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Abstract
The quantification of residential water end uses is an important component of improving the sus-
tainability of urban water infrastructure. Disaggregation and classification methods based on stat-
istical learning are used in research and practice to extract meaningful insights from smart water
meter data. These insights can also reflect individual behaviors within the built environment,
enabling end-user activity detection from water consumption patterns. In this study, we present an
initial framework for classifying residential water end uses and assisting with discerning between
perceived typical and atypical water-use behavior in a permanent supportive housing context.
Classification schemes, based on fine-resolution temporal flow data, incorporated baseline activity
to inform what typical water use was for individuals while also considering general trends in spe-
cific end uses such as showers, toilet flushes, and leaks. We found that while atypical activity based
on end-use duration and frequency might fall outside the normally-distributed expected value for
a period of interest, it need not be the case for all atypical activity. Defining atypical activity based
on prescriptive guidelines might not align with normative behavior for an occupant transition-
ing into housing. Additionally, exogenous variables can affect occupant behavior regarding water
end uses and this impact should be accounted for in analytical frameworks. Our findings can spe-
cifically inform supportive services provided by stakeholders responsible for the well-being of indi-
viduals in their care via non-intrusive, privacy-respecting insights on occupant behavior.

1. Introduction

Understanding the ‘how, when, and why’ of people using water in residential settings is foundational
to improving water demand forecasting, supporting conservation policies, and managing utility infra-
structure more efficiently. Historically, residential water consumption was recorded at coarse intervals
(monthly or quarterly) via manual meter readings [1]. While useful for billing, these readings offered
little to no insight into the temporal patterns or causative behavioral underpinnings of water use. The
use of fine-resolution smart water meters [2] has pushed towards digitalized infrastructure (‘smart infra-
structure’) that enables near-continuous data collection, often at intervals ranging from one second to
5min. Demand-side management solutions that support broad water sustainability are best developed
from the bottom-up by incorporating household insights, rather than relying solely on top-down, one-
size-fits-all solutions [3].

Disaggregating water-use events is essentially a ‘blind source’ separation task [4]; one attempts to
decompose a complex signal (aggregate flow) into its constituent sources (e.g. toilet, faucet, shower)
without direct information from those sources. Fine-resolution data (e.g. sub-minute intervals) dramat-
ically improve the ability to disaggregate end uses and detect anomalies, yet pose substantial challenges
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in terms of data storage, processing, and privacy [5, 6]. One central tradeoff in smart water meter design
is the balance between resolution and use case feasibility; experimental work has demonstrated that tem-
poral resolutions of 1 to 5 s yield the highest classification accuracy for common residential end uses
[7]. Certain end uses, particularly toilets and showers, have distinctive enough signatures to be reliably
identified, whereas shorter, overlapping uses (concurrent events) such as faucets and leaks are harder to
classify at coarser resolutions [4, 5].

In this study, we analyze residential water end uses from water consumption time series data meas-
ured by a custom ally® water meter. We disaggregated the water-use time series into discrete events and
then classified into six distinct indoor end uses (shower, toilet, faucet, dishwasher, refrigerator faucet,
washing machine) with all consumptive use attributed to indoor use. Similar to Mazzoni et al [8], we
calculated consumption metrics to quantify the composition of residential water use. These end uses
were then analyzed in relationship to human behaviors to create an initial framework for detecting ‘atyp-
ical’ activities. This framework can extend to provide useful knowledge for assistive services in a perman-
ent supportive housing (PSH) context. Through this work, we answer the following research questions:

1. What aspects of water end uses can be used to ascertain behavioral information about the individuals
performing those activities? Are statistical measures (such as dispersion) a good way to discern
‘typical’ and ‘atypical’ activity?

2. What, if any, is the effect of exogenous environmental variables such as outdoor air temperature on
residents’ specific end uses? How much of the variability in water consumption from a specific end
use can be explained by some external variable?

3. What is normative behavior for individuals moving or acclimating to PSH?

We use measures of dispersion, causal inference, and primary sources (thorough semi-structured
interviews) to answer these questions. Our findings can support further environmental and social sus-
tainability outcomes through connecting residential water use and efficiency to occupant behavior and
functioning.

2. Background

An ‘end use’ is a discrete water-consuming event initiated by a user or a fixture/appliance; real-world
water consumption is not always so cleanly partitioned. Events can overlap (e.g. a faucet is left run-
ning while the dishwasher is operating), occur in rapid succession (e.g. back-to-back toilet flushes), or
present similar flow signatures (e.g. a short shower might resemble a faucet use in aggregate data). These
ambiguities present major classification challenges, especially when using non-intrusive sensing methods,
where only total household flow is captured rather than per-fixture sub-metering. Additionally, water
usage events vary significantly by household, context, and even season [8]. For example, outdoor irrig-
ation is common in suburban areas but rare in high-density urban housing or supportive housing con-
texts. Similarly, the duration and frequency of shower events might differ dramatically based on cultural
norms, health conditions, or housing design (e.g. shared vs. private bathrooms) [9–11]. The Residential
End Uses of Water Study Update—Version 2 (REU2016), the follow-on study of the original 1999 study
[12], provides detailed insights into how water is used in single-family homes across North America. The
study analyzed data from approximately 23 749 homes across 23 diverse locations in the United States
and Canada, offering a broad perspective on residential water consumption patterns [13] and found the
average indoor water use to be 138 gallons per household per day with toilets being the largest indoor
water end use, followed by faucets, showers, clothes washers, leaks, bathtubs, and dishwashers. REU2016
also highlighted a 22% decrease in average annual indoor household water use since 1999, which has
been attributed to the adoption of water-efficient fixtures and appliances [13].

