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Nontrivial geometry of electronic Bloch states gives rise to topological insulators which are robust against
sufficiently weak randomness inevitably present in any quantum material. However, increasing disorder triggers
a quantum phase transition into a featureless normal insulator. As the underlying quantum critical point is

approached from the topological side, small scattered droplets of normal insulators start to develop in the system
and their coherent nucleation causes ultimate condensation into a trivial insulator. Unless disorder is too strong,
the normal insulator accommodates disjoint tiny topological puddles. Furthermore, in the close vicinity of such
a transition the emergent islands of topological and trivial insulators display spatial fractal structures, a feature
that is revealed only by local topological markers. Here, we showcase this (possibly) generic phenomenon that
should be apposite to dirty topological crystals of any symmetry class in any dimension from the Bott index and
local Chern marker for a square-lattice-based disordered Chern insulator model.
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Introduction. Thermal and quantum continuous phase tran-
sitions are fascinating phenomena in modern physics as in the
vicinity of the associated critical points physical observables
manifest power-law behavior in terms of universal scaling ex-
ponents [1-5]. Also, when such a critical point is approached
from an ordered phase, it gradually loses spatial coherence
and small incoherent islands of the disordered phase start to
develop in the system. In the close proximity to the critical
points, such flakes of ordered and disordered phases display
fractal structures. While this phenomenon is well appreciated
in interacting systems, its jurisdiction across the disorder-
controlled quantum phase transition (QPT) in noninteracting
topological quantum materials remains unclear, raising the
following question: How do dirty topological insulators (TIs)
become trivial or a normal insulator (NI)?

To answer this question, we consider a specific lattice-
regularized model for disordered TIs and come to the
following (possibly generic) conclusions that should be per-
tinent in dirty topological crystals from any symmetry class in
any dimension. We compute a global topological invariant and
the associated local topological marker in tandem. While the
former one allows us to pin the critical disorder strength (W,)
for a topological-normal insulator QPT, the latter one provides
invaluable insights into the spatial profile of local topology.
We show that as a dirty TT arrives at the shore of such a QPT,
small isolated droplets of a NI start to form in the system.
Near the TI-NI quantum critical point (QCP), the islands of
TI and NI display spatial fractal structures. We identify a
few isolated tiny pockets of TI inside a NI phase, unless the
disorder strength W > W.,.

As a demonstrative example, we showcase these outcomes
by numerically computing the disorder-averaged Bott index
(BI) [6] and local Chern marker (LCM) [7-9] from a square
lattice-based Chern insulator model. While the BI jumps from
an integer value to zero across the TI-NI QPT, the LCM
displays the rich structure mentioned above. The associated
fractal and anomalous dimensions are reasonably close to
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the ones known for the two-dimensional (2D) uncorrelated
Ising-like percolation theory [10-14], slight deviations from
which stem from the unavoidable spread of the LCM around
the integer and trivial values in disordered systems. See Figs. 1
and 2. Therefore, our theoretical predictions unify the emer-
gent fractal phenomenon near the critical points that so far
has been studied in interacting, nontopological disordered,
and statistical systems by introducing a new member in this
family: dirty topological crystals.

Model. The minimal Hamiltonian for 2D Chern in-
sulators of spinless or spin-polarized fermions is h =d
(k) - t. The vector Pauli matrix 7 = (7, 7y, 7;) operates
on orbitals with parity eigenvalues v = 4. We choose
dy (k) = tsin(ka), dr(k) =tsin(kya), and d3(k) =mo —
folcos(kya) + cos(kya)] [15]. Here, a is the lattice constant,
t (tp) is the hopping amplitude between the opposite (same)
parity orbitals living on the nearest-neighbor sites of a square
lattice, and my denotes on-site staggered potential, yielding
a uniform Dirac mass. This system supports TI (NI) for
|mo/to] < 2 (|mo/ty| > 2). Wesett =ty = my = 1, yielding a
TI with the band inversion at the I" point, characterized by the
first Chern number C = 1 for the filled valence band, obtained
by integrating its Berry curvature over the first Brillouin zone
[16]. We disregard particle-hole asymmetry as it does not
affect the topology of an insulating system.

