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Abstract
Understanding shower habits is critical for developing effective residential water conservation and
efficiency strategies. Previous research has focused on single-family homes, but less is known about
shower behavior among college-aged individuals in university student housing. This study
examines the shower habits of students at the University of Illinois Urbana-Champaign, comparing
them with U.S. single-family residential households regarding shower duration, time-of-day, and
day-of-week. Using Conditional Tabular Generative Adversarial Networks to generate synthetic
data, we address sample size limitations and confirm the validity of our results. Our findings reveal
that student housing showers tend to be longer in duration and more variable compared to showers
in single-family residences. Unlike the predictable routines seen in single-family homes, student
housing inhabitants display less consistent showering habits, with different time-of-day patterns
that challenge typical conservation incentives. Major shower events also occur more frequently
before weekends in student housing. These insights emphasize the need for tailored water
conservation strategies in semi-permanent residential settings. We recommend further exploration
of targeted interventions, including educational campaigns, real-time feedback mechanisms, and
gamification, to foster sustainable shower habits among university students. This study contributes
to sustainable water management by providing actionable strategies within a sociotechnical
systems lens for enhancing water conservation in semi-permanent residential contexts.

1. Introduction

Showers are part of a daily routine for nearly two-thirds of all United States residents [1]. The typical shower
spans roughly 8minutes, using an average of 16 gallons of water per event [2]. For many, skipping a single
shower can cause social and physical discomfort and disrupt the day-to-day routine [3]. Beyond the need to
uphold cultural appearance and cleanliness standards, additional contributors for daily shower usage include
the associated energetic boost, hygienic needs from exercise, and availability of showering fixtures in an
individual’s environment [3]. Shower water consumption is not trivial when considered against the backdrop
of escalating water scarcity [4], highlighting the urgent need for targeted conservation and efficiency efforts
within a sociotechnical interface.

Extensive water conservation and efficiency research has been undertaken since the 1990s, following
water distribution systems shifting towards demand-oriented delivery rather than base supply cost recovery
via general taxation [5]. The 2016 Residential End Uses of Water study (REU) provided an updated analysis
of 17 000 shower events in single-family residential homes across the United States and Canada [6]. The REU
study findings illuminate the patterns of shower usage within residential households, offering a benchmark
for comparison to shower water use in other residential settings, such as university residence halls.

Approximately one-third of all shower events in the United States occur in the morning, aligning with the
typical weekday work schedule [1]. These users exhibit a consistent pattern of routine behavior that is often
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limited by external professional or academic commitments. In such contexts, advocating for water and
energy conservation through showers specifically poses challenges, as many users perceive morning showers
as indispensable, rendering habit alteration difficult [7, 8]. In conservation contexts, consumers often
identify major sustainable habit changes for others to implement while justifying maintaining their
individual usage as essential [9].

Conversely, full-time students in U.S. colleges and universities are not bound by the same rigid schedule
as their full-time working counterparts [10]. Their academic obligations vary, with class schedules and
commitments dispersed throughout the day. Additionally, students partake in a range of after-school
assignments and activities that extend beyond standard professional working hours [11]. These differences
could noticeably affect college-aged individuals’ water and energy consumption patterns. Comparing student
shower water use to that of single-family residential households can highlight unique behaviors and peak
usage time, identifying specific opportunities for water-saving interventions.

While extensive conservation strategies have been successfully applied within traditional residential
settings [12, 13], a notable gap exists in applying these strategies to semi-permanent living environments
such as university residence halls [14, 15]. These environments, representing long-term but impermanent
housing, can foster unique adjustments to daily routines, rendering standard conservation measures less
effective. The transient nature of residence hall or dormitory living, coupled with the distinct social and
academic rhythms of college or university life, suggests that students might prioritize convenience and
immediacy over conservation, especially in the absence of direct utility costs. This divergence in living
conditions and motivational drivers necessitates a tailored approach to promoting water conservation in
university residence halls. Understanding the multifaceted relationship between individual behaviors,
environmental policies, and conservation outcomes is crucial for devising effective strategies [16]. Targeted
interventions can be valuable, combining behavioral science and technological innovations to promote water
and energy conservation across different residential settings [17] . By comparing shower usage behaviors and
patterns between students residing in university housing and the general population of U.S. single-family
homes, we aim to illuminate these unique behaviors as valuable context for informing effective conservation
interventions with university students.

Traditional methods of data collection face limitations in capturing the full spectrum of showering
behaviors within residence halls [18], including challenges related to sample size and the representativeness
of collected data. In this study, we employ synthetic data generation techniques to overcome these obstacles
[19, 20]. By simulating shower events based on observed patterns, synthetic data offer a means to extend our
understanding beyond the constraints of direct measurement, providing a robust foundation for analyzing
shower usage among university students.