2.1. Permanent Supportive Housing
PSH is a housing-first intervention designed to provide long-term, affordable housing in conjunction
with voluntary supportive services to individuals experiencing chronic homelessness and complex health
or behavioral needs. It has proven effective in reducing housing instability and improving health out-
comes, particularly for individuals with disabling conditions [14, 15]. PSH is grounded in the principle
that stable housing is foundational for recovery, well-being, and community reintegration [16]. Non-
intrusive methods are particularly attractive in PSH contexts, where privacy, cost, and resident stability
are significant concerns. Research has demonstrated that when users are presented with feedback about
their water use, especially in real time, they are more likely to adopt conservation behaviors [1, 17].
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While use of smart home technology in supportive and elder care housing has grown [18–26],
research at the intersection of residential water end uses and occupant behavior in PSH specifically
remains scarce. The unique social, infrastructural, and behavioral characteristics of PSH demand atten-
tion distinct from conventional residential housing models. PSH units are often situated in multifam-
ily apartment buildings, converted motels, or purpose-built housing complexes. These buildings may
house formerly unsheltered individuals, persons with physical or cognitive disabilities, veterans, or those
with histories of substance use or mental illness [27]. Several key factors distinguish PSH as a residential
setting:

• Intensive support needs, including healthcare coordination, case management, and assistance with
activities of daily living,

• Atypical household routines, often shaped by irregular sleep, medication regimens, or trauma-related
behaviors [28],

• Aging or retrofitted infrastructure, in which sub-metering is rare and fixture-level monitoring is often
unavailable [7, 29],

• Hybrid private-communal layouts, such as shared bathrooms or on-site laundry rooms.

These elements affect how water is accessed and used within PSH and challenge traditional assumptions
embedded in residential end-use models, presenting important considerations for infrastructure opera-
tions and environmental and social sustainability.

Occupants of PSH often exhibit behavioral routines that differ markedly from general residential
populations. These behaviors can include nocturnal activity due to insomnia, post-traumatic stress dis-
order, or substance use; atypical hygiene patterns, sometimes shaped by mental illness or trauma [30];
frequent bathing or faucet use associated with compulsive behaviors or symptom management; and
adaptive strategies, such as using the shower as a private retreat or allowing water to run for white noise
[8, 28]. Such behavioral signatures are not captured well by conventional end-use classification mod-
els, which tend to assume predictable diurnal patterns, typical household compositions, and normative
appliance use. Even in standard Dutch households, water use displayed wide variability in event timing,
frequency, and duration [8]; this variability is likely amplified in PSH contexts.

The prevailing models for disaggregating and interpreting water use rely on statistical regularities in
duration, flow rate, and frequency [6, 7]. However, the behavioral heterogeneity of PSH residents, com-
bined with infrastructural constraints, challenges these models; despite the growth of PSH as a housing
model, few studies have explored water use as a behavioral indicator within these contexts. Much of the
research to date focuses on clinical outcomes, housing retention, or cost-effectiveness [14, 31]. Other
environmental sensing work has demonstrated that dashboards providing insights on occupant comfort
(as measured from temperature, humidity) have positive impacts on well-being [23]. Effectively monit-
oring energy consumption at both building and neighborhood levels by identifying patterns, deviations,
and abnormal behaviors in energy use relative to expected conditions is a scalable approach [32].

2.2. Typical and Atypical Behavior
In water demand modeling, ‘typical’ behavior is often defined by statistical central tendencies: average
shower lengths, daily toilet flush frequencies, or expected time-of-day patterns. These norms are embed-
ded in classification algorithms, simulation models, and demand forecasts [5, 8]. For instance, a morning
peak in showering or a predictable evening dishwashing routine might be considered typical for a work
week, and might differ from typical weekend behavior [33].

Conversely, ‘atypical’ behavior encompasses events or routines that deviate from these norms. Such
‘atypical’ events could include a toilet flush occurring hourly throughout the night, no shower events
for several days, a 45min faucet event at 3:00 AM, days with no water usage at all, or multiple laun-
dry loads in quick succession. While such deviations might be flagged as anomalies by a rule-filtering
mechanism, they could reflect critical dimensions of lived experience, such as health crises, compuls-
ive behavior, or adaptive routines in response to trauma or environmental constraints [28]. Similarly,
these ‘atypical’ events might reflect different schedules and contexts compared to single-family residential
housing [9]. Atypicality is thus context-specific and isolating how much observed behavior deviates from
expected behavior is a challenge. In the context of these complexities, studies have proposed using multi-
modal features, such as combining energy and water data, to better understand behavioral routines [34].
For instance, aligning hot water usage with electricity demand patterns might help distinguish between
bathing and cleaning activities, adding nuance to classifications that otherwise rely only on flow rate and
duration [7, 33, 35, 36] or electricity consumption [37, 38].
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2.3. Occupant Behavior, Energy andWater Consumption
While infrastructure sets the bounds of what is possible, human behavior determines what actually
occurs in resource consumption contexts. People shower, flush, clean, wash, and cook in rhythms
shaped by habit, culture, mood, health, work schedules, household composition, and external signals like
weather or price [5, 39, 40]. Unlike industrial or commercial systems, residential water and energy use is
rarely optimized for efficiency instead reflecting embedded routines and decisions that are only loosely
connected to conscious intentions. Numerous studies have shown that even within demographically sim-
ilar households, usage can vary widely, particularly for discretionary end uses like bathing or laundry [8,
41]. This variability arises not only from appliance or fixture efficiency or occupancy but from behavi-
oral frequency, duration, and sequencing.

2.3.1. The Hawthorne Effect and Behavioral Observation
Perhaps the most notable illustration of behavior changing under observation is the Hawthorne effect,
originating from workplace studies in the 1920s, in which employees increased productivity simply
because they knew they were being studied [42]. In the context of water and energy monitoring, the
same principle applies: occupants might change their usage patterns when they know they are being
measured, especially in pilot programs or research studies [5].

These conditions present both opportunities and challenges. Smart meter installations themselves
might prompt conservation, especially when coupled with user-facing displays or feedback apps [43]. If
the time scale is sufficiently long enough, behavior bias can fade and underlying tendencies emerge in
user behavior [42].

