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Abstract— The objective of this study is to assess the spike 

detection performance of a nonlinear filter (NF) using stochastic 

resonance and subsequent hard thresholding. The evaluation is 

based on the distance of neural spikes from the electrode. The F1 

score variation of the algorithm is examined using two synthetic 

datasets generated with MEArec and Neurocube extracellular 

neural recording synthesis tools. In the MEArec recording, the 

algorithm achieved a 75% F1 score for spikes up to 70 μm, and in 

the Neurocube recording, it reached 95 μm. This contrasts with 

three popular unsupervised intracortical neural spike 

enhancement algorithms, which achieve the same F1 performance 

only within a 50 μm range. These results suggest that the NF spike 

enhancement method has the potential to increase the detectable 

spikes by a single electrode in resource-limited implantable 

intracortical neural recording systems, where hardware 

complexity is a critical design consideration. 

Keywords— intracortical neural spike detection, detection 

distance, nonlinear filtering, stochastic resonance 

I. INTRODUCTION 

Detecting neural spikes in intracortical recordings is critical 
for systems using electrodes in brain-machine interfaces [1] and 
neuroscience studies [2]. Typically, raw electrical recordings 
undergo analog signal conditioning to enhance neural spikes and 
suppress noise. After spike detection, spikes are often sorted by 
their source neurons before higher-level processing decodes 
brain activity to infer intention. Alternatively, intentions can be 
decoded directly from detected spikes [3]. In both cases, with or 
without spike sorting, the number of detected spikes affects the 
accuracy and efficiency of neural monitoring systems, with an 
electrode theoretically detecting spikes from neurons within 
~140 μm, or about 1000 neurons in the rat cortex [4]. Detecting 
numerous spikes provides a detailed view of neural activity but 
increases hardware complexity and power consumption in high-
density multielectrode arrays (HD-MEAs) [5]. Maximizing the 
number of spikes detected by a single electrode can reduce the 
number of channels in HD-MEAs, providing greater design 
flexibility for meeting the stringent requirements of implantable 
neural monitoring applications [6]. 

In [7], a spike enhancement algorithm based on a nonlinear 
filter (NF) that facilitates stochastic resonance has been shown 
to demonstrate signal-to-noise ratio (SNR) enhancements of 
spikes from distant neurons. However, the study did not delve 
into a critical performance aspect in neural recording 

applications - spike detection performance with distance. In this 
study, we evaluate how the NF method's spike detection 
performance varies with the distance of neural spikes from the 
electrode. We use NF for spike enhancement in a threshold-
based detection approach and compare the results with three 
commonly used unsupervised spike detection techniques. 

II. METHODS 

A. Nonlinear filtering (NF) 

This spike enhancement method aims to leverage stochastic 

resonance phenomenon, where additive noise on a weak signal 

counterintuitively improves detectability of the weak signal [8]. 

Following [7], this study investigates a nonlinear filter (NF) 

based on the underdamped dynamics of a particle inside a 

monostable potential well when the particle is introduced with 

a force proportional to the noisy neural recording (Figure 1). 

Here, the particle is under the influence of two forces; one being 

the input noisy intracortical signal, 𝑠𝑛(𝑡), and the other being 

the force that the well potential exerts to move the particle 

towards the stable point in proportion to the local slope as 

−𝑑𝑈(𝑥(𝑡))/𝑑𝑥. The output of the system is the position of the 

particle projected on the x-axis, 𝑥(𝑡). In the presence of a spike, 

the particle could move towards walls of the potential well. 

However, during noise-only portions, the particle swings 

around the stable point. The movement of the particle in this 

system is governed by the generalized Langevin equation [9], 

which maps the two forces of the system to the acceleration and 

velocity of the particle: (𝑑2𝑥(𝑡))/(𝑑𝑡2) + 𝛾 𝑑𝑥(𝑡)/𝑑𝑡 =
−𝑑𝑈(𝑥)/𝑑𝑥 + 𝑠𝑛(𝑡), where 𝛾 is the damping coefficient and 

𝑈(𝑥) = ax2/2 + bx4/4 is the well potential with 𝑎, 𝑏 > 0. The 

selection of the equation parameters of 𝑎, 𝑏, 𝛾 and the numerical 

solver step size are performed through a three-step parametric 

search, aiming to maximize the SNR improvement. The details 

of this process are explained in [7], but are excluded in this 

work for brevity. Then, the Langevin equation is solved 

numerically using the fourth-order Runge-Kutta method.  

B. Compared spike-enhancement algorithms 

The spike enhancement and detection performance of the NF 
is compared against three algorithms, namely band-pass filtering 
(BPF), discrete wavelet transform (DWT), and smoothed Teager 
energy operator (STEO). The selection of the algorithms was 
based on two criteria. Firstly, these algorithms are widely used 
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in spike detection, with an established history [10], [11] and 
broad adoption in studies inferring brain states from detected 
spikes [3]. Secondly, they are unsupervised methods, featuring 
a spike enhancement followed by a detection stage, allowing for 
data-independent, objective comparisons without requiring 
training data. Unlike some unsupervised methods like 
Wave_clus [12], they do not consider spike waveform shape, 
making them suitable for applications that directly decode 
detected spikes without a sorting stage. 