We implemented end-use water metering of shower events within a sample of the student population
housed at the University of Illinois Urbana-Champaign (UIUC). Through our study, we specifically answer
the following questions:

(i) What are the behaviors and patterns of shower usage among residents of university student housing?
(ii) How can synthetic data expand data availability while accurately representing student shower behavior

dynamics?
(iii) How do student shower behaviors and patterns compare with those observed in U.S. single-family

residential settings?

Through this exploration, we contribute to the broader discourse on water conservation, offering insights
into the specific context of university student housing. Targeted conservation strategies can lower
operational costs associated with water usage and maintenance, thereby allowing universities to allocate
resources more efficiently [21]. This research reveals nuanced opportunities for promoting water
conservation in semi-permanent living environments via measured and synthetic data in comparison to U.S.
residential homes.

2. Background

2.1. Residential water conservation and efficiency
Freshwater scarcity has emerged as a critical catalyst for conservation efforts. In the U.S. Midwest,
traditionally abundant in water, droughts and management challenges have significantly strained water
resources [22]. This shift, coupled with urbanization, presents ongoing challenges in water distribution
management for urban planners [23]. Additionally, the public’s focus on municipal governance failures,
exemplified by the Flint, Michigan water crisis, has heightened awareness of water resource management
[24]. Water and energy challenges also motivated policy change, including limiting showerhead flow rates to
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a maximum of 2.5 gallons per minute (gpm) to reduce water use [25]. The Energy Policy Act of 2005 further
extended these restrictions to other household fixtures and appliances, setting benchmarks for water and
energy efficiency while ensuring service quality [26].

These regulatory measures have tangibly reduced indoor household water consumption, with a notable
22% decrease reported between the 1999 and 2016 REU studies [2, 6]. However, despite advances in
efficiency, an average U.S. household can still lose up to 180 gallons of water per week through leaks,
defective equipment, and inefficient behavior [13, 27, 28]. Therefore, behavior change is a valuable approach
to reducing water use, with showers identified as primary consumers in residential settings [29]. As public
climate consciousness grows [30, 31], there is increasing recognition of the need for water and energy
conservation. The interplay between water and energy usage, often referred to as the energy-water nexus, is
particularly relevant in the context of hot water use, especially in showers [32, 33].

Previous studies on residential water consumption have predominantly involved voluntary participants,
often already inclined towards resource conservation [5, 34, 35]. This self-selection bias complicates the
generalizability of findings [36, 37]. While financial incentives are typically seen as primary motivators for
adopting sustainable technologies, they are less effective when marketed as the sole benefit [16]. Participants
in sustainability-focused studies acknowledge the financial benefits but express a stronger commitment to
environmental conservation [16]. This dynamic suggests a potential Hawthorne effect, where participants
modify their behavior in response to being monitored [38]. Moreover, individual political beliefs
significantly influence attitudes towards climate change and resource conservation, an important
consideration in developing public conservation programs [39].

In households not engaged in water and energy savings studies, budgetary considerations often dictate
smart resource utilization [39]. The ongoing scrutiny of consumption behaviors fosters a conscious link
between actions and financial repercussions [40]. Direct and immediate feedback on the outcomes of one’s
actions establishes a robust internal association between behavior and its consequences [41]. For instance,
participation in auto-pay billing systems, which eliminates detailed water usage data, has been associated
with a 2%–3% increase in water consumption [42].

2.2. Temporary residences
Not all water and energy consumption in the built environment takes place in permanent residential settings.
Domestic and international travel frequently necessitates stays in hotels or other temporary residences, where
different consumption patterns emerge [43]. In these settings, the typical financial feedback mechanisms of
permanent residences are absent, altering the occupant’s resource usage behavior.

In temporary accommodations like hotels, water and energy costs are typically included in the room rate,
obscuring the financial impact of excessive consumption and often leading to diminished conservation
efforts [44]. This lack of immediate feedback and/or cost implication often leads to minimal conservation
efforts by guests. However, Tiefenbeck et al [45] demonstrated the effectiveness of real-time displays in the
absence of financial motivations by installing Amphiro A1 smart shower meters in 265 rooms across six Swiss
hotels, collecting 19 596 observations. These smart shower water meters provided real-time information on
water usage, with the intervention display showing a polar bear on an iceberg that melted as water use
continued, encouraging shorter showers. This intervention led to an 11.4% reduction in water-related energy
consumption compared to the control group [45], demonstrating that conservation is feasible in
non-permanent residences without financial incentives, paving the way for further research in similar
settings.

2.3. Semi-permanent living
College and university housing accommodations present a distinct category of semi-permanent residences.
In such settings, students experience a certain level of stability in their occupancy, albeit without the typical
financial responsibilities for water and energy usage. This condition eliminates monetary incentives for
conservation, and the prolonged stay potentially leads to regularized patterns of habitual shower use [15, 46].
In our study at UIUC, students may select housing in university residence halls or private certified housing,
each with different operational models. Residence halls and private certified housing are both
UIUC-approved living accommodations for students to fulfill the first-year live-on requirement (Student
Code Part 2, Article 2; [47]), with residence halls owned and operated by University Housing and private
certified housing owned and operated by various private entities. Unlike temporary residences, which lead to
short-term deviations from typical residential water consumption [45], residence halls and private certified
housing provide students with housing for the duration of the academic year, during which usage behavior
becomes regulated [48].

