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In this paper, we study the generation and propagation of oscil-
latory solutions observed in the widely used Lorenz 96 (L96) sys-
tems. First, period-two oscillations between adjacent grid points
are found in the leading-order expansions of the discrete L96 sys-
tem. The evolution of the envelope of period-two oscillations is de-
scribed by a set of modulation equations with strictly hyperbolic
structure. The modulation equations are found to be also subject
to an additional reaction term dependent on the grid size, and the
period-two oscillations will break down into fully chaotic dynamics
when the oscillation amplitude grows large. Then, similar oscilla-
tion solutions are analyzed in the two-layer L96 model including
multiscale coupling. Modulation equations for period-three oscil-
lations are derived based on a weakly nonlinear analysis in the
transition between oscillatory and nonoscillatory regions. Detailed
numerical experiments are shown to confirm the analytical results.

1. Introduction

The Lorenz 96 (L96) system is a simple and illustrative model designed by
E. N. Lorenz in 1996 [13] to study various representative features observed
in the atmosphere. The original L96 model is later generalized to a two-layer
version [25, 2] to include multiscale interactions. Though the L96 equations
are deterministic, they demonstrate intrinsically chaotic behaviors in direct
numerical solutions that display large uncertainty and instability [20, 15].
It shows that the L96 models can produce many remarkable statistical and
stochastic features [14, 19, 1] in common with the climate system while main-
tain a much cleaner mathematical setting. Furthermore, the L96 system has
been widely used as a prototype model to test model reduction methods in
uncertainty quantification and data assimilation [16, 17, 21, 22], and to ana-
lyze different aspects of multiscale stochastic behaviors in chaotic dynamics
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[4, 7, 3]. In general, such complex chaotic behaviors in discrete dynamical

systems can be understood by properties of numerical schemes and the corre-

sponding conservation properties [24]. However, there is still not a thorough

study from this perspective in the context of L96 systems to our knowledge.

The chaotic behavior in the L96 solutions is found to be closely linked to

the automatic generation of oscillating solutions happening at the grid scale,

which can be compared to the discrete dispersive numerical schemes. Similar

oscillating solutions on the mesh scale after the formation of shocks are gen-

erally observed and systematically analyzed under various dispersive schemes

[9, 8, 6]. In contrast to the strong convergence and stability of viscous solutions

to smooth inviscid flows such as the detailed studies in [26, 11, 12], the oscilla-

tions generated in dispersive numerical schemes do not vanish and are main-

tained in finite amplitude, while the wavelength of the oscillations remains

within the grid size. It is demonstrated from different numerical schemes on

the Burgers-Hopf equation [5, 10] that the oscillations will persist in the weak

convergence of the oscillatory approximations. Inspired by this observation in

dispersive schemes, it is found that solutions of the L96 systems exhibit simi-

lar behaviors in its way to develop fully chaotic dynamics from smooth initial

data.

In this paper, we study the well-known complex chaotic behaviors ob-

served in the discrete one and two-layer L96 systems in analog to the oscil-

latory solutions in dispersive schemes. First, we treat the discrete inviscid

L96 model as a finite difference approximation and study its continuum limit

with small grid size as h → 0. It shows that the L96 system agrees with the

solution of the Burgers-Hopf equation in its leading order, while the higher-

order corrections make the important contribution to creating the competing

oscillatory features found in the discrete L96 solutions (Propositions 1 and 2).

Based on typical observations from numerical simulations, we perform a de-

tailed investigation about the development of oscillations at the discrete grid

size from classical smooth solutions of the initial value problem. In partic-

ular, we find the existence of representative period-two oscillatory solutions

[10] due to the local conservation laws maintained in the L96 schemes. Corre-

sponding modulation equations that describe the evolution of an envelope of

the period-two oscillations are derived to characterize the development and

evolution of these typical oscillating solutions. The Strang-type analysis [23]

can be applied to show the convergence of the L96 scheme (Theorem 5 and

Corollary 7). Further, the breakdown of the period-two oscillations due to the

strong effect of an additional reaction term indicates the generation of fully

chaotic behavior in the solution. This provides a precise characterization for
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the route to chaotic solutions through the intermediate oscillating regions in
the L96 models with a finite grid size h.

As a further development, we seek a closer look near the transition region
from non-oscillatory to oscillatory solutions. It shows that the solution may
generate more complicated period-three structures. Using a weakly nonlinear
asymptotic analysis, we derive the modulation equations that govern such
period-three oscillation features and show the convergence of the discrete
model to this typical period-three structure in leading order (Theorem 8).
In particular, we demonstrate the multiscale performance in the two-layer
L96 model, and show the potential period-three oscillation phenomena. It is
found that the large-scale states create a contact discontinuity in the small-
scale variable from the large-scale forcing, which induces the oscillatory solu-
tions. Besides, all the analytical results are supported by detailed numerical
simulations of the one-layer and two-layer L96 models with different initial
conditions.

In the rest of the paper is organized as follows: we provide a general
discussion on the L96 model and its leading-order asymptotic equations in
Section 2. The creation of period-two oscillations and the corresponding mod-
ulation equations are then derived in Section 3. The large and small scale cou-
pling mechanism in the two-layer L96 model is discussed in Section 4 where
a typical period-three solution is derived. Finally, a summarizing discussion
is given in Section 5.

2. Leading-order equations of the Lorenz 96 model

The standard L96 model is given by spatially discrete system with uniform
forcing F and a linear damping

(2.1)
duj

dt
= (uj+1 − uj−2)uj−1 − uj + F, j = 1, . . . , J.

The model state variables u = (u1, u2, . . . , uJ) ∈ ℝ
J are defined with pe-

riodic boundary condition uJ+1 = u1 mimicking geophysical waves in the
mid-latitude atmosphere. The discrete grid size is usually set to be J = 40
denoting the non-dimensional midlatitude Rossby radius [1]. The model struc-
ture and a typical solution of (2.1) are illustrated in Figure 1. The discrete
solution u is shown to demonstrate various representative chaotic dynamical
features [14] such as westward (that is, moving to the left) wave packages and
a rapid transition from regular initial state to highly chaotic solutions.
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Figure 1: Illustration of the L96 model (2.1) and the typical solution with
J = 40 and F = 4.

2.1. The L96 system as a finite difference discretization

In this paper, we focus on the nonlinear coupling term in the L96 system. If
the forcing and damping terms in (2.1) are set to zero, we can rewrite the
undamped and unforced L96 model by introducing scaling parameters a, h as

(2.2)
duj

dt
=

1

ah
(uj+1 − uj−2)uj−1,

Above, the equation (2.2) is viewed as a semi-discrete difference scheme
from a continuous function uj(t) = u(xj , t) with the spatial discretization
h = xj+1 − xj = L

J where J is the number of grid points and L the domain
size. For convenience in (2.2), we pick the difference factor a = 3. The inviscid
L96 model builds an interesting bridge between the discrete L96 equation and
the continuous Burgers-Hopf equation

(2.3) ∂tu − u∂xu = 0.

It shows that they share very similar equilibrium statistical formalism through
a detailed statistical performance analysis in [18, 1].

For a closer look at the link between the equations, we introduce the cor-
responding continuous state u(x, t) defined on [0, L] with periodic boundary
condition u(x) = u(x + L). The continuum limit is reached as h = L

J → 0.
By taking Taylor expansion as the finite difference approximation of u(xj , t)
with xj = jh directly, the continuum limit of the inviscid L96 system with
a = 3 yields

∂tu = u∂xu − h

2

(

u∂xxu + 2(∂xu)2
)

+
h2

2
(u∂xxxu + 2∂xu∂xxu)(2.4)

− h3

24

(

5u∂xxxxu + 16∂xu∂xxxu + 6(∂xxu)2
)

+ O
(

h4
)
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=
1

2
∂x

(

u2
)

− h

2

(

∂xx

(

u2
)

− u∂xxu
)

+
h2

6

(

∂xxx

(

u2
)

+ u∂xxxu
)

− h3

24

(

∂xxxx

(

u2
)

+ 8∂x(u∂xxxu) − 5u∂xxxxu
)

+ O
(

h4
)

.

From (2.4), it shows that the inviscid L96 model (2.2) can be viewed as
a finite difference approximation to the Burgers-Hopf equation (2.3) in the
leading order. Immediately, we find the two major conservation equations in
the leading order

(2.5)

d

dt

∫ L

0

u dx = − h

2

∫ L

0

(∂xu)2dx +
5h3

24

∫ L

0

(∂xxu)2dx + O
(

h4
)

,

d

dt

∫ L

0

u2dx = O
(

h4
)

.

