincides with the highest Bayesian evidence
model identified in Section 5.3.1. As in the moderate-amplitude re-
gime, models that failed the BANTER null test are assigned negligible
prior odds and thus excluded from the analysis. The validated subset,
M, contains only the remaining models.

The remaining BFCC composite models in My, are strongly dis-
favoured, while the remaining MultLin models are decisively dis-
favoured. Within the MultLin class, the N = 6 and 7 foreground
complexity composite models have the highest posterior odds, with
the remaining MultLin models strongly to decisively disfavoured
relative to these two models.

Comparing the conclusions drawn from the BaNTER-validated
posterior odds and the Bayesian model comparison with uninform-
ative model priors, in the high amplitude 21-cm signal regime one
finds the following similarities and differences in preferred models:

(1) Unvalidated workflow: The BFCC composite models with N = 4

and 5 are the highest-evidence models.

(i) BaNTER-validated workflow: BFECC composite models with N = 4

fails the BaNTER null test and thus is excluded from the validated
model set. The set of the highest posterior odds models for the high
amplitude 21-cm signal data contains only the BFCC models with
N =5.
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Figure 5. As in Figure 3 but for the Bayesian comparison of models for simulated data incorporating a high amplitude 21-cm signal model (A = 500 mK).

5.3.3 21-cm signal estimates

Having established the preferred models for the data set containing
the high-amplitude 21-cm signal using Bayes factors and posterior
odds, we now examine whether the recovered parameter posteriors
align with these conclusions.

Figure 6 illustrates the fit results for all composite models in M
that exhibit strong evidence for a 21-cm signal detection. For the high-
amplitude 21-cm signal data set, M includes all models considered.
For each model, the figure shows the posterior PDs of the foreground
(top panels) and of the composite model (middle panels) fit residuals,
and the 21-cm signal component of the composite model fit (bottom
panels).

Figures 6a, 6b, 6g, 6i, 6j, 61 and 6q show results for models that
failed BaNTER validation. As in the moderate-amplitude 21-cm sig-
nal scenario, we find that while all but two of the failed models
achieve good fits to the full data — evidenced by the consistency
between full model residuals and the expected noise level in Fig-
ures 6g, 6j, 61 and 6q — they all result in biased recovery of the
amplitude, location or shape parameters of the underlying 21-cm
signal at 95% credibility (see Table Al for details).

Additionally, mirroring our findings in the moderate-amplitude
scenario, the models that most severely failed the BaNTER null test
(MultLin models with N = 3 and 4 and the BFCC model with
N = 3; c.f. Table 3) also yield the most biased 21-cm signal recovery.
Conversely, the LinPhys model, which failed the BaNTER null test
by the smallest margin, also yields the least biased 21-cm signal
parameter estimates of the failed models in the high-amplitude 21-
cm signal scenario, with only the central frequency of the recovered
signal being inconsistent with the underlying 21-cm signal in the data
at 95% credibility.

By comparison, all models that passed BaNTER validation yield
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unbiased recovery of the 21-cm signal in the data (see Figures 6¢
to 6f, 6h, 6k, 6m to 6p and 6r and Table A1), with all 95% credibility
HPDI parameter estimates consistent with the true signal parameters
(Table Al).

As in Section 5.3.3, by comparing the consistency of the recovered
21-cm signals in Figure 6 with the true 21-cm signal data, one can
derive the ground truth efficacy of our models for the high amplitude
data set (also see Table Al). By comparing this true efficacy to the
expected efficacy based on the BaNTER-validated Bayesian model
comparison and the Bayesian model comparison with uninformative
priors, we draw the following conclusions regarding these two model
comparison methodologies in this regime:

(1) Unvalidated workflow: The subset of highest-evidence models

(In(Bimax) < 3) for the high-amplitude 21-cm signal data set con-
tains the BFCC composite models with N = 4 and 5. Within this
subset, only the BFCC composite model with N =5 yields unbiased
estimates of the underlying 21-cm signal, while the BFCC composite
model with N = 4 results in biased recovery. Thus, Bayesian model
comparison with uninformative priors (BFBMC alone) remains in-
sufficient to uniquely identify models that yield unbiased recovery
of the 21-cm signal. This result implies that, as in the moderate-
amplitude scenario, model comparison in the unvalidated workflow
corresponds to a category II model comparison problem (see Ap-
pendix B2). However, the degree of bias in the recovered 21-cm
signal estimates is reduced relative to the moderate-amplitude scen-
ario: whereas three-quarters of models yielded biased recovery in
the moderate case, this fraction decreases to one-half in the high-
amplitude regime.

