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Superconductivity in doped planar Dirac insulators: A renormalization group study
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From a leading-order unbiased renormalization group analysis we here showcase the emergence of
superconductivity (including the topological ones) from purely repulsive electron-electron interactions in two-
dimensional doped Dirac insulators, featuring a Fermi surface. Otherwise a simply connected Fermi surface

becomes annular deep inside the topological regime. In the absence of chemical doping, such systems describe
quantum anomalous or spin Hall and normal insulators. By considering all symmetry allowed repulsive local
four-fermion interactions, we show that the nature of the resulting superconducting states at low temperature
follows certain Clifford algebraic selection rules, irrespective of the underlying Fermi surface topology. Within
the framework of a microscopic Hubbard model, on-site repulsion among fermions with opposite orbitals
(spin projections) typically favors odd-parity topological p-wave (conventional even-parity s-wave) pairing.
Theoretically predicted superconductivity can in principle be observed in experiments once the promising
candidate materials for quantum anomalous and spin Hall insulators are doped to foster Fermi surfaces, realizable
in quantum materials and on optical lattices of cold atoms.

DOI: 10.1103/w6vx-375q

I. INTRODUCTION

The massive Dirac Hamiltonian provides a universal
description of topological insulators and superconductors
belonging to any Altland-Zirnbauer symmetry class in any di-
mension. In this formulation the Dirac mass manifests a band
inversion (changing its sign) at a finite momentum. Topologi-
cally trivial insulators and superconductors are also described
by the massive Dirac Hamiltonian in which, however, the
Dirac mass does not change its sign at any momentum [1-13].
And the universality class of the quantum phase transition
between topological and normal insulating states (electrical
or thermal) is determined by a collection of massless Dirac
fermions, characterized by the dynamic scaling exponent z =
1 and the correlation length exponent v = 1 [14-16].

Dirac materials also constitute a suitable platform to
harness topological superconductors (besides the featureless
even-parity s-wave pairings). Namely, local or momentum-
independent odd-parity superconducting Dirac masses, for
which the corresponding operators fully anticommute with
the Dirac Hamiltonian, inherit topology from the normal state
and give rise to p-wave pairings [17-23]. When such pair-
ings occur around the underlying Fermi surface (realized by
chemically doping a Dirac insulator) it gets fully gapped. At
the same time, the vector order parameter associated with the
p-wave pairing nontrivially winds around the Fermi surface,
yielding topological superconductivity.

Fascinatingly, in this work we show that repulsive Hub-
bardlike local electron-electron interactions can conduce such
topological pairing in doped Dirac insulators. In turn, this
observation allows us to speculate a comparison between the
global phase diagrams of strongly correlated doped magnetic
materials and doped (topological) Dirac materials, shown in
Fig. 1, both fostering superconductivity at low temperatures.
Therefore, a predictive confluence of electronic interactions
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and emergent topology can be established by concentrating
on interacting doped Dirac insulators, from various Altland-
Zirnbauer symmetry classes. So we initiate the discussion
with an overview on the Dirac theory.

A. Dirac Hamiltonian and Fermi surface

The effective single-particle Hamiltonian describing a col-
lection of noninteracting massive Dirac fermions in any
spatial dimension (d) in the presence of a finite chemical
potential or doping (i) takes the universal form

d d
hoie) = > 0Tk + [ m+ > bk | Do — 12 (1)
j=1 =1

in the low-energy and long wavelength limit [24-26]. Here
v; (k;) is the Fermi velocity (momentum) along the ith coor-
dinate. Throughout we assume a spatial rotational symmetry
in the system, and thus set v; = v (say) and b; = b (say) for
j=1,...,d. The first term in Eq. (1) describes the Dirac ki-
netic energy that is linear in momentum, yielding z = 1. In the
second term, m and bk represent constant and momentum-
dependent Wilson-Dirac masses. For simplicity, we ignore
any particle-hole asymmetry in the y = 0 limit. Mutually an-
ticommuting Hermitian I' matrices satisfy the Clifford algebra
(Cj, Tk} =28 for j,k=1,...,d+ 1, where §  is the Kro-
necker delta function. The dimensionality and representation
of the I' matrices and the associated Dirac spinor depend
on the dimensionality of the system and its symmetry class.
Irrespective of these details, when b > 0, which we assume
throughout this work for concreteness, the above Hamiltonian
describes a topological insulator for m < 0 and a normal in-
sulator for m > 0; see Fig. 2. In the former phase the band
inversion occurs at a momentum |k|;,, = «/|m|/b.

©2025 American Physical Society
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FIG. 1. (a) A schematic phenomenological phase diagram of
strongly correlated doped magnetic materials, fostering a magnetic
ground state at and near half-filling and a superconductor (SC) away
from it, achieved by increasing the carrier density (n) in the system.
Typically, a d-wave (p-wave) superconductor is found when the
magnetic ground state is antiferromagnet (ferromagnet) that can be
theoretically demonstrated from the conventional Hubbard model
with on-site repulsion. (b) A proposed schematic phase diagram for
interacting doped Dirac insulators (DIs) that can potentially harbor
topological superconductors (TSCs) when the normal state is doped
to accommodate a Fermi surface. Here p corresponds to the chemical
potential or the gate voltage. Theoretical study, presented in this
work, suggests that an orbital Hubbard model with repulsive inter-
actions among fermions with opposite orbitals or parity eigenvalues
give rise to TSC belonging to class D (class DIII) when the parent
DI belongs to class A (class All) in two dimensions. We note that
such an on-site orbital Hubbard repulsion in class AIl Dirac system
also yields a class DIII pairing in three dimensions [27]. Although
it is conceivable to find a class C topological nematic pairing upon
doping an interacting planar class AIl Dirac insulator, it goes beyond
the realm of the Hubbard model. In (a), the magnetic order disappears
typically via a true phase transition at finite temperature. In (b), the
insulating behavior disappears as a crossover phenomena at finite
temperature when it becomes comparable to the zero-temperature

gap.

The quantum critical point separating two topologically
distinct insulating phases is located at m = 0, where the co-
efficient of the momentum-dependent Wilson-Dirac mass b
flows to zero due to its negative scaling dimension [b] =
—1 following the general scaling argument. On the other
hand, the positive scaling dimension of m, namely [m] = 1,
sets the correlation length exponent v = 1 for this quan-
tum phase transition. Although irrelevant, the renormalization
group (RG) flow of b stops at the scale of the uniform mass
(m) inside any insulating phase, and it determines the topology
of the gapped states. In this respect, b represents dangerously
irrelevant coupling.

Furthermore, when a Dirac insulator is chemically doped
(u > 0), a combination of wu, b, and m determines the
topology of the underlying Fermi surface. Namely, within
the topological regime (mb < 0), when 2mb < —1 the sys-
tem supports an annular Fermi surface for small doping
(v—1—4mb/(2b) < u < m), whereas a simply connected
Fermi surface emerges for larger doping (n > m) therein. On
the other hand, when 2mb > —1, which encompasses both
topological and normal insulating phases, the Fermi surface
is always simply connected [27]. These features are portrayed
in Fig. 2.

The existence of an underlying Fermi surface (annular
or simply connected) can be conducive to superconductivity
even when the microscopic or bare electron-electron interac-
tions are repulsive in nature, following the general principle
of the Kohn-Luttinger mechanism [28-30]. Here, we do not
delve into the microscopic origin of such repulsive electronic
interactions. Nonetheless, in strongly correlated materials,
electronic repulsion can arise from Hubbardlike screened
Coulomb interaction, whereas in weakly interacting semicon-
ductors effective electron-electron interactions can be sourced
by optical phonons below the scale of the optical frequency
[31-33].

In this work, we focus on two representative Dirac insula-
tors in two spatial dimensions, belonging to class A and class
AllI. From an unbiased leading-order (one-loop) RG calcula-
tion we then show that these systems, when chemically doped
(u > 0) to sustain a Fermi surface in the normal state, can
trigger the nucleation of superconductivity at low temperature,
stemming from purely repulsive electronic interactions. In this
context, below we offer a synopsis of the central outcomes.

B. Summary of main results

Here we consider minimal two-band and four-band models
for Dirac insulators that belong to class A and class All,
respectively. On analyzing the symmetries of such systems,
we arrive at the most general form of local or momentum-
independent four-fermion interactions. With the assistance
from the Fierz identity, any microscopic model in these
systems is shown to be captured by only one and four lin-
early independent quartic coupling constants, respectively.
Performing a leading-order (one loop) RG analysis on such
interacting models (see Figs. 3 and 4 for the associated Feyn-
man diagrams), controlled by a “small” parameter ¢ = d — 1,
we identify the leading instabilities of doped Dirac insula-
tors from the divergence of at least one of such coupling
constants at the scale of the underlying Fermi surface. The
nature of the ordered state is then unambiguously identified
from the simultaneous RG flows of all the symmetry allowed
fermion bilinears. Namely, the pattern of symmetry breaking
is determined by the finite vacuum expectation value of the
fermion bilinear that receives the largest positive correction
(anomalous dimension) under coarse graining. Within the
framework of this prescription, we construct various cuts of
the global phase diagram in the (g, ) plane, where g () is
the four-fermion coupling constant (temperature) that typi-
cally display emergent superconductivity at low temperatures.
See Figs. 5-8. In our convention, any bare or microscopic
repulsive interaction always corresponds to g > 0. It should
be noted that the transition temperature (¢.) predicted from
the one-loop RG calculation, performed from the disordered
Fermi liquid side, only corresponds to a temperature scale
associated with the formation of Cooper pairs. However, a
coherent condensation of a macroscopic number of Cooper
pairs, leading to superconductivity in the system, occurs at
a lower temperature through the Kosterlitz-Thouless transi-
tion due to its reduced dimensionality [34]. Our RG analysis
cannot capture this phenomenon, which, for example can be
achieved from functional RG (fRG) calculations, as has re-
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cently been shown for the Hubbard model on a square lattice
[35].

We note that the nature of the superconducting order,
depending on the dominant repulsive interaction in the sys-
tem, follows certain selection rules (discussed in depth in
Sec. IIT A). Namely, for a given interaction the corresponding
matrix operator, acting on the orbital (in class A and class AIl)
and spin (only in class AIl) degrees of freedom, maximally an-
ticommute with the matrices appearing in the definition of the
pairing order parameter. Even though, depending on the pa-
rameter values Dirac insulators can be topological or normal
and when doped they can support annular or simply connected
Fermi surface (see Fig. 2), the nature of the superconducting
ground state is insensitive to these details as the governing
selection rules solely depend on the internal symmetry-based
relations [summarized in terms of (anti)commutation rela-
tions] among the symmetry class of the system (determining
the exact form of the free fermion Hamiltonian), interaction
channels, and the paired states. These rules are also operative
for the particle-hole or excitonic orders.