The living arrangements in university residence halls vary, ranging from individual shower and bathroom
units to communal showering spaces [49]. Limited personal space and shared living arrangements introduce
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various factors that can influence student water use behaviors [50–53]. Variables such as privacy, hygiene
practices, and personal well-being can contribute to differences in showering habits [54]. Understanding the
multifaceted relationship between individual behaviors, environmental policies, and conservation outcomes
is crucial for devising effective strategies. Targeted interventions can be valuable, combining behavioral
science and technological innovations to promote water and energy conservation across different residential
settings.

Our study at UIUC reevaluates shower behaviors and water conservation within this unique living
framework, aiming to understand typical behaviors and showering habits. We compare shower habits from
semi-permanent university housing contexts with permanent single-family residential shower norms in
terms of shower duration, time-of-day, and day-of-week, providing actual (i.e. measured) and synthetic data
for university student shower events. These data provide context for water conservation recommendations in
university housing environments.

3. Methodology

3.1. End-use shower metering
Smart water metering systems include devices that record and relay fine-resolution water consumption data
in real-time or near-real-time to both utility providers and consumers, offering precise usage measurements
and the ability to detect leaks swiftly [55, 56]. In residential environments, individual water meters have been
increasingly utilized to monitor specific end-use consumption, particularly in shower fixtures, to more
accurately discern behaviors [57, 58]. Within the context of university residence halls, these meters are
indispensable for analyzing and specifying shower-related water usage from overall consumption, thus
yielding detailed insights into the showering patterns of university students.

Three primary criteria guided the selection of appropriate meters for this study. First, the chosen shower
meter had to be compatible with the standard showerhead design used in UIUC residence halls and private
certified housing, specifically the Delta 2.0 gpm single-function showerheads. Americans with Disabilities
Act-compliant hose-style showers were not included due to incompatible plumbing configurations. Second,
the meter needed to accurately measure and record the flow rate and duration of shower events,
differentiating them from possible leaks, to ensure accurate data collection. The final criterion was that the
meters must be unobtrusive to both the user and the environment, ensuring minimal interference with
regular shower usage. Effective feedback delivery is essential for linking user actions to resource consumption
without eliciting negative reactions that could impede conservation efforts [59–61]. Ambient metering
reduces the Hawthorne effect, where awareness of being observed alters behavior [60], highlighting its
importance in capturing accurate water use behaviors unobtrusively.

Off-the-shelf ambient shower water meter options that met our specific requirements are limited. The
Amphiro A1 meter, used in Tiefenbeck et al’s study [45], was ideal for feedback delivery but incompatible
with standard size U.S. plumbing fixtures. Consequently, we selected the Pani Smart Water Monitor
(figure 1), which records the start and end times of shower events and the volume of water used with a
resolution of 0.1 gallons, transmitting the data to a smartphone or tablet app. Its unobtrusive design
integrates seamlessly into the shower environments of both residence halls and private certified housing,
requiring no plumbing expertise for installation and easy maintenance. We installed 15 Pani Smart Water
Monitors across university residence halls and private certified housing.

The dataset generated by these meters includes three primary features: shower duration (minutes),
time-of-day (hourly), and day-of-week. We used these features in subsequent synthetic data generation and
analysis, keeping measured and synthetic datasets aligned.

3.2. Data collection challenges
Our selected Pani Smart Water Monitors met our study metering requirements, but also presented notable
data collection challenges. One significant challenge we encountered was the meter’s dependency on a
continuous, password-protected wireless Internet connection for data transmission. UIUC’s enterprise Wi-Fi
network, lacking a user-input password, was incompatible with the meter’s data acquisition software. Initial
calibration was conducted using a personal hotspot to overcome this connectivity challenge. The Pani meters
can store data for up to seven days, necessitating at least a brief connection to the calibrated network for data
upload before automatic erasure. This constraint required weekly visits to each installed meter in the
university residence halls and private certified housing for maintenance and reconnection to the hotspot
network. Additionally, two AA alkaline batteries power each Pani meter, introducing power management
challenges when recording several showers per day. During our study, we replaced batteries in the meters
every 8–10 days, on average, to maintain functionality.
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Figure 1. Pani Smart Water Monitor installed on a university shower fixture. (Photo credit: authors).

While these challenges with the meter’s connectivity and power were effectively managed to ensure the
reliability of the data collected, they also highlighted the potential for data variability and recording gaps in
real-world settings. We collected 285 measured shower events across three locations: 241 events from
Pennsylvania Avenue Residence Halls (Babcock and Saunders Halls; university residence halls) and 44 events
from Presby Hall (private certified housing).

