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Abstract—Federated learning (FL) is a popular technique
for distributing machine learning (ML) across a set of edge
devices. In this paper, we study fully decentralized FL, where
in addition to devices conducting training locally, they carry out
model aggregations via cooperative consensus formation over
device-to-device (D2D) networks. We introduce asynchronous,
event-triggered communications among the devices to han-
dle settings where access to a central server is not feasible.
To account for the inherent resource heterogeneity and statistical
diversity challenges in FL, we define personalized communication
triggering conditions at each device that weigh the change in local
model parameters against the available local network resources.
We theoretically recover the O(ln k/

p
k) convergence rate to

the globally optimal model of decentralized gradient descent
(DGD) methods in the setup of our methodology. We provide
our convergence guarantees for the last iterates of models, under
relaxed graph connectivity and data heterogeneity assumptions
compared with the existing literature. To do so, we demonstrate
a B-connected information flow guarantee in the presence of
sporadic communications over the time-varying D2D graph.
Our subsequent numerical evaluations demonstrate that our
methodology obtains substantial improvements in convergence
speed and/or communication savings compared to existing decen-
tralized FL baselines.

Index Terms—Federated learning, decentralized learning,
event-triggered communications.

I. INTRODUCTION

FEDERATED learning (FL) has emerged as a popular
technique to distribute machine learning (ML) model

training across a network of devices [2]. With initial deploy-
ments including next-word prediction across mobile devices
[3], FL is envisioned to serve many intelligence applications
in edge/fog computing and the Internet of Things (IoT) [4].
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In the conventional FL architecture, a set of devices is
connected to a central server (e.g., at a base station) in
a star topology configuration [3]. Devices conduct model
updates locally based on their individual datasets, and the
server periodically aggregates these local models into a global
model, synchronizing devices with this global model to begin
the next round of training. Several works in the past few
years have built functionality into this architecture to manage
different dimensions of heterogeneity that manifest in fog,
edge, and IoT networks, including varying communication and
computation abilities of devices [5], [6] and varying statistical
properties of local device datasets [7], [8].

However, access to a central server is not practical in
some cases; For example, when conducting online training
over dynamic intelligent systems, such as smart vehicles that
move across a city, they can rely on vehicle-to-vehicle (V2V)
links rather than vehicle-to-edge/server communications [9].
In addition, the model aggregation step in FL can be resource
intensive when it requires frequent uplink transmission of
large models [10]. In particular, it can lead to longer delays
and larger bandwidth utilization for network links since there
are multiple layers of network devices between the devices
and the server [11]. In wireless networks where device-to-
server connectivity is energy intensive or unavailable, ad hoc
structures formed through device-to-device (D2D) links serve
as an efficient alternative [4]. The proliferation of such set-
tings motivates fully decentralized FL [12], [13], [14], where
the model aggregation step is distributed across devices (in
addition to the data processing step).

In this paper, we propose a novel methodology to facilitate
fully decentralized FL and analyze its convergence character-
istics. Our methodology has two key components. The first
component involves combining updates based on stochas-
tic gradient descent of local ML models with cooperative
consensus formation over the D2D graph topology available
across devices. Compared with more traditional decentralized
optimization problems, the FL context introduces new chal-
lenges for these procedures due to (i) heterogeneity in device
resources and local ML objectives, due to diversity in local
datasets, and (ii) heterogeneity in wireless communication
resources, which impacts the ability of devices to carry out
consensus iterations. We consider these unique properties of
decentralized FL in our algorithm design and analysis.

The central server in FL is also commonly employed for
timing synchronization, i.e., to determine the time between
global aggregations [11]. To overcome the lack of a cen-
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TABLE I
COMPARISON OF OUR WORK AGAINST REPRESENTATIVE WORKS

IN THE DECENTRALIZED FL LITERATURE

tral timing mechanism in decentralized FL, and to alleviate
resource utilization, the second component of our methodology
is an asynchronous, event-triggered communication framework
for distributed ML consensus. Event-triggered communica-
tions offer several benefits in our setting. One, redundant
communications can be reduced by defining event triggering
conditions based on the variation of each device’s model
parameters. Also, eliminating the assumption that devices
communicate in every iteration opens up the possibility of
alleviating straggler problems, which is a prevalent concern
in FL [10]. Third, we can eliminate redundant computations
at each device by limiting the aggregation to only when new
parameters are received.

