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From local spin nematicity to altermagnets: Footprints of band topology
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Altermagnets are crystallographic rotational symmetry breaking spin-ordered states, possessing a net zero
magnetization despite manifesting Kramer’s nondegenerate bands. Here, we show that momentum-independent
local spin-nematic orders in monolayer, Bernal bilayer, and rhombohedral trilayer graphene give rise to p-wave,
d-wave, and f -wave altermagnets, respectively, thereby inheriting the topology of linear, quadratic, and cubic
free fermion band dispersions that are also described in terms of angular momentum � = 1, 2, and 3 harmonics
in the reciprocal space. The same conclusions also hold inside a spin-triplet nematic superconductor, featuring
Majorana altermagnets. Altogether, these findings highlight the importance of electronic band structure in
identifying such exotic magnetic orders in quantum materials. We depict the effects of in-plane magnetic fields
on altermagnets, and propose spin-disordered alter-valley magnets in these systems.
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Introduction. Magnetic materials commonly appear in-
side modern-day electronic devices. When doped, often they
also source unconventional and high-temperature supercon-
ductors. Therefore, identifying new magnetic phases and
materials are of both fundamental and technological im-
portance, possibly paving a path toward the long sought
room-temperature superconductors.

Typically, magnetic materials are grouped into two fam-
ilies, ferromagnet and antiferromagnet. The former breaks
only the time-reversal symmetry, thereby lifting the Kramer’s
degeneracy of electronic bands. It possesses a finite mag-
netic moment, resulting from a population imbalance between
electrons with opposite spins. By contrast, the Kramer’s
degeneracy of electronic states is protected in an antifer-
romagnet, stemming from the simultaneous lifting of the
time-reversal and inversion symmetries, yielding a net zero
magnetization.

Recently, a new type of magnetic order has been proposed
theoretically [1–20], and unearthed in quantum materials
[21–33]: altermagnets. Despite lifting the Kramer’s degen-
eracy, they manifest no net magnetization, a peculiarity
accomplished at the cost of discrete crystallographic rota-
tional symmetry with opposite signs for complementary spin
projections. They are represented in terms of spherical har-
monics (Y m

� ), taking a generic form σY m
� (θ, φ)|k|�. Vector

Pauli matrix σ operates on the spin space, m = −�, · · · , �, θ

(φ) is the polar (azimuthal) angle in the reciprocal space, and
k is the momentum. This classification allows p-wave (� = 1),
d-wave (� = 2), and f -wave (� = 3) altermagnets, to name a
few.

Although strongly correlated materials can in principle
harbor such exotic magnetic orders, their nonlocality or mo-
mentum dependence can be energetically expensive, forcing
us to raise the following question: Can altermagnets emerge
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from momentum-independent local magnetic orders? We
show that its affirmative answer establishes a topology-based
guiding principle to identify quantum materials, capable of
fostering altermagnets.

This question arises from a seemingly unrelated topic,
topological superconductors (TSCs), worth mentioning de-
spite a short detour. Consider their prime member, the B
phase of 3He, a fully gapped p-wave paired state [34]. It
can emerge from local or on-site odd-parity Cooper pairing
in three-dimensional Dirac materials [35,36], also modeled
in terms of odd-parity p-wave harmonics. Therefore, neutral
Bogoliubov-de Gennes (BdG) quasiparticles inherit topology
from normal state charged Dirac quasiparticles. Moreover,
when such a local odd-parity pairing is projected on the Fermi
surface, realized by intercalating or doping topological insu-
lators, it takes the form of the B phase of 3He [37,38]. This
one-to-one correspondence between the normal state band
topology and paired state emergent topology guides us to
identify candidate materials, fostering charged TSCs, with
CuxBi2Se3 and InxSn1−xTe standing as promising candidates
[39–41]. A similar avenue has also been built to identify
candidate materials for higher-order TSCs [42–44]. In light of
these observations, the question from the last paragraph can
be rephrased in the following way: How does electronic band
topology get imprinted on altermagnets?