Band-pass filtering aims to remove the low- and high-
frequency undesired content (e.g., local field potential and 
noise). To minimize complexity, a 4th order finite impulse 
response (FIR) band-pass filter with Kaiser window is 
implemented in this study. The bandwidth of the band-pass filter 
is selected to match the neural spike band of [300 Hz – 6 kHz]. 

 Discrete wavelet transform (DWT) is a time-frequency 
analysis method that decomposes signals into a set of wavelets. 
It operates by convolution of the signal and a mother wavelet 
function to obtain the information on different frequency sub-
bands, while preserving their temporal information. In this 
study, the sym4 is selected as mother wavelet, widely recognized 
in literature for its effectiveness in enhancing intracortical 
recordings [13]. 

The smoothed Teager energy operator (STEO) algorithm 
aims to improve the SNR of the neural signal by extracting time-

frequency information of spikes without a priori information. 
The discrete-time Teager energy operator (TEO) is given as: 
𝜓(𝑥[𝑛]) = 𝑥2[𝑛] − 𝑥[𝑛 + 1] ∙ 𝑥[𝑛 − 1] , where 𝑥[𝑛] , 𝑥[𝑛 +
1], and 𝑥[𝑛 − 1] are the 𝑛𝑡ℎ, 𝑛 + 1𝑡ℎ and 𝑛 − 1𝑡ℎ samples of a 
signal. To overcome the issue of experiencing a degraded spike 
detection performance in low SNR and/or high noise peak 
scenarios, the 𝜓(𝑥[𝑛]) is smoothed via a Hamming window FIR 
filter with length 5 and the difference factor of 1, which lead to 
the following window filter coefficients: 𝑤(𝑛) =
[0.08 0.54 1 0.54 0.08] [14]. 

C. Spike detection by hard thresholding 

All spike enhancement methods are followed by a 

thresholding stage to identify the spikes. Each method employs 

a hard threshold set at 4 times the standard deviation (𝜎) of the 

noise in the spike enhancement stage output [10]. The noise 

standard deviation is accurately determined by utilizing spike 

enhancement stage output portions without neural spikes. 

D. Synthetic recordings 

The algorithms are assessed using synthetic recordings, 
offering known spike time points and neuron locations around 
the electrode. The recordings are generated by MEArec [15] and 
Neurocube [16], simulating a single-channel intracortical 
scenario with 300 neurons around the electrode. MEArec models 
cortical layer 5 with four pyramidal cells. Neurocube includes 4 
pyramidal and 1 interneuron cells in cortical layer 5. Both tools 
randomly select 30 neurons from the available pool and position 
them around the electrode. The noise level is set at 10 μV for 
background noise caused by distant neurons, in line with [15], 
[16]. Ten single-channel intracortical recordings simulate 300 
neurons for 30 seconds, combining to form the complete 
recording. Figure 2 presents 500 ms segments of the recordings. 

E. Spike detection performance assessment 

The spike detection performances of the algorithms are 
evaluated using true spike points. Evaluation involves extracting 
the numbers of true positives (𝑇𝑃), false negatives (𝐹𝑁), and 
false positives (𝐹𝑃) from the algorithm outputs. Three metrics, 
sensitivity (𝑆𝑒), positive predictivity (+𝑃), and F1 score (𝐹1), 
are then calculated as: 𝑆𝑒 = 𝑇𝑃/(𝐹𝑁 + 𝑇𝑃) ∗ 100, +𝑃 = 𝑇𝑃/
(𝐹𝑃 + 𝑇𝑃) ∗ 100, 𝐹1 = (2 ∗ 𝑆𝑒 ∗ (+𝑃))/(𝑆𝑒 + (+𝑃)). 

 
Figure 1. Nonlinear filtering method filters the noisy neural 

recording, 𝑠𝑛(𝑡) exerted as force onto a particle inside an underdamped 

monostable well potential. The well also exerts a force, −
𝑑𝑈0(𝑥)

𝑑𝑥
. The 

position of the particle projected on the x-axis, 𝑥(𝑡), is the NF output. 

 
Figure 2. 500 ms portions of (a) MEArec and (b) Neurocube recordings. Blue dots positioned at the top indicate spike events, and a greater horizontal level of 

the dots corresponds to a higher distance of the originating neuron from the electrode. 



III. RESULTS 

Figure 3 shows the outputs of the four spike enhancement 
methods for a 200 ms synthetic recording generated by the 
MEArec tool. The top plot displays the raw recording with true 
spikes indicated by dots. In this representative data, the NF 
achieves better signal improvement for the TPs and a better 
noise suppression.  Specifically, the NF, BPF, DWT, and STEO, 
result in SNR improvement, ∆𝑆𝑁𝑅, of 22.38dB, 3.8dB, 4.38dB, 
and 13.36dB, respectively. While large ∆𝑆𝑁𝑅  does not 
necessarily translate into high 𝐹1, for this representative portion 
of a single recording, the NF resulted in an 𝐹1 score of 65.31%, 
which is better than that of the BPF (34.28%), DWT (50%), and 
STEO (48.88%). 