The first equation in (2.5) shows that the spatially averaged mean state ū =
∫

u dx is damped by
∫

|∂xu|2dx in the next order O(h). This implies the
nonlinear coupling between the mean state and subscale modes. On the other
hand, the total energy of the system, E =

∫

u2dx, is conserved up to the
fourth order.

It is well-known that the initial value problem of the Burgers-Hopf equa-
tion (2.3) can create an infinite derivative in finite time due to the devel-
opment of shocks. This process can be viewed as the ‘cascade of energy’ in
turbulence from the mean state ū =

∫

udx to multiscale fluctuation modes.
To have a better understanding of the generation of chaotic behavior as shown
in Figure 1, we need to dive into the next order approximation for the detailed
nonlinear coupling between mean and fluctuation modes.

2.2. Conserved quantities in first-order approximation

Next, we discuss the additional effects induced from the first-order correction
in the asymptotic approximation (2.4). When the solution u of the continuum
equation (2.4) remains C2, we can first identify the contribution from the first-
order term O(h) in the asymptotic expansion and focus on its leading order
effect. This leads to the PDE

(2.6) ∂tu = u∂xxu − ∂xx

(

u2
)

= −u∂xxu − 2(∂xu)2.

Above in (2.6), we neglect the dependence on h for the moment to focus on
the individual contribution in this order. Similar to the conservation laws for
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the full equation (2.5), we can find the conserved energy and a dissipation on
the momentum for the separate first-order equation (2.6)

d

dt

∫

udx = −
∫

(∂xu)2dx,

d

dt

∫

u2dx = 0.

Based on the above conservation equations, we can introduce the decompo-
sition for the model state u(x, t) = ū(t) + u′(x, t) into a spatial mean ū and
fluctuations

∫

u′dx = 0 with the following equations

(2.7)
dū

dt
= −

∫

(

∂xu′
)2

dx,
d

dt

(

ū2 +

∫

u′2dx

)

= 0.

The conservation equations (2.7) provide a crude illustration of the nonlinear
coupling mechanism between the mean and fluctuations in the first level: the
energy in the mean will be damped by the generation of oscillating fluctua-
tion modes due to u′

x (developed from the leading-order Burgers-Hopf); and
inversely the decrease in the mean energy will reinforce the energy in the
fluctuation modes. This corresponds to the generation of oscillation solutions
approximating the asymptotic equation (2.4), while the oscillating amplitude
will not vanish as h → 0.

Furthermore, we can derive the conservation equation for any arbitrary
function G(u)

(2.8)
d

dt

∫

G(u)dx =

∫

[

G′′(u)u − G′(u)
]

(ux)2dx.

It can be checked that the above two conservation equations with G(u) =
u, u2 fit into the more general conservation equation (2.8). Further by setting
G(u) = |u|p, we can find a sequence of conservation equations for any p

(2.9)
d

dt

∫

|u|pdx = p(p − 2)

∫

sign(u)|u|p−1(ux)2dx.

Using the above conservation equations, we are able to discover basic proper-
ties in the solutions of the first-order equation (2.6). First, it shows that the
only stable steady-state solution will be a constant with negative value. Fur-
ther, we can show that the solutions of the equation (2.6) preserves negativity.
More precisely, we summarize the results in the following propositions.



Oscillatory solutions at the continuum limit of Lorenz 96 systems 557

Proposition 1. The only stable steady-state solution of the equation (2.6) is
the negative constant solution u ≡ a < 0.

Proof. By letting p = 1 in (2.9), we have

(2.10)
d

dt

∫

|u|dx =

∫

u<0

(

u′
x

)2
dx −

∫

u>0

(

u′
x

)2
dx.

In addition, assuming a steady-state solution exists, the conditions in (2.7)
requires

dū

dt
= 0,

∫

(

u′
x

)2
dx = 0 ⇒ u′

x = 0 ⇒ u ≡ a = const.

Next, consider any small mean-zero perturbations u′ to the steady state so-
lution u = a + u′. If the steady-state satisfies a < 0 so that u = −|u| < 0, we
have ū2 +

∫

u′2 = C is conserved and ū = −
∫

|u| increases in time according
to (2.10). Thus the fluctuation

∫

u′2 will decrease to return to the constant
steady-state. On the other hand, if the steady state is a > 0, the conservation
relation implies that ū will decrease and the fluctuations u′ will increase due
to the equations for ū and

∫

|u|. Then the solution diverges from the original
steady-state.

Proposition 2. If the initial value of the equation (2.6) is fully negative,
that is, max u0(x) = b < 0, the solution will remain negative for the entire
time t > 0

(2.11) max
x

u(x, t) ≤ b < 0.

Proof. Let

G(u) =

{

(u − b)2, u ≥ b,

0, u < b.

We have G′′u − G′ = 2b when u ≥ b and 0 otherwise. The conservation
equation (2.8) gives that

∫

G(u) is decreasing since

d

dt

∫

G(u)dx = 2b

∫

u≥b

(ux)2dx < 0.

Together with the initial maximum value b and the definition of the function
G, we find for all the time t > 0

∫

u≥b

(u − b)2dx =

∫

G(u)dx ≤
∫

G(u0)dx = 0 ⇒
∫

u≥b

(u − b)2dx ≡ 0.
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This implies for all t > 0 and almost everywhere in x

u(x, t) ≤ b < 0.

On the other hand, there is no similar result for the positive solutions of
(2.6). In fact from the proof in Proposition 2, a positive mean state ū will
excite more small-scale fluctuation modes. This will induce energy cascade
to small scales in the transient state and drive the solution away from the
positive initial state finally to the negative regime.

We check our analysis results above using direct numerical simulations
of the equation (2.6). A pseudo-spectral scheme with dealiasing is used for
high accuracy of the nonlinear coupling term [16]. We use a discretization size
J = 256. Two different initial states with positive and negative initial values
u0(x) = ± sech(x) are considered. First, Figure 2 shows the evolution of solu-
tion starting from a negative initial state. The solution remains in the smooth
region and shows consistent performance as indicated in Propositions 1 and 2
as well as the energy conservation laws (2.7) and (2.9). Next, the solution
development from positive initial state is displayed in Figure 3. In this case,

Figure 2: Solution of the first-order asymptotic equation (2.6) with negative
initial data.

Figure 3: Solution of the first-order asymptotic equation (2.6) with positive
initial data.



Oscillatory solutions at the continuum limit of Lorenz 96 systems 559

we look at the transient state development from the unstable initial state.
In contrast to the negative initial value case, the transient state of the solu-
tion demonstrates oscillations of period-two type (that is, oscillation between
adjacent grid points). This implies the downward ‘cascade’ of energy to the
smallest scale. Finally, the small-scale oscillations will be strongly dissipated,
transferring to the final solution in the regime with purely negative values.

Remark. The numerical examples in Figures 2 and 3 provide a first qualitative
characterization of ‘the route to chaos’ in the L96 system. In the original
setting of L96 model (2.1) with a positive forcing F > 0, the positive forcing
will drive the mean state ū to the positive value regime, while the first-order
nonlinear coupling tends to create oscillatory solutions during the return to
the stable regime with negative values. These competing counter effects lead
to the creation of complex chaotic features as shown in Figure 1.

3. Generation of period-two oscillatory solutions

Here, we study the development of oscillatory solutions in the discrete L96
model by considering its convergence at the continuum limit. As observed in
the numerical simulation in Figure 3, period-two oscillating solutions in the
grid size will automatically emerge from smooth initial data and be main-
tained from the leading-order nonlinear coupling effect. For the analysis, we
treat the inviscid L96 system (2.2) as a spatially discretized numerical scheme
in the following form

(3.1)
∂u(xj , t)

∂t
=

1

ah

(

u(xj+1, t) − u(xj−2, t)
)

u(xj−1, t).

Above, a is a scaling parameter and h = L
J is the spatial grid size. The contin-

uous model state u(x, t) defined on x ∈ [0, L] is evaluated at the discretized
grid points xj = jh with j = 1, . . . , J such that u(x, t) can be viewed as a
smooth interpolation of the discrete grid values uj . In particular, the gener-
alized scheme (3.1) goes back to the standard L96 equation (2.1) by taking
the parameter values a = 3, J = 40 and L = 40

3 .