(ii) BaNTER-validated workflow: All models that yielded biased es-

timates of the 21-cm signal in Figure 6 were correctly identified a
priori and excluded from the validated model set by the BaNTER



null test. The highest posterior odds model in the BANTER-validated
posterior-odds-based analysis is the BFCC composite model with
N =5, which yields unbiased estimates of the 21-cm signal. Ad-
ditionally, all remaining models that passed BaNTER validation are
found to yield unbiased recovery of the 21-cm signal, albeit generally
with lower precision.

The excellent agreement between the expected performance of
models, based on the null-test-based Bayesian validation analysis in
Section 5.1, and the validity of the recovered 21-cm signal estimates
further demonstrates the value of BANTER-validated posterior-odds-
based analysis, even in the high-amplitude 21-cm signal scenario.
However, the more moderate differences in preferred models between
the BaNTER-validated and unvalidated BFBMC workflows indicate
that, while the high-amplitude data modelling problem remains a cat-
egory Il model comparison problem, BEFBMC provides more reliable
inferences in this regime than in the moderate-amplitude scenario.

6 DISCUSSION
6.1 Model efficacy

The primary goal of global 21-cm signal experiments is to obtain
unbiased inferences about the redshifted 21-cm signal in the data.
This can be subdivided into two distinct but related sub-goals: (i) the
recovery of unbiased estimates of the 21-cm signal when it is present
in the data, and (ii) the avoidance of spuriously detecting a 21-cm
signal if none is present.

Our results in Section 5 demonstrate broad agreement in the mod-
els that best achieve sub-goal (i) in the moderate- and high-amplitude
21-cm signal regimes. Specifically, we find that signal detections
using the BFCC composite models with N > 5 and the MultLin
composite models with N > 6 yield unbiased parameter inferences,
with 95% credibility HPDIs consistent with the parameters of the
underlying 21-cm signals in the data. In contrast, the Intrinsic and
LinPhys composite models, as well as lower-complexity BFCC and
MultLin models, produce biased parameter inferences.

A similar distinction holds for models that best achieve sub-goal
(ii) in our null-21-cm signal validation dataset. The only difference
is that while the LinPhys composite model is preferred over the
foreground model for foreground-only validation data, it is not suffi-
ciently preferred for us to consider it a spurious detection of the 21-cm
signal in the data (In(Bcgg) < 3). As such, it satisfies sub-goal (ii)
despite failing sub-goal (i).

In a lower-noise observation than considered here, the LinPhys
composite model may yield spurious 21-cm signal detection in the
null-amplitude regime, failing both sub-goals (i) and (ii). Neverthe-
less, the fact that LinPhys only fails sub-goal (i) here indicates that
the LinPhys foreground model provides only a mildly insufficient
description at the 20 mK RMS noise level considered in this work.
Therefore, it should be expected to cause only moderate bias in 21-
cm signal recovery with that model. This expectation was confirmed
by the results in Sections 5.2 and 5.3.

Comparing the BFCC composite models with N > 5 to the
MultLin composite models with N > 6, we find that while both
satisfy sub-goals (i) and (ii), the BFCC models provide more precise
parameter inferences. This result suggests the following hierarchy of
model efficacy, from most to least effective:

(1) BFCC composite models with N > 5: These models avoid spurious
detection of a 21-cm signal in the null-amplitude regime and yield
unbiased and relatively precise estimates of the 21-cm signal in both
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the moderate- and high-amplitude regimes. These are the only mod-
els considered in this work that meet both the model accuracy and
constraining power requirements for unbiased recovery of the 21-cm
signal in the moderate-amplitude regime.

(i) MultLin composite models with N > 6: These models avoid spuri-

ous detection of a 21-cm signal when none is present. In the high-
amplitude regime, they have sufficient constraining power to recover
unbiased 21-cm signal estimates. However, they yield unbiased yet
less precise estimates compared to the BFCC composite models.
Nevertheless, they remain viable for global 21-cm cosmology and
serve as a consistency check for the more stringent results obtained
with BFCC composite models.

(iii) The LinPhys composite model: This model avoids spurious de-

tection of a 21-cm signal when none is present, but yields biased
estimates of the 21-cm signal in the moderate- and high-amplitude
21-cm signal regimes considered here. As such, this model is not
recommended.