To assess the detection performance with respect to distance, 
first, 𝐹1  score for a neuron is calculated by considering all 
spikes generated by that neuron in a recording. The process is 
repeated for all neurons. 𝐹1  scores of all neurons for both 
recordings are shown in Figure 4. To elucidate the trend of 
detection performance variation with respect to distance, the 
spikes are categorized into groups based on the distances of their 
source neurons from the electrode, with each group spanning a 
range of 10 μm. In Figure 4, the median 𝐹1  scores and the 
standard deviations for the 10 μm distance windows are also 
given for both datasets. 

For the MEArec recording, all four methods achieve 𝐹1 
scores greater than 85% for neurons that are less than 40 μm 
away, which decrease with distance. Next, the maximal distance 
at which the algorithms can detect neuronal spikes is evaluated. 
An F1 score above 75% is considered satisfactory, determined 
by setting acceptable 𝑆𝑒 and +𝑃 thresholds at 90% and 65%, 
respectively. A higher threshold for 𝑆𝑒 is chosen to maximize 
the benefit of accurately detecting neuronal spikes, while 
minimizing false negatives, to reduce information loss for 
subsequent algorithms [17]. The NF algorithm achieves median 
𝐹1 scores above 75% at greater distances compared to other 
algorithms in both datasets. Specifically, while the BPF, DWT, 
and STEO algorithms fall below the 75% threshold for neurons 
beyond approximately 50 μm, the NF algorithm maintains 𝐹1 
scores above 75% for neurons within distances of less than 70 
μm and 95 μm for the MEArec and Neurocube recordings, 
respectively. 

A potential factor contributing to the improved spike 
detection performance of the NF could be the beneficial role of 
an optimal level of noise in spike enhancement [7]. It should be 
noted that, to facilitate SR, the NF parameters are optimally 
chosen based on the recordings, following the parameter search 
in [7]. In contrast, BPF, DWT, and STEO lack established 
literature methods for recording-specific parameter optimization 
(e.g., BPF cutoffs, wavelet type), resulting in parameter 
selection based on prior work. It is noteworthy that the F1 score 
for untufted pyramidal cell spikes, represented by triangles (Δ) 
in Figure 4, consistently falls below the 75% threshold at shorter 
distances compared to other neuron types. Although these 
neuron spikes are also less effectively detected by the other 
methods, the interplay between the NF parameters and spike 
morphologies require further exploration, which is left as a 
future work. Furthermore, it is important to note a limitation of 
the study wherein synthetic recordings are utilized instead of 

real neural recordings. This decision is made due to the 
challenges of accurately localizing the source neuron in a real 
neural recording. While the actual distances required to achieve 
satisfactory 𝐹1  scores of 75% may differ from the results 
presented in this study, it is anticipated that the performance 
comparisons among the four algorithms would remain  
consistent. The superior spike detection performance of the NF 
for distant neurons, compared to BPF, DWT, and STEO, 
increases the number of neurons a single electrode can capture, 
reducing the number of required electrodes for the same volume. 
Additionally, the filter is suitable for ultra-low power 
implantable neural recording applications, where low-latency 
spike detection is critical. As a 2nd order ordinary differential 
equation, the NF can be efficiently implemented using analog 
signal processing methods, achieving both ultra-low power 
operation and real-time detection, as demonstrated in [18]. 

IV. CONCLUSION 

Unsupervised spike detection algorithms are crucial in 
intracortical brain monitoring for their automatic detection 
without training data. This study objectively evaluates a 
nonlinear filter (NF) and three widely-used unsupervised 
algorithms regarding spike detection performance across 
varying distances of originating neurons. Results from two 
synthetic neural recording datasets indicate that the NF 
consistently outperforms band-pass filtering, discrete wavelet 

 
Figure 3. A 200 ms portion of the MEArec recording and outputs of the 

nonlinear filter (NF) and the compared spike enhancement methods. 

True-detected spikes are indicated by dots, missed spikes are denoted by 

hollow circles, and false-detected spikes are represented by stars. 



transform, and smoothed Teager energy operator in detecting 
spikes from distant neurons. These findings highlight the 
potential of the noise-enhanced NF to maximize the detectable 
region within an intracortical neural recording application. 
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Figure 4. 𝐹1 scores for all 300 neurons against the distance of each neuron to the electrode. Each marker indicates the 𝐹1 score obtained based on all spikes of 

a unique neuron and the distance of the neuron. Median 𝐹1 and variance values are respectively presented as solid lines and shaded areas. The threshold of 75% 

𝐹1 score is annotated with dashed lines. (Left column) MEArec recording. Each type of neuron is represented by a distinct marker; a star (∗), a cross (x), a 

square (□), and a triangle (Δ). (Right column) Neurocube recording. 


