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Abstract— In implantable neural monitoring, handling
increasing data volumes from numerous channels is a challenge
for transmission. A viable solution is on-chip data spike detection.
This study introduces a low-power circuit integrating an analog
front-end, spike enhancement filter, and detector. The amplifier
adopts a two-stage operational transconductance design to both
perform linear filtering of the biopotential recordings and convert
them into current. The spike enhancement filter is designed as a
current-mode analog signal processing circuit, utilizing
translinear loops to emulate the underdamped dynamics of a
particle in a monostable potential well, implemented via a second-
order differential equation. The filter's output, enhanced with
spikes, undergoes a spike detector stage employing hard
thresholding. This circuitry is designed using TSMC 65nm CMOS
technology. Through simulations utilizing the Wave_clus
database, the proposed system demonstrates an average spike
detection sensitivity of 98.99% while consuming 311 nW when
powered by a 1V supply, with a compact footprint of 0.0348 mm?2.
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[. INTRODUCTION

Detecting neural spikes in intracortical neural recordings is
essential for various systems utilizing electrodes for neural
monitoring, such as brain-machine interfaces [1] and
neuroscience experiments [2]. Typically, this process involves
conditioning the raw electrical recording through amplification
and band-pass filtering to emphasize neural spikes while
minimizing noise. Subsequently, spike detection occurs, often
followed by spike sorting to categorize spikes based on their
originating neurons. Following this, a decoding stage interprets
brain activity to deduce intention. Alternatively, intention can be
decoded directly from detected spikes, circumventing the spike
sorting process [3], [4], [5]. The accuracy and efficiency of these
systems, whether employing spike sorting or not, can be
impacted by the quantity of detected spikes. Detecting a high
volume of spikes provides a comprehensive understanding of
neural activity and circuits.

Theoretically, electrodes have the capability to detect spikes
from neurons within a range of approximately 140 pm,
corresponding to around 1000 neurons in the rat cortex [6].
However, current methodologies are limited to detecting spike
events within about 50 pum due to signals falling below the
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Figure 1. (a) Conventional and (b) proposed spike detection method.
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electrode's noise floor [7]. To enhance spike detectability,
current amplifier designs focus on minimizing noise, although
this comes at the expense of increased power consumption.
Moreover, the use of high-density multielectrode arrays (HD-
MEAs) is employed to overcome spatial resolution limitations
[8], [9], [10], although this leads to heightened hardware
complexity and data bandwidth, consequently increasing both
size and power consumption [11], [12]. Typically, the
transceiver serves as the bottleneck, dissipating significantly
more power compared to other components within the system
[11]. For instance, in a 1000-channel system with 10-bit
resolution and a 20-kSps sampling rate, data transfer
requirements would amount to 200-Mbps, while even the best
wireless systems currently provide only up to tens of Mbps [13].

A compelling strategy to reduce on-chip data volume
involves implementing on-chip data spike detection. An
algorithm for spike enhancement, employing a noise-enhanced
filter, has demonstrated effectiveness in improving the signal-
to-noise ratio (SNR) of spikes originating from distant neurons
and achieving robust spike detection [14]. Notably, this filter
capitalizes on stochastic resonance (SR), where optimal noise
intensity maximizes SNR enhancement. Consequently, the noise
constraint on the amplifier could potentially be alleviated. With
this motivation, our study introduces neural signal conditioning
electronics that integrate a neural amplifier with the noise-
enhanced filtering technique described in [14], utilizing custom-
designed analog signal processing tailored specifically for
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Figure 2. Neural amplifier. (a) Closed-loop circuit. (b) Operational transconductance amplifier schematics.

neural spike detection for the first time. Unlike the conventional
approach to spike detection, which involves amplification
followed by digitization for subsequent spike detection and
inference (Figure 1(a)), the proposed method conducts spike
detection through analog domain computation directly on the
analog outputs of the neural amplifier (Figure 1(b)).