3.3. Student housing context
We installed Pani Smart Water Monitors at two UIUC residence halls and one private certified housing
location. Both residence halls and private certified housing are forms of student housing but differ in
amenities and configurations. Living options vary in amenities and cost, with some units offering additional
facilities and reducing the student-to-restroom ratio from 8:1 (for typical university residence halls) to 3:1
(for typical private certified housing) [62]. Our study focused on two wings of the Pennsylvania Avenue
Residences (PAR), Babcock and Saunders Halls, which house a diverse student population. Babcock Hall’s
lower floors host a Living-Learning Community focused on race and heritage dialogues, while Saunders
Hall’s upper floors cater to students interested in international issues and cultures [63, 64]. This selection
prioritized diverse resident backgrounds in our study population. Additionally, Presby Hall was selected as a
private certified housing location for its continuous meter operation and wireless connectivity, facilitating
uninterrupted data transfer. Presby Hall also houses tenants by gender, enabling possible comparison of
co-ed and single-gender living arrangements in future studies with additional data features [65].

Babcock and Saunders Halls have identical layouts, each with 8 separate shower and toilet units per floor,
serving about 60 students for an average of 7–8 students per restroom. In contrast, Presby Hall’s layout
resembles an apartment complex, with a ratio of approximately 3 students per restroom, featuring more
privacy. Throughout the study, we installed 1–2meters in selected showers on different floors of Babcock and
Saunders Halls. In Presby Hall, we installed 2 shower meters in units in Wi-Fi proximity to each other.
Detailed schematic layouts of the student housing installations are in the Supporting Information (figure S1).

3.4. REU of water data
We analyzed shower usage data from the 2016 REU study as a benchmark for comparison to university
student housing showers. The complete REU database includes observations measured at 737 single-family
homes in selected U.S. and Canadian cities from 2012–2013 [6]. In the REU study, end uses (i.e. toilet,
shower, faucet, clothes washer, leak, bath, dishwasher, outdoors, and other) were determined using flow trace
analysis [6]. The REU flow trace analysis includes disaggregation and investigation by an analyst, with
additional oversight from an independent analyst for quality control. Consequently, we assumed the REU
data were representative of single-family residential water consumption in the United States and Canada with
no adjustments or filtering of outliers necessary. We focused our analysis specifically on the detailed water
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consumption observations collected from 17 000 shower events in single-family residential homes [6], with
features of shower event duration, water volume, flow rate, time-of-day, and day-of-week.

The REU shower dataset has an average shower duration of 7.02min, with a standard deviation of
4.79min. The REU shower observations also show typical morning and evening peak usage patterns,
reflecting structured routines commonly observed in single-family households. By utilizing the REU data as
a point of comparison, we highlight the unique behaviors of university students residing in semi-permanent
housing.

3.5. Synthetic data generation
Collecting labeled data for water end-use consumption observations is a challenging and resource-intensive
process [58, 66, 67]. This difficulty creates a significant bottleneck in the field, hindering both robust analysis
of water consumption behavior and training of models that could enhance water demand management.
Often, small sample sizes fail to adequately represent the overall population, leading to low generalizability
[68]. To address this challenge, the realistic generation of synthetic data offers a potential solution. In the
dynamic environment of university student housing, we implemented synthetic data generation methods to
strengthen our analysis. One promising approach to synthetic data generation is the use of Conditional
Tabular Generative Adversarial Networks (CTGANs) [69]. We employed CTGANs to create synthetic data to
ensure that our analysis remained robust against potential irregularities, particularly when comparing our
findings with existing studies. Generation and analysis of synthetic data also helped determine whether any
observed deviations in shower duration or water usage patterns were attributable to the unique behaviors of
university students, or simply a result of a limited dataset.

3.5.1. CTGANs and data generation
CTGANs, typically requiring large datasets for effective training, were suitable for our dataset characterized
by simplicity with three features: duration (minutes), time-of-day (hourly), and day-of-week. The
straightforward nature of the data reduces the complexity usually associated with training neural networks,
making CTGANs feasible even with our limited dataset size. This study builds upon the work of Heydari and
Stillwell [70], which demonstrated the effectiveness of CTGANs in generating synthetic data representative of
water consumption data in small datasets. We extend the methodology by including both numeric and
categorical data to focus on shower behavior patterns specific to university students and comparing these
behaviors to single-family residential households.

In CTGANs, the discriminator function is implemented as a fully connected neural network with
multiple hidden layers, enabling it to learn complex representations of the input data. The discriminator’s
weights are optimized by minimizing an adversarial loss function, including a cross-entropy term, which
drives the network to assign high scores to real data and low scores to synthetic data. For generating synthetic
tabular data with CTGANs, the input data are often represented as a matrix, with each row corresponding to
a data point and each column to a feature. This matrix can be viewed as a single-channel image, where the
rows represent the image height and the columns represent the width [69]. CTGANs have been implemented
for synthetic water end-use data generation previously [70].