2.3.2. Energy and Water Use as Joint Behaviors
Water and energy are often used together in households, and many key behaviors, such as showering,
cooking, and laundry, involve both resources. For example, heating water consumes a large share of
household energy use [37]. Understanding the timing and frequency of hot water-use events can there-
fore illuminate both thermal load and water demand. Previous work has demonstrated that incorporat-
ing energy-related features into water consumption models (such as electricity consumption from water
heaters or washing machines) significantly improves the explanatory power of these models [34, 44]. Li
et al [34] in particular showed that energy-use patterns were more predictive of water use than tradi-
tional demographic variables, suggesting that behavioral routines, inferred through joint data streams,
can aid understanding household consumption and could be extended to reveal the converse.

The joint consideration of multiple data streams is crucial in supportive housing, where time-of-use
and appliance-access patterns can differ significantly from normative assumptions. For example, laun-
dry frequency might be higher due to hygiene concerns or lower due to physical limitations. By aligning
energy and water data, researchers can uncover routine signatures that indicate health events, engage-
ment levels, or the need for assistance [1]. This approach presents an opportunity to integrate metering
into built housing stock as a promising pathway to realizing net zero-energy housing [45].

Many smart meter programs are predicated on the assumption that information changes behavior
[46]. When users are shown how much water or energy they consume, particularly in comparison to
neighbors or goals, they are expected to reduce usage; this assumption is only partially supported by the
literature. Darby [47] classified feedback into direct (real-time data via displays/dashboards or apps) and
indirect (monthly reports or billing comparisons). Direct feedback was more effective, particularly when
paired with behavioral prompts like tips or challenges [47].

Machine learning and behavioral modeling increasingly seek to predict water use patterns from fine-
resolution data, including flow signatures, temporal routines, and appliance correlations [4, 6, 48–50].
These models can estimate fixture use and timing, water consumption, behavior change over time, and
presence of leaks or anomalies. However, such predictions, while powerful, come with caveats. First,
models trained on typical households might not generalize to marginalized populations, shared liv-
ing environments, or irregular routines. Second, predictions might be accurate without being inter-
pretable; i.e. what looks like an ‘anomaly’ in data might be reasonable behavior in context. To address
these issues, researchers recommend combining disaggregation algorithms with qualitative insights from
residents or support staff [24]. Hybrid methods that blend statistical inference with ethnographic under-
standing are better suited to behavioral complexity [8, 29].

People tend to underestimate household water use by a factor of 2 on average, including significantly
underestimating high water-use activities [51]; i.e. survey participants (n= 1020) estimated their water
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use to be half the actual amount. Beneath the surface of these ordinary water-use activities lies a com-
plex landscape of human behavior that varies across individuals, households, and contexts. This beha-
vioral diversity is particularly important in the context of analyzing residential water end uses, where
assumptions of typicality can lead to blind spots and misinterpretations. Ultimately, interpreting occu-
pant behavior is about understanding how people live, cope, and adapt and how infrastructure can bet-
ter support them. In some contexts, stagnation time (defined as the time since an appliance or fixture
was previously used) can provide evidence to discern between user groups and individuals and link indi-
vidual activities to specific water end uses [52].

3. Materials andMethods

Understanding variation within residential water end uses is the first step in determining what consti-
tutes typical behavior. The data we used throughout this study reflect the aggregate activity of several
individuals in a household and do not necessarily attribute end uses to unique individuals. However,
stagnation time (the time since a fixture or appliance was last used) can reflect different user activities
for the same end use and could assist in credibly discerning end uses specific to individuals in the future
[52]. In this study, we used a custom ally® smart water meter to record flow, temperature, and pres-
sure data with 1 s resolution at the main supply pipe of a single-family, fully-detached residential study
home in a medium-sized humid-temperate city in the Midwest United States. The ally® smart water
meter measured flow within a range of 0.03–55 gallons per minute (GPM). Based on the approach from
Bethke et al [33], disaggregation of the water time series data uses an event threshold of 0.1 GPM. The
study home is representative of typical North American residential water use behavior [7, 13]. However,
a single-family residential home does not necessarily represent the complete spectrum of residential
water behaviors [9]. Although we expect PSH water use behavior to be distinct, an analytical framework
will only be useful in PSH contexts if it can be demonstrated effectively in more typical standard resid-
ential water contexts.

3.1. Sub-daily andWeekly Analysis via Consumption Coefficient Profiles
We disaggregated and classified 1 s resolution flow data over an 8-week period (August to September
2024) into six end uses (toilet, shower, faucet, refrigerator faucet, washing machine, dishwasher; see
figure 1) using a random forest classifier from Heydari and Stillwell [35] trained on 6-week water diary
ground-truth data from the study home. While the smart water meter system measured data from
January 2018 to February 2025, we focused our analysis on the 8-week study period with labeled end
uses. We were able to discern between a total of 3963 water use events that were mapped to one of six
end uses. All end uses were attributed to indoor water use with no water used outside the home. Similar
to Mazzoni et al [8] yet different in underlying composition, we computed consumption coefficients ckt
for an end use k at time t to analyze weekly consumption patterns across end uses. In the consumption
coefficient, equation (1), the numerator contains the average hourly water consumption for each end use
(e.g. dishwasher, faucet, etc) at a specific hour of the day, while the denominator normalizes this hourly
consumption by comparing it to the total daily consumption for that end use.

ckt =
Average consumption of end use k during hour t(gal)

Daily average consumption of end use k(gal)
(1)

A consumption coefficient ckt > 1 for an end use k at hour t implies that the water usage attributed to
that end use is greater than the daily average usage for that end use; i.e. that end use likely ‘dominates’
residential water consumption in that hour, thereby implying that individuals are engaged in activities
with the fixture or appliance.

3.1.1. Classification Metrics
We employed metrics of precision, recall, F1-score, accuracy, support, macro average, and weighted aver-
age to assess the performance of the random forest classifier. The predicted classes from the random
forest model are shown in figure 2, based on ground-truth data labels [7].

Precision: Precision is defined as the proportion of correctly predicted observations (true positives, TP)
for a particular class to the total predicted observations for that class (sum of true positives and false
positives, FP); equation (2),

Precision=
TP

TP+ FP
(2)
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Figure 1. End-use frequency by day of week over the 8-week study period of August–September 2024.