Furthermore, to anchor our findings to a concrete micro-
scopic model we construct the phase diagram of repulsive
Hubbard models in doped Dirac insulators. In brief, we
find that the on-site repulsion operative among the fermions
with opposite-parity eigenvalues can be conducive to the nu-
cleation of odd-parity topological p-wave pairings in these
systems. More specifically, in a class A (class AIl) doped
Dirac insulator, the on-site orbital or parity Hubbard repul-
sion favors the condensation of a topological p + ip (p £ ip)
pairing that belongs to class D (class DIII) as shown in
Fig. 5 (Fig. 9). In turn, such one-to-one correspondences
between the symmetry class of the parent or normal state
and low-temperature superconducting ground state allows
us to draw a comparison with the phenomenological phase
diagram in doped magnetic materials, manifesting a con-
fluence of magnetic and pairing orders, which we stage in
Fig. 1. Emergent topological superconductors, resulting from
intra-unit-cell momentum-independent local pairings, are en-
ergetically superior over extended or momentum-dependent
paired states.

C. Organization

The rest of the paper is organized as follows. In the next
section (Sec. II), we discuss the emergent superconductivity
in a doped class A Dirac insulator that in the topological
parameter regime fosters a quantum anomalous Hall insu-
lator. Section III is devoted to a similar discussion, but for
a doped class All Dirac insulator, which on the other hand
yields a quantum spin Hall insulator in the topological regime.
Emergent superconductivity within the framework of repul-
sive Hubbard models in these two systems is discussed in
Sec. IV. Our results are summarized in Sec. V, where we
also present discussion on possible material platforms where
our theoretical predictions can be experimentally tested. The
Fierz reductions of linearly independent four-fermion terms
are shown in Appendix A. Emergent topology resulting from
the local superconducting orders in the vicinity of the Fermi
surface is shown in Appendix B. The contributions from all

©=0 X0 _XO.
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FIG. 2. Topology of the Fermi surface for various chemical dop-
ing, denoted by the dashed colored lines, in a two-dimensional Dirac
insulator in the topological (m < 0) and trivial (m > 0) regimes
with b > 0. A quantum phase transition between them takes place
at m = 0, around which the Fermi surface is always simply con-
nected, shown by the red circles. For small doping, the Fermi
surface becomes annular deep inside the topological regime when
m < —1/(2b), shown by the concentric blue circles. Even in this
parameter regime, the Fermi surface becomes simply connected for
large doping (also shown by a red circle). For 2mb > —1 the Fermi
surface is always simply connected. Black curves show the energy
eigenvalues in the vertical direction along a specific momentum that
runs along the horizontal direction.

the one-loop Feynman diagrams are schematically displayed
in Appendix C.

II. DOPED DIRAC INSULATOR: CLASS A

We begin the discussion by promoting the emergence of
superconductivity in a doped two-dimensional Dirac insulator
that breaks the time-reversal symmetry. The corresponding
Hamiltonian assumes the form shown in Eq. (1) with d =2
and I'y = 71, ', = 1, and I'; = 13 [36]. The set of Pauli ma-
trices {t,} with v = 0, 1, 2, 3 operates on the orbital or parity
indices and 7y is the two-dimensional identity matrix. The
two-component Dirac spinor is given by wkT = (¢4, c_)(k),
where c¢; (k) is the fermionic annihilation operator on an or-
bital with parity eigenvalue t = & and momentum k. This
system describes a collection of spinless or spin-polarized
fermions. Depending on the parameter values (m and b) the
Hamiltonian describes either a quantum anomalous Hall in-
sulator or a normal insulator and belongs to class A in the
ten-fold classification scheme.

This model preserves the parity (P) symmetry under
which Py P = 133, and the charge conjugation symmetry
(C) under which CyC = 71. For concreteness, we also
assume that the system possesses a fourfold rotational sym-
metry (Cy) about the z axis. Such a rotation is generated by
Rfr/Z = exp(it37 /4) under which (k,, k,) — (ky, —k;). These
symmetries, when imposed on the local four-fermion terms,
otherwise taking a generic form g (¥ 7,¥)(¥7,9), where
g,, 1s the corresponding coupling constant, v, o =0, 1,2, 3,
and a summation over repeated indices (v and p) is assumed,
severely restrict their form.

The interacting Lagrangian containing all the symmetry
allowed local four-fermion terms then takes the form

Ly =g,y +g. Y W5y’ +e,@ uy)?, ()

j=12

where 1 = . The subscripts in the coupling constants de-
note the projections of the orbital or pseudospin. Namely,
the subscript “0” indicates that the corresponding interaction
is operative among pseudospin unpolarized fermions, and
subscript “1” (“3”) indicates that the corresponding quar-
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FIG. 3. (a) The Feynman diagram representing the bare four-
fermion interaction (Y M1r)?, where M is a Hermitian matrix.
(b) Fermionic self-energy correction due to a four-fermions interac-
tion, which is finite only when the chemical potential () is finite, and
only renormalizes (. However, within the framework of a leading-
order renormalization group analysis, we ignore such corrections.
Corrections to the bare interaction vertex arise from the Feynman
diagrams (c)—(f). Here the solid lines represent fermions, the dashed
lines stem from the interaction vertex, and N is a Hermitian matrix
as well. The blue lines correspond to the fast modes, living within
the thin Wilsonian momentum shell Ae~¢ < |k| < A, where A is the
ultraviolet momentum cutoff and £ is the logarithm of the renor-
malization group scale. The black lines are the slow modes with
momentum |k| < Aet.

tic interaction takes place among fermions with pseudospin
aligned in the easy-plane (easy-axis) or the xy plane (z axis).
However, not all three quartic terms are linearly independent
due to the Fierz relations among them [37-41]. As shown in
Appendix A, only one quartic term is linearly independent,
which we choose to be the one proportional to g, without
any loss of generality. The remaining two quartic term can be
expressed in terms of ( "7y )%. Then the imaginary time (7)
Euclidean action can be decomposed as S = Sy + Sin, Where

So = / dr / dhx Yl [0, + ok = —iV) e

Sint = /dT/ddx go(l/f;xfowr,x)z, (3)

and \IJ;X and W, , are independent Grassmann variables. We
emphasize that any microscopic model of local interactions
can be captured only in terms of g, which we exemplify with
a Hubbard model in this system in Sec. IV.

The scale invariance of Sy implies the scaling dimension
of the fermionic fields is [¢] = [¥] = d/2, that of momen-
tum is [k] =1 and the fermionic Matsubara frequency is
[w,] = z = 1. The fermionic Matsubara frequency is given
by w, = 2n+ 1) T, where T denotes the temperature and
n € (—oo,00) is an integer, yielding [T] = z. The scaling
dimension of the uniform mass is [m] = z which is a relevant
parameter. The scaling dimension of the coefficient of the
momentum-dependent Wilson-Dirac mass [b] =z —2 = —1
in a Dirac system with z =1 and thus b is an irrelevant
parameter. The scaling dimension of the chemical potential
is [u] = z. Then the scaling dimension of the four-fermion
coupling constant g, is given by [g,] = z — d (set by the scale

TABLE I. Momentum-independent local excitonic (first three
rows) and superconducting (last row) orders in a class A system with
their conjugate fields (CFs) are shown in the first column, see Sec. II.
The corresponding fermion bilinears in the Nambu-doubled basis are
shown in the second column, where ¢ = Yn.m (for brevity). The
physical meaning of each fermion bilinear is mentioned in the third
column. Transformations of each fermion bilinear under the parity
(P), charge conjugation (C), and fourfold rotation about the z axis
(C}) are shown in the fourth, fifth, and sixth columns, respectively.
Here + (-) indicates even (odd) and O (1) corresponds to scalar (vec-
tor). For the pairing order o = 1, 2, reflecting the gauge redundancy
in defining its U(1) phase.

CF Bilinears Physical meaning P C C
Ay ¥imtey  Charge density + - 0
A, ¢'mTy Abelian current - _ 1
As  Yinemsy  Symmetric Dirac mass + 4+ 0
A, Y'n,my  Isotropic odd-parity paiing - + 0

invariance of Sj,), which is thus irrelevant in a Dirac system
with z = 1 in two dimensions (d = 2). Hence, any ordering
can only set in beyond a threshold strength of the four-fermion
interaction that can be shown from a controlled € expansion
about the lower-critical one spatial dimension, where they
becomes marginal [42], with e = d — 1 [43,44].

As we are interested in capturing the nature of the ordered
states, although mainly superconductivity, besides the RG
flow equation for g,, we also take into account the RG flow
equations for the source terms associated with various fermion
bilinears. The imaginary time action containing all the local or
momentum-independent excitonic (exc) or particle-hole and
pairing (pair) or particle-particle orders takes the form

Sowee = [ [ @' (ot is). @

In order to capture all the orders in the same framework,
we now introduce a Nambu-doubled spinor basis ¥y, =
(Yuw,.k 1YY", ;) with x denoting the complex conjugate. In
this basis ’

e = Ao(¥ T3¥) + AL Y (WT39) + As(W Tosp),

j=12

)
where ¥ = {nam (used for brevity) and the four-component
Hermitian matrix I',, = 1, ® 7,. The newly introduced set of
Pauli matrices {1, } operate on the Nambu or particle-hole in-
dex and ® denote the tensor product. This system permits only
one local pairing (the number of two-dimensional imaginary
Hermitian matrices due to the Pauli exclusion principle [45]),
leading to

e =Dy Y (W Tasth), )

a=1,2

where o = 1, 2 manifests the U(1) gauge redundancy in defin-
ing the pairing order parameter. Close to the Fermi surface this
local pairing assumes the form of a topological p + ip pairing
as shown in Appendix B. Transformations of all the fermion
bilinears under various symmetries of the noninteracting sys-
tem are summarized in Table I, where we also mention their
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physical nature. Due to the broken time-reversal symmetry
in the normal state, a class A system does not support any
p £ ip pairing and only fosters p + ip pairing. If we sacrifice
the fourfold rotational symmetry in the normal state, then the
resulting p + ip pairing also breaks such a symmetry, yielding
a nematic p + ip pairing without altering its topological prop-
erties as this paired state trasforms as a scalar under fourfold
rotations (see Table I).

In the announced Nambu-doubled basis the Dirac Hamil-

tonian takes the explicit form
ASam = w(Toiky + Cooky) + (m + bk*)To3 — uTs. )

Accordingly, the fermionic Green’s function in this basis is
given by

Gfer = G+ @ G—a (8)
= V%2 + (m + bk?)?,

Qi1 + v(Tiky + Tk )+ (m + bk2)‘L'3
QZ

where with Q1 = iw, £ © and E;

Gy =

€))

Finally note that in the Nambu basis, the matrix operator
appearing in the four-fermion term 7y — I'3.