3.1. Modulation equation with period-two oscillations

We start with two local conservation laws from the semi-discrete formula-
tion (3.1)

du2
j

dt
+

1

ah

(

fj+ 1

2

− fj− 1

2

)

= 0,(3.2a)
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duj

dt
+

1

ah

(

gj+ 1

2

− gj− 1

2

)

= − h

2a
Dj+ 1

2

.(3.2b)

Above, we define the local fluxes for the energy u2
j and the momentum uj

(3.3) fj+ 1

2

= −2uj−1ujuj+1, gj+ 1

2

= −1

2
(uj−1uj + uj−1uj+1 + ujuj+1),

and the additional non-conservative term for the momentum equation

(3.4) Dj+ 1

2

=
uj+1 − uj−2

h

uj − uj−1

h
.

Notice that the local conservation equations (3.2a) and (3.2b) is consistent
with the asymptotic conservation equations (2.5) in Section 2.1. The energy
u2

j accepts the exact conserved form locally, while the momentum uj is subject
to an additional reaction term represented by the local differences in Dj+ 1

2

.

As h → 0 and u remains a classical C1 solution, the right hand side of (3.2b)
goes to the higher-order limit, −3h

2a (∂xuj)
2. Thus the C1 solution u satisfies the

exact conservation laws consistent with the classical solutions of the Burgers-
Hopf equation before the formation of shocks. On the other hand, when the
discontinuities are developed, it will be shown that the damping term Dj+ 1

2

on

the right-hand side will give an order one contribution due to the period-two
oscillations.

To study the development of oscillations, we look at a special type of
oscillating solutions developed from the conservation equations (3.2). We in-
troduce the period-two states according to two adjacent grids

(3.5) vj+ 1

2

=
1

2
(uj + uj+1), wj+ 1

2

=
1

2

(

u2
j + u2

j+1

)

.

The above two averaged states correspond to the period-two oscillating solu-
tion referring to the alternating values between adjacent grid points, such at
uj < uj−1, uj+1 > uj , and uj+2 < uj+1. Thus, we are seeking the new smooth
limiting states w, v that satisfy the following period-two solution conditions

uj+1 = vj+ 1

2

+ (−1)j
(

wj+ 1

2

− v2
j+ 1

2

)
1

2 ,

Mj+ 1

2

=
(

wj+ 1

2

− v2
j+ 1

2

)
1

2 =
(−1)j

2
(uj+1 − uj).

We can find the explicit dynamical equations for the new period-two variables
(wj+ 1

2

, vj+ 1

2

) by adding up the locally conserved equations (3.2a) and (3.2b)
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at two adjacent grid points, that is,

dwj+ 1

2

dt
+

1

2ah

(

fj+ 3

2

− fj− 1

2

)

= 0,(3.6a)

dvj+ 1

2

dt
+

1

2ah

(

gj+ 3

2

− gj− 1

2

)

= − h

4a

(

Dj+ 3

2

+ Dj+ 1

2

)

.(3.6b)

To first gain some intuition on the solutions of the above equations, we check
the steady-state period-two solution, wj+ 1

2

≡ w̄, vj+ 1

2

≡ v̄, and · · · = uj =

uj+2 = · · · < · · · uj+1 = uj+3 = · · · thus Mj+ 1

2

= uj+1 − uj ≡ M̄ . This leads

to the dynamical equations

dv̄

dt
=

1

2ah
M̄2 > 0, and

dw̄

dt
= 0.

This implies how the solution performs when the period-two solution is de-
veloped. The mean energy state w̄ = 2v̄2 + 1

2M̄2 will stay as a constant while
the mean amplitude of v̄ will increase when period-two oscillation is gradu-
ally generated in u. This implies that the jump amplitude M̄ will decrease in
time, leading to a non-oscillating solution at the final steady-state.

Next, to achieve a more precise characterization for the time evolution of
the period-two oscillating solutions when discontinuity is developed in u, we
derive the modulation equations according to the above semi-discrete conser-
vation equations (3.2). The flux terms can be expanded by Taylor series when
w, v are C2 functions, that is,

− 1

2ah

(

fj+ 3

2

− fj− 1

2

)

=
2

a
∂x

(

2v2 − w
)(

v −
(

w − v2
)

1

2

)

(xj+ 1

2

) + O(h),

− 1

2ah

(

gj+ 3

2

− gj− 1

2

)

=
1

2a
∂x

(

4v2 − w − 2v
(

w − v2
)

1

2

)

(xj+ 1

2

) + O(h).

And the difference term on the right-hand side gives

− h

4a
(Dj+ 3

2

+ Dj+ 1

2

) = −2

a
∂x

(

w − v2
)

(xj+ 1

2

) +
2

a

M2
j+ 1

2

h
+ O(h),

with M2
j+ 1

2

= 1
4(uj+1 −uj)

2 = wj+ 1

2

−v2
j+ 1

2

≥ 0. Notice that when the solution

u(x, t) is C1, M2
j+ 1

2

∼ (∂xu)2h2, thus the last terms on the right-hand side are

of the next order O(h) and vanish as h → 0. We have the following lemma in
the region of classical solutions of u.
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Lemma 3. The solution (v, w) of the modulation state is C1 before the forma-
tion of shock in u of (3.1). And its leading-order equation as h → 0 satisfies
the following conservation form

(3.7)

∂tw =
2

a
∂x

(

2v3 − vw
)

,

∂tv =
1

a
∂x

(

2v2 − w

2

)

,

where we have u = v ± (w − v2)
1

2 .

However, when the period-two oscillation is developed after the forma-
tion of the shock, then we have M2

j+ 1

2

∼ O(h). This leads to the amplification

of the period-two oscillations. In this case, we find the modulation equations
describing the C2 solutions (w, v) with the existence of the period-two oscil-
lations in u at the continuum limit as h → 0

∂tw =
2

a
∂x

[

2v3 − vw −
(

2v2 − w
)(

w − v2
)

1

2

]

,(3.8a)

∂tv =
1

a
∂x

[

4v2 − 5w

2
− v

(

w − v2
)

1

2

]

+
S

2a
,(3.8b)

where we define the smooth function S(x, t) = limh→0
|uj+1−uj |2

h as the ad-
ditional reaction term due to the period-two oscillating solution. The first
constraint for the smoothly varying states (w, v) is w ≥ v2 from the def-
inition. Above, the solution will remain smooth when Mj+ 1

2

grows to the

order O(
√

h) for large amplitude period-two oscillations in u solutions. We
can summarize the modulation equations (3.8) in the following lemma.

Lemma 4. The leading-order equation of the semi-discretized scheme (3.1)
as h → 0 can be written according to the states u = (v, w)T as

(3.9) ∂tu − ∂xF = S,

with

F = (f, g)T

=
1

a

(

4v2 − 5w

2
− v

(

w − v2
)

1

2 , 4v3 − 2vw − 2
(

2v2 − w
)(

w − v2
)

1

2

)T

.

(3.10)

The additional reaction term S on the right-hand side satisfies:
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• In the classical region with u ∈ C1, there is no additional source term
on the right-hand side S = 0;

• In the period-two region where amplified oscillations are developed, that
is, |uj+1 − uj | ∼ O(

√
h), we have the non-zero reaction term defined as

S = 1
2a(limh→0

|uj+1−uj |2

h , 0)T .

Remark. 1. The system (3.9) is called strictly hyperbolic if the Jacobian matrix

(3.11) ∇F =

[

∂vf ∂wf
∂vg ∂wg

]

= L−1ΛL,

is diagonalizable and has real and separated eigenvalues.
2. The additional reaction term S in (3.8b) comes from the discrete term

1
hM2

j+ 1

2

= 1
4h(uj+1 − uj)

2. This term will give a dominant contribution when

the amplitude of period-two oscillation |uj+1 − uj | grows large. Still, (3.8)
remains a good approximation to the discrete solution with a finite grid size h.

3.2. Convergence to the period-two modulation equations

Here, we show the convergence of the discrete solution (vj+ 1

2

(t), wj+ 1

2

(t)) in

(3.5) to the smooth period-two solution (v(xj+ 1

2

, t), w(xj+ 1

2

, t)) of the modu-

lation equations (3.8) at the continuum limit as h → 0.

3.2.1. Convergence with small oscillation amplitude First, we show
that the modulation equation for (v, w) gives a good approximation to the
discrete period-two solution at the small oscillation amplitude case, |uj+1 −
uj | = O(

√
h). The theorem basically follows [10] according to the modulation

equations (3.8).

