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Abstract— In implantable neural monitoring, handling 

increasing data volumes from numerous channels is a challenge 

for transmission. A viable solution is on-chip data spike detection. 

This study introduces a low-power circuit integrating an analog 

front-end, spike enhancement filter, and detector. The amplifier 

adopts a two-stage operational transconductance design to both 

perform linear filtering of the biopotential recordings and convert 

them into current. The spike enhancement filter is designed as a 

current-mode analog signal processing circuit, utilizing 

translinear loops to emulate the underdamped dynamics of a 

particle in a monostable potential well, implemented via a second-

order differential equation. The filter's output, enhanced with 

spikes, undergoes a spike detector stage employing hard 

thresholding. This circuitry is designed using TSMC 65nm CMOS 

technology. Through simulations utilizing the Wave_clus 

database, the proposed system demonstrates an average spike 

detection sensitivity of 98.99% while consuming 311 nW when 

powered by a 1 V supply, with a compact footprint of 0.0348 mm2. 

Keywords—spike detection, ultra-low power computing, 

integrated sensing and computing 

I. INTRODUCTION 

Detecting neural spikes in intracortical neural recordings is 
essential for various systems utilizing electrodes for neural 
monitoring, such as brain-machine interfaces [1] and 
neuroscience experiments [2]. Typically, this process involves 
conditioning the raw electrical recording through amplification 
and band-pass filtering to emphasize neural spikes while 
minimizing noise. Subsequently, spike detection occurs, often 
followed by spike sorting to categorize spikes based on their 
originating neurons. Following this, a decoding stage interprets 
brain activity to deduce intention. Alternatively, intention can be 
decoded directly from detected spikes, circumventing the spike 
sorting process [3], [4], [5]. The accuracy and efficiency of these 
systems, whether employing spike sorting or not, can be 
impacted by the quantity of detected spikes. Detecting a high 
volume of spikes provides a comprehensive understanding of 
neural activity and circuits. 

Theoretically, electrodes have the capability to detect spikes 
from neurons within a range of approximately 140 μm, 
corresponding to around 1000 neurons in the rat cortex [6]. 
However, current methodologies are limited to detecting spike 
events within about 50 μm due to signals falling below the 

electrode's noise floor [7]. To enhance spike detectability, 
current amplifier designs focus on minimizing noise, although 
this comes at the expense of increased power consumption. 
Moreover, the use of high-density multielectrode arrays (HD-
MEAs) is employed to overcome spatial resolution limitations 
[8], [9], [10], although this leads to heightened hardware 
complexity and data bandwidth, consequently increasing both 
size and power consumption [11], [12]. Typically, the 
transceiver serves as the bottleneck, dissipating significantly 
more power compared to other components within the system 
[11]. For instance, in a 1000-channel system with 10-bit 
resolution and a 20-kSps sampling rate, data transfer 
requirements would amount to 200-Mbps, while even the best 
wireless systems currently provide only up to tens of Mbps [13]. 

A compelling strategy to reduce on-chip data volume 
involves implementing on-chip data spike detection. An 
algorithm for spike enhancement, employing a noise-enhanced 
filter, has demonstrated effectiveness in improving the signal-
to-noise ratio (SNR) of spikes originating from distant neurons 
and achieving robust spike detection [14]. Notably, this filter 
capitalizes on stochastic resonance (SR), where optimal noise 
intensity maximizes SNR enhancement. Consequently, the noise 
constraint on the amplifier could potentially be alleviated. With 
this motivation, our study introduces neural signal conditioning 
electronics that integrate a neural amplifier with the noise-
enhanced filtering technique described in [14], utilizing custom-
designed analog signal processing tailored specifically for 
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Figure 1. (a) Conventional and (b) proposed spike detection method.  



neural spike detection for the first time. Unlike the conventional 
approach to spike detection, which involves amplification 
followed by digitization for subsequent spike detection and 
inference (Figure 1(a)), the proposed method conducts spike 
detection through analog domain computation directly on the 
analog outputs of the neural amplifier (Figure 1(b)). 