The Feynman diagrams responsible for the leading-order
renormalization of the quartic term g, are shown in Fig. 3.
The resulting RG flow equation in terms of the dimensionless
coupling constant defined as 2w g, A¢/v — g, reads as (see
Appendix C for details)

dg,
de

—2(fk — fi + fo + fo— fu + fu)g
(10)
obtained after performing the summation over the fermionic
Matsubara frequencies and integrating out a thin Wilso-
nian momentum shell with Ae~¢ < |k| < A and subsequently
recasting Si; in its original form but in terms of a scale-
dependent coupling constant g, (¢) [46—48]. Here A ~ 1/a is
the ultraviolet momentum cutoff up to which the energy dis-
persion scales linearly with momentum, a bears the dimension
of the lattice constant, and ¢ is the logarithm of the RG scale.
Besides the flow of g, we also need to consider the RG
flows of the following dimensionless parameters, defined as
T/(Av) — t, u/(Av) - u, m/(Av) — m, and bA/v — b.
They are given by

dt du dm

— =z, — =7, —
at - ae T

= —€g,

:BgU =

db 5
=zm, and T (z —2)b,
)
respectively, with z =1 in a Dirac system [49,50]. Notice
that the last set of flow equations follows from the scaling
dimension of the corresponding quantity at the bare level.
Feynman diagrams yielding the leading-order RG flow
equations for the source terms are shown in Fig. 4 and they
are given by (see Appendix C for details)

_ dIn Ao

N TR =2Qfx + fo + fu)&,-
AL = o7 = 0 w)8o»

- dlnA3

Ay = dg —7= —2(2fk - fO - fw)g[)’

FIG. 4. (a) Feynman diagram representing the bare vertex associ-
ated with the source term v "M 1. The leading order renormalization
of such vertices arises from the Feynman diagrams in (b) and (c).
Here wavy lines stand for the source field, solid lines for fermions,
and the dashed lines stem from the interaction vertex. The blue
(black) solid lines represent fast (slow) modes. Here M and N are
Hermitian matrices.

—z2= 22+ fo+ f)e. (12

Various functions appearing in the RG flow equations are
explicitly given by

5 LA_“’ tanh (E””‘) B sechz(EAz#)
2m vA —~ 8E3 16E31 ’

PR A? tanh (E2254)(Ep + i)
k= ~——— T )
2 vA ~ B8EA(EZ — n?)

d
fo= 5o+ Y

2w v
tanh EA*”‘) sechz(E—Aztr”)
x Z [ 8E1  16E3t |
s tanh (E22T4)(Ep + Ti)
Jo= ——( + b)? Z JE ;

SEAM (ER — 1)

= 1 A_d SechZ(EAz#) N tanh (EAJ“”‘)
YT g VA 16t 8E '
. 1 A¢
and fw = ZJ

tanh (EA ”‘)(E2 —TEAp — 2u?)
8u(EX — 1?)

X Z T
where Ex = [1 + (m + b)?]'/%.

At this stage a comment is due. Although, we consider
the RG flow of the conjugate field A that couples with the
fermion density, the corresponding fermion bilinear does not
break any microscopic symmetry, besides the charge conjuga-
tion. The renormalized value of A should then be included in
the RG flow of the chemical potential (u), shown in Eq. (11).
However, u enters the RG flow equation of the coupling
constant(s) through the functions defined in Eq. (13), each of
which corresponds to the coefficient of a quadratic function of
the coupling constant(s). Hence, to maintain the order of the
perturbative expansion of S, we neglect the RG corrections
of A resulting from the Feynman diagrams in Fig. 4 or equiv-
alently any perturbative correction to u, stemming from the
Feynman diagram in Fig. 3(b), when the RG flow equation(s)
of the coupling constant(s) is (are) computed to the quadratic
or one-loop order; see Eq. (10). We follow this strategy in
Sec. III. Next we numerically solve the coupled sets of RG

. (13)
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FIG. 5. Cuts of the global phase diagram for repulsive density-density interactions (g,) in a time-reversal symmetry breaking doped planar
Dirac insulator from class A for (a) m = —0.9, b = 1.0, and © = 0.86, (b) m = —0.9, b = 1.0, and u = 0.91, and (c) m = 0.05, b = 0.05, and
1 = 0.86. The horizontal (vertical) axis corresponds to dimensionless coupling constant (temperature). The white (shaded) regions correspond
to disordered Fermi liquid (ordered state). The nature of the ordered state is color coded along the phase boundary between the ordered and
disordered phases, which also yields the dimensionless transition temperature (z.). In this case the ordered phase always represents the only local
paired state allowed in this system (A ), which around the Fermi surface assumes the form of a topological p + ip pairing (see Appendix B).
The abbreviation DTI (DNI) stands for doped topological (normal) insulator, indicating the nature of the normal state in the absence of any
doping (u = 0), while AFS (SCFS) stands for annular (simply connected) Fermi surface when w is finite. See Sec. II for details. The phase
diagrams with repulsive on-site orbital Hubbard repulsion (U)) are identical in which the interaction axis is Uy /4, see Sec. IV. Dimensionless
coupling constants (g, and Up) are measured in units of €, where e =d — 1.

flow equations to underpin the ordered states and construct
various cuts of the global phase diagram of interacting doped
class A Dirac insulator.

A. Ordered states and phase diagrams

For any bare value of g, at the scale of the ultraviolet cutoff
A or £ =0, denoted by g,(0), the RG flow of g, has to be
stopped at an infrared scale £, = — In(x(0))/z in the presence
of an underlying Fermi surface, where ;(0) < 1 is the bare
value of the dimensionless chemical potential p [27,51-55].
Notice that the RG scale £ is set by the underlying Fermi
surface and all the states below it are completely filled, among
which no inelastic scattering (due to four-fermion interac-
tions) can take place. Thus all the RG flows must be stopped
at this scale. In the disordered phase (without any symmetry
breaking) g,(¢) decreases under coarse graining (with increas-
ing £) and it does not diverge. The onset of an ordered phase
is characterized by the divergence of g,(¢) at an RG scale
Loy = E;. On the other hand, within the ordered phase this
coupling constant diverges at an RG scale £qiy < £},. The exact
nature of the leading instability or the pattern of symmetry
breaking is then unambiguously identified by the renormal-
ized susceptibility Ag(£) that receives the largest positive
correction (anomalous dimension) when g, (£) diverges at the
RG scale ¢4y, where 8 = 0, L, 3, p. Throughout, we set the
bare temperature #(0) = 5 x 107° to identify the dominant
instability in a doped time-reversal symmetry breaking Dirac
insulator close to the zero temperature for repulsive interac-
tions in various channel.

We find that only density-density repulsive interaction with
8,(0) > 0 yields superconductivity, irrespective of the ge-
ometry of the underlying Fermi surface (annular or simply
connected). So we solely focus on this interaction channel for
the rest of this section. The superconducting ground state in
this case is unique, denoted by A,. The associated reduced
BCS Hamiltonian obtained by projecting this paired state on
the conduction or valence band fostering the Fermi surface
assumes the form of a time-reversal symmetry breaking topo-

logical p + ip pairing, as shown in Appendix B. Thus, close to
zero temperature the repulsive density-density interaction in
this system accommodates a topological superconductor. The
remaining two interactions, namely g and g, [see Eq. (2)]
when repulsive, do not yield any superconductivity in the
system at any temperature and only support excitonic or
particle-hole orders. For this reason, we do not show the phase
diagrams in the (g, ,¢) or (g,, t) plane.

Even though we set the bare dimensionless temperature
#(0)=35x%107° to identify the dominant instability of a
Fermi liquid state, obtained by doping a time-reversal sym-
metry breaking planar Dirac insulator, sufficiently close to
the zero temperature, the notion of £y, provides a semiquan-
titative estimation of the transition temperature (#.) in the
following way. The solution of the RG flow equation for
dimensionless temperature from Eq. (11) reads as f(£) =
t(0)exp(z€). In an interacting doped Dirac insulator, there
are two infrared RG scales ZL and {43y, respectively at which
the renormalized chemical potential and the coupling constant
g, becomes of the order of unity. Associated with these two
RG scales, we define two bare temperatures ¢#(0) =1, and
14, respectively, such that t(ﬁz) =t(lgv) = 1, yielding 7, =
exp[—zﬁl*t] and t, = exp[—z£j;,]. Up to an overall numeri-
cal prefactor the transition temperature in the ordered phase
is then defined as t. =1, — ¢, [27]. Consequently, 7. =0
at the phase boundary between the disordered and ordered
(superconducting) phases at zero temperature. As £g, de-
creases monotonically with increasing g,, accordingly f. also
increases. Following this prescription, we construct the phase
diagram in the (g,,t) plane, where the phase boundary
between the disordered (Fermi liquid) and ordered phase (su-
perconductor) marks 7. as a function of the bare strength of
&,» as shown in Fig. 5. It should, however, be noted that our
RG flow equations are operative at any arbitrary temperature
and in principle one can arrive at a better estimation of the
finite-temperature phase boundaries between the disordered
Fermi liquid and spontaneously ordered phases by directly
computing the corresponding critical interaction strength g,
for any desired transition temperature 7. [53-55]. Such a cal-
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culation only quantitatively changes the outcomes in the phase
diagrams shown in this work.

Notice that the nucleation of the superconducting state
from a repulsive density-density interaction in this system
follows a selection rule, which we mention here briefly and
discuss in details in the next section where the interacting the-
ory is described by multiple local quartic terms and the system
fosters a plethora of ordered states including the pairing ones.
In the announced Nambu-doubled basis, the matrix appearing
with the local four-fermion interaction I'5y and two matrices
describing the paired state I'j3 and I'p3 constitute a O(3)
vector composed of three mutually anticommuting matrices.
Therefore, repulsive density-density interaction provides the
strongest boost in this pairing channel, by endowing it with the
largest positive anomalous dimension, which can be verified
explicitly from the Feynman diagrams shown in Fig. 4. The
stage is now set to discuss the role of repulsive electronic
interactions in a doped two-dimensional Dirac insulator, be-
longing to class AII (preserving the time-reversal symmetry)
in the ten-fold classification scheme.

III. DOPED DIRAC INSULATOR: CLASS AIl

The Dirac Hamiltonian describing a two-dimensional
class AIl insulator can be constructed from Eq. (1) with

J

N=0o3®&Tt, I'h=03® 1, and I's = 03 ® 13. The set of
Pauli matrices {o,} operates on the spin indices [8]. The
four-component Dirac spinor in this case reads as w,z— =
(c4psC—p,Cqy,c— )(k), where c; (k) is the fermionic
annihilation operator with parity eigenvalue T = =+, spin pro-
jection o =1, | in the z direction, and momentum k.