For the purpose of this study, ‘synthetic residence hall data’ refers to a combination of our actual
collected data and the synthetic data generated using CTGANs, with the actual collected data referred to as
‘measured residence hall data.’ Specifically, we collected 285 shower events from residence halls and private
certified housing at UIUC and then used these data to generate 59 batches of 285 synthetic shower events,
creating a combined dataset of 17 100 shower events. This combined dataset allows for a near-equal-size
statistical comparison against the REU data, containing 17 000 shower events.

Note that although the synthetic data are based on the original dataset, they do not merely replicate the
same observations. Instead, CTGANs capture the statistical relationships and patterns present in the smaller
sample to generate additional, representative data. This approach enriches the feature space, helps mitigate
biases introduced by a small number of observations, and enables a more robust foundation for subsequent
analysis.

3.5.2. Evaluation of synthetic data
We applied a two-step verification to ensure that the CTGANs sample generation batches were representative
of the measured residence hall data. After training the model, we created batches of 285 synthetic shower
events, including time-of-day (hourly), day-of-week, and duration (minutes) of the shower events. We then
leveraged the open-source package tableEvaluator [71], a library that visually evaluates how similar a
synthesized dataset is to actual tabular data. This visual evaluation served as an initial screening step to
confirm alignment between the synthetic and measured datasets across key dimensions.
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Since the visual evaluation does not provide a quantitative assessment, batches that passed this initial
screening were labeled as synthetic class data, while the measured data were labeled as real class data. These
labeled datasets were then used to train classification models to determine whether the models could reliably
distinguish between real and synthetic data. Ideally, the classifier should perform no better than random
guessing, indicating that the synthetic data exhibits characteristics similar enough to the real data that it is
effectively indistinguishable.

We trained two classification models: a random forest classifier [72] and an XGBoost model [73]. The
random forest classifiers were configured with 100 trees and evaluated using log loss, which measures the
model’s predictive performance based on the accuracy of its probability estimates. We did not constrain the
maximum depth of the trees, allowing nodes to expand until all leaves were pure or contained fewer than two
samples. The number of features considered at each split was set to the square root of the total number of
features.

When evaluating our synthetic data generation, the dataset comprised equal parts of actual and synthetic
data, labeled accordingly. This approach ensured balanced classes and prevented bias [58]. To ensure robust
model performance, a five-fold cross-validation procedure was employed, where the entire dataset was
divided into five equal parts, with each part used as a test set once, while the remaining four parts formed the
training set. This validation allowed us to evaluate the generalization ability of the classifiers comprehensively.

We evaluated the classification models using the area under the receiver operating characteristic (ROC)
curve (AUC), which plots the true positive rate (TPR) against the false positive rate (FPR). The TPR and FPR
are defined as follows:

TPR=
TP

TP+ FN
(1)

FPR=
FP

FP+TN
(2)

where TP represents true positive values, TN represents true negative values, FP represents false positive
values, and FN represents false negative values.

The AUC-ROC curve is not based on a single threshold; instead, it provides an indication of classifier
performance over a range of varying classification thresholds. In this way, the AUC-ROC captures how well a
classifier discriminates between the classes of interest. Conveniently, the AUC-ROC can also be interpreted as
the probability that a randomly chosen member of the positive class will be correctly ranked before a
randomly chosen member of the negative class. Therefore, an AUC-ROC of 1.0 indicates perfect
discrimination between classes, while an AUC-ROC of 0.5 indicates random guessing [74].

To assess the effectiveness of our synthetic data generation, we employed the AUC-ROC as a key
quantitative metric to measure the classifier’s ability to distinguish between actual and synthetic datasets.
Specifically, we aimed to achieve an AUC-ROC value close to 0.5, which would indicate that the classifier
performs no better than random guessing, thereby suggesting that the synthetic data closely mimic the
characteristics of the measured data. During the model evaluation process, we monitored the AUC-ROC
across various models to ensure that the generated synthetic data were sufficiently similar to the actual data,
thus confirming the intended equivalence.

4. Results and discussion

4.1. Shower event data collection and generation
Shower event data were collected from Saunders and Babcock Halls in PAR from 9 December 2021, to 6 April
2022, and from Presby Hall from 14 October to 28 November 2022. Despite challenges such as intermittent
connectivity and meter issues, we successfully recorded 241 shower events at PAR and 44 at Presby Hall.
Since the ambient water metering system only collected volume, flow, and timestamp data, the UIUC
Institutional Review Board (IRB) determined that our study was not classified as human subjects research;
documentation of this IRB decision is available upon request.