Theorem 5. Let u(x, t) = (v(x, t), w(x, t)) be a C2 solution of the modulation
equation (3.8), and Uj+ 1

2

= (vj+ 1

2

(t), wj+ 1

2

(t)), j = 1, . . . , J be the discrete

period-two solution from the inviscid L96 equation (3.1). If both solutions
belong to the hyperbolic region (3.11) and M2

j+ 1

2

= wj+ 1

2

− v2
j+ 1

2

= O(h)

during the time interval t ∈ [0, T ], we have

(3.12) max
0≤t≤T

[

1

J

J
∑

j=1

⃓

⃓u(xj+ 1

2

, t) − Uj+ 1

2

(t)
⃓

⃓

2

]
1

2

≤ CT
1

J
,

where xj+ 1

2

= (j + 1
2)h, h = L

J , and | · | is the vector L2-norm.
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Proof. The C2 solution u(x, t) of the modulation equation (3.8) can be sum-
marized in the following equation as

du(xj+ 1

2

, t)

dt
=

F(u(xj+ 3

2

, t))−F(u(xj− 1

2

, t))

2h
+ S

(

u(xj+ 1

2

, t)
)

+ O(h).

Correspondingly, the solution Uj+ 1

2

(t) of the discrete equations (3.6) can be
rewritten as

dUj+ 1

2

dt
=

F(Uj+ 3

2

) − F(Uj− 1

2

)

2h
+ S(Uj+ 1

2

) + O(h).

In addition, Taylor expansions from the previous computations show that

F
(

u(xj+ 1

2

, t)
)

− F(Uj+ 1

2

) = ∇Fj+ 1

2

ej+ 1

2

+ O(h),

where we introduce the error ej+ 1

2

(t) = u(xj+ 1

2

, t) − Uj+ 1

2

(t) and ∇Fj+ 1

2

=

∇uF(u(xj+ 1

2

, t)) is the gradient about u = (v, w). Combining the above equa-

tions, we have

dej+ 1

2

dt
=

∇Fj+ 3

2

ej+ 3

2

− ∇Fj− 1

2

ej− 1

2

2h
+ ∇Sj+ 1

2

ej+ 1

2

+ O(h).

Hyperbolicity of the equations guarantees the eigenvalue decomposition of
the coefficient matrix with real eigenvalues

∇Fj+ 1

2

= L−1
j+ 1

2

Λj+ 1

2

Lj+ 1

2

.

Therefore, by introducing ẽj+ 1

2

= Lj+ 1

2

ej+ 1

2

we have the dynamics for the
error

dẽj+ 1

2

dt
−

Λj+ 3

2

ẽj+ 3

2

− Λj− 1

2

ẽj− 1

2

2h

= L−1
j+ 1

2

(Lj+ 3

2

− Lj+ 1

2

2h
Λj+ 3

2

ẽj+ 3

2

+
Lj+ 1

2

− Lj− 1

2

2h
Λj− 1

2

ẽj− 1

2

)

+
dLj+ 1

2

dt
L−1

j+ 1

2

ẽj+ 1

2

+ Lj+ 1

2

∇Sj+ 1

2

L−1
j+ 1

2

ẽj+ 1

2

+ O(h)

≤ C
(

|ẽj− 1

2

| + |ẽj+ 1

2

| + |ẽj+ 3

2

|
)

+ C1h.

Multiplying both sides by ẽj+ 1

2

and taking the summation about j gives using
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the smooth dependence on u

d

dt

1

2

∑

j

|ẽj+ 1

2

|2 −
∑

j

Λj+ 1

2

− Λj− 1

2

2h
ẽj− 1

2

· ẽj+ 1

2

≤
∑

j

[

C|ẽj+ 1

2

|
(

|ẽj− 1

2

| + |ẽj+ 1

2

| + |ẽj+ 3

2

|
)

+ C1|ẽj+ 1

2

|h
]

.

This leads to the estimate for the total error

d

dt

∑

j

|ẽj+ 1

2

|2 ≤ C
∑

j

|ẽj+ 1

2

|2 + hC1

∑

j

|ẽj+ 1

2

|

≤ C ′
∑

j

|ẽj+ 1

2

|2 + C ′
1h.

Using Gronwall’s inequality for any t ≤ T , we have

∑

j

|ẽj+ 1

2

|2(t) ≤ CT h ⇒ 1

J

∑

j

|ej+ 1

2

|2(t) ≤ CT h2.

This establishes the final result in the theorem with CT independent of h.

Remark. In Theorem 5, we require that the oscillation amplitude Mj+ 1

2

∼
|uj+1 −uj | = O(

√
h) remains small in the period-two solution while its deriva-

tive blows up uj+1−uj

h = O(1/
√

h). When the oscillations grow to larger am-

plitude M2
j+ 1

2

= 1
2 |uj+1 − uj |2 = O(1), the unbounded S = M2

h will take

over as the dominant term and break down the period-two oscillations. Still,

according to the equation for M shown next in (3.13), the time scale of the

oscillation amplitude M is within T ∼ O(h). We still have a bounded estima-

tion in the error
∑

j |ej+ 1

2

|2 ≤ C
J eT J ∼ C′

J , thus the solution of the modulation

equation (3.8) can still offer a desirable estimation to the discrete period-two

solution of (3.1) with a moderate grid size h (which is in fact the case of the

standard L96 model using J = 1
h = 40).

3.2.2. Approximation with large oscillation amplitude Next, we can

check the development of large period-two oscillations by introducing an ad-

ditional equation for M = (w − v2)
1

2 . When strong oscillations are induced,

we assume Mj+ 1

2

= (−1)j

2 (uj+1 − uj) describing the jump amplitude between

two adjacent grids. The dynamical equation for the difference can be written
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down as

dMj+ 1

2

dt
=

(−1)j

2ah

[

(uj+2 − uj−1)uj − (uj+1 − uj−2)uj−1

]

.

Through Taylor expansion of the difference form up to O(h), the continuum

equation is reached as

(3.13) ∂tM = − 2

ah
vM − 1

2a
∂x

(

M2 − v2 + w
)

.

The first term − 2v
ahM on the right-hand side of (3.13) shows that the period-

two oscillation will be amplified in the domain where v < 0, while the oscil-

lations will be damped where v > 0. In addition, the advection term implies

that the period-two oscillations will propagate with velocity v. Especially,

combining with (3.8), we can rewrite the closed system for (v, M) with finite

oscillation amplitude

(3.14)
∂tv =

2M2

ah
+

1

a
∂x

(

3

2
v2 +

5

2
M2 − vM

)

,

∂tM = − 2v

ah
M − 1

a
∂xM.

Above, we assume M ∼ O(1) grows to an order one term, and the equations

for v and M have the stiff leading order term dependent on the grid size h−1.

Then, we can separate the leading-order term and investigate its effect on

the particular solution (vh, Mh)

(3.15) ∂tvh =
2M2

h

ah
, ∂tMh = −2vh

ah
Mh.

Directly integrating the above equation leads to the following lemma about

a closed form of the solution of (3.15).

Lemma 6. The leading-order equations (3.15) for (vh, Mh) have the explicitly

integrable solution

(3.16)

vh(x, t) = λ(x)
1 − μ(x) exp(− 4λ

ah t)

1 + μ(x) exp(− 4λ
ah t)

,

Mh(x, t) =
2λ(x)

√

μ(x)

1 + μ(x) exp(− 4λ
ah t)

exp

(

−2λ

ah
t

)

,
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where λ, μ ≥ 0 are smooth functions determined by the initial values of vh, Mh.
Further in the full equations (3.14), if v = vh + O(h), there is also M =
Mh + O(h).

Proof. Equations (3.15) are actually a coupled ODE system and satisfy

∂2
t vh = − 2

ah
∂t

(

v2
h

)

⇒ ∂tvh = − 2

ah
v2

h + C(x).

The constant can be found from the initial value C = ∂tvh(x, 0)+ 2
ahv2

h(x, 0) >

0, with a small enough h. For convenience, we introduce C = 2λ2

ah . Therefore,
by integrating the above equation again about vh and t, we find

⃓

⃓

⃓

⃓

λ + vh

λ − vh

⃓

⃓

⃓

⃓

=

⃓

⃓

⃓

⃓

λ + v0

λ − v0

⃓

⃓

⃓

⃓

e
2

ah
t = μ−1e

4λ
ah

t ⇒ vh = λ
1 − μe− 4λ

ah
t

1 + μe− 4λ
ah

t
.