This model preserves the time-reversal symmetry (7) un-
der which Tv;T = T2, the parity (P) under which
Pyw’P =T's3¢_k, and the charge conjugation symmetry
(C) under which Cy;C =Ty, where ')y =0, Q).
In addition, the Hamiltonian is invariant under the four-
fold rotation about the z direction (Cj), generated by
Rfr/z = exp[—il'p3m /4] under which (k,,k,) — (k,, —k,).
The Hamiltonian is also invariant under a fourfold rota-
tion of the spin quantization axis about the z direction
(83), generated by explim['30/4]. We impose these sym-
metries on four-fermion interaction terms taking a generic
form gﬂkkﬂ(wfrpkw)(wfrkﬁw), where a summation over re-
peated indices (p, A, x, and B) is assumed and p, A, K,
B=0,1,2,3.

Once all the above-mentioned symmetries are accounted
for, the interacting Lagrangian (Li, ) containing all symmetry
allowed local four-fermion terms is described by nine cou-
pling constants and is given by

LA =W Top)* + ¢ > (W To) + & W Toay) + & W Tap) + & Y (W T39)* + & W Txy)’

j=12

j=12

+8 Y WTovY +er Y W TayY + g Y (W Tiy) + @ Tyl (14)

Jj=12 j=12

j=1.2

where Y = i (for brevity). The subscript in the coupling constants bear the same physical meaning as in Eq. (2). By contrast,

the superscripts therein indicate whether the interaction is in the spin-singlet channel (for “s
) or among fermions with spin confined in the easy-plane or xy plane (for “_L”). However, only

73]

easy-axis or z direction (for “z

[TP%1]

) or with the spin projection in the

four quartic terms are linearly independent due to the Fierz relations among nine four-fermions terms, as shown in Appendix A
[37—41]. Without any loss of generality, we choose four linearly independent quartic terms to be the ones accompanying the
coupling constants g/, ¢, &, and g. The imaginary time action for this system containing the free-fermion part (Sp) and the
interacting part (Sm[) assumes the form shown in Eq. (3). Now the Dirac Hamiltonian entering Sy is expressed in terms of
four-dimensional Hermitian I" matrices, mentioned above, and Sj, is expressed in terms of the chosen four quartic terms.

In order to capture all possible particle-hole and particle-particle orders within a unified framework, we next introduced the
following Nambu-doubled spinor basis Ilfgam = (Y, k> 21 ‘/’:wn,f «)- In this basis, the massive Dirac Hamiltonian takes the form

flgﬁ%n = v(T331k, + Dazaky) + (m 4 bk*)333 — uls00, (15)

where the eight-dimensional Hermitian I" matrices are defined as I'y,, = 1, ® 0, ® 7,. Accordingly, the fermionic Green’s
function takes the form shown in Eq. (8), with

Q1o = v(T31k, + Fszk ) +(m+ bkz)F33

Gy = T

(16)

In this Nambu-doubled basis the matrices appearing with four chosen quartic interaction terms transform according to I'gg —
N300 In g It = 301 and gy — T3 in gé I'os = ooz in gY and I'33 — I'333 in g&. The imaginary time action containing
all the local (momentum-independent) source terms takes the form shown in Eq. (4), w1th

R = AW Tao0y) + AL Y (U Tagpr) + AS(¥ Toos¥) + AFW Toso¥) + AT Y (¥ Tozjih) + AJ(¥ Tazsyh)

j=1,2 j=1,2

+AG D W o9 + A7 Y (W Tapy) + AT Y (W Tojy) + (¥ Topy)] (17)

j=12 j=1.2 j=12

245153-7



MURSHED, DAS, AND ROY PHYSICAL REVIEW B 111, 245153 (2025)

TABLE II. Momentum-independent local superconducting (first four rows) and excitonic (last nine rows) orders with their conjugate fields
(CFs) in a class All system are shown in the first column, see Sec. III. The corresponding matrix operators associated with the fermion bilinears
wljlam 10,.Tvp¥Nam in the Nambu-doubled basis are shown in the second column. The physical meaning of each order is displayed in the third
column. Here, j = 1, 2 indicate that the pseudospin degrees of freedom is projected onto the easy-plane and a = 1, 2 mark that the spin degrees
of freedom is confined within the easy-plane. Transformations of all the fermion bilinears under the discrete time-reversal (7), parity (P), and
charge conjugation (C) symmetries are shown in the fourth, fifth, and sixth columns, respectively. In the seventh and eight columns we display
the transformations of all the fermion bilinears under the fourfold rotation about the z axis (C;) and the fourfold rotation of the spin quantization
axis about the z direction (Sy), respectively. Here + (-) indicates even (odd) and 0 (1) corresponds to scalar (vector). The easy-plane (easy-axis)
corresponds to the xy plane (z axis). Notice that the easy-plane (easy-axis) characterization of a fermion bilinear manifests the spin orientation
therein in the xy plane (z direction).

CF Matrix Physical meaning T P C G S3
AY (m1.m2) Too s-wave pairing (+, ) + + 0 0
Ay (1, m2) To; Nematic odd-parity pairing (+,—) - + 1 0
A5 (m1.m) 'z s-wave pairing (gap ~m) (+,—) 4 + 0 0
A} (1, m2) Ta3 Isotropic odd-parity pairing +, —) - + 0 1
Ay 300 Fermionic density + + _ 0 0
A n3l0; Spin current + _ _ 1 0
Aj nolo3 Staggered orbital density — + 0 0
Ag 1m0T30 Easy-axis spin density - + _ 0 0
AT nol's; Abelian Current _ _ _ 1 0
AS Ml Symmetric Dirac mass + + + 0 0
Ay no(T10, Ta) Easy-plane spin density - _ (=, +) 0 1
At no(T1j, Ta)) Easy-plane spin current — + (= +) 1 1
AF (T3, Ta3) Easy-plane staggered orbital density + - +, —) 0 1
and

hﬁilr = Z Af(WTFaOOW) + A} Z (VfTFanlﬁ) + Aé’(lﬂl"(ﬁyp) + A} Z (1//Tf‘aj3w) i (18)

a=1,2 j=1.2 j=1,2

where ¥ = Y¥nam, and o taking values 1 and 2, reflects the U(1) gauge redundancy in defining the superconducting phase.
Transformations of all the fermion bilinears under various symmetries of the noninteracting system are summarized in Table II,
where we also mention their physical meaning or nature.

In Appendix B, we show that close to the Fermi surface, A7 and A} paired states assume the form of a spin-singlet s-wave
superconductor with the amplitude of the gap ~m (Dirac mass) in the latter one. Thus, A% pairing yields a gapless Fermi surface
of neutral Majorana fermions in doped Dirac semimetal with m = 0 as found at the quantum critical point separating two
topologically distinct insulators (see Fig. 2). Close to the Fermi surface, the fully gapped A} paired state represents a rotational
symmetry breaking class C nematic superconductor, with the effective reduced BCS Hamiltonian taking the form of two identical
copies of the time-reversal symmetry breaking p + ip pairing. Finally, we note that the A} paired state represents an isotropic and
time-reversal symmetric fully gapped p =+ ip superconductor around the Fermi surface, a prototypical representative of class DIII
superconductors. It should be noted that the degeneracy of the p &£ ip pairing resulting from a single local pairing is protected
by the time-reversal symmetry in the normal state of a class All system. If we sacrifice the fourfold rotational symmetry in
the normal state that gets inherited by the paired state as well, which then represents a nematic p &+ ip pairing with identical
topological properties as the isotropic one as this paired state transform as a scalar under fourfold rotations (see Table II).

The coarse graining procedure to arrive at the RG flow equations for the quartic interaction and source terms has already been
discussed in details in the previous section. So, here we only quote the results. The RG flow equations for four chosen quartic
interaction terms in terms of dimensionless coupling constants defined as 25 gf] A€ /v — gf) V2 gi A€ /v — gi , 27 g§ A€ /v — g;,
and 27w g5 A€ /v — g, obtained after computing the Feynman diagrams shown in Fig. 3, are explicitly given by (see Appendix C
for details)

CZ‘: = —€g + (=8fi —4fo — 2fu — wa)(gf))z + Bfi + 8/ + 80 + 81w g + (—4fo +4fo + 4w —4fw)(gj)2
+ 8fi — 4o+ 41)EE + (—8fi — 870 & + Qfu — 2Fu)(&) + Bfi +8fo +4fo + 41 &
+ 8fi + 8508 & + (=4fu +4f0)8E + Qfu — 2F)(E)’.

O e T 220G 8o+ 4o+ 8 — 48+ B+ 8+ 80— 84)()]

+ (—4fi — 47088 + (—4fo +4fu)g & + (<2fi +2f0(&) + Gfi +4fg &
+ 8y +4fo — 8fu — 4fu)E & + 4y — 4f08E + (—2fi +2f0(€)’
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FIG. 6. Cuts of the global phase diagram for repulsive interactions [(a)—(c)] g [(d)-()] g, and [(g)-(1)] g, in the spin-singlet channels
(denoted by the superscript s) in a time-reversal symmetric doped planar Dirac insulator from class All [see Eq. (14)]. The parameter values
(m, b, n) are equal to (a) (—0.7, 3.2, 0.6), (b) (—0.5, 3.2,0.6), (c) (0.2, 3.2, 0.5), (d) (—0.7, 3.2, 0.6), (e) (—0.5, 3.2, 0.6), (f) (0.2, 3.8, 0.3),
(g) (—0.9,1.0,0.86), (h) (—0.9,1.0,0.91), and (i) (0.05, 0.05, 0.86). The horizontal (vertical) axis corresponds to dimensionless coupling
constant (temperature). The white (shaded) regions correspond to disordered Fermi liquid (ordered state). The nature of the ordered state is color
and style (solid or dashed) coded along the phase boundaries between the ordered and disordered phases, which also yield the dimensionless
transition temperature (z.). The abbreviations are identical to those in Fig. 5. For the physical meaning of each ordered state and its symmetry
transformations see Table II. Dimensionless coupling constants (g;, &' , and g}) are measured in units of €, where € = d — 1.