(iv) The Intrinsic composite model, BFCC models with N < 4, and

MultLin models with N < 5: These models result in the spurious
detection of a 21-cm signal when none is present and produce biased
estimates of the 21-cm signal when one is present. They are therefore
unsuitable for global 21-cm signal analysis.

6.2 Validated Bayesian model comparison

Our comparison in Section 5 of the ground truth results to the conclu-
sions drawn from BaNTER-validated Bayesian model comparison
and Bayesian model comparison with uninformative model priors
demonstrates the necessity of the former and insufficiency of the lat-
ter for deriving reliable inferences regarding the 21-cm signal in the
null-, moderate-, and high-amplitude regimes.

Specifically, we find that Bayesian model comparison with un-
informative model priors fails to uniquely identify the models that
yield unbiased estimates of the 21-cm signal in the data across all
amplitude regimes. In the null-amplitude regime, two-thirds of the
highest-evidence models yield spurious detections of the 21-cm sig-
nal. In the moderate-amplitude regime, three-quarters of the highest-
evidence models produce biased 21-cm signal recovery. This fraction
improves in the high-amplitude regime, dropping to one-half of the
highest-evidence models yielding biased recovery.

In contrast, the BANTER null test effectively identifies and elimin-
ates models that produce poor foreground model fits and/or spurious
detections in the null-amplitude regime and biased estimates in both
moderate- and high-amplitude regimes. Furthermore, the BANTER-
validated Bayesian model comparison framework assigns the highest
posterior odds to the BFCC composite models that yield both accur-
ate and precise estimates of the underlying 21-cm signal in the data.
Finally, in both signal amplitude regimes, the remaining validated
models used for 21-cm signal detection are also found to yield un-
biased recovery of the underlying signal parameters, albeit generally
with reduced precision compared to the highest posterior odds mod-
els.

6.2.1 Accounting for imperfectly simulated data

The results of the BaNTER-validated Bayesian model comparison
framework applied to the simulated EDGES low-band datasets con-
sidered here are highly promising. However, their effectiveness when
applied to observational data depends on the accuracy of the simu-
lated data used in model validation. If systematic effects present in
real observations are absent from simulations and have amplitudes

MNRAS 000, 1-25 (2021)



18

Sims et al.

(a) MultLin, N = 3, FV

(b) MultLin, N = 4, FV

(c) MultLin, N = 10, PV

AT (mK)

AT (mK)

T21 (MK)
°

T21 (MK)

\ U
-500 Nt
50 60 70 80 90 100
v (MHz)

AT (mK)

T (mK)

60

70 80
v (MHz)

90

100

T (mK) AT (mK)

T21 (MK)

rt30 rT30 rt30
200
< < <
E - E L £ I
~ = =~
< < <
r2o0 r2o0 r2o0
< < <
E . E : E I
~ =~ =
g < <
lo lo lo
— 07 ~ - — —
& AN /7 & &
1S \ / S \ S
= I N —’, = AN 4 =
K =500 y\ T o s o
\ i \
50 60 70 80 90 100 70 80 90 100 50 60 70 80 90 100
v (MHz) v (MHz) v (MHz)
(d) MultLin, N =9, PV (e) MultLin, N = 8, PV (f) MultLin, N = 7, PV
rT30 rT30 rT30
200
< < <
E A E of L € L
= = / ~
< < <
—-200
r2o0 r2o0 r2o0
200
< < -
E I E I E I
~ =~ =
< <
lo lo lo
— 07 — 01 — [0,
< < <
E E 3
(& =500 (N =500 (N =500
50 60 70 80 90 100 50 60 70 80 90 100 50 60 70 80 90 100
v (MHz) v (MHz) v (MHz)
(g) MultLin, N =5, FV (h) MultLin, N = 6, PV (i) LinPhys, N = 5, FV

0,
—-500
50 60 70 80 90 100
v (MHz)
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significant relative to the noise level, certain models that should
fail BaNTER validation in an ideal case may instead pass (see Ap-
pendix D for a discussion of possible sources). Such models could
then lead to spurious inferences in subsequent data analysis if they
also provide an accurate description of the observational data while
containing biased component models.