And the expression for Mh follows immediately from the above solution of vh.
Next, let v = vh + ṽh and M = Mh +M̃h. In the equation for M in (3.14),

the last advection term can be canceled by changing M(x, t) → M(x + 1
a t, t).

Thus, the equation satisfies using the solution (3.15)

∂tM̃ = − 2

ah
(vh + ṽh)M̃ − 2

ah
Mhṽ.

Integrating the equation in time, we get

⃓

⃓M̃(t)
⃓

⃓ ≤ 2

ah

∫ t

0

e− 2

ah

∫ t

s
(vh(τ)+ṽ(τ)h)dτ Mh(s)

⃓

⃓ṽ(s)
⃓

⃓ds

≤ 2

ah

∫ t

0

e
λ

ah
s+CMh(s)

⃓

⃓ṽ(s)
⃓

⃓ds

≤ C

h

∫ t

0

exp

(

− λ

ah
s

)

ds ≤ C ′.

Above, the second line uses the explicit solution of vh, |
∫ t

s vh(τ)dτ | ≤ λ
2 s +

C1h, and the uniform boundedness of ṽ, |
∫ t

s ṽ(τ)hdτ | ≤ C2h. And the third
line again uses the explicit solution of Mh and uniform bound of ṽ. Thus we
show M̃ is also uniformly bounded from h.

Lemma 6 provides a more precise estimate for the development of os-
cillation amplitude M dependent on the grid size h. This implies that the
leading-order equation gives the uniformly bounded solution vh and the uni-
formly decaying solution Mh independent of the stiff factor h−1. According to
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this leading-order performance, we can introduce the new modulation equa-
tions for (v, w) dependent on finite grid size h

(3.17)

∂tw =
2

a
∂x

[

v
(

2v2 − w
)

−
(

2v2 − w
)(

w − v2
)

1

2

]

,

∂tv =
2(w − v2)

ah
+

1

a
∂x

[

4v2 − 5w

2
− v

(

w − v2
)

1

2

]

.

With this, we can generalize the result in Theorem 5 to the time with large
period-two oscillation amplitude, |uj+1 − uj | = O(1).

Corollary 7. Let u = (v, w), t ∈ [0, T ] be the C2 solution of the modulation
equation (3.17), and Uj+ 1

2

= (vj+ 1

2

, wj+ 1

2

), j = 1, . . . , J the discrete period-

two solution from the inviscid L96 equation (3.1). Assume that v and w are
both uniformly bounded for any h > 0 and v = vh + O(h) for any 0 ≤ t ≤ T ,
then we have

(3.18) max
0≤t≤T

[

1

J

J
∑

j=1

⃓

⃓u(xj+ 1

2

, t) − Uj+ 1

2

(t)
⃓

⃓

2

]
1

2

≤ CT
1

J
.

Proof. Notice that the only difference in the new modulation equations (3.17)
is the new factor 1

h in the reaction equation. Thus the equation for the error
ej+ 1

2

(t) = u(xj+ 1

2

, t) − Uj+ 1

2

(t) becomes

dej+ 1

2

dt
=

1

h
Mj+ 1

2

∇Mj+ 1

2

ej+ 1

2

+
∇Fj+ 3

2

ej+ 3

2

− ∇Fj− 1

2

ej− 1

2

2h
+ O(h),

where Mj+ 1

2

= 2
a(M, 0)T (xj+ 1

2

, t) and M2 = w − v2. Using the explicit

leading-order solution Mh and Lemma 6, we have |Mj+ 1

2

| ≤ C exp(− 2λ̄
ah t)+Ch

and λ̄ = minj λj+ 1

2

. Following the same line of argument as in Theorem 5, we

get the error estimate

dej+ 1

2

dt
≤

[

C1 +
C

h
exp

(

−2λ̄

ah
t

)]

(

|ej− 1

2

| + |ej+ 1

2

| + |ej+ 3

2

|
)

+ C2h.

Finally, Gronwall’s inequality yields

∑

j

|ej+ 1

2

|2(t) ≤
[

CT + exp

(

C

h

∫ T

0

e− 2λ
ah

tdt

)]

h

≤
[

CT + exp

(

a

2λ̄

)]

h = C ′
T h.
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Remark. It is found in the numerical simulations that it is usually the driven
effect of the reaction term M2

h rather than the moving out of the hyperbolic
region that breaks down the period-two oscillatory solutions. The leading
O(h−1) terms combined with the additional O(1) terms on the right-hand
sides of (3.14) may lead to complicated coupling dynamics, thus finally drive
the solution away from the small perturbation region v = vh + O(h) required
in the above theorem. Then, the clean period-two solution will break down
to create fully chaotic features.

3.3. Persistence and breakdown of period-two oscillations

Now if we consider the leading flux term F in the modulation equation (3.10),
the Jacobian matrix (3.11) becomes

∇F =
1

a

⎡

⎢

⎣

8v − (w − v2)
1

2 + v2(w − v2)− 1

2 −5
2 − 1

2v(w − v2)− 1

2

12v2 − 2w − 8v(w − v2)
1

2

+2v(2v2 − w)(w − v2)− 1

2

− 2v + 2(w − v2)
1

2

−(2v2 − w)(w − v2)− 1

2

⎤

⎥

⎦
.

Solving the eigenvalues of the above matrix reveals that the condition for
hyperbolicity of the modulation equation is always satisfied when w −v2 > 0,
thus the solution always remains in the hyperbolic region. Still, if we consider
the weakly oscillatory region up to order O(

√
h) and neglect the higher-order

terms due to w − v2 = O(h), the hyperbolic region with real eigenvalues
requires

(3.19) w2 > 4v
(

3w − 2v2
)(

w − v2
)

1

2 .

This gives the condition for maintaining only weakly period-two oscillations
within |uj+1 − uj | = O(

√
h). The hyperbolic region and the development of

oscillatory solutions are illustrated in Figure 6. The period-two oscillations
gradually developed large amplitudes and moved out of the weak oscillation
hyperbolic region. This leads to a dominant reaction term M2

h that finally
destroyed the period-two oscillation.

To see the breakdown of the period-two oscillations more clearly, it can
be found directly from (3.13) that

1

2
∂tM

2 = − 2v

ah
M2 − 1

2a
∂xM2 ⇒ d

dt

1

2

∫

Ω

M2dx = − 2

ah

∫

Ω

vM2dx,

where the integration is taken in the oscillatory region Ω so that M2 |∂Ω= 0.
Thus a necessary condition of generating growing oscillation amplitude M
requires v < 0 at some point of the domain. In addition, it implies that
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the period-two oscillation will emerge at an approximate growth rate of | v
h |

depending on the discrete grid size. As the amplitude of oscillations grows,
v will finally reach positive values at some point. Then, the periodic-two
oscillation will start to get damped at the points where v reaches positive
values. These features are explicitly observed in the numerical experiments in
Figure 5 and are consistent with the leading-order solution (3.16).

In addition, we can check the instability in the semi-discrete system (3.1)
around a steady mean state ū. As in the previous section, introduce the mean-
fluctuation decomposition of the state u(xj , t) = ū + ũj(t). The linearized
equation of (3.1) becomes

dũj

dt
=

1

ah
ū(ũj+1 − ũj−2).

Assuming the plane wave solution ũj = ei(kxj−ωkt), we find the dispersion
relation

ωk =
ū

ah

[

−(sin kh + sin 2kh) + i(cos kh − cos 2kh)
]

=
ū

ah

[

− sin kh(1 + 2 cos kh) + i
(

−2 cos2 kh + cos kh + 1
)]

.

Positive growth rate for the fluctuation modes is induced if the imaginary part
Im ωk > 0. Thus we have that instability is induced when ū > 0, cos kh > −1

2
or ū < 0, cos kh < −1

2 . Especially, in the case when ū < 0, the maximum
growth rate c∗ = −2ū

ah is reached at the critical wavenumber k∗ = π
h and we

have Re ωk∗
= 0. The corresponding critical plane wave solution becomes

ũ∗
j = ei(k∗jh−ωk∗

t) = e
−2ū
ah

t(−1)j .

This implies that the period-two oscillation can be excited automatically from
a negative mean velocity ū < 0. This is also confirmed in the numerical results
in Figure 5 where the period-two oscillations are amplified in the region with
ū < 0.