dg,
de

= —eg + @fi —4f)(8)" + (=8fi + 8fi + 8o — 8/)gg + (16fi — 16fi — 4fo + 4fo + 4fu +45)(s)’
+ (8 —4fo + 81w —4f)8 + Bfi — 8k + 8o — 8fu)g & + (12 — 4fi — 4o — 4£)(2’)’
+ Bfi — 8fi + 8fw + 8fu)g’ & + (=8fi + 8fo +4fo +4fu)g g + (4f —4fk)(g_§)2,
aml%%==—@§+@ﬁ—4ﬁ+2ﬁ+2ﬁﬂgf+(wﬁ+8h—8ﬁMkj+UWf—wﬁ+®ﬁﬂ@f
+ 8 +8fc — 4fo — 470)g 8 + (16 +8fo +8f0)g & + @fi — 4fi + 2o +20)(g)’
+ (=8 +4fy +8fu —4F)E & + (16fi — 8fo + 8fu)8 & + (=8fi +4fo + 47,8

+(12fi — 4 — 2o + 2o — 4fu)(8)". (19)

Various functions appearing in the above equations have already been defined in Eq. (13). The RG flow equations for various

dimensionless parameters, namely ¢, i, m, and b, are given in Eq. (11).
On the other hand, the leading-order RG flow equations of all the source terms in the particle-hole or excitonic channels
resulting from the Feynman diagrams shown in Fig. 4 in terms of the dimensionless coupling constants defined above are
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FIG. 7. Cuts of the global phase diagram for repulsive interactions [(a)—(c)] g, [(d)-(£)] g, and [(g)—(1)] g, among fermions with
spin projection along the easy-axis or the z direction (denoted by the superscript z) in a time-reversal symmetric doped planar class AIl
Dirac insulator [see Eq. (14)]. The parameter values (m, b, u) are equal to (a) (—0.7, 3.5, 0.55), (b) (—0.4, 3.5, 0.45), (c) (0.1, 1.0, 0.25),
(d) (—0.7,3.5,0.6), (e) (—0.5,3.5,0.6), (f) (0.2, 3.5, 0.5), (g) (—0.7,3.2,0.6), (h) (—0.5,3.2,0.6), and (i) (0.2, 3.2, 0.5). The rest of the
details are the same as in Figs. 5 and 6. For the physical meaning of each ordered state and its symmetry transformations see Table II.
Dimensionless coupling constants (g7, &¢ , and g;) are measured in units of € = d — 1.

explicitly given by (see Appendix C for details)

_ dIn A}

Bay = i

_ dIn A

Bas = a0

- dlIn A}

Bas = a0

_ dInAj

Ba; = T,

- dlIn A

Bay = T, L

_ dIn Aj

Ba; = T,

_ dIn Ag

IBA(J; = e

_ dln A+

,BAi = e -

_ dln At
and BpL = 2’6 3
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FIG. 8. Cuts of the global phase diagram for repulsive interactions [(a)—(c)] gOL, [(d)—(D)] gi, and [(g)-(1)] g3L among fermions with
spin projection confined within the easy or xy plane (denoted by the superscript L) in a time-reversal symmetric doped planar class All
Dirac insulator [see Eq. (14)]. The parameter values (m, b, ;) are equal to (a) (—0.7,3.5,0.6), (b) (—0.5,3.5,0.6), (c) (0.2, 3.5, 0.5),
(d) (—-0.7,2.7,0.66), (e) (—0.5,2.6,0.6), (f) (0.2, 1.0, 0.6), (g) (—0.9, 1.0, 0.86), (h) (—0.9,1.0,0.91), and (i) (0.2, 1.0, 0.6). The rest of
the details are the same as in Figs. 5 and 6. For the physical meaning of each ordered state and its symmetry transformations see Table II.
Dimensionless coupling constants (gOL, gi, and g}i) are measured in units of e = d — 1.

Finally, the RG flow equations for the source terms in the particle-particle or superconducting channels are given by

_ dln A? ~ - - ~ ~ - ~ - - - ~ -
AP = ;1{ L= (4fc +2fo — 2fu)g + Bfc +4f0 — 470)8 — G + 20 — 2f0)E + G4fi +2fo — 2/).
_ dln A} ~ < ~ - . -
Bar = - —2fo +2fw)g, — 2fo +2fw)g, + 2fo + 2fu)8;,
_ dln A? - - ~ ~ ~ ~ - - ~ ~ ~ ~
Bar = ;'16 2= —(4fi — 2f0+270)8 + Bfc — 4o +410)E + Gfi — 2fo +2fu)g — @i — 2f0 + 2/0)8"
_ dIn A} ~ N . - - < N . . . . .
and fpp = —— = @fi —2fo - 2fu)g, — Bfc —4fo —4fu)g, — (4fi —2fo — 2fu)g, — (4fk — 2fo — 2fw)g;- (2D

(

The construction of various cuts of the global phase diagram quartic couplings diverge at £ = £, and the phase corresponds
of an interacting doped Dirac insulator belonging to class AIl to a Fermi liquid without any ordering. Nevertheless, beyond
can be obtained by slightly generalizing the prescription from a critical strength of the interaction at least one of the cou-
the previous section. To this end, we numerically solve the pling constants diverges at this scale, indicating the onset
coupled RG flow equations from Egs. (19)—(21) simultane- of an ordered state. The nature of the ordered state is then
ously. determined from the RG flow of the source terms. Namely,

For any initial condition of the coupling constants we at the RG scale of ¢ = ¢}, whichever source term receives
simultaneous run the RG flow equations for all the quartic the largest positive contribution the corresponding fermion
terms and the source terms, which we stop at an RG scale bilinear acquires a finite vacuum expectation value, yielding
3. For weak enough strength of any interaction none of the a spontaneous symmetry brekaing. Primarily, we follow this
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approach to construct the phase diagram for each individual
quartic interaction appearing in L, while setting all the re-
maining couplings to zero at the bare level. Although, we
perform the whole analysis at sufficiently low bare temper-
ature 1(0) = 5 x 1079, following the prescription from the
previous section, we construct various cuts of the phase di-
agram in the plane of interaction strength and temperature.
The results are shown in Figs. 6-8. Due to the presence of
an underlying Fermi surface at low temperature and weak
repulsive interactions (still stronger than the critical ones), the
system typically fosters various superconducting orders, while
for some interaction channels we find the appearance of an
excitonic state at higher temperature and stronger repulsive
coupling. These observation can be supported from a set of
selection rules (SRs) and an organizing principle [53-55],
which we discuss next.

A. Selection rules and organizing principle

For the sake of simplicity, here we consider a single
quartic term g, Zi(lﬂ&ainlﬁNam)z and a fermion bilinear

AR Zi wgamRinam, both expressed in the Nambu-doubled
basis. Respectively, they are chosen from the sets of all the
symmetry-allowed four-fermion interaction terms [Eq. (14)]
and the order parameter or the source fields [Eqgs. (17) and
(18)]. Here Q; and R; are Hermitian matrices. For concrete-
ness, all the interactions are considered to be repulsive (g, >
0). We denote the number of anticommuting matrix pairs
between the four-fermion interaction (Q) and order parameter
(R) terms as Ay,. Then from the set of all available ordered
phases, the repulsive four-fermion interaction g, maximally
boosts the nucleation of the ones for which @ = R (SR1) or
Ay is maximal (SR2). As shown in Table III, all the emer-
gent superconducting states at low temperature resulting from
repulsive electronic interactions follow SR2.

It is also conceivable for a given repulsive interac-
tion to support excitonic and superconducting states, de-
scribed by the fermion bilinears Zlel Wl RECW . and

Nam™ i

S Wi R Wy, respectively. These two orders respec-
tively transform as vectors under O(K) and O(L) rotations,
constituted by K and L number of mutually anticommuting
matrices. Then the pairing and excitonic states are real-
ized at low and high temperatures, respectively, for the
same repulsive four-fermion interaction if the correspond-
ing vector order parameters (R®° and RP*") form composite
vectors under the O(N) rotations, where K, L <N < K+ L
(SR3). For all the interaction channels that support both
excitonic and pairing states, SR3 remains operative therein.
See Table III.

We also notice that when SR3 is operative, the pairing
state emerges at low temperatures, while the excitonic order
appears in the phase diagram at a higher temperature. Other-
wise, these two orders are respectively realized for weaker and
stronger repulsive interactions for the following reason. For
weak repulsive interactions, the existence of the Fermi surface
tames its natural tendency to favor excitonic order, rather
boosts the propensity toward the appropriate pairing order,
following SR2. Eventually for stronger repulsion, the propen-
sity toward the pairing order due to the Fermi surface becomes

TABLE III. Excitonic and pairing instabilities, indicated by their
respective conjugate fields (CFs), for individual repulsive interac-
tions with a single specific coupling constant (CC), with all other
CCs set to zero. We highlight the role of the selection rule (SR) for
each such order and the symmetry of the individual order param-
eter. The right most column indicates the enlarged symmetry (ES)
of the composite order parameter, constructed by combining those
for the excitonic and pairing orders, following SR3. Dashed lines
indicate the absence of any excitonic or pairing order for the corre-
sponding repulsive interaction and hence any ES of the composite
order parameter. Excitonic orders shown in bold font do not appear
in the corresponding phase diagram within the range of repulsive
interaction shown therein. They appear for even stronger repulsive
interactions, which is not shown explicitly in the corresponding
phase diagrams, displayed in Figs. 6-8. For the discussion on the
SRs see Sec. III A. An ordered state with Z, symmetry is described
by a single matrix operator.

Excitonic order Pairing order ES

CC CF Symmetry SR CF Symmetry SR (SR3)
— — — Af 02) SR2 —

A 0(2) SRI  Af 0(2) SR2  0#4)

Aj 7, SR1 A} 0(2) SR2  0OQ@3)

Af 0Q2) SR2 A’ 02) SR2  0(3)
AL 0(2) SRI — — - —
— — — A 0(2) SR2 -
AL 0(2) SR2 — — -
AS Z SR2 — — -
— — — A 0Q2) SR2  —

99,9 99.99,99, 9%, 9%, 9%, %,

insufficient, and the system then prefers the formation of an
excitonic order, following SR1 or SR2. Furthermore, a Fermi
surface is maximally gapped by superconductors, yielding op-
timal gain of the condensation energy. As at low temperature
the condensation energy gain dominates over the entropy in
the free energy, the nucleation of a superconducting ground
state is then favored. On the other hand, an excitonic or-
der in the presence of an underlying Fermi surface supports
gapless fermionic excitations yielding a larger entropy. Con-
sequently, excitonic or particle-hole orders appear at higher
temperature. These outcomes follow the general (qualitative)
arguments of the organizing principle. It should, however,
be noted that repulsive electron-electron interactions in some
specific channels do not support any paired state and only
favors particle-hole orders, which still follow SR1 or SR2, see
Table III.