In such a scenario, by eliminating a subset of models that, while
accurately describing the observational data, contain biased compon-
ents, BANTER validation still enhances the robustness of conclusions
compared to those drawn from BFBMC alone. However, ultimately,
the goal of validation is to ensure that the simulation is sufficiently
accurate to identify all models incapable of unbiased 21-cm signal
recovery. To strengthen confidence in this criterion, BANTER model
validation can be supplemented with additional simulation validation
tests to evaluate the accuracy of the validation dataset. S25 propose
assessing consistency between the modelling complexity required
to describe simulated observations and that needed for observational
data as a potential approach. We plan to explore this approach further
in future work.

6.2.2 Extending BaNTER validation to other 21-cm cosmology
models

In this paper, we have demonstrated the value of BaNTER validation
in facilitating robust identification of models that can both accur-
ately describe realistic simulated BFCC EDGES-low spectrometer
data and recover unbiased estimates of the 21-cm signal from them.
However, we anticipate the framework to be similarly useful for com-
paring alternative composite models across other datasets.

Analysing time-averaged spectrometer data with alternative mod-
els provides an additional potential use case in global 21-cm cosmo-
logy. For example, Anstey et al. (2021) present a forward modelling
analysis of spectrometer data, showing that the model enables reliable
21-cm signal detection in data from a relatively smooth conical log
spiral antenna but not in data from a more chromatic conical sinuous
antenna. By identifying models prone to biased recovery a priori,
incorporating BaNTER validation into such analyses could yield
benefits similar to those demonstrated for the BFCC and MultLin
models in this work.

Fitting time-dependent or multi-instrument data enables one to
leverage both angular and spectral information to distinguish between
the foregrounds and the 21-cm signal (e.g. Liu et al. 2013; Tauscher
et al. 2020b,a; Hibbard et al. 2023; Saxena et al. 2023; Anstey et al.
2023), reducing the correlation between anisotropic foregrounds and
isotropic 21-cm model components. However, accurately describing
the data typically necessitates increased model complexity. Addi-
tionally, for a single instrument, the extent of correlation reduction
between the foreground and 21-cm signal model components de-
pends on the LST range and time-binning of the data’.

In cases where time-dependent data modelling weakens but does
not entirely eliminate the correlation between the 21-cm signal and
other model components, BANTER validation can be anticipated to
similarly improve model selection, thereby facilitating unbiased 21-
cm signal recovery.

Finally, BaNTER validation is not limited to composite spectro-
meter models. For example, the methodology demonstrated here

9 Correlation between the foreground and 21-cm signal model components
is more likely when jointly modelling data over a shorter LST interval or
using coarser time-binning.
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could also be applied to validating Bayesian forward modelling ap-
proaches for interferometric 21-cm datasets, which incorporate fore-
grounds, 21-cm signal fluctuations about the mean, and potential
systematics (e.g. Furlanetto et al. 2006). Potential applications in-
clude validating whether forward models possess sufficient accuracy
for unbiased signal recovery amid foregrounds and instrumental sys-
tematics, particularly in interferometric calibration (e.g. Byrne et al.
2021; Sims et al. 2022a,b), instrumental modelling (e.g. Wilensky
et al. 2024), and 21-cm signal recovery (e.g. Sims et al. 2016, 2019;
Sims & Pober 2019; Burba et al. 2023, 2024). Additionally, joint ana-
lyses combining spectrometer, interferometric, and other data types
could further benefit from BaNTER validation, enhancing model se-
lection and ensuring unbiased 21-cm signal recovery across diverse
observational scenarios.

7 SUMMARY & CONCLUSIONS

In Paper I of this series, we derived the physically motivated flexible-
complexity BFCC model for spectrometer data post-processed to sup-
press instrumentally induced spectral structure using beam-factor-
based chromaticity correction (e.g. B18). We demonstrated that the
BFCC model, with complexity calibrated using BFBMC, enables
unbiased recovery of a flattened Gaussian 21-cm signal consistent
with the one reported by B18 from simulated data.

In this work, we applied the BFCC model to the analysis of
realistic simulations of chromaticity-corrected EDGES-low spectro-
meter datasets, considering a broader range of scenarios regarding
the 21-cm signal in the data. We analysed data containing 21-cm
signals in three amplitude regimes: null (A = 0 mK), moderate
(A = 150 mK), and high (A = 500 mK). Additionally, we extended
the Bayesian comparison of the BFCC model to three competing
model classes previously considered in the literature: the Intrinsic
model used in Hills et al. (2018), as well as the LinPhys model and
an extended set of MultLin models applied to 21-cm signal estimation
from EDGES data in B18.