To summarize, we can describe the evolution of the solution of (3.1) in the
following three stages, as the classical region, period-two region, and finally
the fully chaotic region:

• Stage I. Smooth state u in the starting time: the state u(x, t) remains as
a C2 function, so the solution performs as the Burgers-Hopf equation
until the development of discontinuity;

• Stage II. Development of period-two oscillation solution: small ampli-
tude period-two oscillations are developed in u at the point of disconti-
nuity, while the modulation states (v, w) stay as C2 functions;
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• Stage III. Breakdown of period-two solution: Period-two oscillations in-
crease to the positive region with v > 0 and finally get damped. The
states (v, w) break down from the period-two oscillations, thus fully
chaotic solution begins to develop.

3.4. Numerical verification for the development of oscillatory

solutions

In the numerical experiments, we run the L96 model (3.1) with discretization
J = 256 and model parameters a = 3 and h = 8/J . The initial state is
taken as u0(x) = −0.3 sech2(x

2 ). We pick the negative initial value since the
period-two solution can be induced from ū < 0 from the linear instability. The
4th-order Runge-Kutta method is used for the time integration with time step
Δt = 1×10−3 to achieve desirable accuracy. First, the time evolution of total
momentum

∫

udx and total energy
∫

u2dx as well as the related quantities are
plotted in the upper panel of Figure 4. The solution starts with the classical
solution with smooth u. Consistent with our analysis in Section 2, the total
energy is strictly conserved, while the total momentum is slowly decaying
due to the damping from −

∫

u2
xdx.

∫

|u|dx is also increasing in the classical
region since we have u < 0 in the initial time.

Figure 4: Time-series of the key model integrals and the evolution of the
period-two solution from smooth initial state in the inviscid L96 model (3.1).
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Figure 5: States u, v, w at several different time instants during the develop-
ment of break down of period-two solution.

Next, a shock is developed in u at around t = 10. This leads to the
oscillations in u and the creation of period-two solution. This can be observed
in the lower panel of Figure 4 for the time evolutions of u and v, w and
more clearly in the several time snapshots of u, v, w in Figure 5. Especially,
we observe that v starts to increase in this region due to the reaction term
S > 0 in the equation for of v. Period-two oscillations at the grid size are
automatically developed at the left side of the discontinuity and quickly get
amplified. At the same time, the period-two solutions v, w remain smooth
except at the point of discontinuity.

Finally, u evolves into positive values with the increasing oscillation am-
plitudes, and the period-two oscillations in the region with v > 0 get damped.
The smooth period-two solutions v, w break down and fully chaotic behav-
iors of the solution start to emerge. This indicates the generation of many
complex features as observed in the L96 system. We further show in Figure 6
the evolution of solutions (v, w) beyond the hyperbolic region computed in
(3.19). It shows that the oscillatory period-two solutions gradually develop in
amplitude and evolve out to the fully chaotic behavior.

4. The two-layer Lorenz 96 system and period-three

oscillations

As a further generalization of the original one-layer system, the two-layer L96
system [2, 25] introduces an additional second layer vj,l to each of the original
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Figure 6: The hyperbolic region (3.19) in shaded color and black solid line
shows w = v2. Several typical solutions (v, w) are also plotting illustrating
the development of period-two solutions.

L96 system state uj , j = 1, . . . , J such that

(4.1)

duj

dt
= (uj+1 − uj−2)uj−1 − duj + F − h̃c̃

b̃

L
∑

s=1

vj,s,

dvj,l

dt
= −c̃b̃(vj,l+2 − vj,l−1)vj,l+1 − c̃vj,l +

h̃c̃

b̃
uj .

The new layer variables vj,l = vi with l = 1, . . . , L can be viewed as small
scales with the ‘stretched’ reorganized index i = l +L(j −1). Periodic bound-
ary conditions are used for both the two sets of variables, uj+J = uj and
vi+JL = vi. In general, uj states are large-amplitude and low-frequency, each
of which is coupled to a branch of the small-amplitude high-frequency vari-
ables vj,l. Notice that the second layer states vj,l in the two-layer L96 model
above are only locally coupled with the corresponding first layer state uj . In
the model parameters, h̃ is the coupling coefficient, b̃ is the spatial-scale ratio,
and c̃ is the time-scale ratio. The large and small scale coupling structure is
illustrated in Figure 7.

A typical solution of the small-scale state vi at several time instants is
illustrated in Figure 7. It is observed that oscillatory solutions are generated
at the boundaries of the large-scale state uj similar to that in the one-layer
model. However, it also shows that the oscillations are no longer within the
grid size, while in particular it appears that the period-three solution will
emerge in this case due to the large and small scale coupling of states.

4.1. Strong scale separation with two interacting large-scale states

In analyzing oscillatory solutions of the two-layer L96 model as it approaches
the continuous limit, we again focus on the nonlinear and multiscale coupling
terms (that is, neglecting the forcing and damping effects in both large and
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Figure 7: Diagram to illustrate the coupling structure of the 2-layer L96 model
(4.1) and the solution of the small-scale state vi at several time with J = 8,
L = 32.

small scales of (4.1)), and introduce the new parameters indicating the two

different scales explicitly as

du(Xj , t)

dt
=

(

u(Xj+1, t) − u(Xj−2, t)
)

u(Xj−1, t) − h
L

∑

l=1

v(Xj , xl, t),

dv(Xj , xl, t)

dt
= −γ

h

(

v(Xj , xl+2, t) − v(Xj , xl−1, t)
)

v(Xj , xl+1, t) + γu(Xj , t).

(4.2)

Above, we introduce the large-scale coordinate X = ϵx with ϵ indicating the

scale separation and the small-scale resolution h. In the new model parame-

ters, we have the large-scale discretization Δx = D
J and small-scale discretiza-

tion h = Δx
L = D

JL (next we take the domain size D = 1 for simplicity). Thus,

we have the large-scale state u = u(X, t) and small-scale state v = v(X, x, t).

By scaling the previous discrete equations (4.1) with the rescaled variables
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uj → u(Xj) and vj,l → ϵ
1

2 v(Xj , xl), we find the relation between the old and

new parameters as

ϵ = (c̃b̃)−2,
h

L
= h̃b̃−2, ϵ =

(

c̃2h̃
)−1

h =
(

c̃2h̃
)−1 h

L
, γ = c̃2h̃.

It can be found that the multiscale equations (4.2) still maintain the conser-

vation of total energy

dE

dt
= 0, with E =

γ

2

∑

j

u2
j +

1

2

∑

j,l

v2
j,l.

Here for simplicity, we assume that there are only two states (u1, u2) in

the large scale. Accordingly, the small scale state v(x, t) can be decomposed

into two regimes, with v1,l associated with u1 and v2,l associated with u2.

First, we look at the large-scale motion of the states. Define

(4.3)

v1,l = v̄1 + v′
1,l, v̄1 =

1

L

L
∑

l=1

v1,l,

v2,l = v̄2 + v′
2,l, v̄2 =

1

L

L
∑

l=1

v2,l.

Substituting the above decomposition (4.3) into (4.2), we get the coupling

equation for the two large-scale states u1, u2

(4.4)
du1

dt
=

(

u2
2 − u1u2

)

− 1

2
v̄1,

du2

dt
=

(

u2
1 − u1u2

)

− 1

2
v̄2,

where v̄1, v̄2 give the upscale feedback to the large-scale states.

In particular with a strong scale separation, by letting L → ∞ and h → 0,

the small-scale state v goes to the continuum limit, denoted as v(x, t) =

v1, x < 0 and v(x, t) = v2, x < 0. This leads to the same large-scale equations

(4.4) with the up-scale feedback as the continuum limit of (4.3) consistent

with the discrete case in (4.3)

(4.5) v̄1 =
2

D

∫ 0

−D/2

v(x, t)dx, v̄2 =
2

D

∫ D/2

0

v(x, t)dx.

Correspondingly, the small-scale state v(x, t) is defined on the periodic domain
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[−D
2 , D

2 ] and follows the continuous equation

(4.6)

∂tv + 3γv∂xv = γfu − 3

2

(

v∂xxv + 2(∂xv)2
)

γ2ϵ

−
[

3

2
(v∂xxxv + 2∂xv∂xxv)γ3ϵ2 + O

(

ϵ3
)

]

,

where we introduce fu = u1 when x < 0 and fu = u2 when x > 0, and the
scaling parameter γ = ϵ−1h. The high-order terms on the right-hand side of
the above equation will vanish as ϵ → 0. Through direct computation, we
find the conservation of the total energy in the above coupled equations (4.4)
and (4.6)

(4.7)
d

dt

[

γ

2

(

u2
1 + u2

2

)

+
1

2

∫ D/2

−D/2

v2dx

]

= 0,

together with the detailed up and down scale coupling dynamics

d

dt
γ

(

u2
1 + u2

2

2

)

= − d

dt

1

2

∫ D/2

−D/2

v2dx = −u1v̄1 + u2v̄2

2
.