Figure 2. Confusion matrix (0.70 train, 0.30 test) for the random forest model (based on ground-truth data labels from [7]) used
to classify end uses for 8-week period.
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High precision means that the classifier has a low false positive rate for that class. For example, out of
115 predictions for class ‘f ’ [faucets] in figure 2, 107 were correct,

Precision=
107

107+ 8
= 0.93

Recall (Sensitivity): Recall as a measure of sensitivity is defined as the proportion of correctly predicted
observations (TP) for a particular class to all actual observations of that class (sum of true positives and
false negatives, FN); equation (3),

Recall=
TP

TP+ FN
(3)

High recall means that the classifier has a low false negative rate for that class. For example, of 113 true
samples for class ‘f ’ [faucets] in figure 2, 107 were correctly identified,

Recall=
107

107+ 6
= 0.95

F1-Score: the F1-score represents the harmonic mean of precision and recall, providing a single measure
of a classifier’s performance for each class; equation (4),

F1-Score= 2× (Precision×Recall)

(Precision+Recall)
(4)

A high F1-score indicates a good balance between precision and recall. For example, for class ‘f ’
[faucets]:

F1-Score= 2× (0.98× 0.95)

(0.98+ 0.95)
≈ 0.98

Accuracy: Accuracy is defined as the proportion of correctly predicted observations to the total observa-
tions; equation (5).

Accuracy=

∑
iTrue Positivesi∑

All Entries in Confusion Matrix
(5)

Accuracy measures the overall correctness of the classifier without regard for class balance or imbalance.
For example the accuracy for this classifier is:

Accuracy=
107+ 11+ 21+ 38+ 8+ 3

203
≈ 0.93

Support: Support is defined as the number of true occurrences of each class in the dataset and provides
context for evaluating precision, recall, and F1-score for each class. For example, in figure 2, class ‘f ’
[faucets] support is 113, and class ‘t’ [toilets] support is 46.

Macro average: The macro average reflects the unweighted average of precision, recall, and F1-score cal-
culated independently for each class; equation (6). Because the macro average treats all classes equally
regardless of their support, it can be useful when all classes are of equal importance.

Macro Average=
Metric1 +Metric2 + . . .+Metricn

n
(6)

Weighted Average: The weighted average of precision, recall, and F1-score considers the support of
each class and accounts for class imbalance by assigning more weight to classes with more samples;
equation (7),

Weighted Average=

∑n
i=1 (Supporti ×Metrici)∑n

i=1 Supporti
(7)

The interpretation of these classification metrics is presented in table S1 in the supplementary mater-
ial with the classification metrics specific to this study summarized in table 1.
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Table 1. Summary of classification metrics for residential water end-use prediction with the random forest classifier using ground-truth
data from [7].

Precision Recall F1-score Support

Dishwasher (d) 1.00 1.00 1.00 3
Faucet (f) 0.93 0.95 0.94 113
Refrigerator Faucet (r) 0.85 0.92 0.88 12
Shower (s) 1.00 1.00 1.00 21
Toilet (t) 0.90 0.83 0.86 46
Washing Machine (w) 0.89 1.00 0.94 8

Accuracy 0.93 203

Macro Average 0.93 0.95 0.94 203
Weighted Average 0.93 0.93 0.93 203

Figure 3. Hourly consumption coefficients, separated by workweek and weekend, vary by end use during the study period
(August–September 2024). A consumption coefficient for end use k at hour t greater than 1 implies that the water usage attrib-
uted to that end use is greater than the daily average usage for that end use.

3.1.2. Typical and Atypical Hourly Water Consumption
We calculated hourly consumption coefficients, ckt , for workweek and weekend water use based on end
uses classified by the random forest model for the study period of August–September 2024, as shown
in figure 3. Consumption coefficients for the workweek and weekend reflect differences in when and
how water is used. Most end-uses exhibit a lag on weekends suggesting later start and wake times for
the residents in the study home. For the purposes of this work, an end-use consumption profile (counts
of events and volumes attributed to an end use and referenced to a common timescale) was considered
to be typical if it fell within 2-sigma (i.e. two standard deviations) of the average end-use consumption
profile for comparable time periods. In time-series behavioral monitoring, thresholds relative to σ are
common, but choosing them is a modeling decision. Rules (e.g. zones defined relative to standard devi-
ations) are used to flag abnormal vs. expected behavior in time series data, using ±σ thresholds to clas-
sify ‘expected’ vs. ‘unexpected’ behaviors in longitudinal measurements [53].

3.2. ExogenousMaybes, Endogenous Origins: A Difference-in-Differences (DiD) Analysis
The DiD technique [54] (see supplementary material) is an econometric tool that can be used to estim-
ate the causal effect of an intervention or treatment by studying the effect of a ‘causal’ (explanatory)
variable on treatment and control groups. DiD, and not a single-year comparison, is a good tool for
exploring the effect of exogenous variables on end uses because it removes noise from any would be
confounders such as household idiosyncrasies, premise plumbing characteristics, occupancy affected by
holidays, etc. The two-step difference removes aggregate time shocks that would affect, for example, both
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Figure 4. Daily temperatures for warm (August; top row) and cold (January; bottom row) months for the difference in differences
(DiD) approach (data from [55]).

warm and cold months equally such as changes to water tariff charges, fixture upgrades, increased sens-
itivity to conservation, etc. What remains is the incremental change in the cold-warm gap attributable to
the altered outdoor-temperature profile between the two years.

We employed this DiD technique to assess if colder weather explains the longer average shower dur-
ations observed in winter months as compared to summer months for the study home in the Midwest
United States. The tangential association between longer shower duration and colder weather was repor-
ted by Ibáñez-Rueda et al [10], finding that individuals tended to take longer showers during winter
months: the average shower duration was 11.6 min in winter, compared to 8.8 min in summer. This
seasonal variation suggests that colder weather influences individuals to spend more time in the shower.
We assessed the effect of average outdoor temperature on shower durations using data for 81 days across
16 weeks from warm (August) and cold (January) months across several years (months from 2023, 2024
and 2025; shown in figure S1 in supplementary material) with the pre-treatment period being before
August 2024 and the post-treatment period starting from August 2024. While small in magnitude, the
pre and post periods for the DiD approach were selected based on the difference between the average
daily temperatures for these periods (figure 4), which set up the DiD such that the causative effect of
longer shower durations would map to even colder temperatures in the post period (January 2025) as
compared to the pre period (January 2024).