Disorder. In the presence of disorder, the translational
symmetry gets broken and the notion of a Bloch Hamiltonian
becomes moot. We are then forced to compute the associated
topological invariant by diagonalizing the corresponding real-
space tight-binding Hamiltonian, which on a square lattice for
the chosen d(k) vector reads as
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FIG. 1. (a) Disorder-averaged Bls (B) as a function of disorder strength (W), obtained from exact diagonalization (ED) and kernel
polynomial method (KPM), cross at W = 6.0 for different L (linear dimension of square lattice), where (B) = 0.5, marking the critical disorder
W, for the TI-NI insulator QPT. Inset: Data collapse for L'V vs (B) with v = 2.49, where § = (W — W,.)/W, and v is the correlation length
exponent. (b) Spatial distribution of the LCM Ci,.(r) on an L = 40 square lattice is shown after excluding four sites from each end of the
system in both directions for a single disorder realization for each W. The pair of numbers correspond to (W, (B)). (c) Fraction of such an
interior area (f) occupied by regions with Ci,c(r) = 1.0 & 0.2 (blue) and 0.0 £ 0.2 (red). (d) Disorder-averaged LCM (Cj..) in a square box of
linear dimension £ = L/4 at the center of the system as a function of W, which for all choices of L cross roughly at W = W,. (e) Data collapse
for L' vs (Cioe) With v = 2.51 for £ = L/4. (f) Variation of v with £/L. (g) Distributions of C..(r) for a single disorder realization with
W = W, on an L = 100 square lattice is shown after excluding ten sites from each end of the system in both directions. Patches of (h) trivial
[(3) topological] insulators with Cio.(r) = 0.0 = 0.2 (1.0 &£ 0.2) are shown in different colors, exhibiting fractal structures (see Fig. 2). LCM is

always computed from ED. We average over 50 (200) disorder realizations far from (near) W..

Here, é; = aj with ] as the unit vector along j = x,y,
\I',T = (¢r 4, Cr—), and ¢, ; is the fermionic annihilation oper-
ator at position r with parity 7. The last term encodes on-site
potential disorder, the dominant source of elastic scattering in
real materials. On each lattice site, we sample V (r) uniformly
and randomly from a box distribution [-W/2, W/2], where W
is the disorder strength. We denote the corresponding matrix
operator as W with its elements given by W; ; = w;d;;, where
i and j are site indices, w; € [-W/2, W/2], and §;; is the
Kronecker delta symbol. While W is traceless in sufficiently
large systems for each disorder realization, in order to ensure
this property that minimizes the shift in the Fermi level in
moderate systems we replace W by W — §y Iy in numeri-
cal calculations. Here, §y = Tr(W)/N is a small constant,
N is the total number of sites in the system, and I is an
N-dimensional identity matrix.

Topological invariants. In clean systems, the BI (B), com-
puted upon diagonalizing HT% [Eqg. (1)], enjoys a one-to-one
correspondence with the first Chern number (C), C = B. In
dirty systems, we compute the disorder-averaged Bott index
(B) to underpin the TI-NI QPT. We assume that the system is
at half filling and zero temperature, and define the projection
operator P onto the valence band and its complementary
operator Q as

N
P=> In){n| and Q=1Iy—P, ()

respectively. Here, |n) are the algebraically ordered eigen-
states of HZ. A unitary phase operator in the x direction is
defined as U, = exp 27wiX ® t9/L,), where ® stands for the
Kronecker product and the matrix elements of the position op-
erator are X; ; = x;6;; with x; € [1, L,]. The linear dimension
of the system in the x direction is L,. Notice that U,|x]) =
exp (i2mx;/L,)|x7). Here, |x]) is the site-localized Wannier
state at x; on an orbital with parity eigenvalue 7. Similarly, we
define a unitary phase operator U, in the y direction. Through-
out we take L, = L, = L (say). The projections of these phase
operators onto the filled states are V,, = Q +PU /P forg = x
and y. Then the net phase around closed loop constructed with
V, and V, yields [6]

1 ,
B= ZIm[Tr[ln[VxVyViV;]]]. A3)

To respect the periodic nature of the phase operators, we
always compute the BI on a square lattice with periodic
boundary conditions.