Given the limited number of observations, we generated a larger synthetic dataset using CTGANs to
enable a more robust comparison with U.S. single-family REU data, which includes 17 000 shower events [6].
We generated 59 batches of 285 synthetic data points, simulating approximately 17 000 shower events. The
synthetic data creation and subsequent validation were critical to ensuring that any further comparison to
residential settings would be meaningful.
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Figure 2. Shower duration relative frequency for measured and synthetic residence hall data.

4.2. Synthetic data analyses
Visual assessment of our synthetic data showed a strong similarity between the synthetic and actual datasets,
effectively capturing the characteristics of time-of-day, day-of-week, and duration. We further validated the
synthetic data generation with a random forest classifier and an XGBoost model. Both models were evaluated
using a five-fold cross-validation procedure to ensure robustness.

We used the AUC-ROC metric to evaluate the ability of the random forest and XGBoost classifiers to
distinguish between the actual and synthetic data. The AUC-ROC values for both models ranged between
0.50 to 0.57, indicating that the classifiers performed no better than random guessing in distinguishing
between the two datasets. This outcome validates that the synthetic data are virtually indistinguishable from
the actual data. Detailed results from the tableEvaluator assessments and the AUC-ROC analyses for sample
synthetic data are provided in the SI (figures S1 and S2).

Figure 2 shows the shower duration relative frequency for both the measured and synthetic residence hall
datasets. The measured residence hall data display a high concentration of shower duration around
8–10min, and the synthetic residence hall data align closely, with a mean duration of 9.59min, a median of
8.08min, and a standard deviation of 6.45min. The measured data have a mean duration of 9.15min, a
median of 7.33min, and a standard deviation of 6.72min. This close match indicates that our synthetic data
accurately represent the actual shower durations observed in university student housing.

The event relative frequency by time-of-day for the measured and synthetic residence hall data is
illustrated in figure 3. Both datasets show similar peaks around 12:00 PM, 5:00 PM, and 10:00 PM, reflecting
the varied schedules and routines of university students. The consistency between the datasets further
validates the reliability of our synthetic data generation process. The measured data show minor deviations
in the frequency distribution but overall confirm the trend observed in the synthetic data.

Figure 4 presents the shower event relative frequency by day-of-week for the measured and synthetic
residence hall data. The patterns indicate higher shower frequencies on weekdays, with peaks on Wednesdays
and Fridays. This consistency between the measured and synthetic datasets confirms the robustness of our
synthetic data and supports further use for comparative analysis with the REU data. The relative frequencies
show that both datasets have similar distributions, with the synthetic data closely following the trend of the
measured data.

4.3. Comparative analysis of residence hall data and REU data
4.3.1. Shower duration distribution
Figure 5 shows the shower duration frequency for the synthetic residence hall and REU data. The synthetic
residence hall data exhibit a higher mean duration (9.59min) compared to the REU data (7.02min),
representing a practical difference (based on medium effect size from Cohen’s d; see SI for additional details).
The standard deviation in the synthetic residence hall data is also greater (6.45min compared to 4.79min),
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Figure 3. Shower event relative frequency by time-of-day for measured and synthetic residence hall data.

Figure 4. Shower event relative frequency by day-of-week for measured and synthetic residence hall data.

indicating a wider range of shower durations among university students. These results suggest that students’
shower habits are more variable, likely due to flexible schedules and the communal living environment, which
can influence shower duration. Our analysis also identified 28 events exceeding 16.5min, representing the
90th percentile in shower duration, which were more frequent at the end of the week, particularly on Fridays.

The shower duration distributions for the synthetic residence hall and REU data have practical
differences between the tails. The synthetic residence hall data contain more short-duration events (0–2min)
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Figure 5. Shower duration frequency for synthetic residence hall and Residential End Uses of Water (REU) data.

at a frequency higher than the REU data. These short-duration events might be attributed to quick rinses,
cleaning of the shower, or other brief activities. In addition to students’ quick showers, PAR’s building
maintenance schedule reported daily cleaning of the showers, during which short-term shower ‘events’ could
occur. Conversely, the REU data show fewer of these short events. On the other hand, the synthetic residence
hall data contain more long-duration events, indicating some students take extended showers. These tail
events highlight event variability and the need for tailored water conservation strategies in university settings.

Despite the differences at the tails of the distributions, the overall shape of the distributions between
these extremes is quite similar for both datasets. This similarity suggests that, aside from the extreme events,
shower durations in university student housing and U.S. single-family households follow comparable
distributions, with a majority of showers falling within a similar range.

4.3.2. Time-of-day patterns for shower events
The event count by time-of-day for the synthetic residence hall and REU data is depicted in figure 6. The
synthetic residence hall data show events throughout the day with moderate peaks at 12:00 PM, 5:00 PM, and
10:00 PM, reflecting the unique schedules of university students. In contrast, the REU data show more
consistent peaks in the morning (7:00–8:00 AM) and evening (7:00–8:00 PM), corresponding to typical work
and school routines.