A. Related Work
We discuss related work in (i) distributed learning through

consensus on graphs and (ii) FL over heterogeneous network
systems. Our work lies at the intersection of these areas, and
Table I illustrates the contributions of our work compared to
existing literature.

1) Consensus-Based Distributed Optimization: There is a
rich literature on distributed optimization on graphs using con-
sensus algorithms, for example, [13], [15], [20], [21], [22], and
[23]. For connected, undirected graph topologies, symmetric
and doubly-stochastic transition matrices can be constructed
for consensus iterations. In typical approaches [15], [20],
each device maintains a local gradient of the target system
objective (e.g., minimizing the consensus error across nodes),
with the consensus matrices designed to satisfy additional
convergence criteria outlined in [24] and [25]. More recently,
gradient tracking optimization techniques have been developed
in which the global gradient is learned simultaneously along
with local parameters [21]. Also, [26] and [27] present a vari-
ation of gradient tracking algorithms where devices conduct
multiple local gradient steps at each iteration. Other works
have considered the distributed optimization problem over
directed graphs, which is harder since constructing doubly-
stochastic transition matrices is not a straightforward task for
general directed graphs [28]. To resolve this issue, methods
such as the push-sum protocol [22] have been proposed, where
an extra optimizable parameter is introduced at each device
in order to independently learn the right (or left) eigenvector
corresponding to the eigenvalue of 1 of the transition matri-
ces [23]. More recently, dual transition matrices have been
studied, where two distinct transition matrices are designed

to exchange model parameters and gradients separately,
one column-stochastic and the other row-stochastic [23],
[29], [30]. Moreover, asynchronous communications have also
been researched in the literature [31], [32], [33].

On the other hand, event-triggered methods have received
significant research attention in the conventional distributed
optimization literature [34]. However, in federated learning
(FL), there are only a handful of papers thus far which
have studied event-triggered communication mechanisms, e.g.,
[35]. Event-triggering for inter-device communications poses
unique challenges in the FL context due to different types of
heterogeneity which become extremely pronounced in these
setups, where a model is being trained over real-world wireless
devices [2]: (i) diversity in local dataset statistics [36], which
can have significant impacts on convergence behavior, since
gradient iterations on these local datasets will tend to pull
models apart [10], [37]; and (ii) heterogeneity in device
resources [3], [7], [38]. Our methodology incorporates both of
these factors, and our theoretical results reveal the impact of
non-IID local data distributions on convergence characteristics
of model training in decentralized FL setups. In doing so, it
is important for us to bound convergence directly in terms
of the statistical heterogeneity of the datasets, rather than
on the (sub)-gradients as is done in existing decentralized
optimization works like [15] and [17].

2) Resource-Efficient Federated Learning: Several recent
works in FL have investigated techniques for improving the
communication and computation efficiency across devices. A
popular line of research has aimed to adaptively control the FL
process based on device capabilities, e.g., [6], [39], [40], [41],
and [42]. In [6], the authors studied FL convergence under
a total network resource budget, in which the server adapts
the frequency of global aggregations. Others [39], [40], [42]
have considered FL under partial device participation, where
the communication and processing capabilities of devices
are taken into account when assessing which devices will
participate in each training round. Reference [41] removed
the necessity that every local device has to optimize the full
model as the server, allowing weaker devices to take smaller
subsets of the model to optimize. Furthermore, techniques such
as quantization [43], [44] and sparsification [45] have also
been studied to reduce the communication and computation
overhead of the FL algorithms.