Naturally, unveiling the spatial variation of topology is
beyond the scope of BI, for which we compute the LCM at
every site, encoded in the operator Cp cm = 47 Im[PX QY P].
On a site at r the LCM is [7-9]

Cioc(r) = Y _(r, 7|CLIr, 7). )
T==%

The LCM is insensitive to the boundary conditions, as X
and Y are not periodic. The LCM near the boundary of the
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FIG. 2. Computation of (a) hull fractal dimension dj,, (b) volume fractal dimension d,, and (c) anomalous dimension 7 and correlation
length & from the pair-connectivity G(r) at critical disorder W = W, = 6.0 from the islands of NIs in an L = 120 system (in black). (d)—(f)
Same as (a)—(c), respectively, for the islands of TIs. Dependence of (g) dj,, (h) d,, (i) n, and (j) & on L for a few W < W, (color coded) for the
islands of NIs. (k)—(n) are the same as (g)—(j), respectively, for the islands of TIs. We average over 50 disorder realizations. For each each W
we quote (color coded) the values of dj, [(a) and (d)], d, [(b) and (e)], and 1 and & [(c) and (f)]. Error bars capture bootstrap standard error [19].

system deviates considerably from the bulk quantized value
even in clean systems [7]. Thus, we always exclude several
sites near the boundaries of the square lattice while displaying
and analyzing LCM.

Usually, we rely on exact diagonalization (ED) to com-
pute P, which becomes time consuming in large systems
when in addition we need to perform disorder averaging.
This limitation can be circumvented by computing P using
the kernel polynomial method (KPM) [17,18], detailed in the
Supplemental Material (SM) [19]. However, KPM does not
count and order the eigenstates while constructing P. In KPM,
the eigenvalue spectrum can only be truncated at a specified
energy value. Therefore, we work under the assumption that
the numbers of states below and above the Fermi energy
(Er = 0) remain equal even in the presence of disorder, which
is typically the case when disorder configuration is set by the
matrix W — (8w )Iy. As the BI can only take integer values,
a slight deviation from this assumption in KPM averages out
and we obtain the same results for (B) as from ED. However,
no such constraint applies for the LCM, for which we always
rely on ED.

Phase diagram. First, we compute (B) using ED (for
smaller L) and KPM (for larger L) as a function of W [see
Fig. 1(a)]. In the weak (strong) disorder regime the sys-
tem describes a TI (NI) with (B) = 1.0 (0.0). The curves
for W vs (B) for different L cross around W = 6.0, where
(B) ~ 0.5, defining the critical disorder W, for the TI-NI
QPT. With a single-parameter scaling ansatz (B) = F(SL'/"),
where F' is an unknown universal function of its argument,
6=W —W,)/W,, and v is the correlation length exponent,
determining the universality class of this QPT, we find the
best quality data collapse for v = 2.49, close to its current
estimation for the quantum Hall plateau transition [20-25]
[see the inset of Fig. 1(a)].

Such a seemingly featureless QPT encodes a fascinating
rich structure, revealed by the LCM [see Fig. 1(b)]. In the
clean and weakly disordered systems Cioc(r) & 1 in the entire
interior of the system, when (B) = 1. With increasing disor-

der, isolated droplets of NIs where Cj,.(r) =~ O start to form
in the system even inside the TI phase with (B) = 1. As the
system approaches the TI-NI QCP, the droplets of topological
and normal insulators occupy almost equal area of the system
when (B) = 0.5 [see Fig. 1(c)]. By the same token, a NI
with (B) = 0 fosters a few isolated small flakes of TIs when
W 2 W,, which completely disappear only for W > W,.