On average, shower durations for the analyzed months were greater during colder months compared
to warmer months, shown in figure 5. Additionally, the shortest and longest duration showers were gen-
erally longer during cold months compared to warm months. Average volume per shower event was also
greater during cold months compared to warm months, motivating statistical analysis through the DiD
approach; see additional figures in supplementary material.

As an econometrics regression approach, the DiD method enables hypothesis testing around coeffi-
cients to quantify causal effects based on statistical significance.

Motivating questions:
Does the cold group (treatment) exhibit a different pre-to-post change in shower duration compared to
the warm group (control)? In other words, is there an additional shift for the cold group from pre to
post that does not occur (or not to the same extent) for the warm group?
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Figure 5.Monthly shower statistics for shower events, volume, and duration vary across warm (August) and cold (January)
months for the study home.

Table 2. Description of variables used in the Difference-in-Differences (DiD) regression model.

Variable Description

avg_durationit Daily average shower duration (seconds).
coldit Binary variable (1 if the day is in January, 0 if

August).
postit Binary variable (1 for post-treatment (January 2025

or August 2024), 0 for pre-treatment (January 2024
or August 2023)).

coldit × postit The DiD interaction term capturing the additional
effect for cold days in post-treatment.

Mean_Cit Daily average outdoor temperature (in ◦C) as a
control variable.

β0 to β4 Coefficients to be estimated.
ϵit Error term.

Table 3. Interpretation of coefficients from the Difference-in-Differences regression.

Coefficient Interpretation

β0 Intercept (baseline average duration when cold= 0, post= 0, and
Mean_C= 0).

β1 Effect of the cold indicator on avg_duration, holding other
variables constant.

β2 Effect of the post indicator (the post-treatment period).
β3 Interaction effect of being both cold and in the post-period.
β4 Effect of Mean_C (additional continuous covariate). This

coefficient describes how shower duration increases for every 1◦C
increase in the daily average outdoor temperature.

RegressionModel:
The DiD regression model applied to average shower duration leads to the formulation shown in
equation (8):

avg_durationit = β0 +β1 (cold)it +β2 (post)it +β3 [(cold)it × (post)it] +β4 (Mean_C)it + ϵit (8)
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where each observation i represents a single day (for August/January across 2023–2025), with variables
further described in table 2 and coefficient interpretation listed in table 3.

Null and Alternative Hypotheses:

H0 : β3 = 0 (No additional pre–post change for the cold group beyond warm group)

Ha : β3 ̸= 0 (Non-zero shift for the cold group in the post period, different from the warm group)

Treatment Group: Shower data for cold months (January 2024 and January 2025).
Control Group: Shower data for warm months (August 2023 and August 2024).

Time Periods:
Pre-treatment: Data from 2023 and 2024.
Post-treatment: Data from 2024 and 2025.

Assumptions of DiD:

1. Parallel trends: In the absence of the ‘treatment’ (effect of cold versus warm months), the change in
shower duration over time would have been the same for both warm and cold months.

2. No other external factors (e.g. systemic lifestyle changes, fixture replacement or rated-flow changes,
etc) significantly affect the results during this period.

3.3. Encoding Normality: Semi-structured interviews
The connection between smart water meter data, classified end uses, and typical versus atypical use pat-
terns could serve as an effective alternative to daily well-being checks, which can be invasive and com-
promise privacy, in PSH. A smart water meter data-to-feedback alert pipeline could non-intrusively
monitor water end-use behaviors and create feedback alerts to inform supportive services when inter-
ventions are necessary. This approach requires collaboration with social work experts familiar with sup-
portive housing contexts.

Creating a protocol to discern ‘normal’ and typical activity for unhoused and recently housed indi-
viduals as a unique population depends on deeper understanding of behaviors in response to housing
insecurity. We invited experts in PSH and/or social work working in service organizations to particip-
ate in semi-structured interviews with members of the research team for this analysis. A background
document was shared with potential participants. Research participants completed informed consent
documents prior to engaging in 20–30 min of dialogue based on guiding questions around the possible
role of smart home systems in PSH (see supplementary material). This protocol received an IRB exemp-
tion determination from the Office for the Protection of Research Subjects Institutional Review Board
(IRB24-1517, Category 2).

4. Results

4.1. Water End Eses and Activities
We calculated and analyzed hourly end-use event counts and volumes (gallons) for three atypical con-
ditions within the study home: overnight guests (2–3 August), Labor Day weekend travel, and an occu-
pant home during the workweek (3–6 September). This approach demonstrated that for events that were
known a priori to have occurred outside of a ‘typical’ routine, there were clearly visible event counts
(figures 6(a) and 7(a)) and hourly volumes (figures 6(b) and 7(b)) associated with these events that
fell outside this normally-distributed range. In figures 6(a)–7(b), these ‘atypical’ conditions are shown
by consumption coefficients (colored bars) generally outside the 2-sigma shaded range around typical
hourly consumption coefficients for the stated end use. However, these ‘atypical’ hourly event counts
and volumes were not always outside the 2-sigma range for the entire duration of the observed atypical
behavior, as shown for a different atypical event in figures 8(a) and (b), respectively.