By comparing 21-cm parameter posteriors recovered with com-
peting models to the true 21-cm signal parameters in the data, we
identify a broad agreement in models that enable unbiased parameter
inferences. Our analysis reveals that only BFCC composite models
with N > 5 and MultLin composite models with N > 6 avoid spuri-
ous detections and yield unbiased 21-cm signal estimates, with BFCC
models providing superior precision. The complete model efficacy
hierarchy is presented in Section 6.1.

Additionally, we investigated the extent to which Bayesian model
comparison can identify the models that yield unbiased 21-cm signal
estimates in the data. To address challenges arising from systematics
that bias the 21-cm signal model fit while still maintaining an accurate
fit to the data in aggregate, we employed the BaNTER validation
framework introduced in S25. This framework uses a Bayesian null
test to identify composite models that are likely to yield biased 21-cm
signal estimates. We used BaNTER validation results to derive model
priors and conduct a posterior-odds-based Bayesian comparison of
the models.

By comparing models that enable unbiased inferences of the un-
derlying 21-cm signal to conclusions drawn from BaNTER-validated
posterior-odds-based model comparison and BFBMC alone, we
found that the latter fails to reliably identify models yielding un-
biased estimates across all amplitude regimes. Using BFBMC alone,
we found that 2/3, 3/4, and 1/2 of the highest-evidence models led
to spurious 21-cm signal detections or biased estimates in the null,
moderate, and high amplitude regimes, respectively.



In contrast, BaNTER validation successfully identified and elim-
inated models that yield spurious detections in the null-amplitude
regime and biased estimates in the moderate- and high-amplitude
regimes. Furthermore, the BaNTER-validated posterior-odds-based
model comparison framework assigns the highest posterior odds to
BFCC composite models that simultaneously provide accurate and
precise estimates of the underlying 21-cm signal in the simulated
data. Finally, in both signal amplitude regimes, the remaining val-
idated models used to detect the 21-cm signal also yield unbiased
recovery of the underlying signal parameters (though generally with
reduced precision compared to the highest posterior odds models).

We conclude that the BFCC model holds excellent promise for
unbiased inference of the global 21-cm signal from spectrometer
data, and we plan to test it on EDGES observations in future work.
Moreover, Bayesian validation and model comparison methods, such
as those discussed here, provide a powerful framework for identifying
optimal models for global 21-cm data sets, ensuring robust signal
recovery, and, ultimately, enabling detailed astrophysical insights
into the radiative background and structure formation at Cosmic
Dawn.
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APPENDIX A: 21-CM SIGNAL HPD PARAMETER
ESTIMATES SUMMARY

We summarise in Table A1 our 21-cm signal detection and parameter
inference results described in Section 5.

APPENDIX B: MODEL COMPARISON CATEGORISATION

In Section 5.1, we found that several models failed the BaNTER null
test. These include the Intrinsic model, the LinPhys model, BFCC
variants with N = 3 or 4, and MultLin variants with N = 3, 4, or 5
foreground terms.

Composite models that fail BANTER validation cannot be con-
sidered credible for 21-cm cosmology, as they are prone to yield-
ing spurious detections or biased estimates of the 21-cm signal (if
present). However, the extent to which their inclusion in the set of
considered models biases conclusions from BFBMC-alone depends
on their Bayesian evidence relative to accurate and predictive com-
posite models with accurate and predictive components (see S25 for
details).

When the Bayesian evidence of failed models is substantially lower
than that of the highest-evidence models, BFBMC naturally down-
weights these erroneous models. Consequently, their inclusion does
not meaningfully influence Bayesian model-averaged conclusions or
the selection of the most probable model. This corresponds to the
category I model comparison scenario defined in S25.

In contrast, the inclusion of models that fail the BaNTER null
test yet have Bayesian evidence comparable to that of the highest-
evidence models is more problematic. Because these models pass
Bayesian selection criteria despite failing BaNTER validation, they
introduce systematic biases that cannot be corrected by BFBMC
alone. In the absence of model validation, their inclusion in the
model set risks significantly biasing conclusions. This corresponds
to the category Il model comparison scenario defined in S25.

B1 Moderate amplitude 21-cm signal

In the moderate amplitude analysis in Section 5.2, we determined
that, among the models that detect the 21-cm signal, only the BFCC
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composite models with N = 5 and 6 yield unbiased recovery of the
21-cm signal parameters (see Figure 4). From Figure 3 (or Table 3),
it can be seen that, among the models that failed BaNTER validation,
only the LinPhys model and BFCC models with N = 3 and 4 have
Bayesian evidence comparable to that of the highest posterior odds
model, the BFCC model with N = 5.