Such broadly defined questions can be efficiently answered
by considering minimal model Hamiltonian for crystalline
graphene heterostructures. Here, we focus on monolayer
graphene (MLG), Bernal bilayer graphene (BBLG), and
rhombohedral trilayer graphene (RTLG) displaying linear, bi-
quadratic, and bicubic touching of valence and conduction
bands at two inequivalent corners of the hexagonal Brillouin
zone, described by p-wave, d-wave, and f -wave harmonics in
the momentum space, respectively [45], see Eq. (1). In such
systems, we show that local spin-nematic orders, transforming
under the irreducible Eg or Eu representation of the D3d group,
see Eq. (2) and Fig. 1, give birth to emergent p-wave, d-wave,
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FIG. 1. Nematicity in (a) MLG, (b) BBLG, and (c) RTLG, re-
sulting from hopping modulations between nearest-neighbor [(a)] or
low-energy [(b) and (c)] sites, denoted by a, b, and c with |a| �= |b| �=
|c|. For Eg (Eu) charge [spin] nematic orders a, b, and c are purely
real (imaginary) and bear the same [opposite] sign for opposite spin
projections. In the spin-triplet Eu nematic paired state, Cooper pair
amplitudes a, b, and c are purely imaginary with opposite signs for
opposite spin projections. Here, A and B are two sublattices, and
subscripts denote the layer index in (b) and (c) [46].

and f -wave altermagnets, respectively, inheriting topology
from the normal state band dispersion, as shown by diagonal-
izing the effective single-particle Hamiltonian in the ordered
phases [Eq. (3)]. Results are depicted in Fig. 2. By the same
token, a spin-triplet nematic superconductor, belonging to the
Eu representation, fosters altermagnet for neutral Majorana
fermions, hereafter coined Majorana altermagnet. We recog-
nize that the valley or pseudospin degree of freedom permits
a spin-disordered charge nematic order, leading to (un-nested)
displaced or distorted Fermi surfaces near two valleys, a phase
hereafter named alter-valley magnet. Although pristine MLG
does not exhibit any symmetry breaking (due to vanishing
density of states therein), we investigate its altermagnetic
properties as a preparatory step toward studying time-reversal
symmetry breaking spin-nematic phases in BBLG and RTLG,
where the corresponding ordering tendencies become promi-
nent due to the constant and diverging density of states therein,
respectively.

Free fermions. The continuum models, resulting from
a minimal tight-binding Hamiltonian involving nearest-
neighbor intralayer (t) and interlayer dimer (t⊥) hopping [45],
in MLG, BBLG, and RTLG graphene, detailed in Sec. S1
of the Supplemental Material (SM) [46], in a 16-component
Nambu-doubled spinor basis read as

ĥ�(k) = α�|k|�[�1
� cos(�φ) − �2

� sin(�φ)
] − �Z�0100, (1)

with � = 1, 2, and 3, respectively. Here, α� ∼ (ta)�/t�−1
⊥ ,

bearing the dimension of Fermi velocity (inverse mass) for
� = 1 (2), for example, a is the lattice spacing, �1

1/3 = �3031,
�2

1/3 = �3002, �1
2 = �3001, and �2

2 = �3032. Hermitian matri-
ces are �κνρλ = ηκσντρβλ, where {ηκ}, {σκ}, {τκ}, {βκ} are
Pauli matrices for κ = 0, · · · , 3, operating on the particle-
hole, spin, valley, and sublattice or layer indices, respectively.
The Nambu spinor is ��

Nam(k) = [�(k), σ2τ1β0�
�(−k)],

where the eight-component spinor ��(k) = [�↑(k), �↓(k)]
with σ =↑,↓ as two projections of electrons spin in the z
direction and ��

σ (k) = [�σ,+(k), �σ,−(k)]. Here � denotes
transposition. For each spin projection, the two-component
spinor near two opposite valleys at τK is defined as �σ,τ (k) =
[Aσ (τK + k), Bσ (τK + k)], where τ = ±. A and B are
fermionic annihilation operator on the sites of two triangular

sublattices of the honeycomb lattice. They, however, live on
the top and bottom layers of BBLG and RTLG. Therefore,
the sublattice and layer degrees of freedom are synonymous.
Momentum |k| � |K| is measured from the respective valley.
We introduced the Nambu doubling to facilitate a forthcoming
discussion on Majorana altermagnet. Until then, it is redun-
dant. The Zeeman term (�Z) is due to in-plane magnetic
fields. In its absence, spherically symmetric energy spectra of
ĥ�(k) are ±E�(k), where + (−) corresponds to the conduction
(valence) band, and E�(k) = α�|k|� [47–52].