Notice that the second-order term for the small-scale equation keeps exactly
same form as in the one-layer continuous equation. Thus, discussions for con-
servation laws can be inherited here.

In addition, we can derive the upscaling equations for the slow-varying
large-scale states v̄ = 1

2(v̄1 + v̄2), ṽ = 1
2(v̄1 − v̄2) and ū = 1

2(u1 + u2), ũ =
1
2(u1 − u2) at the leading-order as

(4.8)

dv̄

dt
= γū,

dṽ

dt
= γũ − 3γ

(

v2
0 − v2

1

)

,

dū

dt
= −v̄ + 2ũ2,

dũ

dt
= −ṽ − 2ũū,

where v0(t) = v(0, t) and v1(t) = v(1/2, t) are the boundary fluxes from
the small-scale feedback. Through this way of strong scale separation, we
are able to decompose the small-scale state vl = v̄ + v′

l, and the residual
fluctuation modes will return to the similar one-layer equation. Figure 8 first
illustrates the competing effects of the large and averaged small-scale states
in two typical test cases described in Section 4.3. It demonstrates the typical
energy cascades from u to v ending up in the fully chaotic region with most
energy in small scales v.
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Figure 8: Time evolution of the large-scale state ū = 1
2(u1+u2), ũ = 1

2(u1−u2)
and the small-scale state v̄ = 1

2(v̄1 + v̄2), ṽ = 1
2(v̄1 − v̄2) as well as the

corresponding energy in large and small scales in two test cases.

4.2. Period-three modulation equations in small scales from

weakly nonlinear analysis

Next, we consider the evolution of small-scale fluctuations. According to the
large-scale coupling in (4.8), the large scale states u1, u2 act as the forcing
effect creating a discontinuity in v at the boundary x = 0. Thus, we can again
study the small-scale dynamics separately based on the local decomposition
vl = v̄ + v′

l around a steady-state v̄

(4.9)
dv′

l

dt
= −γ

h

(

v̄ + v′
l+1

)(

v′
l+2 − v′

l−1

)

.

Let’s start with the linearized equation of (4.9) around a constant v̄

dv′
l

dt
= −γ

h
v̄
(

v′
l+2 − v′

l−1

)

,

and seek the plain wave solution of the form v′
l = exp(i(kxl − ωkt)) with

xl = lh. By directly substituting the plain wave solution in the above lin-
earized equation, we find the dispersion relation

ωk = −i
γv̄

h
e−ikh

(

ei3kh − 1
)

, ck =
dωk

dk
= γv̄e−ikh

(

2ei3kh + 1
)

.

This implies a first steady-state solution corresponding to k0 = 0, ω0 = 0 and
c0 = 3γv̄. In addition, two other steady-state plain wave solutions will emerge,
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with k1 = 2π
3h , ω1 = 0, c1 = 3γv̄e−i 2π

3 and k2 = 4π
3h , ω2 = 0, c2 = 3γv̄ei 2π

3 .
Therefore, ω1 and ω2 represent the existence of two periodic-three solutions
v1, v2 with a constant group velocity together with the constant mode v0

v0
l = 1, v1

l = ei 2π
3

l, v2
l = ei 4π

3
l.

According to the steady-state solutions, we can perform weakly nonlinear
analysis around the steady mean state v̄. Assume that the fluctuation state
v′

l consists of a uniform state η together with the two coupling period-three
solutions ξ, ζ, that is,

(4.10) v′
l(t) = ηl(t) + ei 2π

3
lξl(t) + ei 4π

3
lζl(t).

We consider the real solution v′
l so only taking the real part of the base func-

tions in the above solution. Thus, putting (4.10) back into the fluctuation
equation (4.9) and combining the common terms with the same frequency,
we find the equations for η, ξ, ζ as an envelope of the rapidly oscillating fluc-
tuations

dηl

dt
= −γ(v̄ + ηl+1)

ηl+2 − ηl−1

h
+

γ

2
ξl+1

ζl+2 − ζl−1

h
+

γ

2
ζl+1

ξl+2 − ξl−1

h
,

dξl

dt
=

γ

2
(v̄ + ηl+1)

ξl+2 − ξl−1

h
− γζl+1

ζl+2 − ζl−1

h
+

γ

2
ξl+1

ηl+2 − ηl−1

h
,

dζl

dt
=

γ

2
(v̄ + ηl+1)

ζl+2 − ζl−1

h
− γξl+1

ξl+2 − ξl−1

h
+

γ

2
ζl+1

ηl+2 − ηl−1

h
.

(4.11)

Using (4.11), we study the evolution of small fluctuations localized around
a constant steady-state v̄ in the small-scale variable v. Therefore, with a bit
abuse of notation, we introduce the smooth functions η(z, τ), ξ(z, τ), ζ(z, τ)
as the continuum limit of the three discrete fluctuation modes ηl, ξl, ζl

(4.12) ηl = h2η
(

xl + ct, h2t
)

, ξl = hξ
(

xl + ct, h2t
)

, ζl = hζ
(

xl + ct, h2t
)

.

Above, we focus on the coupling between the uniform mode η with the two
period-three modes ξ, ζ, and we introduce the slowly moving frame with a
constant velocity −c.

Then, the governing equations for the three modes can be discovered
through asymptotic expansions of each order terms in (4.11). First, the lead-
ing-order O(1) terms give

(c + 3γv̄)∂zη =
3

2
γ∂z(ξζ), c∂zξ =

3

2
γv̄∂zξ, c∂zζ =

3

2
γv̄∂zζ.
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Above, ξ and ζ always satisfy the same equation, thus we only need to keep
one of them. The second identity above tells the moving frame velocity c. By
integrating about z and using the vanishing boundary condition, the leading
order solution gives

(4.13) c =
3

2
γv̄, η =

1

3v̄
ξζ.

Second, the O(h) terms give

v̄

2
∂2

z ξ = ∂z

(

ζ2
)

,
v̄

2
∂2

z ζ = ∂z

(

ξ2
)

.

Again by integrating the first two identities about z and using the relation
(4.13), we get the relations between the two period-three solutions

(4.14) ξ2 =
v̄

2
∂zζ, ζ2 =

v̄

2
∂zξ.

At last, the O(h2) terms give

∂τ ξ =
3

4
γv̄∂3

z ξ +
3

2
γ∂z(ηξ) − 3

2
γ

[

(∂zζ)2 + ∂z(ζ∂zζ)
]

,

∂τ ζ =
3

4
γv̄∂3

z ζ +
3

2
γ∂z(ηζ) − 3

2
γ

[

(∂zξ)2 + ∂z(ξ∂zξ)
]

.

Using the identities in (4.13) and (4.14), it yields the final coupled equations
for ξ, ζ

(4.15) ∂τ ξ = −11γ

v̄2
ξ4 − 5γ

v̄
ζξ∂zξ, ∂τ ζ = −11γ

v̄2
ζ4 − 5γ

v̄
ξζ∂zζ.

Furthermore, if we define ρ = ξ + ζ and θ = ξζ, we can derive the following
equivalent equations using (4.15) and (4.14) as the modulation equation for
the period-three oscillations

(4.16)

∂τ ρ = − 5γ

v̄
θ∂zρ − 11γ

4
(∂zρ)2 +

22γ

v̄2
θ2,

∂τ θ = − 5γ

v̄
θ∂zθ − 11γ

2v̄
θρ∂zρ +

11γ

v̄2
ρθ.
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Therefore, the asymptotic approximate solution of the small-scale variable
in (4.9) can be written as

vl = v̄ + cos

(

2π

3
l

)[

ξ

(

xl +
3

2
γv̄t, h2t

)

+ ζ

(

xl +
3

2
γv̄t, h2t

)]

h

+
1

3v̄
ξ

(

xl +
3

2
γv̄t, h2t

)

ζ

(

xl +
3

2
γv̄t, h2t

)

h2 + O
(

h3
)

= v̄ + cos

(

2π

3
l

)

ρ

(

xl +
3

2
γv̄t, h2t

)

h +
1

3v̄
θ

(

xl +
3

2
γv̄t, h2t

)

h2 + O
(

h3
)

,

(4.17)

where the solutions of ξ(z, τ) and ζ(z, τ) are given by the modulation equa-
tions (4.15) and the solutions of ρ(z, τ) and θ(z, τ) are given by the modu-
lation equations (4.16). We have the following theorem to ensure the conver-
gence of the discrete solution of the small-scale equation (4.9) to the period-
three oscillations.