We exemplify these SRs and the organizing principle with
repulsive interaction in a specific channel g} with g8 > 0. As
a reference consult the second row of Table III. For such a
choice of the interaction channel Q = (I'301, ['302), and the su-
perconducting order realized at low temperature is the s-wave
pairing (A })) with R = (T"100, 200). In this case, SR2 becomes
operative with Ay, = 2 for each entry of R. The excitonic or-
der realized at higher temperature is the spin current (A" ) with
R = (T'301, I'302) following SR1 (R = Q). In this case, K = 2
and L = 2, and the composite order transforms as a vector un-
der O(N) rotation with N = 4, thus following SR3 as K, L <
N = K + L in this case. Explicitly, the composite O(4) vector
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order parameter is given by (I'3o1, 302, ['100, ['200). In the
(g}, 1) plane, while the superconducting order nucleates at
lower temperature and weaker coupling, the excitonic state
sets in at a higher temperature and stronger coupling, as shown
in Figs. 6(d)—(f), following the organizing principle. Readers
are encouraged to check that these set of rules remain opera-
tive for repulsive interactions in any channel.

IV. HUBBARD MODEL

We now substantiate the emergent superconductivity in
class A and class All interacting doped Dirac insulators within
the framework of appropriate repulsive Hubbard models. The
parity or orbital degrees of freedom allows us to consider
on-site repulsion of strength Uy(> 0) among spinless or spin-
polarized fermions with opposite-parity eigenvalues in a class
A system. The corresponding Hamiltonian reads

or Uo
iy = = D i nis (22)

where n ; is the fermionic density at site { with parity T = =+.
In the spinor basis from Sec. II, the above Hamiltonian can be
written as

Hi = 0@ ) - 0w = 2 )
(23)

While arriving at the final expression we made use of the Fierz
relation. Hence, the phase diagrams of the orbital Hubbard
model in doped class A Dirac insulator are obtained with
the initial condition g,(0) = Up/4 and are thus identical to
the ones displayed in Fig. 5, once we identify the horizontal
axis as Up/4. Therefore, on-site Hubbard repulsion among
spinless or spin polarized fermions supports the topological
pairing (A,) (see Appendix B) in a two-dimensional doped
Dirac insulator of class A irrespective of the Fermi surface
geometry.

The orbital Hubbard Hamiltonian in class AIl systems
containing both orbital and spin degrees of freedom takes the
following form

Uy
Higo' = 572 D Mo o (24)
i o=m

where n; ,; is the fermionic density at site i with spin projec-
tion o, and with parity t. In the announced spinor basis from
Sec 111, we find

U
Himin = 210 Ty Y = Tyl (25)

Hence, the phase diagram of the orbital Hubbard model in
this system can be obtained with the initial conditions g/ (0) =
Uyp/4 and g§(0) = —Up/4. Notice that the repulsive (attrac-
tive) interaction in the g (g}) favors the nucleation of even-
(0odd-) parity A} (Af) pairing. Since the strengths of these
two interaction channels have equal magnitude in H;’IL[L’?H,
the orbital Hubbard repulsion (U, > 0) fosters a degener-
ate condensation of these two paired states irrespective of
the geometry of the underlying Fermi surface, as shown in
Figs. 9(a)-9(c).

Finally, we turn our focus on the conventional Hubbard in-
teraction operative among fermions living on the same lattice
site but possessing opposite spin projections. The correspond-
ing Hamiltonian is given by

; U
S LAIL
Hippy o = EZ Z Nepi M |is (26)
i T=+,—

where U (> 0) denotes the strength of onsite Hubbard re-
pulsion. If we choose the spin quantization axis along the z
axis, then the above model in the spinor basis, introduced in
Sec. I11, reads as

o U
Himi ™ = 10 T’ =@ T @D

However, this representation does not manifest the SU(2)
spin-rotational symmetry, which can be recovered by using
Fierz relations involving only the spin indices [analogously
to Eq. (A4) after taking 7, — o, for « =0, 1, 2, 3 therein],
leading to

Hspin,AH _ U
Hubb - §

W Tooy) = Y W Tpp) | (28)

j=1,2,3

As class All does not possess the spin SU(2) symmetry, we
need to split the second term into the easy-axis (j = 3) and
easy-plane (j = 1,2) components. This splitting leaves us
with an ambiguity on how to distribute the density-density
interaction (¥ T'goyr)? between these two sectors, leading to
the following proposed ansatz for HiP™" in class AIl system

spin U
Hifi ' = 10 =)W Tooy Y — (¥ T09 Y]

U .
| @ Ty = 3" @ Tioy)’ | 29)

j=1.2

Here « is an arbitrary real parameter with 0 < « < 1, and for
Uy = U, = U we recover the SU(2) symmetric form of the
Hubbard model for any «, shown in Eq. (28). Notice that upon
splitting the SU(2) symmetric Hubbard model into the easy-
axis and easy-plane components we assign them two different
independent bare coupling constants U; and U,, respectively.
Even if we set U; (0) = U,(0), under the coarse graining these
two sectors acquire distinct coupling constant strengths. In
terms of four linearly independent coupling constants, see
Sec. 111, the above Hubbard model takes the form

i U .
HPRATL gl Q-a)W Toy) + > (' Tiy)

j=0,3
U,
+ 5 [(1 +a)(¥ Tooyr)?
+ ) @Toyy) - (Wrwf}. (30)
j=12

Therefore, the phase diagrams of easy-axis Hubbard model
can be obtained with the initial conditions

U U ) U
gf}(0)=(2—oz)§], g0) = gl, and g (0) = ?1 31)
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FIG. 9. The phase diagrams for [(a)—(c)] orbital Hubbard repulsion with strength Uy, [(d)—(f)] spin Hubbard repulsion with spin projection
along the z direction with strength U,, and [(g)—(i)] spin Hubbard repulsion with spin projection confined within the easy or xy plane with
strength U, in a time-reversal symmetric doped planar Dirac insulator from class All for « = 0.5. See Sec. IV for details. The parameter values
(m, b, ) are equal to (a) (—0.9, 1.0, 0.86), (b) (—0.9, 1.0, 0.91), (c) (0.05, 0.05, 0.86), (d) (—0.7, 3.8, 0.55), (e) (—0.4, 3.8, 0.45), (f) (0.1,
1.5, 0.25), (g) (—0.7, 3.8, 0.55), (h) (—0.4, 3.8, 0.45), and (i) (0.1, 1.5, 0.25). While orbital Hubbard repulsion causes a degenerate nucleation
of even-parity and odd-parity paired states, denoted by A} and Af, respectively, the spin Hubbard repulsions prefer the former paired state.
Around the Fermi surface A} (A?) pairing assumes the form of a topological p & ip (conventional s-wave) pairing. See Appendix B for
details. The rest of the details are same as in Figs. 5 and 6. Dimensionless coupling constants (U, U;, and U,) are measured in units of e,

where ¢ =d — 1.

Notice the repulsive interaction in the g and g channels favor
A! pairing, and repulsive g, interaction favors AL pairing.
With the above initial conditions the propensity toward the
nucleation of the A paired state is always stronger than that
in the A% channel. Consequently, repulsive easy-axis Hub-
bard interaction (U; > 0) is conducive to the condensation of
even-parity A} paired state for any o within the range 0 <
a < 1 irrespective of the Fermi surface topology, as shown in
Figs. 9(d)-9(f).

By contrast, the phase diagrams for the easy-plane Hub-
bard model is obtained with the initial conditions

% %
g, and gi(O)— —§
(32)
We note that repulsive interaction in the g/ and g} channels
favor Al pairing, while an attractive interaction in the g
channel supports Al pairing. With the above initial condition
and for any o within the range 0 < o < 1, the propensity
toward the nucleation of the A pairing dominates. Hence,
easy-plane repulsive Hubbard interaction (U, > 0) also favors

) U. )
g0 = +a>§2, g 0) =

the A paired state for any Fermi surface geometry, as shown
in Figs. 9(g)-9(1).

V. SUMMARY AND DISCUSSIONS

To summarize, we show that purely repulsive electron-
electron interactions in two-dimensional doped Dirac insula-
tors (topological or normal), belonging to class A and class
All, can favor condensation of Cooper pairs in various sym-
metry allowed superconducting channels which include the
topological ones as well. The nature of the paired state is
insensitive to the geometry of the underlying Fermi surface
(annular or simply connected) and is tied to the symmetry
of the dominant repulsive interaction following a certain set
of selection rules. Furthermore, we find that on-site Hub-
bard repulsion (Uy > 0) among fermions with opposite-parity
eigenvalues living on the same site of the lattice is conducive
to the formation of topological superconductors. Specifically,
in doped class A and class AlIl Dirac insulators they take the
form of p 4 ip and p % ip pairings, respectively, belonging to
the class D and class DIII. We arrive at these conclusions by
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(a) performing an unbiased RG analysis to the leading order
that is controlled by a small parameter €, measuring the dis-
tance from the lower critical one spatial dimension where the
four-fermion interactions become marginal with e =d — 1,
and (b) projecting all the symmetry allowed local paired states
onto the Fermi surface, realized within the conduction band,
for example.

Remarkably doped class AIl Dirac insulators also ac-
commodate topological pairing belonging to class C for a
repulsive interaction in a specific channel, namely g. Unfor-
tunately, we have not found the trace of such a paired state
within the framework of the repulsive Hubbard model. Nev-
ertheless, our formalism is sufficiently general to account for
any microscopic finite-range interactions that can be captured
by appropriate initial conditions for four linearly independent
local quartic terms. In the future it will be worth searching
for a microscopic interacting model that can in principle
foster class C topological pairing in this system. Notice that
in two spatial dimensions, the ten-fold classification allows
five nontrivial topological classes. Two of them correspond to
insulators (class A and class AlIl) and the remaining three to
superconductors (class D, class DIII, and class C). Fascinat-
ingly, the symmetry allowed local pairings in these two classes
of Dirac insulators harbor topological pairing from all three
superconducting classes.

A comment regarding the stability of various ordered
states at finite temperature is due at this stage, due to the
reduced dimensionality of the systems we are considering
here. Notice that only discrete (such as Ising or Z;) sym-
metry breaking states are stable at finite 7 and develop
long-range order in two dimensions through a true finite-
temperature phase transition. Despite being accompanied by
one Nambu-Goldstone mode, O(2) symmetry breaking or-
ders also show finite-temperature phase transition, which is,
however, Kosterliz-Thouless in nature and the ordered states
display quasi-long-range algebraic order [34], as is the case
for the superconducting orders, for example. Any order that
breaks a O(n) symmetry with n > 3 does not show true
long-range order or true finite-temperature phase transition
(Mermin-Wagner theorem) [56—60]. In two systems, we study
here (class A and class All), there is no such order, however
(see Tables I and II). It should, nonetheless, be noted that one-
loop RG analysis performed here about the disordered Fermi
liquid state cannot capture these well-known results from the
Mermin-Wangner theorem. Construction of a nonlinear sigma
model within the ordered phase, obtained by integrating out
gapped fermionic degrees of freedom, immediately leads to
these conclusions (except the Kosterlitz-Thouless transition
[34D.