The effective Hamiltonian preserves the sublattice or layer
(S) and valley (T ) reflection symmetries, generated by �0001

and �0010, respectively, and accompanied by momentum re-
flections k → (kx,−ky) and k → (−kx, ky). Its time-reversal
symmetry is generated by T = �0210K, where K is the com-
plex conjugation and T 2 = −1. Thus electronic bands near
two valleys are Kramer’s (spin) degenerate. In the hole part of
�Nam, we absorb the unitary part of the time-reversal operator.
The generator of spatial rotation is �0033, and the low-energy
Hamiltonian possesses a rotational symmetry, generated by
Rπ/2 = exp[iπ�0033/4], when the momentum axes are rotated
by an angle π/(2�). The U(1) translational symmetry is gener-
ated by �0030. Light mass of carbon atoms allows us to neglect
any spin-orbit coupling, and all the Hamiltonian are invariant
under SU(2) spin rotation, generated by �0s00 with s = 1, 2, 3
[47,51,52]. For details, see Sec. S2 of the SM [46].

Spin nematicity. The underlying D3d group allows two
spin-nematic orders transforming under the irreducible Eg and
Eu representations. With respective amplitudes �Eg and �Eu ,
effective single-particle Hamiltonian are

ĥspin
Eg

(
�Eg, θEg

) = �Eg[�0301 cos θEg − �0332 sin θEg],

ĥspin
Eu

(�Eu , θEu ) = �Eu [�3331 cos θEu − �3302 sin θEu ]. (2)

The internal angles θEg and θEu are chosen spontaneously in
the ordered states, detailed in Sec. S3 of the SM [46], in
which, without any loss of generality, the spin projection is
picked in the z direction. Negligibly small spin-orbit coupling
allows classification of these orders solely in terms of the
irreducible representation of the D3d group (ignoring the spin
degrees of freedom), without invoking spin space group. Two
matrices of ĥspin

Eg/Eu
constitute a vector under spatial rotation,

generated by �0033. So, the ordered states (with fixed θEg or
θEu ) break the spatial rotational symmetry (yielding nematic-
ity), while manifesting an invariance under Rπ/2 rotation when
cos θEj → − sin θEj and sin θEj → cos θEj for j = g, u, thus
satisfying the definition of altermagnets. The Eg (Eu) spin
nematicity breaks (preserves) the T symmetry, but preserves
(breaks) the inversion or parity P , generated by P = ST ≡
�0011 under which k → −k. Thus only the Eg spin-nematic or-
der represents a conventional T -odd altermagnet, while the Eu

counterpart corresponds to an odd-parity (P-odd) altermag-
net. Nucleation of either order lifts the Kramer’s degeneracy
near each valley, discussed next. For lattice realizations of
these orders see Fig. 1 and Sec. S4 of the SM [46].

The reconstructed band structure with the onset of the spin-
nematic orders can be computed by diagonalizing

ĥalt
j (� j, θ j ) = ĥ�(k) + ĥspin

j (� j, θ j ), (3)
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with j = Eg and Eu. Near the +K valley, Kramer’s nonde-
generate bands touch each other at Weyl points, located at
|k| = ([�2

j + �2
Z ]1/2/α�)1/� and φ = (θ j + mπ )/�. For spin-

up (↑) fermions, odd integer m = 1, · · · , 2� − 1, while for
spin-down (↓) fermions even integer m = 0, · · · , 2� − 2.
Therefore, for each spin projection, the linear band touch-
ing point of MLG shifts to a new position in the reciprocal
space, whereas the biquadratic (bicubic) band touching point
of BBLG (RTLG) splits into two (three) Weyl points around
which the energy-momentum dispersion is linear. In the Eg