The late-night peak in the synthetic residence hall data highlights the different lifestyle and activity
patterns of university students compared to U.S. single-family households. This late-night peak might reflect
students’ irregular schedules, late-night studying, and social activities that extend into the night. Unlike
single-family households, where shower times are more regular, university students have more flexible
routines that allow for greater variability in daily activities, including showering.

The patterns of spread-out shower event times in the residence hall data suggest that students might be
showering whenever possible, rather than at specific times of the day, as is more common in households.
This variability in shower times underscores the need for flexible and adaptive water conservation strategies
tailored to the unique habits of university students. For instance, real-time feedback mechanisms could be
implemented to remind students of water conservation practices, regardless of the time-of-day they choose
to shower.

4.3.3. Day-of-week patterns of shower events
Figure 7 illustrates the shower events by day-of-week for the synthetic residence hall and REU data. The
synthetic residence hall data indicate higher shower frequencies on Fridays, suggesting increased water usage
as students prepare for weekend activities. This trend is consistent with the observed peak on Fridays in the
measured residence hall data (see figure 4).
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Figure 6. Shower event count by time-of-day for synthetic residence hall and Residential End Uses of Water (REU) data.

Figure 7. Shower events by day-of-week for synthetic residence hall and Residential End Uses of Water (REU) data.

In contrast, the REU data show a more uniform distribution of shower events throughout the week,
corresponding to the regular schedules of single-family household residents. The synthetic residence hall
data also show a notable decrease in shower events over the weekend, potentially due to students leaving
campus or having less structured schedules on these days.

Major shower events, defined as those exceeding 16.5min (90th percentile in residence hall shower
duration), were predominantly observed on Thursdays and Fridays. This pattern aligns with the overall event
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count distribution, where the majority of shower events occur fromWednesday to Friday. These major
events could reflect students’ preparations for weekend activities and social events, further emphasizing the
peak usage periods. The SI (table S1) provides a detailed breakdown of major events by day-of-week.

5. Broader implications

5.1. Data uncertainty and limitations
Our primary data collection through shower water metering fills a notable gap in indoor water data at
specific end uses for a unique population. However, these data present uncertainties and limitations around
human behaviors and end-use data collection that can shape future research directions.

Water use during a shower event is determined by both infrastructure (i.e. showerhead flow rate) and
user behavior (i.e. duration, frequency). This intersection of humans and infrastructure constitutes a
complex sociotechnical system [75, 76], with interdependent decision-making and consumption such that
change comes from many individuals separately and collaborative social behavior [77]. Variability in shower
duration is significant, with right-skewed distributions of shower duration observed in single-family
residential households [6] and our data for university student housing (see figure 2). Specific in-shower
behaviors such as hygiene habits are not captured by end-use water metering alone. Survey data, water
diaries, and focus groups can reveal additional information about showering behaviors, but can also present
gender bias and other privacy challenges [78, 79].

One notable limitation is the duration and timing of the data collection. The observed data were
collected during periods of occupancy while classes and exams were in session, excluding breaks and holiday
periods from the analysis. While this timeline provides a focused view of showering behavior during typical
academic routines, the dataset does not cover a long enough continuous time series to evaluate potential
seasonal dynamics, such as differences in water usage between warmer and colder months. Given that
academic schedules vary across institutions, additional research across multiple universities would help
determine whether seasonal trends in student showering behaviors are consistent across different climates
and academic calendars. Future studies with extended time series data could help identify and account for
these potential seasonal variations, providing a more comprehensive understanding of the showering
behaviors of university students throughout the academic year.

Shower end-use metering presents challenges of non-intrusive continuous data collection. The Pani
Smart Water Monitors we used in this study depend on AA alkaline battery power, which is advantageous for
non-intrusive, ambient monitoring but limited for long-term, continuous data measurement and recording.
Discontinuities in data collection can miss different shower behaviors and habits, such as long-duration
events or turning off the water while soaping up, a common water conservation recommendation [78–80].
In our data processing, we consider such instances as single shower events, acknowledging uncertainty in
behaviors and habits.

Our synthetic shower data introduce opportunities for further research, with some limitations given
uncertainties in the underlying actual data collection. Based on our visual and quantitative analysis, the
synthetic residence hall data represent the primary features of the actual (i.e. measured) data well. Our
synthetic data strike a balance between adequately reflecting actual conditions and the risk of overfitting.
Consequently, the synthetic shower data are not an exact fit or replication of the actual measured data,
allowing for statistical variability.