Unlike these works, we focus on novel learning topologies
for decentralized FL. In this respect, some recent work [11],
[12], [46], [47] has proposed D2D communication approaches
for collaborative learning over local device graphs. Refer-
ences [11], [47], and [48] investigated a semi-decentralized
FL methodology across hierarchical networks, where local
model aggregations are conducted via D2D-based coopera-
tive consensus formation to reduce the frequency of global
aggregations by the coordinating node. In our work, we
consider the fully decentralized setting, where a central node
is not available, as in [12], [46], and [49]: along with local
model updates, devices conduct consensus iterations with
their neighbors in order to gradually minimize the global
machine learning loss in a distributed manner. However, such
techniques are not sensitive to the presence of heterogeneous
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communication resources across devices. Different from [49],
our methodology incorporates asynchronous event-triggered
communications, where local resource levels are factored
into event thresholds to account for device heterogeneity.
This introduces a key challenge solved in our analysis,
as it must obtain and leverage connectivity guarantees on
the information flow graph (rather than the physical D2D
graph). We will see that this approach leads to substantial
improvements in model convergence time compared with non-
heterogeneous/non-personalized thresholding.

B. Outline and Summary of Contributions
• We develop a novel methodology for fully decentralized

FL, with model aggregations occurring via cooperative
model consensus iterations (Sec. II). In our methodology,
communications are asynchronous and event-driven. With
event thresholds defined to incorporate local model evolu-
tion and resource availability, our methodology adapts to
the two salient heterogeneity dimensions in decentralized
FL: limited resource availability and non-IID local dataset
statistics across devices.

• We provide a detailed convergence analysis of our
methodology, showing that using a diminishing step size,
each device arrives at the globally optimal model over
a time-varying consensus graph at an O(ln k/

p
k) rate

(Sec. III). Our results are obtained based on statistical
heterogeneity across local datasets, rather than a more
restrictive bounded gradients assumption common in lit-
erature. Moreover, they do not impose overly restrictive
connectivity requirements on the underlying D2D com-
munication graph, so long as it satisfies a connectivity
assumption over any B-consecutive iterations.

• To obtain these results, we demonstrate information flow
guarantees in the presence of sporadic communications,
making a distinction between physical connectivity of
the underlying network graph and the information flow
graph of the exchanged parameters among the devices
(Proposition 1). Moreover, we lay out constraints on the
local gradient step size to ensure a necessary spectral
radius on this graph (Proposition 2). This allows us to
derive the convergence rate in Theorems 1 and 2 for the
model itself and not its cumulative average,1 contrary to
the existing trend in decentralized FL.

• We conducted numerical experiments to compare our
methodology with baselines in decentralized FL, as well
as a randomized gossip algorithm using two real-world
machine learning task datasets (Sec. IV). We show that
our method is capable of reducing the model training
communication time compared to decentralized FL base-
lines. Also, we find that the convergence rate of our
method scales well with consensus graph connectivity.

This paper is an extension of our conference version of this
work [50]. Compared to [50], we make the following addi-
tional contributions: (1) connectivity of the information flow
graph between devices is theoretically proven in Proposition 1,
i.e., we guarantee that all devices will benefit from every other

1The cumulative average of the model is defined as (1/T )
PT�1

t=0 w(t).

device in the federated learning system, despite the commu-
nications being sporadic, and the underlying physical network
being time-varying, (2) the traditional assumption of bounded
gradients has been replaced with two assumptions which are
less strict in Assumptions 2: Lipschitz gradient continuity and
bounded gradient diversity, (3 we obtain a non-asymptotic
rate of convergence for our method, by recovering the well-
known O(ln k/

p
k) sub-linear rate for distributed gradient

descent like algorithms when using a diminishing learning
rate in Theorem 2 and (4) we conduct new experiments on
an additional dataset, more graph topologies and an additional
distribution for bandwidth sampling, to further validate the
advantages of our proposed methodology.

C. Notations
Arguments for functions are denoted with parentheses, e.g.,

f(x) implies x is an argument for function f . The iteration
index for a parameter is indicated via superscripts, e.g., h(k) is
the value of the parameter h at iteration k. Device indices are
given via subscripts, e.g., h(k)

i refers to parameter belonging
to device i. We write a graph G with a set of nodes (devices)
V and a set of edges (links) E as G = (V, E).

We denote vectors with lowercase boldface, e.g., x, and
matrices with uppercase boldface, e.g., X. All vectors x 2
Rd⇥1 are column vectors, except in certain cases where
average vectors x̄ 2 R1⇥d and optimal vectors w?