spin-nematic phase, such a shift/splitting of the band touching
points for spin-up (spin-down) fermions near −K valley is
same as that of the spin-down (spin-up) fermions near +K
valley in MLG and RTLG, but is identical for each spin
projection near opposite valleys in BBLG. In the Eu spin-
nematic state, this shift/splitting near the opposite valleys
is identical in MLG and RTLG for each spin projection,
whereas in BBLG such a shift/splitting near −K valley
for spin-down (spin-up) fermions is same as that of the
spin-up (spin-down) fermions near +K valley. The resulting
reconstruction of electronic bands and its Kramer’s degen-
eracy lifting lead to altermagnetism in these spin-nematic
states, which we promote shortly. The distance between the
Weyl nodes and the magnitude of the spin splitting of the
Fermi surfaces with opposite spin projections are set by �Eg

and �Eu .
The magnitudes of these two orders (�Eg and �Eu ) are

expected to be a few meV, a typical scale of orderings in
graphene heterostructures [53–57]. However, their exact mag-
nitude depends on the strength of corresponding four-fermion
interaction, usually an unknown quantity in any interacting
system, but expected to be a few eV in these systems [58].
Nevertheless, the local or momentum-independent nature of
these orders make them energetically favored to be realized
in real materials, supported by appropriate four-fermion inter-
actions. In Sec. S5 of the SM [46], we show their solutions
as functions of the corresponding four-fermion interaction
strength in the mean-field approximation. While in MLG
these orderings take place beyond a critical strength of inter-
action due to vanishing density of states (DOS), in BBLG a
constant DOS leads to their weak-coupling instabilities even
for infinitesimal interactions. On the other hand, a diverging
DOS causes strong nematic instabilities for weak interactions
in RTLG.

Altermagnets. Emergent altermagnetism in the spin-
nematic phases can be recognized from the constant energy
contours for opposite spin projections either in the valence or
conduction band of the corresponding effective single-particle
Hamiltonian [Eq. (2)]. The results are shown in Fig. 2 (left
column). Such contours for spin-up and spin-down electrons
do not overlap, but always enclose equal area in the reciprocal
space (Fermi area). Thus these phases do not possess any net
magnetic moment, despite lifting the Kramer’s degeneracy
from electronic bands. Hence, they represent altermagnets.
Spin-polarized constant energy contours cross each other at
two, four, and six points in MLG, BBLG, and RTLG, respec-
tively. From the topology of such contours, it is evident that
the same spin-nematic order gives birth to p-wave, d-wave,
and f -wave altermagnets in MLG, BBLG, and RTLG, respec-
tively. Shortly, we will justify this claim quantitatively and

FIG. 2. Constant energy (E = 0.25) contours, yielding Fermi
surfaces at chemical doping μ = E = 0.25, near the +K valley for
spin-up (↑) and spin-down (↓) electrons in the presence of local spin-
nematic orders (belonging to the Eg or Eu representation) without the
Zeeman coupling in (a) MLG, (c) BBLG and (e) RTLG, displaying
p-, d-, and f -wave altermagnets, respectively. We set � j = 0.2 and
θ j = 0, where j = Eg and Eu [Eq. (2)]. The numbers in the color bar
represent the spin projection in the z direction (in units of h̄/2). It
is zero where the contours for opposite spin projections cross. They
get split by a Zeeman coupling (�Z ) of an in-plane magnetic field, as
shown for (b) MLG (�Z = 0.025), (d) BBLG (�Z = 0.05), and (f)
RTLG (�Z = 0.05). Near the −K valley, the spin projection on each
contour gets reversed (stays the same) in MLG and RTLG (BBLG)
for the Eg altermagnet. For the Eu altermagnet, this correspondence
is exactly the opposite. Momentum k is measured about the valley
momentum K. We set α� = 1 [Eq. (1)]. Black dashed lines repre-
sent spin-degenerate Fermi surface of free fermions. For each spin
projection, the Fermi momentum determining the amplitude of the
spin-resolved longitudinal conductivity (electrical or thermal) along
any direction is the distance between the origin of the constant energy
contour to a point on it in that direction.

attribute this emergent phenomena to the normal state band
topology.

Application of a weak external in-plane magnetic field
(no Landau quantization) splits the crossing points between
contours belonging to opposite spin projections, where the
z component of electronic spin is zero, as shown in Fig. 2
(right column). The Zeeman coupling then takes place be-
tween the magnetic field and in-plane components (such as
x) of electronic spin. The orbital effect of sufficiently weak
in-plane magnetic fields is negligible in BBLG and RTLG in
comparison to its Zeeman cousin, and is thus omitted here
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[59]. In-plane magnetic fields project the spin of altermagnets
in the orthogonal easy plane, and gap out the contour crossing
points.