II. PROPOSED INTEGRATED NEURAL AMPLIFIER, SPIKE 

ENHANCEMENT FILTER AND DETECTION CIRCUIT 

The system, which integrates signal amplification, spike 

enhancement filtering, and spike detection stages, is designed 

using TSMC 65nm CMOS technology. 

A. Neural Amplifier 

The neural amplifier is designed as a two-stage differential-
input single-ended-output operational transconductance 
amplifier (OTA) with a capacitive-resistive closed-loop 
feedback system (Figure 2(a)). The closed-loop voltage mid-
band gain is set by the ratio 𝐶𝑖𝑛/𝐶𝑓𝑏. The low-cutoff frequency, 

𝑓𝐿, is determined by 𝐶𝑓𝑏 and feedback resistors implemented as 

pseudo-resistors, 𝑅𝑓𝑏 , where two diode-connected PMOS 

transistors are connected in series. Assuming the dominant pole 
is at the output, the high-cutoff frequency, 𝑓𝐻, is controlled by 
the transconductance of the OTA and the load capacitance. The 
load capacitance is affected by the parasitic capacitances of the 
input device of the 𝑄𝑀2 − 𝑄𝑀3  current-mirror and the offset 
current source device implemented using 𝑄𝑂𝑆. The purpose of 
𝑄𝑀2 − 𝑄𝑀3 and 𝑄𝑂𝑆 is to provide the spike enhancement filter 
with a consistently positive current input, denoted as, 𝑖𝑌. 

The OTA schematic is presented in Figure 2(b). The first 
stage of the OTA comprises a fully-differential current-reused 
amplifier with common-mode feedback (CMFB). CMFB is 
realized using a five-transistor OTA, where the error signal 
between the output DC level of the first stage and a mid-rail 
voltage, 𝑉𝑀𝐼𝐷 , is fed back into the circuit through the bias 
current sink implemented using 𝑀𝐴0. This CMFB mechanism 
facilitates dynamic adjustment of the amplifier’s bias voltage, 
ensuring that all transistors operate within the subthreshold 
saturation region. The second stage of the OTA utilizes a 
similar five-transistor architecture with 𝐶𝐶  Miller 
compensation. This compensation network ensures OTA 
stability and sets the open-loop bandwidth. 

The mid-rail voltage used in the closed-loop circuit in Figure 
2(a) and in the CMFB network in Figure 2(b) is determined as 
𝑉𝑀𝐼𝐷 = 𝑉𝐷𝐷/2, achieved through a voltage divider comprising 
two identical pseudo-resistors, 𝑅𝑓𝑏, connected in series. Device 

sizes of the amplifier are provided in Table I. 

B. Spike Enhancement Filter 

The filter used for neural spike pre-emphasis is determined 
by the following 2nd order differential equation [14]: 

𝑑2𝑥(𝑡)

𝑑𝑡2
+ 𝛾

𝑑𝑥(𝑡)

𝑑𝑡
= −

𝑑𝑈(𝑥)

𝑑𝑥
+ 𝑦(𝑡).    (1) 

The filter governs the dynamics of particle's movement within a 
potential well, 𝑈(𝑥), with a damping factor of 𝛾. Two forces act 
on the particle on the right-hand side of equation (1); the neural 
recording, 𝑦(𝑡), and a force proportional to the slope of 𝑈(𝑥). 
The output of the filter is represented by 𝑥(𝑡). In accordance 
with findings from [14], we selected a monostable well 
potential, 𝑈(𝑥) = 𝑎𝑥2. 

For energy-efficient implementation of (1), following [15], we 
devised a translinear circuit utilizing MOS devices in weak-

inversion to solve two 1st order differential equations: 
𝑑𝑧(𝑡)

𝑑𝑡
=

𝑦(𝑡) − 𝑎𝑥(𝑡) and 
𝑑𝑥(𝑡)

𝑑𝑡
= 𝑧(𝑡) − 𝛾𝑥(𝑡). The circuit represents 

the variables, 𝑥, 𝑦, and 𝑧 as currents, denoted as 𝑖𝑋, 𝑖𝑌, and 𝑖𝑍. 

 
Figure 2. Neural amplifier. (a) Closed-loop circuit. (b) Operational transconductance amplifier schematics. 