II. PROPOSED INTEGRATED NEURAL AMPLIFIER, SPIKE
ENHANCEMENT FILTER AND DETECTION CIRCUIT

The system, which integrates signal amplification, spike
enhancement filtering, and spike detection stages, is designed
using TSMC 65nm CMOS technology.

A. Neural Amplifier

The neural amplifier is designed as a two-stage differential-
input single-ended-output operational transconductance
amplifier (OTA) with a capacitive-resistive closed-loop
feedback system (Figure 2(a)). The closed-loop voltage mid-
band gain is set by the ratio Cy, /Cyp. The low-cutoff frequency,
f1 1s determined by Cyj, and feedback resistors implemented as
pseudo-resistors, Rg, , where two diode-connected PMOS
transistors are connected in series. Assuming the dominant pole
is at the output, the high-cutoff frequency, fy, is controlled by
the transconductance of the OTA and the load capacitance. The
load capacitance is affected by the parasitic capacitances of the
input device of the Qp, — Q3 current-mirror and the offset
current source device implemented using Qs. The purpose of
Qu2 — Q3 and Qs is to provide the spike enhancement filter
with a consistently positive current input, denoted as, iy.

The OTA schematic is presented in Figure 2(b). The first
stage of the OTA comprises a fully-differential current-reused
amplifier with common-mode feedback (CMFB). CMFB is
realized using a five-transistor OTA, where the error signal
between the output DC level of the first stage and a mid-rail
voltage, Vyp, is fed back into the circuit through the bias
current sink implemented using M,y. This CMFB mechanism
facilitates dynamic adjustment of the amplifier’s bias voltage,
ensuring that all transistors operate within the subthreshold
saturation region. The second stage of the OTA utilizes a
similar  five-transistor  architecture =~ with C, Miller
compensation. This compensation network ensures OTA
stability and sets the open-loop bandwidth.

TABLE 1. DEVICE SIZES AND COMPONENT VALUES

OTA stage
Devices W/L (um) Devices W/L (um)
Mao,1,2 6.77/0.5 Masq 25.84/0.4
Msgi,2 6.28/0.61 Megs,4 25.84/0.4
Mcwmi,2 6.28/0.61 Mcms,a 25.84/0.4
Mciy 1.8/0.4 Mcz3 25.84/0.4
Other components
Devices W/L (um) Devices Capacitance(fF)
PMOS Cin 2000
pseudo- 0.45/10 Cp 10
resistor G 580

The mid-rail voltage used in the closed-loop circuit in Figure
2(a) and in the CMFB network in Figure 2(b) is determined as
Vuip = Vpp/2, achieved through a voltage divider comprising
two identical pseudo-resistors, Ry, connected in series. Device
sizes of the amplifier are provided in Table I.

B. Spike Enhancement Filter

The filter used for neural spike pre-emphasis is determined
by the following 2nd order differential equation [14]:

2
Ty B = -1y, (M)
The filter governs the dynamics of particle's movement within a
potential well, U(x), with a damping factor of y. Two forces act
on the particle on the right-hand side of equation (1); the neural
recording, y(t), and a force proportional to the slope of U(x).
The output of the filter is represented by x(t). In accordance
with findings from [14], we selected a monostable well
potential, U(x) = ax?.

For energy-efficient implementation of (1), following [15], we

devised a translinear circuit utilizing MOS devices in weak-
. . . . . dz(t
inversion to solve two 1st order differential equations: % =

y(t) — ax(t) and £

the variables, x, y, and z as currents, denoted as iy, iy, and i.

= z(t) — yx(t). The circuit represents
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Figure 3. Spike enhancement filter schematics.

dix _ dix dvy
dt ~ dvy dt dt  dvz dt’
expressions to implement are as follows:

By utilizing the relations,

dvy . .
Cz% +irp = o
2
dvy .
Cx% +irs =yl
iyly

The circuit is presented in Figure 3. In (2), i;pq1 = .