2 R1⇥d

are row vectors. hx,x0
i and hX,X0

i denote the inner product
of two vectors x,x0 of equal dimensions and the Frobenius
inner product of two matrices X,X0 of equal dimensions,
respectively. Moreover, kxk and kXk denote the 2-norm of the
vector x, and the Frobenius norm of the matrix X, respectively.
The spectral norm of the matrix X is written as ⇢(X).

Note that for brevity, all mathematical proofs have been
deferred to the Appendices at the end of the manuscript.

II. METHODOLOGY AND ALGORITHM

In this section, we develop our methodology for decentral-
ized FL with event-triggered communications. After discussing
preliminaries of the model in FL (Sec. II-A), we present
our cooperative consensus algorithm for distributed model
aggregations (Sec. II-B). We then present the events in our
event-triggered algorithm as iterative relations, which enables
our theoretical analysis (Sec. II-C).

A. Device and Learning Model
We consider a network of m devices/nodes, collected by set

M, m = |M|, which are engaged in distributed training of a
machine model. Under the FL framework, each device i 2M

trains a local model wi using its own generated dataset Di.
Each data point ⇠ , (x⇠, y⇠) 2 Di consists of a feature vector
x⇠ and a target label y⇠. The performance of the local model
is measured via the local loss Fi(.) as

Fi(w) =
X

⇠2Di

`⇠ (w) , (1)

where `⇠(w) is the loss of the model at the data point ⇠ (e.g.,
squared prediction error) under parameter realization w 2 Rn,
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with n denoting the dimension of the target model. The global
loss is defined in terms of these local losses as

F (w) =
1

m

X

i2M
Fi(w). (2)

The goal of the training process is to find an optimal
parameter vector w? that minimizes the global loss function,
that is, w? = argminw2Rn F (w). In the distributed setting,
we desire w1 = · · · = wm = w⇤ at the end of the
training process, which requires a synchronization mechanism.
In conventional FL, as discussed in Sec. I, synchronization
is conducted periodically by a central coordinator globally
aggregating the local models. However, in this work, we are
interested in a fully decentralized setting where no such central
node exists. Thus, in addition to using optimization techniques
to minimize local loss functions, we must develop a technique
to reach consensus over the parameters in a distributed manner.

To achieve this, we propose Event-triggered Feder-
ated learning with Heterogeneous Communication thresholds
(EF-HC). In EF-HC, devices conduct D2D communications
during the model training period to synchronize their locally
trained models and avoid overfitting to their local datasets. The
overall EF-HC algorithm executed by each device is given in
Alg. 1. Two vectors of model parameters are kept on each
device i: (i) its instantaneous main model parameters wi, and
(ii) the auxiliary model parameters bwi, which is the outdated
version of its main parameters that had been broadcast to
neighbors. Decentralized ML is conducted over the (time-
varying, undirected) device graph through a sequence of four
events detailed in Sec. II-B. Although in our distributed setup
there is no physical notion of a global iteration, we introduce
the universal iteration variable k for analysis purposes [51].
In other words, event-triggering in our paper implies that
not every iteration k includes full participation of devices
in inter-device communications, which is different from how
synchronous DFL works [15], [16], [17] model iterate updates.

B. Network Model and Event-Triggering
We consider the physical network graph G

(k) = (M, E(k))
among devices, where E

(k) is the set of edges available at iter-
ation k in the underlying time-varying communication graph.
We assume that link availability varies over time according
to the underlying device-to-device communication protocol
in place [10]. In each iteration, some of the edges are used
for the transmission/reception of model parameters between
devices. To represent this process, we define the information
flow graph G

0(k) = (M, E 0(k)), which is a subgraph of G
(k).

E
0(k) only contains the links in E

(k) that are being used at
iteration k to exchange parameters. Based on this, we denote
the neighbors of device i in iteration k as N

(k)
i = {j :

(i, j) 2 E
(k) , j 2 M}, with node degree d(k)i = |N

(k)
i |.