Later start times for most end uses on weekends suggested that most occupants of the study home
started their day later on weekends compared to workdays. Without some other input such as stagna-
tion time, it was unclear what the likely latest start time for a particular end use was when using hourly
consumption coefficients. During the study time period, Sundays had the highest volumes (1570 gal total
over 8 Sunday observations) across all end uses, suggesting that most occupants were home. This water
consumption on Sundays was 57.3% more than Mondays (997 gal total over 8 Monday observations),

11



Environ. Res.: Infrastruct. Sustain. 5 (2025) 045011 H Khan and A S Stillwell

Figure 6. August 2–3 represented a period of atypical late-night socializing with early morning end uses typically not observed
during the study period, shown with colored bars generally beyond the 2-sigma range for typical conditions.

the second highest volume. Washing machine events were most frequent on Sundays, while dishwasher
events were most frequent on Sundays and Mondays. Hourly counts and volumes can be better predict-
ors of specific anomalous or atypical events rather than deviations from an observed average across sim-
ilar timescales.

Our analysis was based on end-use activities at a multi-person dwelling; therefore, it is difficult to
ascertain the end-use patterns of a specific individual. However, future work could define levels of cau-
tion based on atypical water behavior patterns and the anticipated severity of an event:

LOW : small magnitude leak (e.g., faucet not fully closed)

MEDIUM :anomalous long event (e.g., very long shower)

HIGH : large magnitude leak (e.g., burst pipe)

4.2. DiD Statistical Interpretation
Results of the DiD regression model demonstrated moderate statistical significance for shower durations
in the study home. The regression model results are summarized in table 4 with further interpretation as
follows:

• Intercept (β0 = 687.6): β0 represents the predicted shower duration (seconds) for a baseline day in
warm (August) pre-treatment, assuming Mean_C = 0 ◦C. This value is the baseline average duration
(in seconds) when cold = 0, post = 0, and Mean_C = 0.

• Cold effect (β1 = −34.2): β1 indicates that pre-treatment cold days (January) have, on average, 34.2 s
(p = 0.73, not statistically significant) shorter showers compared to warm days. This value demon-
strates that between warm (August) and cold (January) months in the pre period, holding temperature
constant, shower duration in the cold month is ∼34 s less than the baseline shower duration.

• Post effect (β2 = 2.4): β2 represents the average change in warm days post-treatment (August 2024)
compared to warm days pre-treatment (August 2023) of 2.4 s (p = 0.96, statistically insignificant).

• Cold:Post (DiD Interaction) (β3 = 101.5): β3 represents the estimated DiD effect, meaning post-
treatment cold days experience an additional ∼102-s increase (p = 0.12, marginally significant) bey-
ond the general trends observed in warm days.
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Figure 7. Labor day weekend represented a period when occupants were away from home, depicted by limited end use activity
early in the day, shown with colored bars generally outside the 2-sigma range for typical conditions.

• Mean_C effect (β4 = −3.2): β4 suggests that for every 1◦C increase in the daily average outdoor tem-
perature, shower duration decreases by about 3.2 s, albeit without statistical significance (p = 0.30).

In addition to the statistical interpretation of coefficient estimates, the DiD model itself presents various
statistical observations:

• R2 = 0.185: Approximately 18.5% of the variation in shower duration is explained by the DiD model
and included variables (cold, post, cold×post, temperature).

• Adjusted R2 = 0.142: The adjusted R2 indicates that the model explains a moderate share of variability
after adjusting for four predictors, which is interesting considering one causal factor (colder outdoor
air temperature) explains 14% of the variation in the daily average shower duration between warm
and cold months.

• F-statistic = 4.32, p= 0.003: The overall model is statistically significant at conventional levels and as a
whole has explanatory power.

• The interaction term (DiD coefficient β3, p = 0.123) is statistically significant below the 15% level,
with the value β3 = 101.51 implying that from pre to post, the cold group’s average daily shower dur-
ation increased by ∼102 s more than the warm group’s pre-post change (holding temperature con-
stant). This term is directionally positive, but somewhat inconclusive and should be interpreted as an
exploratory result.

Overall, we observed tangible model significance (cold, post, and temperature collectively matter) and
these results suggested an increase in shower duration for cold months post-treatment. Consequently, the
intuitive understanding of taking longer showers in colder weather is likely, in part, due to the colder
weather; however, there might be other variables at play such as standing in the shower for a perceived
therapeutic effect, the presentation of seasonal affective disorder as a tendency to seek warmth, and other
factors that cannot be neatly partitioned into a binary influence. The statistical significance of this causal
effect was weak, which could be due to the small sample size, and better instrumentation could improve
the robustness of this analysis. This analysis does, however, point to the association between exogen-
ous factors and observed user behavior as it relates to specific water end uses. It remains to be seen if
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Figure 8. September 3–6 represented a period when at least one occupant was home during working hours. Some of the water
end use event counts and volumes deviate from the 2- sigma range, but not all.

Table 4. Difference-in-Differences regression results for daily shower durations between August (2023 and 2024) and January (2024 and
2025).

Coefficient Standard Error t P> |t| [0.025 0.975]

Intercept 687.6 79.7 8.6 0.00 528.9 846.3
cold −34.2 100.2 −0.3 0.73 −233.8 165.4
post 2.4 45.8 0.1 0.96 −88.7 93.5
cold:post 101.5 65.1 1.6 0.12 −28.2 231.2
Mean_C −3.2 3.0 −1.0 0.30 −9.2 2.9

N= 81, DF Residuals= 76, F-statistic= 4.32, Prob(F-stat) = 0.003, R-squared= 0.185, Adj.R-squared= 0.142

these results extend to other environmental variables and how these affects could be incorporated into
thresholding baselines for typical behavior around water end uses.

4.3. Structured Interviews
We interviewed four practitioners using our semi-structured interview protocol. The practitioners’
responses highlighted two core themes relating to the possible role of smart home systems in PSH:

1. Agency &Mobility
One respondent explained that individuals in shelters have to deal with numerous roadblocks in their
mobility and agency viz-a-viz housing vouchers and a nonexistent credit history. Case management is
based on individualized needs with some individuals who receive vouchers needing minimal support
and having had a long history of being employed, then having a medical issue, ultimately losing their
job, and falling behind on their rent. These clients are ultimately evicted and require minimal
assistance with a security deposit and can usually transition out of a shelter with adequate support.
This condition mirrors lived experiences across the country [56]. Housing provides space and helps
ameliorate problems that stem from sharing a crowded space with other residents in a shelter. Being
housed in one’s own space with access and boundary control can be vastly influential for overcoming
any perceived ‘difficulty’.
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Support needs are on a spectrum and case management is often based on individualized needs,
with some individuals coping with chronic homelessness and substance abuse and developmental
disabilities requiring more administrative support in day-to-day affairs. These supports can include
managing noise complaints from neighbors, dealing with the social responsibility of living in a larger
apartment building, and adequately addressing issues as they arise to avoid minor solvable nuisances
escalating into larger problems. Some occupants need support with budgeting, health insurance, and
accessing other benefits. This support framework allows individuals in PSH to move from a
scarcity-based survival mindset to an abundance-based growth mindset, which can help them focus
on more important aspects of their life.