LXIT, irLs = ﬁ, and I; = %, where Uy represents the
lz lx TK

thermal voltage, k denotes the gate coupling coefficient in weak

inversion, and T is the time constant. The current summations in

(2) occur at the capacitor voltage nodes, v; and vy. The circuit

comprises three translinear loops formed by gate-source

voltages of four transistor groups; Q4; — Q44 calculate iy, =
iyl . izl
}l', L N QA4— and QBZ - QB4— Calculate I'TL3 = lZ L

Z X

. aixl
Qcz — Qcs calculate g, = L,X 3
A

>

lr2 =

, and Q4, and

The current sources in Figure 3 are realized using pMOS
current mirrors. The parameter a is set to unity, and all devices
of the filter, except for the current mirror output generating y I,
are sized as 8um/2um. The value of y is fixed at 0.25,
consequently, the output device of the corresponding mirror is
sized as 8um/8um. The C; and Cy are 100 fF. The voltage V,
is set to 400 mV to ensure the devices remain in saturation within
the current range of 1 nA-100 nA.

C. Spike Detector

Spike detection is performed through hard thresholding. The
spike detector comprises a current comparator followed by two
inverters to refine the output signal (Figure 4). The current
comparator is composed of two current mirrors copying the filter
output, iy, and a threshold current, I, onto the same output
branch. If Iy exceeds (falls below) iy, the output voltage,
Veomp- 1 pulled to a low (high) voltage by M¢c, (Mccs) [16].
The V;omp is then fed into two inverters connected back-to-back,
resulting in spike events being identified as a pulse train.

III. SIMULATION RESULTS AND DISCUSSION

The proposed neural signal conditioning system schematics
is simulated using Cadence Virtuoso. The performance results
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Figure 4. Spike detector circuit.

TABLE II. AMPLIFIER PERFORMANCE

Supply (V) 1.0
Voltage to current gain (dB) -87.7
Power consumption (nW) 216.26
Bandwidth (Hz) 2.8-7.9k
Input-referred noise (UV) 13.9
Input impedance@500Hz (MQ) 338.5
CMRR (dB) 55
PSRR (dB) 475
-80 ‘ 107
Gy = —87.7dB
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Figure 5. Closed-loop gain and noise of the neural amplifier.

of the amplifier are summarized in Table II. Both stages are
biased with 100 nA, and the CMFB amplifier is biased with 10
nA, resulting in a power dissipation of 216 nW. The closed-loop
amplifier achieves a bandwidth ranging from 2.8 Hz to 7.9 kHz
with a transconductance gain of 41.2 nA/mV (Figure 5(a)). The
simulated common-mode gain is 73.2 pA/mV. Additionally, the
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Figure 6. Spike enhancement of the proposed filter. (a) Example waveforms
of the amplifier input, vg;, and the filter output, iy. (b) ASNR for various
input-referred noise intensities.
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Figure 7. Example waveforms from the filter and the detector. The black
dots indicate the true spike events of the recording.

integrated input-referred noise over the closed-loop bandwidth
is simulated as 13.9 uV,,s (Figure 5(b)). The spike
enhancement and the detector dissipate 95 nW of power.

To evaluate the spike detection performance, the neural
amplifier is provided with neural recordings from the
Wave_clus synthetic extracellular dataset [17]. Each recording
within the dataset consists of 60-second samples generated at a
sampling rate of 24 kHz. Actual in vivo spike waveforms from
three different neurons are utilized in each recording. The noise
levels in the recording names (e.g., 0.05, 0.2) indicate the noise
standard deviation, calculated as the ratio of spike amplitude to
the noise standard deviation. The recordings are further infused
with the amplifier’s integrated input-referred noise, modeled as
white noise, using MATLAB. In Figure 6(a), the waveforms
illustrate a one-second portion of the recording "Easy 1 — noise