The disorder-averaged LCM (C,.), averaged over the sites
of a square box of linear dimension ¢ = L/4, placed near the
center of the system, display a similar behavior as (B) [see
Fig. 1(d)]. With the scaling ansatz (Cioc) = G(8L'/", ¢/L),
where G is another universal function of L'V when ¢/L <«
1, we obtain a best quality data collapse for v = 2.51 [see
Fig. 1(e)]. Figure 1(f) shows that only for 0.2 < £/L < 0.4,
the values of v obtained from the data collapses of (B) and
(Cioc) are sufficiently close.

Since the value of Ci(r) is not strictly restricted to
any integer value, especially in the presence of disorder,
the islands of TI and NI in dirty topological crystals are
identified with Cioc(r) = 1.0 £ 0.2 and C,.(r) = 0.0 £ 0.2,
respectively, in Fig. 1(g). In close proximity to the TI-NI QCP,
individual droplets of NI and TI assume an irregular fractal
structure, as shown in Figs. 1(h) and 1(i), respectively. Next,
we quantitatively establish such emergent fractal structures
near the TI-NI QPT.

Fractal analysis. Analysis of the fractal clusters begins
with the identification and labeling of individual ones. For
each fractal, we compute three geometric quantities: the radius
of gyration (R), perimeter (P), and area (A). Here, we mention
the key steps, while relegating details to the SM [19]. Since
the fractals are embedded in two dimensions, the number of
sites within it yields A, the number of sites bordering the
interior of the cluster determines P, and R is the root-mean-
square distance of each site at r; from the geometric center of
the fractal at r¢, given by R = [R? + R3 - - - + R%]'/%, where
R; = |r; — r°|/s/A. The universal and scale-independent
(when L > R) hull (d;) and volume (d,) fractal dimensions
are given by P ~ R% and A ~ R%, respectively. The pair
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connectivity G(r), measuring the probability of a given pair
of sites separated by distance r belonging to the same cluster,
in general features both power-law and exponential decays
with the scaling form G(r) ~ (r/£)~@=2*" exp(—r/&). Here,
d = 2 is the embedding dimension, 1 is the anomalous dimen-
sion, and & is the correlation length, representing the average
scale over which two points remain connected with a given
cluster. At the QCP, the distribution of the LCM ideally forms
two large cohesive fractals spanning the entire system and thus
& ~ L therein. At this point the exponential decay of G(r) gets
suppressed, thereby featuring a power-law decay, determined
by 1. These scaling forms capture how clusters fill the space
in a self-similar manner, deviating from integer dimensions,
near W = W,.

Such an analysis is explicit shown on an L = 120 sys-
tem for W = 6.0 and for the clusters of both TI and NI
in Fig. 2, where we also display the L dependence of dj,
dy, n, and & for a few values of W < W.. When averaged
over L, the values of these quantities are reasonably insen-
sitive to W near W, and are close, yet slightly far from the
ones for the 2D uncorrelated Ising-like percolation theory
for which d, =1.75, d, = 1.9, and n = 0.207 [10-14]. In
particular for W = 6.0, we obtain (after averaging the values
over various L) d, = 1.67 £0.12 (1.67 £0.09),d, = 1.92 £
0.15 (1.84 £ 0.11), n = 0.243 £ 0.089 (0.272 £ 0.079), and
&€ =46.01+17.3 (35.8 £ 11.6) for the fractal droplets of NI
(TT). Such mismatches stem from the fact that the LCM in
dirty systems spreads considerably around expected integer
and trivial values, introducing an unavoidable ambiguity in
properly identifying the sites belonging to specific fractal
clusters of NI and TI, while Ising spins can only have two
orientations. Otherwise, a correspondence between these two
systems can be established as follows. Two possible distri-
butions of the LCM, centered around O and 1, map onto
two projections of spin. And with increasing disorder ran-
domly placed droplets of NI fluid with Cjoc(r) = 0.0 percolate
through the large cluster of TI with Cjoc(r) =~ 1.0.