We also denote neighbors of i that communicate directly with
it in iteration k as N

0(k)
i = {j : (i, j) 2 E

0(k) , j 2 M}.
Additionally, the aggregation weights associated with the link
(i, j) 2 E

(k) and (i, j) 2 E
0(k) are defined as �(k)

ij and p(k)ij ,
respectively, with p(k)ij = �(k)

ij if the link (i, j) is used for
aggregation at iteration k, and p(k)ij = 0 otherwise.

Algorithm 1 EF-HC procedure for device i.
Input: K
Initialize k = 0, w(0)

i = bw(0)
i

1: while k  K do
.Event 1. Neighbor Connection Event

2: if device j is connected to device i then
3: device i appends device j to its list of neighbors
4: device i sends w(k)

i and d(k)i to device j
5: device i receives w(k)

j and d(k)j from device j
6: else if device j is disconnected from device i then
7: device i removes device j from its list of neighbors

.Event 2. Broadcast Event
8: if (1/n)

1
2 kw(k)

i � bw(k)
i k2 � r⇢i�(k) then

9: device i broadcasts w(k)
i , d(k)i to all neighbors

j 2 N
(k)
i

10: device i receives w(k)
j , d(k)j from all neighbors

j 2 N
(k)
i

11: bw(k+1)
i = w(k)

i
.Event 3. Aggregation Event

12: if Parameters w(k)
j , d(k)j received from neighbor j then

13: w(k+1)
i = w(k)

i +
P

j2N 0(k)
i

�(k)
ij (w(k)

j �w(k)
i )

.Event 4. Gradient Descent Event
14: device i conducts SGD iteration w(k+1)

i = w(k)
i �

↵(k)g(k)
i

15: k  k + 1

In EF-HC, there are four types of events:
Event 1: Neighbor connection
The first event (lines 2-7 of Alg. 1) is triggered at device

i if new devices connect to it or existing devices disconnect
from it due to the time-varying nature of the graph. Model
parameters w(k)

i and the degree of the device i at that time
d(k)i are exchanged with this new neighbor. Consequently, this
results in an aggregation event (Event 3) on both devices.

Event 2: Broadcast
If the normalized difference between w(k)

i and bw(k)
i at

device i is greater than a threshold value r⇢i�(k), i.e.,

(1/n)
1
2 kw(k)

i � bw(k)
i k2 � r⇢i�

(k), (3)

then a broadcast event is triggered at that device (lines 8-
11 of Alg. 1). In other words, communication at a device is
triggered once the instantaneous local model is sufficiently
different from the outdated one. When this event triggers,
device i broadcasts w(k)

i and its degree d(k)i to all its neighbors
and receives the same information from them. Note that if
a neighbor device j is not available for communication with
device i at a certain iteration k, then j would not be considered
inside the neighbor set of i in that iteration, i.e., N (k)

i .
The threshold r⇢i�(k) is treated as personal-

ized/heterogeneous across devices i 2 M, to assess whether
the gain from a consensus iteration on the instantaneous main
models at the devices will be worth the induced utilization
of network resources. Specifically, (i) r > 0 is a scaling
hyperparameter value; (ii) �(k) > 0 is a decaying factor
that accounts for smaller expected variations in local models
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over time, and limk!1 �(k) = 0; and (iii) ⇢i quantifies the
availability of resources of device i. See [1] for some remarks
on (1/n)

1
2 , r and �(k).

The development of (1/n)
1
2 kw(k)

i � bw(k)
i k2 and the con-

dition r⇢i�(k) is one of our contributions relative to existing
event-triggered schemes [35]. For example, in a bandwidth-
limited environment, the transmission delay of the model
transfer will be inversely proportional to the bandwidth among
two devices. Thus, to decrease the latency of model training,
⇢i can be defined inversely proportional to the bandwidth,
promoting a lower frequency of communication on devices
with less available bandwidth. In EF-HC, we set ⇢i / 1

bi
,

where bi is the average bandwidth on the outgoing links of
the device i.