TABLE III. SPIKE DETECTION PERFORMANCE

Recordin, #o Se Acc
Notso Spikj;s RENYEP ) o)

_ 005 3514 9 99.77  99.74
= 0l 3522 6 99.86  99.83
S 015 3477 38 99.71  98.92
02 3474 293 96.17  91.94

~ 0.05 3410 3 99.94 9991
2 0.1 3520 2 99.97  99.94
S 015 3411 86 98.83  97.51
02 352 349 93.85  90.46

= 0.05 3383 1 100  99.97
S~ 01 3448 1 100 99.97
g 0.15 3472 2 100 99.94
02 3414 37 9936 98.91

= 0.05 3364 1 100  99.97
S 01 3462 3 99.94 9991
= 0.15 3440 34 99.59  99.01
0.2 3493 209 96.91  94.18

0.05" with added noise, fed to the amplifier, alongside the
corresponding output of the filter.

The SNR enhancement, ASNR, of the filter is assessed by
computing the SNR as the mean spike peak-to-peak amplitude
averaged over 20 arbitrarily-selected spikes, divided by the root-
mean-square (RMS) value of the noise obtained as an average
RMS of 20 arbitrarily-selected noise-only segments of the
recordings. Figure 6(b) presents ASNR for various noise
intensities. Notably, for 4 ul},,s intensity, ASNR exhibits a
slight improvement with the proposed filter, indicating the
facilitation of stochastic resonance.

Threshold is selected as 1 nA greater than the baseline level
of the filter output, I,.. The simulated threshold detector output
waveforms are further processed in MATLAB to identify the
true positives (TP), false positives (FP), and false negatives
(FN) to calculate the sensitivity as Se = TP/(TP + FN),
accuracy as Acc = TP/(TP + FP + FN), and the sum FN +
FP. Figure 7 shows the input of the spike enhancement filter and
the outputs of both the filter and the detector for 80-millisecond
segment of the recording "Easy 1 —noise 0.05".

The detection performance for all recordings is summarized
in Table III. The circuit achieves an average sensitivity of
98.99+1.79%, an average accuracy of 98.13+3.09%, and an
average FN + FP of 67.13+£112.77. When compared with the
numerical implementation of the filter in [14], the average
sensitivity is slightly lower (99.97% vs. 98.99%). This
discrepancy could potentially be attributed to the
implementation of the damping parameter y. Unlike the filter in
[14], which incorporates an adaptive damping constant
adjustment based on the signal amplitude, the proposed circuit
employs a constant damping term.

The chip layout is presented in Figure 8. A comparison of
the proposed circuit with previous works presenting simulation-
based spike detection performances is detailed in Table IV.
Regarding detection performance, the proposed method
outperforms [18] and exhibits comparable performance to [19].
It's also important to note that the studies in [18], [19] utilize
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different databases. The proposed circuit dissipates
approximately one order of magnitude less power than [20].
While the study in [18] achieves lower power and area, it's worth
mentioning that it does not include an analog front-end amplifier
stage. In fact, excluding the amplifier, the proposed spike
enhancement and detector dissipate less power (0.095 pW)
within a slightly larger area (0.0077 mm?) than [18].

IV. CONCLUSION

This paper introduces an integrated analog front-end
amplifier and spike detection circuitry, achieving real-time spike
detection with ultra-low power consumption in a compact
footprint. The high efficiency of this approach is attributed to the
significant SNR enhancement provided by the spike
enhancement filter, which employs noise-enhanced spike
enhancement. Consequently, reducing the power dissipation
becomes feasible due to the lowered noise constraint on the
neural amplifier. Notably, the system demonstrates robust spike
detection performance, as evidenced by its high sensitivity and
accuracy on a benchmark database. These simulation outcomes
underscore the potential of the proposed system for integration
as the analog front-end and spike detector stage in implantable
neural monitoring applications, particularly those that directly
infer spike events, bypassing the need for a sorting stage.
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