Thus, including the LinPhys model and MultLin models with
N = 3,4, or 5 — all of which are decisively disfavoured relative
to the BFCC model with N = 5 — does not significantly bias BFBMC
conclusions. If only this subset of models is included alongside ac-
curate and predictive composite models with accurate and predictive
components in M, Bayesian comparison of these models would
constitute a category I model comparison, for which BFBMC is
sufficient.

In contrast, the inclusion of the Intrinsic model or the BFCC
model with N = 4 or 5 in the set of models under consideration
means that, in the absence of model validation, BFBMC applied
to the moderate amplitude data will yield biased 21-cm inferences.
This represents a category I model comparison problem, for which
BaNTER validation is essential for unbiased recovery of the 21-cm
signal.

B2 High amplitude 21-cm signal

In the high amplitude analysis in Section 5.3, we determined that
the BFCC composite models with N > 5 and MultLin models with
N > 6 yield unbiased recovery of the 21-cm signal parameters (see
Figure 6). From Figure 5, it can be seen that, among the models
that failed BaNTER validation (see Table 3), only the BFCC model
with N = 4 has Bayesian evidence comparable to that of the highest
posterior odds model, the BFCC model with N = 5.

Thus, including the BFCC model with N = 3, the Intrinsic model,
the LinPhys model, and MultLin models with N = 3, 4, or 5 — all
of which are strongly or decisively disfavoured relative to the BFCC
model with N = 5 — does not significantly bias BFBMC conclusions.
If only this subset of models were included alongside accurately
predictive composite models in M, Bayesian comparison of these
models would constitute a category I model comparison, for which
BFBMC is sufficient.

In contrast, the inclusion of the BFCC model with N = 4 in the
set of models under consideration means that, in the absence of
model validation, BFBMC applied to the high amplitude data will
yield biased 21-cm inferences. This represents a category II model
comparison problem, for which BaNTER validation is essential for
unbiased recovery of the 21-cm signal.

APPENDIX C: S25 ACCURACY CONDITION

Following the model-validated Bayesian inference workflow intro-
duced in S25 we apply the Bayesian null-test described in Sec-
tion 2.2.3 a priori and use the results in combination with the relative
evidences of the models to derive the posterior odds we ascribe to the
models using Equation (2). This approach yields a validated set of
models that, of the set of models under consideration, are a posteriori
most probable for recovering unbiased estimates of the global 21-cm
signal in the data.

However, edge-case possibility remains that despite being the most
probable models of those under consideration these models never-
theless provide insufficiently accurate descriptions of the data to be
credible models for unbiased recovery of the component signals. To
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Table A1l. Summary of 21-cm signal detection and parameter inference for the four models (BFCC, Intrinsic, LinPhys and MultLin) and three simulated 21-cm
signal amplitude scenarios (21-cm signal null test, moderate amplitude 21-cm signal and high amplitude 21-cm signal). Models in which a 21-cm signal is
detected are labelled with a checkmark. Detection of a signal in the 21-cm signal null test scenario corresponds to a failure of the validation null test (see
Section 5.1.1 for details). In both other scenarios, detection of a 21-cm signal is positive, while its non-detection is associated with significant correlation between
the 21-cm signal and the non-21-cm component of the data model. For each data set, we list the Bayes factor (In( B;max )) between model M; and M,«. Here, i
runs over the models in M and My, is the highest Bayesian evidence model for the data. Additionally, we list the posterior odds (R;max) between models M fi
and Max,v, where j runs over the models in My and M,y v is the a posteriori most probable BaNTER validated model. We treat models which fail model
validation as having negligible probability of facilitating unbiased estimates of the 21-cm signal a priori; these models have log-posterior-odds marked with
a’-". For those models with detected signals (In(Bcrg) > 3.0), HPD parameter estimates and uncertainties corresponding to the 95% HPDI of the posterior
distributions are quoted. The input parameters of the flattened Gaussian absorption troughs in the moderate- and high-amplitude signal models are vy = 78 MHz,
w = 19 MHz and 7 = 8, in both cases, and A = 0.15 and 0.5 K in the moderate- and high-amplitude signal cases, respectively. The names of models that
simultaneously detect the 21-cm signal and recover signal parameters consistent with the underlying signal in the data are highlighted in italic. These are found
to exclusively be elements of the BANTER validated model set M, (identifiable by their finite R;max values).