Our results can be experimentally relevant in doped quan-
tum anomalous Hall insulators, realizable in thin films of
magnetically doped (by Cr or V or Fe, for example) three-
dimensional topological insulators, such as Bi,Ses, BiTes,
and Sb,Te; [61-63], and quantum spin Hall insulators in
CdTe-HgTe [8,64] and InAs-SbTe [65] quantum wells. Also,
a jacutingaite compound Pt,HgSe; has been identified as a
quantum spin Hall insulator [66—68], which can foster super-
conductivity at low temperature [69]. The two-dimensional
nature of these materials should permit a controlled chem-
ical doping of desired carrier density by tuning the gate

voltage without compromising with the sample quality (i.e.,
without introducing random charge impurities) to foster
Fermi surfaces therein, necessary for superconductivity to
set in. The predicted possibility of harnessing topological
superconductors on such material platforms should there-
fore stimulate future experiments in this direction. Our work
should also trigger a search for quantum anomalous and
spin Hall insulators in strongly correlated materials (such
as the Kondo systems). When doped, these systems will
possibly constitute a promising landscape for topological su-
perconductivity due to the strong Hubbardlike interactions
therein. Our proposal to search for planar odd-parity topolog-
ical superconductors in doped quantum anomalous and spin
Hall insulator materials can be justified phenomenologically
from the observed superconductivity in three-dimensional
intercalated (Cu,Bi,Se;) and doped (Sn;_,In,Te) topolog-
ical insulators below a few Kelvin. Such paired states
feature a surface zero-bias-conductance peak, a possible
hallmark of the gapless surface Majorana fermions, suggest-
ing topological nature of the underlying odd-parity paired
state [70-73].

Promisingly, the Qi-Wu-Zhang model [36,74] and Haldane
model [75,76], both representing lattice realizations of quan-
tum anomalous Hall insulators, have recently been realized on
optical lattices. Notice that the massive Dirac Hamiltonian in
class A, employed in this work, is obtained from the lattice-
regularized Qi-Wu-Zhang model in the continuum limit. On
optical lattices the doping level and the strength of Hubbard-
like local or short-range interactions can be tuned efficiently.
On this platform the Hubbard model has been simulated
on two-dimensional square lattice to map its global phase
diagram, featuring antiferromagnetism at and close to the
half-filling and superconductivity away from it [77-80], mim-
icking the cartoon phase diagram from Fig. 1(a). Nowadays
three-dimensional optical cubic lattice can be realized as well
[81]. Therefore, optical lattices of spin-orbit coupled ultracold
fermions also constitute a promising platform where our pro-
posed phase diagram from Fig. 1(b) fostering topological or
normal Dirac insulators and emergent topological superfluids
of neutral fermions can be observed experimentally.

Although the transition temperature for superconductivity
(t.) can be crudely estimated from our RG calculations, read-
ers must realize that such estimations can easily be off by
several factors (see, for example Ref. [28]) as they depend on
many nonuniversal (often not known accurately) parameters
of the system. We measure the dimensionless coupling con-
stants (g) and the transition temperature (¢.) in units of E, =
Av that sets an energy scale over which the band dispersion
can be described by massive Dirac fermions approximately.
Typically, in topological semiconductors E5 ~ 1 eV. Then
from the phase diagram in Fig. 5(a), we find 7, = 500 mK
for the bare Hubbard interaction 1.2 eV, which is not too
unreasonable for this pairing to be potentially observed in
some of the candidate real materials.

The emergent topological p + ip (p £ ip) paired state can
be identified from half-quantized thermal Hall conductivity
Kxy (quantized longitudinal thermal conductance G%,) in units
of ko = w2k3T /(3h), where kg (h) is the Boltzmann (Planck)
constant [82—85]. By contrast, the class C paired state man-
ifests a quantized «,, [85-87]. Recent time has witnessed

245153-15



MURSHED, DAS, AND ROY

PHYSICAL REVIEW B 111, 245153 (2025)

tremendous experimental progress leading to successful mea-
surements of (half)quantized thermal responses in sufficiently
clean quantum materials [88-92]. On optical lattices, quan-
tized transports can be measured from the “heating effect,” for
example [93]. Finally, scanning tunneling microscope can be
instrumental to identify emergent topological superconductors
from their signature Majorana edge modes in quantum crys-
tals [94,95]. Analogously the Majorana edge modes on optical
lattices can be probed from their local density states by local
radio frequency spectroscopy, for example [96-99]. There-
fore, identification of planar topological superconductors in
two-dimensional correlated doped Dirac insulators should be
within the reach of currently available experimental facilities
and techniques.
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APPENDIX A: FIERZ REDUCTIONS

In this Appendix, we show the Fierz reduction of the
number of linearly independent local quartic terms. The Fierz
identity allows us to write any four-fermion term as the linear
combination of the others expressed in terms of 22Y number
of generators of the U(2V) group as follows

(AD)

+ + _ 1 b a i a T b
[ COMY OIY Ny ()] = 5w ZTr[MF NI O Y DI OO ()]
a,b

Here M and N are 2"-dimensional Hermitian matrices, and I'* are the generators of U (2") group. Here we apply this identity
for contact local interactions with x = y.

In a time-reversal symmetry breaking insulator, considered in Sec. II, there are altogether three local quartic interaction terms
that can be organized in terms of the elements of a vector X, given by

X" =@l Y @iy, @loy)’ |,

j=1.2

(A2)

where T stands for transposition. Then the above Fierz constraint with N = 1 can be cast as a matrix equation FX = 0, where
the Fierz matrix F is given by

32 1
F=|1 2 -1 (A3)
1 -2 3

The number of linearly independent quartic terms is equal to the difference between the dimensionality of F', denoted by dim(F')
and its rank, denoted by rank(F'). For the above Fierz matrix dim(¥) = 3 and rank(F') = 2. Hence, the number of linearly
independent quartic term is one, which we choose to be (1 779y )? without any loss of generality. The remaining two quartic
terms are then given by

YWYy = —@ny) and (YY) = - iy

j=12

(A4)

Therefore, whenever these two quartic terms are generated during coarse graining they can be expressed in terms of (¥ o).
So, the interacting Lagrangian in terms of this single quartic term remains closed under RG to any order in the perturbation
theory.

We now proceed with a similar approach to find the linearly independent quartic terms in a system describing a time-reversal
symmetric insulator, considered in Sec. III. Now nine quartic terms are organized as

XT =@ Toy) Y @ Toy), ( Toay), @ Tav), D @ Taw), Ty, Y @ Tioy),

j=12 j=12 j=12

D IWTHYY + @ Tyl Y @ Tay)

j=1,2 j=1,2

(A5)
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The corresponding Fierz matrix with dim(F) = 9 and N = 2 reads as

s 1 1 1 1 1 1 1 1
2 2 2 0 -2 2 0 =2
1 -1 5 1 -1 1 1 -1 1
11 1 5 1 1 =1 -1 -1
F=|2 2 2 4 -2 =2 0 2] (A6)
-1 1 1 -1 5 -1 1 -1
2 2 2 2 2 -2 4 0 0
4 0 -4 -4 0 4 0 4 0
2 -2 2 -2 2 -2 0 0 4

The rank of this matrix is five [rank(F) = 5] and therefore the number of linearly independent quartic terms is four, which we
choose to be

W Tooy ), D (W To;¥), (¥ Tosyr)?, and (¥ Ta39p)’.
j=1,2

Hence, the interacting Lagrangian in terms of these four quartic terms remains closed to any order in the perturbation theory as
whenever any one of the remaining five quartic terms is generated during coarse graining it can be written as a linear combination
of the chosen ones. Specifically, the linear relationships between these four quartic terms and the remaining ones can be cast as

(¥ T3¢ ) -1 0 -1 -1
+ 2 + 5 (¥ Tt )?
W'Tay)” + (Y Tay) o -1 2 T p) + (0 Toap
01 02
W Ti0¥)? + (¥ Taoy)? =|-1 -1 0 1 (W Tostr . (AD)
B 03
W' Tuy) + @ Tey)’ + @ Tay)’ + ' Tuy) -2 0 0 -2 (W Tz )?
33
W' Ty + @ Tuy) -1 -2 -l
(
APPENDIX B: BAND PROJECTION AND EMERGENT Hence, the reduced Hamiltonian describing a collection of
TOPOLOGY gapless excitations around the Fermi surface within the con-

In this Appendix, we identify the emergent topology of lo- duction band is given by

cal pairings by projecting them near the Fermi surface realized . vkr

on the conduction band (for i > 0). We begin this discussion hisih = (B — pins ~ <ﬁ —H ) ns + OGY. (B4
by focusing on class A doped Dirac insulators. We choose
to work in a slightly different Nambu-doubled basis, defined
as w;am = (Yo, ks ‘/f:wn,—k) for technical ease, than the one

introduced in Sec. II. In this basis the free-fermion massive . . .
Dirac Hamiltonian and the one describing the paired state read du$t1on band. ThTe associated Nambu-c}koublc?d basis ree}d as
2 = (Ck,cBs €y cp)» Where ¢ cp (¢ ) 1s the fermionic

as Nam "= | | .
annihilation (creation) operator on the conduction band (CB)

AN = v(Torky + Tioky) + (m + bk*)T33 — ul3g with momentum k.

a4 i The diagonalization procedure when applied on the pairing
and K, = Ap[cos(Pse )12 + sin(@se )22 ], B Hamiltonian Piir yields

While arriving at the last expression we performed a large
mass expansion of Ej, and introduced a rescaled chemical
potential i = pu — m, measured from the bottom of the con-

respectively, obtained from Eqgs. (7) and (6) after performing i 4 b
a unitary rotation by 7y @ 1|, where ¢, is the U(1) supercon- (Uﬁ‘am) hgairUIéIam = Ap[cos(¢c)ni+ sin(Ps)n21® <c d)’
ducting phase. The unitary matrix that diagonalizes fzgfrm is

obtained by columnwise arranging its eigenvectors, given by (BS)

Ulam = U (ke ky, i) @ U (e, —ky, —my), where where b (c) captures the intraband component of the pair-
Uk, ky, m) ing matrix within the conduction (valence) band, and a and

d capture the interband components of the pairing. We are

Eitmbk) — B bl?) solely interested in b. After taking ¢, + 7 /2 — ¢ and sub-

—_ite | N 2EEA b)) N 2B (Ex—(m+bk?))
=e v(ketiky) v(ke+iky) . (B2)

N 2EL (E+(m+bk2)) N 2E (Ex—(m+bk?))

sequently setting ¢s. = 0 without any loss of generality, the
reduced BCS Hamiltonian around the Fermi surface on the
conduction band reads as

or = tan~'(k,/k.), my = m + bk?, and E; = [v2k* + (m + A
bk*)*1'/2. We then find His' = s + k_p(kx”‘ +hkym). (B6)
F
(Ugam)*ﬁgﬁgugam = diag.(Ey, —Ex, Ex, —Er) — uT'30. where & = v*k?*/(2m) — i and kr = E;/v is the Fermi

(B3) momentum. This Hamiltonian assumes the form of the topo-
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logical p + ip paired state, belonging to class D. Next we
proceed to perform a similar analysis for the doped class AIl
Dirac insulator.