A diagnostic assessment of residents’ water end uses could empower them to escalate maintenance
issues with their landlord and address quality of life issues. This additional information could prepare
them to take on the responsibility that comes with independently owning or renting a home.
Furthermore, having detailed information about their end uses through a daily or weekly report
could provide more actionable information and thus agency to change habits.

Well-being checks are useful in PSH because acclimating to a dwelling typically takes a long time
for newly housed individuals, on the order of months and even years in some cases. Additionally the
activity levels of residents could present varying baselines for the same resident so any kind of
presumptive ‘typical’ activity patterns might have a multi-modal distribution. This complexity
increases with individuals prescribed psychoactive medication, such as individuals with Bipolar
Affective Disorder (BPAD). These individuals might not follow a regular expected activity pattern and
their typical water end-use activity might not follow a predictable storyline to an outside observer.
This aspect could be mitigated by using other consumptive features like lighting ON/OFF states,
electricity consumption data, and heating/cooling demands.

2. Trust
Additional respondents stated that it is critical that residents be educated and informed about smart
water meter sensing equipment monitoring their appliance/fixture usage. An opt-in framework for
residents who will be explicitly made aware of the meters connected to the water main supply is an
important component of smart metering in PSH. Case managers also assess what level of support
residents require (food-purchasing assistance, health insurance, filing for disability, etc) and then
match services to those needs.

The space between over- and under-explaining is challenging as occupants should not feel misled
in their water consumption being monitored but should rather view it as an aid that could assist a
case worker in following up with them if a troubling signal is reported (e.g. no shower activity for
several days). Hyper-monitoring activities and using that information as a basis for disciplinary
action when it is not warranted breaks trust and erodes any confidence and sense of security
residents have developed in their housing arrangement. Residents need to feel a sense of ownership
and control over their space so that they are comfortable letting in other individuals and building
routines (primitive levels of Maslow’s Hierarchy).

Some newly-housed individuals are much more conscious of their water use since they might not
have previously had sufficient water available to tend to their water, sanitation and hygiene needs. As
such, when they feel secure in their environment, some residents will understandably take time to
transition, in some cases, from using a gallon of water a day to numbers more in line with typical
residential contexts. Medically-fragile residents must feel safe to present behavior that can be mapped
to any baseline. Trauma-informed housing can help case workers gain the trust of residents by being
thoughtful of triggering environmental stimuli that might make them uncomfortable; metered usage
helps replace regular surveys about consumption.

Ongoing case management can help identify relapses or conversely successful acclimation such as
improved and consistent hygiene markers, regulating temperature around typical temperature set
points for heating for individuals in colder climates, beginning to dispose of belongings that no
longer serve a useful purpose, and other behaviors.

The themes across these interview responses illustrate the difficulty in predetermining a rule-
filtering algorithm (e.g. a 2-sigma approach based on consumption coefficients) or alert levels based
on thresholding when mapping to ‘typical’ activity in the context of PSH because multiple ‘typical’ or
‘atypical’ conditions might exist over time. The small interview sample size (n = 4) constrains the gener-
alizability of these findings, and their use in analytical frameworks without further inquiry entails a risk
of over-interpretation that could produce misleading, non-replicable results.
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5. Discussion

Smart water meters allow researchers to move beyond monthly consumption totals and instead exam-
ine temporal sequences and granular event-level data. For example, a 7min shower at 9:26 AM fol-
lowed by two faucet events and a toilet flush within the next hour might represent a typical sequence.
These sequences encode behavioral routines, though they are often abstracted in models designed for
aggregate prediction [4, 5]. However, residential water data can also be treated as traces of daily activity
rather than de-contextualized flow rates [8]. In this framing, each event offers a behavioral clue: a long
faucet event might suggest therapeutic use, an absence of usage might signal a crisis, and consistent daily
patterns might indicate emerging stability in residents previously experiencing housing insecurity [28].
Traditional end-use classification models often assume ‘normal’ routines such as 1–2 toilet flushes in the
morning, showering once daily, and dishes washed after a meal [41, 57]. These assumptions might not
align with conditions in PSH contexts, where behavioral diversity is shaped by trauma histories, disabil-
ity, service access, and infrastructure constraints.

Atypical patterns should not be flagged simply as anomalies, but as invitations to understand what
underlies them [31]. Going forward, it would be prudent to integrate behavioral and social science
expertise in smart meter analytics as a mechanism to understand what would otherwise be dismissed
as anomalous behavior. Energy-related features such as electricity use for heating or appliance operation
significantly improved the predictive power of household water consumption models [34], suggesting
that multi-modal data integration, such as water, energy, and potentially environmental or social data,
can support more robust behavioral inference.

5.1. Improving Feature Space
Using other inputs tied to other consumptive end uses like lighting fixtures or concurrent smart electri-
city meter data from electrical appliances in conjunction with end-uses from water fixtures [44] could
refine a broader feature space for establishing consumptive patterns. This feature space could provide the
granularity required for a robust statistical learning framework that has the capacity to detect significant
deviation from observed baseline(s). Multiple baseline activity levels for a particular end use along with
acclimation (which can be a process on the order of months to years), relapses, and other complications
necessarily affect human-built environment interactions.

