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Abstract— The objective of this study is to assess the spike
detection performance of a nonlinear filter (NF) using stochastic
resonance and subsequent hard thresholding. The evaluation is
based on the distance of neural spikes from the electrode. The F1
score variation of the algorithm is examined using two synthetic
datasets generated with MEArec and Neurocube extracellular
neural recording synthesis tools. In the MEArec recording, the
algorithm achieved a 75% F1 score for spikes up to 70 pm, and in
the Neurocube recording, it reached 95 pm. This contrasts with
three popular unsupervised intracortical neural spike
enhancement algorithms, which achieve the same F1 performance
only within a 50 pm range. These results suggest that the NF spike
enhancement method has the potential to increase the detectable
spikes by a single electrode in resource-limited implantable
intracortical neural recording systems, where hardware
complexity is a critical design consideration.
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I. INTRODUCTION

Detecting neural spikes in intracortical recordings is critical
for systems using electrodes in brain-machine interfaces [1] and
neuroscience studies [2]. Typically, raw electrical recordings
undergo analog signal conditioning to enhance neural spikes and
suppress noise. After spike detection, spikes are often sorted by
their source neurons before higher-level processing decodes
brain activity to infer intention. Alternatively, intentions can be
decoded directly from detected spikes [3]. In both cases, with or
without spike sorting, the number of detected spikes affects the
accuracy and efficiency of neural monitoring systems, with an
electrode theoretically detecting spikes from neurons within
~140 pm, or about 1000 neurons in the rat cortex [4]. Detecting
numerous spikes provides a detailed view of neural activity but
increases hardware complexity and power consumption in high-
density multielectrode arrays (HD-MEAs) [5]. Maximizing the
number of spikes detected by a single electrode can reduce the
number of channels in HD-MEAs, providing greater design
flexibility for meeting the stringent requirements of implantable
neural monitoring applications [6].

In [7], a spike enhancement algorithm based on a nonlinear
filter (NF) that facilitates stochastic resonance has been shown
to demonstrate signal-to-noise ratio (SNR) enhancements of
spikes from distant neurons. However, the study did not delve
into a critical performance aspect in neural recording
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applications - spike detection performance with distance. In this
study, we evaluate how the NF method's spike detection
performance varies with the distance of neural spikes from the
electrode. We use NF for spike enhancement in a threshold-
based detection approach and compare the results with three
commonly used unsupervised spike detection techniques.

II. METHODS

A. Nonlinear filtering (NF)

This spike enhancement method aims to leverage stochastic
resonance phenomenon, where additive noise on a weak signal
counterintuitively improves detectability of the weak signal [8].
Following [7], this study investigates a nonlinear filter (NF)
based on the underdamped dynamics of a particle inside a
monostable potential well when the particle is introduced with
a force proportional to the noisy neural recording (Figure 1).
Here, the particle is under the influence of two forces; one being
the input noisy intracortical signal, s, (t), and the other being
the force that the well potential exerts to move the particle
towards the stable point in proportion to the local slope as
—dU(x(t))/dx. The output of the system is the position of the
particle projected on the x-axis, x(t). In the presence of a spike,
the particle could move towards walls of the potential well.
However, during noise-only portions, the particle swings
around the stable point. The movement of the particle in this
system is governed by the generalized Langevin equation [9],
which maps the two forces of the system to the acceleration and
velocity of the particle: (d%x(t))/(dt?) +y dx(t)/dt =
—dU(x)/dx + s,(t), where y is the damping coefficient and
U(x) = ax?/2 + bx*/4 is the well potential with a, b > 0. The
selection of the equation parameters of a, b, y and the numerical
solver step size are performed through a three-step parametric
search, aiming to maximize the SNR improvement. The details
of this process are explained in [7], but are excluded in this
work for brevity. Then, the Langevin equation is solved
numerically using the fourth-order Runge-Kutta method.