To establish the universal nature of emergent fractal
droplets of local TIs and NIs, we repeat the entire analysis,
detailed in the SM [19], for t =ty = 1.0 and mg = 1.5 for
which the band gap is half of that with my = 1.0. In this case
W, =6.70 around which we find d, = 1.665+ 0.084
(1.646 £0.052), d, =1.882+0.068 (1.850 £ 0.069),
n=0.277 £0.028 (0.241 £0.086), and & =62.8 + 134
(55.3 £ 14.0) from the fractal islands of NIs (TIs), after
averaging the values over various L. Hence, emergent fractal
islands of TIs and NIs share the same universal behavior
irrespective of the band gap, and in two dimensions they are
always similar to the uncorrelated 2D Ising-like percolation
theory. Although existing numerical results strongly suggest
that these conclusions should hold sufficiently close to
the band-gap closing point at my = 2.0, the corresponding
numerical analysis must be performed in much larger systems
to account for finite-size effects in the presence of a small
band gap. The requisite computation time then grows very
rapidly.

Discussions. We show that as a precursor of the disorder-
induced TI-NI QPT, isolated small droplets of incipient NI
start to nucleate inside the TI phase. In the close proxim-
ity to the associated QCP, droplets of TI and NI display

0.06
4

2 0 g 2 4

FIG. 3. Distribution of the LCM inside a L = 120 square lattice
for a single disorder realization of strength W = 5.25 showing the
topological (trivial) regions with G, (r) & 1.0 (0.0) in black (white).
Local density of states p,.(E) (b) at the edge and (c) in the interior of
the topological region, computed over five green colored sites within
the golden and red boxes, respectively, showing gapless and multi-
gapped structures near the Fermi energy Er = 0. (d) Corresponding
average density of states D(E) as a function of energy E.

fractal structures. The corresponding fractal and anomalous
dimensions are reasonably close to the ones for the 2D Ising-
like percolation theory. The predicted fractal structure in the
local topology should be germane to dirty topological crystals
of any Altland-Zirnbauer symmetry class and dimensionality
[26-29], as for all of them local topological markers can
be computed [9], including topological superconductors [30].
The emergent fractal structures of the ground state, mani-
festing via local irregular droplets of TIs and NIs, near the
disorder-driven QCP, separating two topologically distinct in-
sulators, are distinct from the fractal-type structure of a few
isolated critical wave functions residing near the Fermi en-
ergy, previously reported for Anderson [31,32] and disordered
topological [33,34] models.

As the fractal and anomalous dimensions are sufficiently
close for the clusters of TI and NI, the predicted fractal
structure in real materials can be mapped from the local
density of states (LDOS), measurable via scanning tunneling
microscopy (STM) [14,35], by solely focusing on the islands
of TI. Such measurements should feature multigapped (gap-
less) LDOS spectrum near the Fermi energy inside (along
boundaries of) the topological islands (see Fig. 3), falling
within the spatial resolution window of STM measurements
(a few A). The fact that a gapped (gapless) spectrum is ob-
served in the interior (at the edges) of a cluster, as shown
in Fig. 3, justifies the working assumption that regions with
LCM C =1.01£0.2 and 0.0 £ 0.2 represent local topolog-
ical and trivial insulators, respectively. Gapless edge modes
residing along the boundaries between topologically distinct
islands can also be responsible for the enhancement of elec-
trical and thermal Hall and longitudinal conductivities near
the topological QPTs, as reported in recent numerical works
[36,37]. The STM measurements can be performed on avail-
able quantum anomalous Hall or Chern insulators, realized
thin films of Bi,Ses, BiyTes, and Sb,Te; doped by Cr or V or
Fe, for example [38—40], and quantum spin Hall insulators
in CdTe-HgTe [41,42] and InAs-SbTe [43] quantum wells
by tuning the disorder strength therein. Recently, the lattice
model for the Chern insulator [15] has been engineered on
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optical lattices [44], where disorder strength can be tuned
in a controlled fashion and LDOS can be measured using
local radio-frequency spectroscopy [45—47], to identify the
proposed emergent fractal structures near the TI-NI QPT.
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