5.2. Population specificity
The unique characteristics of college students in university housing can significantly influence water usage
behaviors. Previous studies with limited sample sizes have shown lower average water use among college
students compared to city-wide average per capita water use, likely due to limited outdoor water use among
student populations [78, 81]. In a limited sample of U.S. college students, occupants expressed opinions that
most of their residential water use was for showering [81]. Metered and self-reported water diary data
representing U.K. first-year college students showed higher water consumption on weekdays compared to
weekends and longer shower durations on average (10–12min) than the U.K. population norm (7–8min)
[78], similar to our findings for UIUC students. The nature of our population—residents in university
student housing—presents specific characteristics of semi-permanent housing that can be notably different
from permanent single-family residential housing (e.g. [6]) and impermanent (i.e. temporary) hotel housing
(e.g. [45]).

Our measured data represent selected student housing locations at one U.S. university. These data
provide useful observations of showers in student housing, but they are not representative of all universities
or student housing contexts independently or compared to U.S. single-family residences. Water use behavior
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can vary in response to different bathroom infrastructure, genders, campus culture, and other factors beyond
the scope of this study, representing areas for future work.

5.3. Promoting conservation behaviors
As demonstrated by the Tiefenbeck et al study [45] of hotels in Switzerland, effective mechanisms can create
a direct connection between consumers and the consequences of their water and energy use in temporary
housing settings, even without financial incentives. While the analysis eliminated self-selection bias, the
study still represents a specific population (i.e. hotel patrons) and might not be representative of the entire
population. Since similar conditions are present in semi-permanent housing in university residence halls and
private certified housing, promoting water conservation behaviors in these contexts requires tailored
approaches that align with student lifestyles.

Conservation opportunities could begin with targeting long-duration shower events, particularly those
exceeding the 90th percentile (16.5min). Reducing the duration of these extended shower events closer to the
population average could significantly reduce overall water usage. Additionally, time-of-day patterns, such as
peak usage in the evenings, present another opportunity for intervention, as shifting or shortening peak
showers could alleviate resource demand and infrastructure stress.

Effective strategies for promoting water conservation behaviors among university students include
education and awareness [82], social influence [83], gamification [84], and convenience [85]. Continuously
providing students with information about the environmental and financial benefits of water conservation
can affect current usage behaviors and shape future behaviors, especially in a context of financial
responsibility for water bills. Peer influence also plays a crucial role; modeling expected behaviors [79] or
encouraging students to share their conservation efforts can create a sense of social responsibility [83].

Incorporating gamification elements, such as turning water conservation into a residence hall-wide
challenge, can engage students and motivate reduced water use [86]. Providing real-time feedback and
water-efficient fixtures can further facilitate these behaviors. Understanding and leveraging personal values,
such as the convenience and comfort of having readily available water, can also motivate students to adopt
water-saving practices. These strategies can form the foundation of a possible feedback campaign to
encourage water conservation as future research.

By focusing on both long-duration events and peak time-of-day usage, conservation strategies can
address specific behaviors contributing disproportionately to water consumption. Implementing these
strategies, independently or concurrently, at varying scales depending on available resources, can enhance
the effectiveness of water conservation efforts in university student housing settings.

6. Conclusion

Through the implementation of end-use water metering of shower events among residents in
semi-permanent university student housing contexts, this study contributes to understanding water usage
behaviors in comparison to U.S. single-family residential settings. By examining student shower habits in
residence halls and private certified housing at the University of Illinois Urbana-Champaign, we demonstrate
several key findings and implications.

First, acknowledging measurement and data collection challenges, we expanded our university student
housing shower measurements through creation of synthetic residence hall data. We used CTGANs to
generate 59 batches of 285 synthetic data points, simulating approximately 17 000 shower events to align with
single-family residential shower observations. These synthetic residence hall data accurately reflected the
time-of-day, day-of-week, and duration characteristics of the measured university student housing shower
events. This synthetic data approach fills a notable gap in available water end-use data.

Second, our assessment of shower event behaviors among UIUC students revealed practical differences
compared to U.S. single-family residential settings. In typical residential households, individuals tend to
shower daily, usually in the morning with a smaller evening peak [6]. In contrast, residents of university
student housing exhibited less regular showering patterns, with longer durations (9.59min in university
student housing compared to 7.02min in single-family residences), on average, and greater standard
deviation (6.45min compared to 4.79min). This irregularity in shower habits highlights the unique
population context of university students.

Finally, the context of university student housing as a semi-permanent residence presents a unique
sociotechnical systems challenge for encouraging water conservation. The atypical behaviors and temporal
patterns of university student showers compared to single-family residential showers motivates tailored water
conservation strategies. Such targeted interventions, like education and awareness, social influence,
gamification, and convenience, could encourage water conservation via showers, even in the absence of
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financial incentives. We recommend a tailored sociotechnical systems approach for encouraging water
conservation in showers among university student populations.

In summary, this research contributes to the broader discourse on end-use water conservation by
highlighting the distinct shower water usage behaviors of university students living in semi-permanent
housing. By identifying behaviors and patterns and proposing targeted interventions, universities can
promote more sustainable water use among student populations. These strategies not only help in
conserving a vital resource but can also instill long-lasting conservation habits.
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