B. Compared spike-enhancement algorithms

The spike enhancement and detection performance of the NF
is compared against three algorithms, namely band-pass filtering
(BPF), discrete wavelet transform (DWT), and smoothed Teager
energy operator (STEO). The selection of the algorithms was
based on two criteria. Firstly, these algorithms are widely used
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Figure 1. Nonlinear filtering method filters the noisy neural
recording, s, (t) exerted as force onto a particle inside an underdamped
monostable well potential. The well also exerts a force, —d%fx). The
position of the particle projected on the x-axis, x(t), is the NF output.

in spike detection, with an established history [10], [11] and
broad adoption in studies inferring brain states from detected
spikes [3]. Secondly, they are unsupervised methods, featuring
a spike enhancement followed by a detection stage, allowing for
data-independent, objective comparisons without requiring
training data. Unlike some unsupervised methods like
Wave_clus [12], they do not consider spike waveform shape,
making them suitable for applications that directly decode
detected spikes without a sorting stage.

Band-pass filtering aims to remove the low- and high-
frequency undesired content (e.g., local field potential and
noise). To minimize complexity, a 4™ order finite impulse
response (FIR) band-pass filter with Kaiser window is
implemented in this study. The bandwidth of the band-pass filter
is selected to match the neural spike band of [300 Hz — 6 kHz].

Discrete wavelet transform (DWT) is a time-frequency
analysis method that decomposes signals into a set of wavelets.
It operates by convolution of the signal and a mother wavelet
function to obtain the information on different frequency sub-
bands, while preserving their temporal information. In this
study, the sym4 is selected as mother wavelet, widely recognized
in literature for its effectiveness in enhancing intracortical
recordings [13].

The smoothed Teager energy operator (STEO) algorithm
aims to improve the SNR of the neural signal by extracting time-
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frequency information of spikes without a priori information.
The discrete-time Teager energy operator (TEO) is given as:
Y(x[n]) = x?[n] —x[n+ 1] - x[n — 1], where x[n], x[n +
1], and x[n — 1] are the n®"*, n + 1" and n — 1" samples of a
signal. To overcome the issue of experiencing a degraded spike
detection performance in low SNR and/or high noise peak
scenarios, the ¥ (x[n]) is smoothed viaa Hamming window FIR
filter with length 5 and the difference factor of 1, which lead to
the following window filter coefficients: w(n) =
[0.08 0.54 1 0.54 0.08] [14].

C. Spike detection by hard thresholding

All spike enhancement methods are followed by a
thresholding stage to identify the spikes. Each method employs
a hard threshold set at 4 times the standard deviation (o) of the
noise in the spike enhancement stage output [10]. The noise
standard deviation is accurately determined by utilizing spike
enhancement stage output portions without neural spikes.

D. Synthetic recordings

The algorithms are assessed using synthetic recordings,
offering known spike time points and neuron locations around
the electrode. The recordings are generated by MEArec [15] and
Neurocube [16], simulating a single-channel intracortical
scenario with 300 neurons around the electrode. MEArec models
cortical layer 5 with four pyramidal cells. Neurocube includes 4
pyramidal and 1 interneuron cells in cortical layer 5. Both tools
randomly select 30 neurons from the available pool and position
them around the electrode. The noise level is set at 10 pV for
background noise caused by distant neurons, in line with [15],
[16]. Ten single-channel intracortical recordings simulate 300
neurons for 30 seconds, combining to form the complete
recording. Figure 2 presents 500 ms segments of the recordings.

E. Spike detection performance assessment

The spike detection performances of the algorithms are
evaluated using true spike points. Evaluation involves extracting
the numbers of true positives (TP), false negatives (FN), and
false positives (FP) from the algorithm outputs. Three metrics,
sensitivity (Se), positive predictivity (+P), and F1 score (F1),
are then calculated as: Se = TP/(FN + TP) * 100, +P = TP/
(FP+TP) 100, F1 = (2 * Se * (+P))/(Se + (+P)).
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Figure 2. 500 ms portions of (a) MEArec and (b) Neurocube recordings. Blue dots positioned at the top indicate spike events, and a greater horizontal level of
the dots corresponds to a higher distance of the originating neuron from the electrode.



ITII. RESULTS

Figure 3 shows the outputs of the four spike enhancement
methods for a 200 ms synthetic recording generated by the
MEArec tool. The top plot displays the raw recording with true
spikes indicated by dots. In this representative data, the NF
achieves better signal improvement for the TPs and a better
noise suppression. Specifically, the NF, BPF, DWT, and STEO,
result in SNR improvement, ASNR, of 22.38dB, 3.8dB, 4.38dB,
and 13.36dB, respectively. While large ASNR does not
necessarily translate into high F1, for this representative portion
of a single recording, the NF resulted in an F1 score of 65.31%,
which is better than that of the BPF (34.28%), DWT (50%), and
STEO (48.88%).