5.2. Agent-basedModels (ABMs)
ABMs can simulate the diverse behavioral patterns of occupants, which can be useful for realistic build-
ing performance and simulation of emergent phenomena associated with interactions between agents
and their environment [58]. As a simulation technique, ABM represents individual entities (‘agents’) as
autonomous actors with defined behaviors, preferences, and decision-making rules. This approach allows
each agent (i.e. building occupant) to interact dynamically with both their physical environment and
other agents over time. Unlike traditional aggregate or deterministic models, ABMs are well-suited to
simulate the heterogeneity, adaptability, and emergent behavior patterns of real-world occupants [59].

An ABM approach could be useful in the case of PSH, where occupant behavior often departs sig-
nificantly from normative residential patterns due to factors like trauma, disability, or irregular daily
routines. Such a model would require detailed, heterogeneous data to represent individual occupants and
their interactions with buildings. Key inputs include:

• agent attributes and states (e.g. demographics, health or stress conditions, daily routines)
• behavioral rules (e.g. when and why agents use water, schedules for when to bathe/cook, triggers such
as hygiene after returning home, medication routines, etc)

• interaction structures (agent-environment and agent-agent interactions)
• building and system data (plumbing layouts, fixture characteristics)
• contextual drivers (e.g. weather, schedules)

Importantly, these model inputs would also require fine-resolution consumptive data (water and energy)
alongside model calibration and validation [60, 61]. These elements allow ABMs to simulate realistic and
emergent patterns, such as late-night showers or repeated toilet use, which are especially relevant in PSH
contexts.

Each resident could ideally be represented as a distinct agent with individualized schedules, health
needs, and interaction histories. These agents could generate specific water-use behaviors that could
be explicitly modeled as intentional actions rather than anomalies or atypical behavior. For instance,
water end-use events such as a 20min faucet flow at 3:00 AM could be understood through the lens of
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agent intent, which could be a therapeutic coping mechanism or a behavioral expression of stress. These
simulated behaviors could also be aligned to disaggregated water data streams. However, this approach
also presents challenges; ABMs are computationally intensive and rely on extensive validation datasets
that might be difficult and invasive to obtain from new residents. These considerations are contextually
important regarding PSH when developing a framework of possible feedback between a new occupant
and existing building affordances.

5.3. Limitations
Without more data it cannot be conclusively held that the study home behavior (i.e. fully mobile occu-
pants mostly following a regular workweek-weekend routine) is representative of other similar residential
living spaces. However, other work using data from the study home has demonstrated that the water end
use activity from this home does generally align with REU2016 data [7]. Scaling technologies like smart
water meters in PSH can be cost-prohibitive and at times the affordances offered by existing infrastruc-
ture may not support their deployment [62].

The study period we chose for the DiD analysis was constrained to months for which water meter
data were readily available; improved instrumentation, more data points across similar warm-cold month
pairs, and comparisons with warm-warm and cold-cold DiD aggregates could improve the robustness
of the work done and provide a path forward for understanding occupant-built environment feedback.
Differentiating results by age group or gender is beyond the scope of this non-intrusive analysis; the dis-
aggregation mechanisms cannot inherently differentiate between end users although there are several
years of end-use data to potentially sample from.

Using only a priori atypical events biases interpretation for consumption profiles when using disper-
sion so it might be prudent to use other dispersion ranges to similar a priori events to assess how much
of the atypical activity is captured through a consumption coefficient approach in future work. All atyp-
ical events did not fall outside the 2-sigma range, which is a limitation of using this statistical approach.
Given that the coefficient of determination for the DiD model was relatively low (0.185), the overall
model has limited explanatory power. Additionally, the relatively small dataset risks overfitting, which
could be mitigated by including more study homes in future work.

6. Conclusion

Residential water usage provides key insights about occupant behavior and well-being, which can aid
decision making. Using water meter data from a residential home in the Midwest United States, we ana-
lyzed how atypical activity could be evaluated considering dispersion, the effects of exogenous variables
on consumptive end uses, and normative behavior for individuals.

We explored three research questions, with the following findings:

1. What aspects of water end uses can be used to ascertain behavioral information about the individuals
performing those activities? Are statistical measures (such as dispersion) a good way to discern ‘typical’ and
‘atypical’ activity?
Water consumption at specific end uses can exhibit a discernible and repetitive consumption profile
under various external conditions. In the study home, these profiles were noticeable in the
characteristic workweek-weekend consumption profiles with a lag in start times for end uses on
weekends. Some, though not all, atypical activities were captured in the dispersion of end uses
beyond a 2-sigma range based on consumption coefficients.

2. What, if any, is the effect of exogenous environmental variables such as outdoor air temperature on residents’
specific end uses? How much of the variability in water consumption from a specific end use can be explained
by some external variable?
Exogenous variables do appear to affect how occupants interact with water fixtures, specifically in the
case of showers. It is important to isolate the effects of these influences if the analysis is performed
on a time scale that would amplify their presentation.

3. What is normative behavior for individuals moving or acclimating to PSH?
While most behavior is understood to be conscious and the result of willful intention, the way in
which individuals interact with water fixtures is also a consequence of their wider sense of self. For
example, individuals on psychoactive medication will likely exhibit different levels of activity as
normal and typical for them depending on their medication regime and adherence to set routines.
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Additionally, some individuals have more than one distinct baseline, and those baseline activity levels
might also shift with time.

We conclude that prescriptive measures of atypical end use activity are not all-encompassing in cap-
turing events and associated behaviors that are present in day-to-day routines. Due to the nature of
acclimation, residents in PSH should not be expected to exhibit normative behavior underpinned by a
consistent baseline: capturing truly atypical activity might best be abstracted from ABMs and agentic
simulations. Exogenous variables can have a noticeable yet not always willful impact on end use con-
sumption characteristics and all analyses should either be performed at timescales sufficient to account
for this effect or otherwise explicitly constrain interpretation of consumption to this context. This work
contributes to social sustainability by providing frameworks that support equitable and inclusive residen-
tial water systems that promote occupant agency.

This study provides the broader context and path-lighting for performing more feature-rich analyses
for credibly connecting occupant behavior in PSH to end user water consumption and providing action-
able insights for residents and case-managers alike.
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