TABLE I. DEVICE SIZES AND COMPONENT VALUES 

OTA stage 

Devices W/L (𝝁𝒎) Devices W/L (𝝁𝒎) 

MA0,1,2 6.77/0.5 MA3,4 25.84/0.4 

MB1,2 6.28/0.61 MB3,4 25.84/0.4 

MCM1,2 6.28/0.61 MCM3,4 25.84/0.4 

MC1,4 1.8/0.4 MC2,3 25.84/0.4 

Other components 

Devices W/L (𝝁𝒎) Devices Capacitance(fF) 

PMOS 

pseudo-

resistor 

0.45/10 

Cin 2000 

Cfb 10 

Cc 580 

 



By utilizing the relations, 
𝑑𝑖𝑋

𝑑𝑡
=

𝑑𝑖𝑋

𝑑𝑣𝑋

𝑑𝑣𝑋

𝑑𝑡
 and 

𝑑𝑖𝑍

𝑑𝑡
=

𝑑𝑖𝑍

𝑑𝑣𝑍

𝑑𝑣𝑍

𝑑𝑡
, the 

expressions to implement are as follows: 

𝐶𝑧
𝑑𝑣𝑍
𝑑𝑡

+ 𝑖𝑇𝐿1 = 𝑖𝑇𝐿2 

(2) 

𝐶𝑥
𝑑𝑣𝑋
𝑑𝑡

+ 𝑖𝑇𝐿3 = 𝛾𝐼𝜏 

The circuit is presented in Figure 3. In (2), 𝑖𝑇𝐿1 =
𝑖𝑌𝐼𝜏

𝑖𝑍
, 

𝑖𝑇𝐿2 =
𝑎𝑖𝑋𝐼𝜏

𝑖𝑍
, 𝑖𝑇𝐿3 =

𝑖𝑍𝐼𝜏

𝑖𝑋
, and 𝐼𝜏 =

𝐶𝑈𝑇

𝜏𝜅
, where 𝑈𝑇 represents the 

thermal voltage, 𝜅 denotes the gate coupling coefficient in weak 
inversion, and 𝜏 is the time constant. The current summations in  
(2) occur at the capacitor voltage nodes, 𝑣𝑍 and 𝑣𝑋. The circuit 
comprises three translinear loops formed by gate-source 
voltages of four transistor groups; 𝑄𝐴1 − 𝑄𝐴4 calculate 𝑖𝑇𝐿1 =
𝑖𝑌𝐼𝜏

𝑖𝑍
, 𝑄𝐴4  and 𝑄𝐵2 − 𝑄𝐵4  calculate 𝑖𝑇𝐿3 =

𝑖𝑍𝐼𝜏

𝑖𝑋
, and 𝑄𝐴4  and 

𝑄𝐶2 − 𝑄𝐶4 calculate 𝑖𝑇𝐿2 =
𝑎𝑖𝑋𝐼𝜏

𝑖𝑍
. 

The current sources in Figure 3 are realized using pMOS 
current mirrors. The parameter 𝑎 is set to unity, and all devices 
of the filter, except for the current mirror output generating 𝛾𝐼𝜏, 
are sized as 8𝜇𝑚/ 2𝜇𝑚 . The value of 𝛾  is fixed at 0.25, 
consequently, the output device of the corresponding mirror is 
sized as 8𝜇𝑚/8𝜇𝑚. The 𝐶𝑍 and 𝐶𝑋 are 100 fF. The voltage 𝑉0 
is set to 400 mV to ensure the devices remain in saturation within 
the current range of 1 nA-100 nA. 

C. Spike Detector 

 Spike detection is performed through hard thresholding. The 
spike detector comprises a current comparator followed by two 
inverters to refine the output signal (Figure 4). The current 
comparator is composed of two current mirrors copying the filter 
output, 𝑖𝑋 , and a threshold current, 𝐼𝑇𝐻 , onto the same output 
branch. If 𝐼𝑇𝐻  exceeds (falls below) 𝑖𝑋 , the output voltage, 
𝑉𝑐𝑜𝑚𝑝, is pulled to a low (high) voltage by 𝑀𝐶𝐶2 (𝑀𝐶𝐶3) [16]. 