Scenario Model 21-cmsignal  In(Bimax)  In(Rimax) A (K) vo (MHz) w (MHz) T Consistent

detection

Foreground-only - - - -

validation data

BFCC (N =3) v -10.9 - 0.36*%%  76.90*1:53  30.0010%%  2.13*1-6% X
BFCC (N =4) v 0.0 - 0.08*0%% 8525440 24.95%0°  3.03*043 X
BFCC (N =5) -1.6 0.0
BFCC (N =6) 3.2 -17
BFCC (N =17) 34 -1.8
BFCC (N =38) -4.5 -2.9
BFCC (N =9) -4.0 2.4
BFCC (N = 10) -4.6 -3.0
Intrinsic (N = 3) v -0.0 - 0.1170:12 8519432 26.76*3%%  2.42+04 1 X
LinPhys (N =5) -16.0 -
MultLin (N =3) v -4342.7 - 1007090 78.09*0:13 2539102 18.44+136
MultLin (N =4) v -113.7 - 1.007000  67.92%942 21.10%0:3  1.81%0:30
MultLin (N =5) v -29.2 - 1.00*09%  95.00*%09,  25.36*3 1% 0.0079%
MultLin (N =6) 234 21.8
MultLin (N =7) -25.9 -24.3
MultLin (N =8) -29.8 282
MultLin (N =9) -33.1 316
MultLin (N = 10) -36.0 -34.4
Moderate amplitude 0.15 78.0 19.0 8.0
21-cm signal
BFCC (N =3) v -0.3 - 0.65%0:12  76.74*093  30.0010:%0  0.72*0:5 X
BFCC (N =4) v -0.0 - 0.2770M  79.30+-3  20.127635  0.81753% X
BFCC (N =5) v -1.2 0.0 0.10%%:1%  78.25*13  17.851%.87  0.61%}1 %3 v
BFCC (N =6) v 2.7 -5 0.11%70:49  77.75717%,  18.65%515%  9.90% 10 v
BFCC (N =17) 2.6 -14
BFCC (N =38) 2.6 -14
BFCC (N =9) 27 -1.5
BFCC (N = 10) -1.9 -0.8
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Table A1 - continued

Scenario Model 21-cmsignal  In(Bimax)  In(Rimax) A (K) vo (MHz) w (MHz) T Consistent
detection

Moderate amplitude 0.15 78.0 19.0 8.0

21-cm signal
Intrinsic (N = 3) v 0.0 - 0.31%4:32  79.41#510 22.46%73  0.007300 X
LinPhys (N = 5) v -16.0 - 0.23*0:34  79.25¢1:32 2130870 0.0077%% X
MultLin (N =3) v -5120.2 - 1007000 78.14%0:12  24.37+0.23 19 72028 X
MultLin (N =4) v -108.7 - 100599 69.210:45 22391032 2194030 X
MultLin (N =5) v -20.9 - 0.117943  59.457202 956+ 21 16.777323, X
MultLin (N =6) 21.0 -19.8
MultLin (N =7) 238 -22.6
MultLin (N =8) 282 -27.0
MultLin (N =9) 311 -29.9
MultLin (N = 10) -33.1 -31.9

High amplitude 05 78.0 19.0 8.0

21-cm signal
BECC (N =3) v -17.3 - 0.82+0:06  77.86*025  20.11%972 2447099 X
BFCC (N =4) v -1.9 - 0.547006  78.401020  19.35*0.  6.22%3% X
BFCC (N =5) v 0.0 0.0 0.487005  78.237020  19.06%06L  8.14*%18 v
BFCC (N =6) v -3.0 -3.0 0.45*0:08 7821402 19.03*962  9.73+833 v
BFCC (N =1) v 3.7 3.7 0.417923  78.15*034  18.95*0.02  13.83*1 % v
BFCC (N =38) v -3.0 -3.0 0.4070-16  77.977042  18.75*085  13.277%13 v
BFCC (N =9) v 3.2 3.2 0.40%5:18  78.03*0:3  19.03*047  7.59%%S v
BFCC (N = 10) v/ 3.6 3.6 0.43*0-18 77.947043  18.90%0,68  11.8473-41 v
Intrinsic (N =3) v -3.6 - 0.587006  78.50*025  19.49*070  5.14%3:1L X
LinPhys (N = 5) v -17.4 - 0.52+0:07  78.34+021 19324062 596543 X
MultLin (N =3) v -7418.5 - 1007000 78.2070:12 22.57+0:22  20.00*0-%0 X
MultLin (N =4) v -179.0 - 1.00*%9  71.98*¢42  22.70*08  2.43+047 X
MultLin (N =5) v -25.1 - 0.277004  78.257 041 18.85*080  20.0070%) X
MultLin (N = 6) v 227 227 0.437030  78.257037  19.10%07%  4.33*13.05 v
MultLin (N =7) v -25.7 -25.7 0.41%0:44  78.10%0:42  19.02*072  4.83*15,\7 v
MuliLin (N = 8) v -30.0 -30.0 0.427046  78.08*04¢  18.92*0.82 4 59+1350 v
MultLin (N =9) v 323 323 0.407046  78.097047  19.1170.67  4.74+15.26 v
MultLin (N = 10) v -34.7 -34.7 0.37+4%:3%  78.12*%4L 19374977 18.38+1 52, v