Classification of altermagnets, resulting from local spin-
nematic orders, in terms of the spherical harmonics is
accomplished by casting their effective single-particle Hamil-
tonian [Eq. (2)] in the band electron basis. Then the kinetic
energy term ĥband

� (k) = α�|k|��̄3003 − �Z�̄0100 becomes diag-
onal, achieved after a unitary rotation by U , constructed by
columnwise arranging the eigenvectors of ĥ�(k) with �Z =
0. Here, �̄κνρλ = ηκσντρζλ and the newly introduced Pauli
matrices {ζκ} operate on the band index (conduction and va-
lence). In this basis, the local spin nematic orders from Eq. (2)
take the form

ĥspin
j,band = � j

{
[cos θ j cos(�φ) + sin θ j sin(�φ)]�̄ j,�

intra

+ [cos θ j sin(�φ) − sin θ j cos(�φ)]�̄ j,�
inter

}
. (4)

The first (second) term captures the intraband (interband)
component of the j = Eg and Eu nematic orders, ensured by
the accompanying matrices taking the following form with
κ = 3 (0) for j = Eg (Eu),

�̄
Eg,1/3
intra = �̄

Eu,2
intra = �̄κ333, �̄

Eg,2
intra = �̄

Eu,1/3
intra = �̄κ303

�̄
Eg,1/3
inter = �̄

Eu,2
inter = �̄κ302, and �̄

Eg,2
inter = �̄

Eu,1/3
inter = �̄κ332.

The intraband component is responsible for the topology of
the constant energy contours (Fermi surface). From the defi-
nitions of cubic harmonics in two dimensions{

cos(�φ)

sin(�φ)

}
∝ Y −�

�

(π

2
, φ

){+
−

}
(−1)�Y �

�

(π

2
, φ

)
, (5)

we identify that the altermagnets are p-wave, d-wave, and f -
wave in nature in MLG (� = 1), BBLG (� = 2), and RTLG
(� = 3), respectively, resulting from their normal state band
topology, described by the same harmonics.

Majorana altermagnet. As a penultimate topic, we show-
case the possibility of realizing altermagnets of neutral
Majorana fermions in local spin-triplet nematic supercon-
ductors. The D3d group allows only one such paired state,
following the Eu representation [50,51], with the effective
single-particle BdG Hamiltonian

ĥpair
Eu

(
�

p
Eu

, θ
p
Eu

) = �
p
Eu

[
�α j31 cos θ

p
Eu

− �α j02 sin θ
p
Eu

]
. (6)

Here �
p
Eu

is the pairing amplitude, θ
p
Eu

determines the spatial
orientation of Cooper pairs, and α = 1, 2 reflects the U(1)
gauge redundancy of the superconducting phase. For sim-
plicity, we choose α = 1 and the Cooper pair spin in the z
direction ( j = 3). Microscopic origin of such pairing is shown
Fig. 1 and in Sec. S4 of the SM [46]. The discussion for the
Eu spin-nematic order directly applies here with the caveat
that the Weyl nodes feature gapless Majorana excitations. We
now enjoy the liberty to completely neglect the interband
component of the pairing Hamiltonian [with 3 → 1 in the
Nambu sector in Eq. (4)], as the effective attractive interaction
exists only near the Fermi surface, found within the valence or
conduction band upon doping these systems. Thus, the paired
state also hosts altermagnets for neutral Majorana fermions
(Fig. 2). We name them Majorana altermagnets. By the same

analogy they are p-wave, d-wave, and f -wave in nature in
MLG, BBLG, and RTLG, respectively.