The 𝑉𝑐𝑜𝑚𝑝 is then fed into two inverters connected back-to-back, 

resulting in spike events being identified as a pulse train. 

III. SIMULATION RESULTS AND DISCUSSION 

The proposed neural signal conditioning system schematics 
is simulated using Cadence Virtuoso. The performance results 

of the amplifier are summarized in Table II. Both stages are 
biased with 100 nA, and the CMFB amplifier is biased with 10 
nA, resulting in a power dissipation of 216 nW. The closed-loop 
amplifier achieves a bandwidth ranging from 2.8 Hz to 7.9 kHz 
with a transconductance gain of 41.2 𝑛𝐴/𝑚𝑉 (Figure 5(a)). The 
simulated common-mode gain is 73.2 𝑝𝐴/𝑚𝑉. Additionally, the 

 
Figure 3. Spike enhancement filter schematics. 

 
Figure 4. Spike detector circuit. 

TABLE II. AMPLIFIER PERFORMANCE 

Supply (V) 1.0 

Voltage to current gain (dB) -87.7 

Power consumption (nW) 

Bandwidth (Hz) 

216.26 

2.8-7.9k 

Input-referred noise (𝝁𝑽) 

Input impedance@500Hz (𝑴𝛀) 

13.9 

338.5 

CMRR (dB) 55 

PSRR (dB) 47.5 

  

  

 

 
Figure 5. Closed-loop gain and noise of the neural amplifier. 



integrated input-referred noise over the closed-loop bandwidth 
is simulated as 13.9 𝜇𝑉𝑟𝑚𝑠  (Figure 5(b)). The spike 
enhancement and the detector dissipate 95 nW of power. 

To evaluate the spike detection performance, the neural 
amplifier is provided with neural recordings from the 
Wave_clus synthetic extracellular dataset [17]. Each recording 
within the dataset consists of 60-second samples generated at a 
sampling rate of 24 kHz. Actual in vivo spike waveforms from 
three different neurons are utilized in each recording. The noise 
levels in the recording names (e.g., 0.05, 0.2) indicate the noise 
standard deviation, calculated as the ratio of spike amplitude to 
the noise standard deviation. The recordings are further infused 
with the amplifier’s integrated input-referred noise, modeled as 
white noise, using MATLAB. In Figure 6(a), the waveforms 
illustrate a one-second portion of the recording "Easy 1 – noise 

0.05" with added noise, fed to the amplifier, alongside the 
corresponding output of the filter. 

The SNR enhancement, ΔSNR, of the filter is assessed by 
computing the SNR as the mean spike peak-to-peak amplitude 
averaged over 20 arbitrarily-selected spikes, divided by the root-
mean-square (RMS) value of the noise obtained as an average 
RMS of 20 arbitrarily-selected noise-only segments of the 
recordings. Figure 6(b) presents ΔSNR  for various noise 
intensities. Notably, for 4 𝜇𝑉𝑟𝑚𝑠  intensity, ΔSNR exhibits a 
slight improvement with the proposed filter, indicating the 
facilitation of stochastic resonance. 

Threshold is selected as 1 nA greater than the baseline level 
of the filter output, 𝐼𝑥. The simulated threshold detector output 
waveforms are further processed in MATLAB to identify the 
true positives (𝑇𝑃), false positives (𝐹𝑃), and false negatives 
( 𝐹𝑁 ) to calculate the sensitivity as 𝑆𝑒 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁) , 
accuracy as 𝐴𝑐𝑐 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁), and the sum 𝐹𝑁 +
𝐹𝑃. Figure 7 shows the input of the spike enhancement filter and 
the outputs of both the filter and the detector for 80-millisecond 
segment of the recording "Easy 1 – noise 0.05". 

The detection performance for all recordings is summarized 
in Table III. The circuit achieves an average sensitivity of 
98.99±1.79%, an average accuracy of 98.13±3.09%, and an 
average 𝐹𝑁 + 𝐹𝑃 of 67.13±112.77. When compared with the 
numerical implementation of the filter in [14], the average 
sensitivity is slightly lower (99.97% vs. 98.99%). This 
discrepancy could potentially be attributed to the 
implementation of the damping parameter 𝛾. Unlike the filter in 
[14], which incorporates an adaptive damping constant 
adjustment based on the signal amplitude, the proposed circuit 
employs a constant damping term. 