Theorem 8. Let ρ(z, τ) and θ(z, τ) be smooth periodic solutions of (4.16),
and vl(t), l = 1, . . . , L be the discrete solution of (4.9). Suppose that vl starts
with the initial data consistent with ρ0(z) = ρ(z, 0), θ0(z) = θ(z, 0)

(4.18) vl(0) = v̄ + cos

(

2π

3
l

)

ρ0(lh, 0)h +
1

3v̄
θ0(lh)h2,

with h = 1/L, and ṽl is defined by the approximation

ṽl(t) = v̄ + cos

(

2π

3
l

)

ρ

(

xl +
3

2
γv̄t, h2t

)

h +
1

3v̄
θ

(

xl +
3

2
γv̄t, h2t

)

h2.

(4.19)

Then, we have the L2-estimate for the error between vl and ṽl for all t ∈ [0, T ]

(4.20)

[

1

L

L
∑

l=1

⃓

⃓vl(t) − ṽl(t)
⃓

⃓

2

]
1

2

≤ CT
1

L2
.

Proof. The asymptotic expansion in (4.11) implies that the approximate so-
lution (4.19) satisfies

(4.21)
dṽl

dt
= −γ

h
ṽl+1(ṽl+2 − ṽl−1) + Tl,
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where Tl = O(h3) is the higher-order residual. On the other hand, vl = v̄ + v′
l

satisfies (4.9) and we can rewrite its right-hand side as the flux term and a
reaction term as in (3.6)

(4.22)

dvl

dt
= − γ

h
vl+1(vl+2 − vl−1)

= − γ

h
(Gl+ 1

2

− Gl− 1

2

) − γ

2h
(vl+1 − vl)(vl+2 − vl−1),

where we define the corresponding multivariable flux function G(v1, v2, v3) =
1
2(v1v2 + v1v3 + v2v3) with Gl+ 1

2

:= G(vl, vl+1, vl+2). Denote the error as

el = ṽl − vl and we suppose a priori that

(4.23) max
l

|el| ≤ h,

for 0 ≤ t ≤ t1 with a small enough t1.
Since ṽl and vl satisfy (4.21) and (4.22) respectively, we have that the

error el satisfies the following equation

del

dt
= − γ

G(ṽl) − G(vl)

h
− γ

G(ṽl−1) − G(vl−1)

h

− γ

2

[

(ṽl+1 − ṽl)(ṽl+2 − ṽl−1)

h
− (vl+1 − vl)(vl+2 − vl−1)

h

]

+ Tl,
(4.24)

where we define vl := (vl, vl+1, vl+2). In the first line of the above equation,
we have

⃓

⃓

⃓

⃓

G(ṽl) − G(vl)

h

⃓

⃓

⃓

⃓

=
⃓

⃓∇vG(ṽl) · (ṽl − vl)
⃓

⃓ ≤ C
(

|el| + |el+1| + |el+2|
)

.

For the second row of (4.24), we have the estimate

(ṽl+1 − ṽl)(ṽl+2 − ṽl−1)

h
− (vl+1 − vl)(vl+2 − vl−1)

h

≤ (ẽl+1 − ẽl)
ṽl+2 − ṽl−1

h
+

ṽl+1 − ṽl

h
(el+2 − el−1) − el+1 − el

h
(el+2 − el−1)

≤ C
(

|el−1| + |el| + |el+1| + |el+2|
)

.

Above, we have |ṽl+i − ṽl−j | ≤ Ch from the solution (4.19), and |el| ≤ h from
the supposition (4.23). Therefore, we have the estimate for the error in (4.24)
as

del

dt
≤ C1

(

|el−1| + |el| + |el+1| + |el+2|
)

+ C2h3.
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By multiplying el on both sides of the above equation and taking sum-
mation about l, we obtain

(4.25)

1

2

d

dt

∑

l

e2
l ≤ C1

∑

l

|el|
(

|el−1| + |el| + |el+1| + |el+2|
)

+ C2|el|h3

≤ C ′
∑

l

e2
l + h5.

Using Gronwall’s inequality, we have first for t ≤ t1, there is

∑

l

e2
l ≤ Ch5 ⇒ max

l
|el| ≤ Ch

5

2 .

Therefore, the a priori assumption (4.23) is justified first for t ≤ t1 then can
always be continuously extended to a larger time interval. This leads to the
error estimate for the entire time interval t ∈ [0, T ] such that

h
∑

l

e2
l ≤ Ch4 =

C

L4
.

This gives the total error in (4.20).

Remark. The result in Theorem 8 can be also applied to the single layer L96
model (3.1) describing the transition between the period-three oscillations
with the non-oscillatory region.

4.3. Numerical verification using the two-layer L96 model

In the numerical illustrations of the two-layer L96 solutions of (4.2), we con-
sider two initial values: i) zero large-scale state u1(0) = u2(0) = 0 and contin-
uous small-scale profile v0 = 0.3 sech2(x

2 ); and ii) jump discontinuity at the
two large-scale states u1(0) = 1, u2(0) = −1 and zero small scale v0 ≡ 0. The
same as the one-layer model case, we use the discretization points L = 256
and the 4th-order Runge-Kutta method is used for the time integration. First,
the time evolution of the large-scale states is shown in Figure 8. The large
scale and small scale means interacts nonlinearly in the starting time. It is
observed in both test cases, the energy exchanges between the large and small
scale states and finally mostly transfers to the small-scale state v when strong
chaotic behaviors are developed.

The small-scale solutions in the two test cases are compared in Figure 9
and Figure 10. From both initial values, oscillatory solutions in v will be de-
veloped near the point x = 0 due to the different forcing u1 and u2 exerted
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Figure 9: Development of oscillatory solutions in the small scales v of the two-
layer L96 model with initial value u1(0) = u2(0) = 0 and v0 = 0.3 sech2(x

2 ).

Figure 10: Development of oscillatory solutions in the small scales v of the
two-layer L96 model with initial value u1(0) = 1, u2(0) = −1 and v0 = 0.

on v from the left and right sides of the domain according to (4.2). It is ob-
served the oscillations are moving to the left side of the discontinuity due to
the wave group velocity −c = −3

2γv̄ consistent with the analysis in (4.13).
We also approximate the period two solutions by η = 1

3(vl−1 + vl + vl+1) and
ξ = 1

3(−1
2vl−1 + vl − 1

2vl+1). Notice that (4.9) gives the leading-order small-
scale approximation since higher-order feedbacks from the large-scale states
also have contributions to the two-layer model (4.2) besides the leading-order
terms in the large-scale equation (4.8). The combination of multiple approxi-
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mations and numerical effects makes it tricky to observe a clean period-three
solution in the full two-layer model simulations. Still, in the region where os-
cillatory solutions start to develop, the three point averages η, ξ demonstrate
smoother solution except some small fluctuations due to the higher-order per-
turbations. This indicates the period-three behavior of the oscillatory solution
along its way to fully chaotic dynamics.

5. Summary

We studied the development of chaotic behaviors commonly observed in the
simulations of the Lorenz 96 systems through the approach of analyzing the
convergence of discrete dispersive schemes. The final chaotic solution can
be explained as a competition between the stable solution and unstable os-
cillatory solutions developed during the time evolution of the leading-order
equations. Oscillations are shown to arise in the discrete L96 models when
discontinuity is developed from the classical solution. We show that period-
two oscillatory solutions exist in the modulation equation, while period-three
oscillations may also occur in a weakly nonlinear analysis. Applying Strang’s
convergence theorem to the regions of oscillatory solutions, we show that the
particular modulation equations and asymptotic weakly nonlinear approxi-
mations characterize the period-two and period-three oscillations correspond-
ingly. The analytical results are supported by direct numerical simulations in
various parameter regimes of the one-layer and two-layer L96 models. The
ideas can also be generalized to study the more complicated interactions of
period-two and period-three oscillations that finally lead to the fully turbulent
dynamics.
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