For this purpose, we rewrite the Nambu-doubled Dirac
Hamiltonian in a slightly different form, compared to the one
from Eq. (15), as

hg?rmAH = v(P331ke + D300ky) + (m + bk*)T303 — w300,
(B7)
which we obtain from the one reported in Sec. III after per-
forming a unitary rotation by the unitary matrix U = 1y ®
(70 @ t1). In this basis, the diagonalizing unitary operator

reads as UG = no ® U (ky, ky, my), where

Nam —
U (kx > Ky, Mg )
Sy 0 £ 0

2ELE; 2ELE;

v(ky+iky) 0 v(ky+iky) 0

N 2EE] 2EE!

N 2EE; 2EE];

0 v(k,—iky) 0 v(k+iky)

N 2EE; N 2EE;
and Ef = E; +t(m+ bk?) for T = %. After performing a

unitary rotation by UZl the Dirac Hamiltonian AN:™,;; be-
comes

( AII) hNam AII
Nam Dir, All Nam

=3 ® [diag.(—E,
Therefore, the reduced kinetic Hamiltonian describing a col-

lection of gapless excitations around the Fermi surface within
the conduction band is given by

Fgn = (Bx — i)Ts0 ~ &T30 + O(kY),
after a large mass expansion of E;, where I'), =1, ®
0,. The corresponding Nambu-doubled spinor basis takes
the form Wy, = (Ck.1.cB> Ck,|.CB, cT_,wyCB, cik,T,CB)’ where

Ck.o.CB (Ck,a,CB) is the fermionic annihilation (creation) opera-
tor on the CB with momentum k and spin projection o =1, |.

After a unitary rotation by U on Eq. (18), the effective
single-particle Hamiltonian involving all the local pairing now
takes the form

e = AP Tao0¥) + A [(¥ Tao1¥) + (¥ Tazap)]

+ AV Tao3¥) + AN(Y Tan¥) + (¥ Tar2¥p)],
(B11)

—Ey, Ey, E}) — uT'o].  (BY)

(B10)

where ¥ = Y¥nam. Any Hermitian matrix describing a local
pairing h,;., ; with amplitude A? under the unitary rotation by

Ul takes the following generic form:

(UI\‘?;rIn) hngllr]UI\?;rln = AR[COS((]ﬁSC)r)l + sin(¢se)n2]

J i
® <a2 « by 2)
Al d] .
%) 2x2
Here two-dimensional matrices dez (&sz) captures the intra-
band component of the pairing matrices within the conduction

(valence) band, and b «» and c2X2 capture their interband
components. For p > 0 the Fermi surface is realized within

(B12)

TABLE IV. The first column shows the conjugate fields (CFs)
associated with six local pairing matrices in a class All Dirac systems
and the second column shows the corresponding matrix operators
with @ = 1, 2, see Eq. (B11). The third column shows the intraband
components of the pairing matrices in the conduction band, see
Eq. (B12), fostering a Fermi surface.

CF Pairing Matrix Near Fermi surface (1, ® chz)
AY N l00 Ne ® 0o

Af e o N ® 03(k,/kp)

AY Nal'3 Ne ® 03(ky/kp)

AY Nalo3 m/ (k) 1. ® 0y

A Nal'2 Ne ® (kyo1 + kyo2)/kp

AY nel12 Ne ® (=kyo1 + k.02)/kp

the conduction band. Thus, we are solely interested in chz.
The reduced BCS Hamiltonian associated with each local
pairing then takes the form

Hgdd ) = &30 + Al[cos(pee)m + sin(¢ee)m] @ dJ, ;.
(B13)
The intraband components for all the six local pairing matrices
are summarized in Table IV. Next we discuss the emergent
topology therein.

The two paired states A} and A% are even under parity,
spin-singlet (as they appear with the op matrix in the spin
space), and s wave in nature. Both of them trivially gap out the
Fermi surface and thus represent topologically trivial paired
state. We note that the gap on the Fermi surface with the A%
pairing scales as m (constant Wilson-Dirac mass). Hence, in
a Dirac semimetal (i = 0) this paired state produces a Fermi
surface of neutral Majorana fermions.

Each component of Al pairing preserves the rotational
symmetry and fully gaps out the Fermi surface for any
¢sc. Therefore, in the paired state the reduced BCS Hamil-
tonian with a convenient choice of ¢ =0 and in a
slightly rearranged Nambu-doubled basis given by ¥

+ Nam —
(¢k,1,cB> C—k,?,CB’ Ck,|,CB> c_k’l’CB) reads as

P

Hﬁ?:%dz; =£&,00 @13 + ﬁ—; [px00 ® N1 + pyo3 @ ma], (B14)
where  p, = cos(a)k, — sin(a)k, and p, = cos(a)k, +
sin(a )k, with « as the internal angle between two components
of Af, which gets locked spontaneously. In this basis the
paired state assumes the form of the topological p +ip
pairing, preserving the time-reversal symmetry and belonging
to class DIII. The pairing symmetry is p + ip and p — ip for
spin projections ¢ =1 and |, respectively.

Each component of A’ pairing breaks the rotational
symmetry (thus representing a nematic pairing) and gives
rise to point nodes on the Fermi surface. Nevertheless,
this paired state can fully gap out the Fermi surface when
the difference in the superconducting phase between its
two components is 7 /2, indicating the breakdown of the
time-reversal symmetry. In a newly defined Nambu-doubled

basis \I/&ram = (Ck,T,CBv C_k 1,08 Ck.4.CBs _CLk,LCB) the
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reduced BCS Hamiltonian then reads as

AP ,
HER, =00 ® {é‘pns + k—FZ [cos(a)psmi + sm(a)pynz]},

(B15)
where « (# +m /4 in general) is the internal angle, mani-
festing the lack of rotational symmetry in the paired state.
The paired state corresponds to two identical copies of the
p + ip pairing and its topological properties are identical to
those for the d + id superconductor (for any «). This paired
state belongs to class C and the requisite SU(2) symmetry is
generated by o ® no [13].

As a final remark, we note that throughout this Ap-
pendix we assumed that the underlying Fermi surface is
simply connected and established the topological nature of
various local pairings, which are then endowed by nontrivial
topological invariant. However, when the Fermi surface be-
comes annular, the net topological invariant of all the paired
states becomes zero. This observation can be appreciated
qualitatively in the following way. Notice that the curvature
of the annular Fermi surface is opposite at the inner and outer
Fermi ring. Consequently, their contributions to the topo-

J

logical invariant cancel each other, yielding a trivial p-wave
superconducting states. A more detailed discussion on this
issue is left for a separate investigation.

APPENDIX C: CONTRIBUTIONS FROM ONE-LOOP
FEYNMAN DIAGRAMS

In this Appendix, we display the contributions from the
one-loop Feynman diagrams shown in Figs. 3 and 4. For this
purpose, we consider two local four-fermions interactions,
given by g, (UMW)? and g, (VTNW)?, where g, and g, are
the corresponding coupling constants, respectively. Through-
out this Appendix, we assume that the fermion spinors W
and W' are defined in the Nambu-doubled basis, M and N
are Hermitian matrices that are also expressed in the Nambu-
doubled basis. The corresponding fermionic Green’s function
in the Nambu doubled basis is denoted by G(iw,, k), where w,
are the fermionic Matsubara frequencies. We do not display
their forms explicitly in this Appendix, which can be readily
obtained in Sec. II for class A and Sec. III for class AIl
systems. Then the contributions from the Feynman diagram
from Figs. 3(b)-3(f) are schematically given by

(3b) = [gM NIl enerey nz / Al ];ik 27[% MG(la),,,k)M:| (C1)

(3c)=|: N 88y % Z /A AI% 0271% Tr[MG(zwn,k)NG(zwn,k)]j|(lIﬂM\I/)(\IJ"'N\IJ), (€2)

(3d) = [Nx’fgnggN (2= Sun) Z AA, "2‘1" fo 2”% (W' [NG(lwn,k)MG(lwn,k)N]\I'):| WwiMw), (3

(3e) = °L°§gﬂgMgN 2~ duw) Z /A Ak;f ZHdﬂ (W NGliwy, OMIW) (W [MGliwy NI),  (C4)

and (3f) = g’r“;‘imggMgN 2= 8uw) Z /A A% " d¢" (W NG (iw,, YMIW) (W [NG(—ie,, —k)M]W),  (C5)

respectively, where ¢ = tan"(ky /k¢). In the above expressions W and W' are the slow fermionic fields with momentum
|k| < Ae~¢ and the fermionic Green’s functions are obtained by contracting the fast fields with Ae~* < |k| < A. The factor of
1/2 in the last four equation arises from the Taylor expansion of S, to the quadratic order, the extra “minus” sign in the second
equation stems from the fermion bubble where the additional factor of 1/2 cancels the contribution from the Nambu doubling.
This diagram yields nontrivial contribution only when M = N. Then the combinatorial factor of the Feynman diagrams are given
by Nogmp 2 = 2, NI = 4, Nyies = 8 (4) for M = N (M # N), and NS0 = N oo™ = 4 (2) for M = N (M # N).

To arrive at the contributions from the Feynman diagrams shown in Fig. 4, here we consider one source field A, (¥TOW),
where O is yet another Hermitian matrix represented in the Nambu-doubled basis and A, is the corresponding conjugate field.
Then contributions from Figs. 4(b) and 4(c) are respectively given by

NBubble 1 A kdk d +
(4b) = _QM - Z / / A%k T MG (iw,, k)OG(iw,, k)] | (¥ M) (C6)
) i 2n 27
Vertex A 2
kdk d
and (4c) = 2 —Somb.source °°m‘”°‘“°e Z / e d)" (VT MG(iw,, k)OG(iw,, k)M¥), (C7)
— Ae!

Bubble Vertex : : H
where Negib urce = Neomb.source = 2 the extra factor of 2 in the numerator arises from the Taylor expansion, and the factor of

1/2 in the first equation cancels the Nambu doubling.
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