Alter-valley magnet. Symmetry-protected valley degree of
freedom in graphene heterostructures enters their low-energy
models as spin degrees of freedom [Eq. (1)], thus named
pseudospin. We envision to construct altermagnetic states in
terms of valley or pseudospin. Spin-up and spin-down com-
ponents in this case translate into two valleys at ±K, and
exchange of spin projections ↑↔↓, leading to a change in
spin angular momentum Sz = ±2 (in units of h̄/2), maps onto
K ↔ −K, causing a 2K momentum transfer. The proposed
alter-valley magnet is spin disordered, and stems from the
charge nematic orders, for which the effective single-particle
Hamiltonian takes the form shown in Eq. (2), with 3 ↔ 0
in the Nambu sector and 3 → 0 in the spin sector of the
corresponding � matrices [51]. A charge nematic phase then
represents an alter-valley magnet if the displaced (in MLG)
or distorted (in BBLG and RTLG) spin-degenerate Fermi sur-
faces near two inequivalent valleys do not map onto each other
under a 2K translation (pseudospin flip). With this definition
in hand, we recognize Eg (in MLG and RTLG) and Eu (in
BBLG) charge-nematic orders as alter-valley magnet, with the
corresponding spin degenerate Fermi surfaces from the oppo-
site valleys shown in a single frame in Fig. 2 (left column),
where ↑ / ↓ ≡ +/ − K. Lattice realizations of these orders
are shown in Fig. 1 and Sec. S4 of the SM [46]. They can
be identified from anisotropic charge transport (signature of
nematicity), combined with ARPES measurement, confirm-
ing un-nested Fermi surfaces under 2K momentum exchange
[60].

Summary and discussions. We show that the band topology
of noninteracting electrons plays a decisive role in determin-
ing the geometry of emergent altermagnets from the local
spin-nematic orders. As examples, we consider graphene-
based crystalline heterostructures, namely MLG, BBLG, and
RTLG, displaying linear, quadratic, and cubic band disper-
sion, captured by � = 1, 2, and 3 harmonics, respectively.
As a result, the local spin-nematic orders foster p-wave, d-
wave, and f -wave altermagnets, respectively, inheriting their
geometry from the free fermion band topology. The same con-
clusions hold in a spin-triplet nematic local superconductor,
harboring Majorana altermagnets. In addition, the valley or
pseudospin degree of freedom allows us to unfold the possi-
bility of spin-disordered alter-valley magnetic phases. Present
discussion opens up various fascinating future directions,
among which generalizing these concepts to strong spin-orbit
coupled and three-dimensional materials, emergent supercon-
ductors in doped altermagnets [61–66] are the prominent ones.
The spin nematicity driven emergent altermagnetism, yield-
ing reconstructed spin-nondegenerate band structure (Fig. 2)
can be identified from spin-resolved ARPES and fast Fourier
transformed STM measurements. The broken T symmetry in
altermagnets should also be verified from Faraday and Kerr
rotations [67].

Topological quantum chemistry nowadays is routinely em-
ployed to mine quantum materials with unusual electronic
band dispersion [68–73]. Our proposed symmetry-based suf-
ficiently general one-to-one correspondence between band
topology and altermagnet geometry should therefore open an
unexplored and fascinating avenue to harness these exotic
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quantum magnets in a predictive way. Within the landscape
of graphene heterostructures recent experiments have un-
veiled several ordered phases (including superconductors)
in doped BBLG and RTLG, when the layer-inversion sym-
metry is broken by an external displacement electric field
[53–57]. In biased BBLG and RTLG, spin-triplet supercon-
ductivity has been observed [54,55]. Their nematic nature
can now be established from direction and spin-dependent
longitudinal thermal transport measurement, unfolding the
proposed Majorana altermagnet. By contrast, spin nematic
orders, yielding altermagnets, can be pinned from direction-
and spin-dependent longitudinal regular charge transport
measurements. The magnitude of the spin-resolved longi-
tudinal conductivity (electrical or thermal) along a specific
direction is proportional to the Fermi vector along it (see

Fig. 2). While nematic orders have also been observed
experimentally in BBLG, their spin orientation has re-
mained unexplored so far [74,75]. As new phases in the
global phase diagram of graphene-based crystalline (non-
Moiré) systems are still being discovered, they constitute
a promising material platform, where our predicted alter-
magnets, including their Majorana and valley cousins, can
in principle be observed, stimulating new experiments in
this direction. Our predictions are not affected by the trig-
onal warping in BBLG and RTLG, as shown in Sec. S6 of
the SM [46].
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