Event 3: Aggregation
Following a broadcast event (Event 2) or a neighbor con-

nection event (Event 1) on device i, an aggregation event
(lines 12-13 of Alg. 1) is triggered on device i and
all its neighbors. This aggregation is carried out through
a distributed weighted averaging consensus method [25]
as

w(k+1)
i = w(k)

i +
X

j2N 0(k)
i

�(k)
ij (w(k)

j �w(k)
i ), (4)

where �(k)
ij is the aggregation weight that device i assigns

to parameters received from device j in iteration k. The
aggregation weights {�(k)

ij } for graph G
(k) can be selected

based on the degree of neighbors, as will be discussed
in Sec. III-A.

Event 4: Gradient descent
Each device i conducts stochastic gradient descent (SGD)

iterations for local model training (lines 14-15 of Alg. 1).
Formally, device i obtains w(k+1)

i = w(k)
i � ↵(k)g(k)

i , where
↵(k) is the step size, and g(k)

i is the stochastic gradient approx-
imation defined as g(k)

i = (1/|S(k)
i |)

P
⇠2S(k)

i
r`⇠(w

(k)
i ).

Here, S
(k)
i denotes the set of data points (mini-batch) used

to compute the gradient, chosen uniformly at random from
the local dataset. In our analysis, we define

g(k)
i = rFi(w

(k)
i ) + ✏(k)i , (5)

in which rFi(w
(k)
i ) is the gradient of Fi at w(k)

i , and ✏(k)i is
the error due to the stochastic gradient approximation.

C. Iterate Relations

We now express the model updates conducted in Alg. 1 in
an iterative format, which will be useful in our subsequent
theoretical analysis. Rewriting the event-based updates of
Alg. 1 into one line of iterative model update, we get

w(k+1)
i = w(k)

i +
X

j2N 0(k)
i

�(k)
ij (w(k)

j �w(k)
i )v(k)ij � ↵

(k)g(k)
i , (6)

where v(k)ij indicates whether device i aggregates its model
with device j at iteration k. Its value depends on v(k)i , which

is an indicator of a broadcast event at device i at iteration k
defined as

v(k)i =

(
1 (1/n)

1
2

���w(k)
i � bw(k)

i

���
2
> r⇢i�(k)

0 o.w.
,

v(k)ij =

(
max {v(k)i , v(k)j } j 2 N

(k)
i

0 o.w.
, (7)

with ⇢i = 1/bi. Also, note that the stale model parameters
ŵ(k)

i Rearranging the relations in (6), we have

w(k+1)
i =

0

@1�
mX

j=1

�(k)
ij v(k)ij

1

Aw(k)
i +

mX

j=1

�(k)
ij v(k)ij w(k)

j

� ↵(k)g(k)
i =

mX

j=1

p(k)ij w(k)
j � ↵(k)g(k)

i , (8)

where p(k)ij is the transition weight that device i uses to
aggregate device j’s parameters at iteration k:

p(k)ij =

8
><

>:

�(k)
ij v(k)ij i 6= j

1�
mX

j=1

�(k)
ij v(k)ij i = j

. (9)

Note that the aggregation and transition weights, i.e., �(k)
ij

and p(k)ij , distinguish the two sources of time variation in
the information flow graph of our method: (i) the underlying
physical network being time-varying, resulting in varying
number of neighbors for each device at each iteration, and
(ii) the event-triggering mechanism, adding another overlay
time-varying component on top of the network graph.

Next, we collect the parameter vectors of all devices that
were previously introduced in matrix form as follows: W(k) =
[w(k)

1 . . . w(k)
m ]T , G(k) = [g(k)

1 . . . g(k)
m ]T , P(k) =

[p(k)ij ]1i,jm. Now, we transform the recursive update rules
of (8) into matrix form to obtain the following relationship

W(k+1) = P(k)W(k)
� ↵(k)G(k). (10)

The recursive expression in (10) has been investigated before
[15] and [17]. However, the existing literature on decentralized
stochastic gradient descent does not account for data hetero-
geneity, and this motivates us to use different analytical tools
to derive convergence bounds.