To assess the detection performance with respect to distance,
first, F1 score for a neuron is calculated by considering all
spikes generated by that neuron in a recording. The process is
repeated for all neurons. F1 scores of all neurons for both
recordings are shown in Figure 4. To elucidate the trend of
detection performance variation with respect to distance, the
spikes are categorized into groups based on the distances of their
source neurons from the electrode, with each group spanning a
range of 10 pm. In Figure 4, the median F1 scores and the
standard deviations for the 10 um distance windows are also
given for both datasets.

For the MEArec recording, all four methods achieve F1
scores greater than 85% for neurons that are less than 40 um
away, which decrease with distance. Next, the maximal distance
at which the algorithms can detect neuronal spikes is evaluated.
An F1 score above 75% is considered satisfactory, determined
by setting acceptable Se and +P thresholds at 90% and 65%,
respectively. A higher threshold for Se is chosen to maximize
the benefit of accurately detecting neuronal spikes, while
minimizing false negatives, to reduce information loss for
subsequent algorithms [17]. The NF algorithm achieves median
F1 scores above 75% at greater distances compared to other
algorithms in both datasets. Specifically, while the BPF, DWT,
and STEO algorithms fall below the 75% threshold for neurons
beyond approximately 50 pm, the NF algorithm maintains F1
scores above 75% for neurons within distances of less than 70
um and 95 pum for the MEArec and Neurocube recordings,
respectively.

A potential factor contributing to the improved spike
detection performance of the NF could be the beneficial role of
an optimal level of noise in spike enhancement [7]. It should be
noted that, to facilitate SR, the NF parameters are optimally
chosen based on the recordings, following the parameter search
in [7]. In contrast, BPF, DWT, and STEO lack established
literature methods for recording-specific parameter optimization
(e.g., BPF cutoffs, wavelet type), resulting in parameter
selection based on prior work. It is noteworthy that the F1 score
for untufted pyramidal cell spikes, represented by triangles (A)
in Figure 4, consistently falls below the 75% threshold at shorter
distances compared to other neuron types. Although these
neuron spikes are also less effectively detected by the other
methods, the interplay between the NF parameters and spike
morphologies require further exploration, which is left as a
future work. Furthermore, it is important to note a limitation of
the study wherein synthetic recordings are utilized instead of
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Figure 3. A 200 ms portion of the MEArec recording and outputs of the
nonlinear filter (NF) and the compared spike enhancement methods.
True-detected spikes are indicated by dots, missed spikes are denoted by
hollow circles, and false-detected spikes are represented by stars.

real neural recordings. This decision is made due to the
challenges of accurately localizing the source neuron in a real
neural recording. While the actual distances required to achieve
satisfactory F1 scores of 75% may differ from the results
presented in this study, it is anticipated that the performance
comparisons among the four algorithms would remain
consistent. The superior spike detection performance of the NF
for distant neurons, compared to BPF, DWT, and STEO,
increases the number of neurons a single electrode can capture,
reducing the number of required electrodes for the same volume.
Additionally, the filter is suitable for ultra-low power
implantable neural recording applications, where low-latency
spike detection is critical. As a 2" order ordinary differential
equation, the NF can be efficiently implemented using analog
signal processing methods, achieving both ultra-low power
operation and real-time detection, as demonstrated in [18].

IV. CONCLUSION

Unsupervised spike detection algorithms are crucial in
intracortical brain monitoring for their automatic detection
without training data. This study objectively evaluates a
nonlinear filter (NF) and three widely-used unsupervised
algorithms regarding spike detection performance across
varying distances of originating neurons. Results from two
synthetic neural recording datasets indicate that the NF
consistently outperforms band-pass filtering, discrete wavelet



transform, and smoothed Teager energy operator in detecting
spikes from distant neurons. These findings highlight the
potential of the noise-enhanced NF to maximize the detectable
region within an intracortical neural recording application.
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