The chip layout is presented in Figure 8. A comparison of 
the proposed circuit with previous works presenting simulation-
based spike detection performances is detailed in Table IV. 
Regarding detection performance, the proposed method 
outperforms [18] and exhibits comparable performance to [19]. 
It's also important to note that the studies in [18], [19] utilize 

 
Figure 6. Spike enhancement of the proposed filter. (a) Example waveforms 

of the amplifier input, 𝑣𝐸𝐿, and the filter output, 𝑖𝑋. (b) Δ𝑆𝑁𝑅 for various 

input-referred noise intensities. 

 
Figure 7. Example waveforms from the filter and the detector. The black 

dots indicate the true spike events of the recording. 

TABLE III. SPIKE DETECTION PERFORMANCE 

Recording 

Noise 

# of 

Spikes 
#FN+FP 

Se 

(%) 

Acc 

(%) 

E
a

sy
 1

 0.05 3514 9 99.77 99.74 

0.1 3522 6 99.86 99.83 

0.15 3477 38 99.71 98.92 

0.2 3474 293 96.17 91.94 

E
a

sy
 2

 0.05 3410 3 99.94 99.91 

0.1 3520 2 99.97 99.94 

0.15 3411 86 98.83 97.51 

0.2 3526 349 93.85 90.46 

D
if

fi
cu

lt

1
 

0.05 3383 1 100 99.97 

0.1 3448 1 100 99.97 

0.15 3472 2 100 99.94 

0.2 3414 37 99.36 98.91 

D
if

fi
cu

lt

2
 

0.05 3364 1 100 99.97 

0.1 3462 3 99.94 99.91 

0.15 3440 34 99.59 99.01 

0.2 3493 209 96.91 94.18 

 



different databases. The proposed circuit dissipates 
approximately one order of magnitude less power than [20]. 
While the study in [18] achieves lower power and area, it's worth 
mentioning that it does not include an analog front-end amplifier 
stage. In fact, excluding the amplifier, the proposed spike 
enhancement and detector dissipate less power (0.095 μW) 
within a slightly larger area (0.0077 mm2) than [18]. 

IV. CONCLUSION 

This paper introduces an integrated analog front-end 
amplifier and spike detection circuitry, achieving real-time spike 
detection with ultra-low power consumption in a compact 
footprint. The high efficiency of this approach is attributed to the 
significant SNR enhancement provided by the spike 
enhancement filter, which employs noise-enhanced spike 
enhancement. Consequently, reducing the power dissipation 
becomes feasible due to the lowered noise constraint on the 
neural amplifier. Notably, the system demonstrates robust spike 
detection performance, as evidenced by its high sensitivity and 
accuracy on a benchmark database. These simulation outcomes 
underscore the potential of the proposed system for integration 
as the analog front-end and spike detector stage in implantable 
neural monitoring applications, particularly those that directly 
infer spike events, bypassing the need for a sorting stage. 
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Figure 8. Chip layout. 

TABLE IV. COMPARISON WITH PREVIOUS WORKS 

 
This Work 

Simulated 

TBCAS23 

Simulated 

[18] 

BioCAS23 

Simulated 

[19] 

ISCAS22 

Simulated 

[20] 

Technology 65 nm 180 nm 40 nm 65 nm 

Integrated 

Amplifier 
Yes No No Yes 

Power 

(𝜇𝑊/channel) 

AFE: 0.216 

SP: 0.095 

AFE: N/A 

SP: 0.28 

AFE: N/A 

SP: 0.95 

AFE: 2.55 

SP: 0.6 

Area 

(mm2/channel) 

AFE: 0.021 

SP: 0.0077 

AFE: N/A 

SP: 0.0067 

AFE: N/A 

SP: N/A 

AFE:0.0027 

SP:0.001 

Detection 

Accuracy 
98.13% 96% 

90.9%-

100% 
N/A 

AFE: Analog front-end block, SP: Spike enhancement and detector block 