ensure that this is not the case, we test each of these models using
the absolute accuracy condition introduced in S25.

Given the dataset D, the noise covariance matrix N, and composite
model M., we define the median a posteriori likelihood of M;. as
In(L;). Writing the data likelihood £(r;c(®;.)) as a function of
the residual vector, r;c(®;c) = [D — M;.(09;.)] (see Section 2.3),
the likelihood distribution for an ideal model (one that describes
the data perfectly, excluding noise) can be sampled by substituting
ric(0;c) in the likelihood expression with noise realizations drawn
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from the covariance matrix N. We denote this ideal model likelihood
distribution as L,oise- We define the model’s accuracy parameter as
the logarithm of the ratio of the median a posteriori likelihood of
M, to the ideal model likelihood distribution:

L
=1 .
! (Lnoise )

When the distribution of A; is consistent with zero, this implies L

(ChH



is comparable to typical values of L, 4ise and M;. is accurate. In
contrast, when most of the probability mass of A; is negative, M is
comparably inaccurate.

Qualitatively, we define an accurate composite model as one with
a fit likelihood that is credibly drawn from the ideal model likelihood
distribution. Quantitatively, we classify M. as accurate if it satisfies
the following generalised accuracy condition:

Q‘Ilhrcshold (/ll) >0. (C2)

Here, Q(.) is the quantile (or inverse cumulative distribution) func-
tion, defined such that for a random variable X, Q4 (X) is the value
of x such that P(X < x) = g. The closer Greshold 1S to unity, the
further £; can fall towards the lower end of the L,0je distribution
while still being classified as an element of C. In this work, we use
Gthreshold = 0.999 meaning that M;. will fail the accuracy condi-
tion if its median posterior likelihood is exceeded by 99.9% of the
probability mass of the L;yise distribution.

APPENDIX D: SOURCES OF POSSIBLE UNMODELLED
SYSTEMATICS

Examples of potential sources of systematic effects that in this work
are approximated as being sufficiently small to be neglected without
impacting 21-cm signal inference include:

e uncertainties in the antenna beam and foreground models (e.g. Liu
et al. 2013; Tauscher et al. 2018, 2020b; Rapetti et al. 2020; Hibbard
et al. 2020; Anstey et al. 2021; Bassett et al. 2021; Shen et al. 2021;
Mabhesh et al. 2021; Rogers et al. 2022; Spinelli et al. 2022; Hibbard
et al. 2023; Pagano et al. 2024; Pattison et al. 2024; Monsalve et al.
2024; Agrawal et al. 2024), which may impact the effectiveness of
instrumental chromaticity correction;

e receiver calibration uncertainties (e.g. Monsalve et al. 2017a; Roque
et al. 2021; Tauscher et al. 2021; Murray et al. 2022; Kirkham et al.
2024; Roque et al. 2025);

o antenna!® and/or ground11 loss correction uncertainties (e.g. Mon-
salve et al. 2017b, 2024);

e spectral chromaticity induced by ionospheric effects beyond those
captured by a static, isotropic, time-averaged ionospheric model (e.g.
Vedantham et al. 2014; Datta et al. 2016; Shen et al. 2021);

o polarised foreground emission (e.g. Spinelli et al. 2019).

This paper has been typeset from a TEX/IATgX file prepared by the author.

10 We include here resistive losses in antenna panels, the balun, and connect-
ors.

11 Resulting from partial absorption by the ground of radio emission visible
to the antenna due to its non-zero beam directivity below the horizon.
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