As a conclusion to this section on iterate relations, we
introduce two quantities, which will be frequently used in
our analysis. We first derive an explicit relationship of (10).
Starting from iteration s, where s  k, we have

W(k+1)= P(k:s)W(s)
�

kX

r=s+1

↵(r�1)P(k:r)G(r�1)
� ↵(k)G(k),

P(k:s) = P(k)P(k�1)
· · ·P(s+1)P(s). (11)

Second, to analyze the consensus of local models, we define
the average model as w̄(k) = (1/m)

Pm
i=1 w

(k)
i . The recursive

relation for w̄(k) using (8) and the stochasticity of P(k) is

w̄(k+1) = w̄(k)
� (↵(k)/m)

mX

i=1

g(k)
i . (12)
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Also, an explicit relationship between iteration w̄(k+1) and
w̄(s), where s  k, easily follows from (12) as

w̄(k+1) = w̄(s)
� (1/m)

kX

r=s

↵(r)
mX

i=1

g(r)
i . (13)

III. CONVERGENCE ANALYSIS

In this section, we first detail the assumptions used in our
paper (Sec. III-A), and then provide the main connectivity
result of our event-trigerred approach (Sec. III-B). Finally,
we present the lemmas which are used to prove our main
Theorems (Sec. III-C), and then present the main theoretical
contributions themselves (Sec. III-D).

A. Assumptions
Assumption 1: [Transition weights] Let {p(k)ij } be the set

of aggregation weights in the information graph G
0(k). The

following conditions must be met:
(a) (Non-negative weights) 8i 2M, we have

(i) p(k)ii > 0 and p(k)ij > 0 for all k � 0 and all
neighboring devices j 2 N

0(k)
i .

(ii) p(k)ij = 0, if j /2 N
0(k)
i .

(b) (Doubly-stochastic weights) The rows and columns
of matrix P(k) = [p(k)ij ] are both stochastic, i.e.,
Pm

j=1 p
(k)
ij = 1, 8i, and

Pm
i=1 p

(k)
ij = 1, 8j.

(c) (Symmetric weights) p(k)ij = p(k)ji , 8i, k and p(k)ii =

1�
P

j 6=i p
(k)
ij .

Taking into account the conditions mentioned in Assump-
tion 1, and the definition of p(k)ij in (9), a choice of parameters
�(k)
ij that satisfy these assumptions are as follows

�(k)
ij = min

(
1

1 + d(k)i

,
1

1 + d(k)j

)
, (14)

which is inspired by the Metropolis-Hastings algorithm [24].
Note that p(k)ij also depends on v(k)ij , which was defined in (7).

Assumption 2: [Smoothness, Strong convexity, and Data
heterogeneity] The local objective function at each device
i 2M, i.e., Fi, satisfies the following

(a) Li-Lipschitz continuous gradients:
krFi(w)�rFi(w0)k  Li kw �w0

k,
(b) µi-strong convexity: hrFi(w)�rFi(w0),w �w0

i �

µikw �w0
k
2,

(c) The data heterogeneity across the devices is measured
via �i > 0 as krFi(w)�rF (w)k  �i,

8(w0,w) 2 Rn
⇥Rn, where we also define L = maxi2M Li,

µ = mini2M µi and � = maxi2M �i.
Note that the global objective function F (w), which is a

convex combination of local objective functions, will also be
strongly convex, thus having a unique minimizer, denoted by
w? = argminw2Rn F (w). Additionally, following Assump-
tions 2-(a) and 2-(b), we have µ  µi  Li  L, for
all i 2 M. Finally, note that the assumption about data
heterogeneity (Assumption 2-(c)) was inspired by [6] and [47].

Works like [15] and [17] make a much stricter assump-
tion than the statistical heterogeneity assumption we make

in our paper: the bounded (sub)-gradients assumption, i.e.,
krFi(w)k  Li. The reason our Assumption 2-(c) is less
strict is that by letting w = w?, we get that local gradients
should be bounded only at the optimal point, contrary to those
other papers which make the assumption that they should
be bounded over the full space. The implication is that the
data heterogeneity assumption in our paper only requires the
difference between the global gradient at a certain point and
the local gradient at that same point to be upper bounded by
a constant scalar. This means the norm of local and global
gradients can have arbitrarily large values in our paper (unlike
the bounded gradients assumption of [15] and [17]), so long
as their difference is bounded for every point in Rn.

Assumption 3: [Gradient approximation errors] We make the
following assumptions on the gradient approximation errors
✏(k)i for all i 2M and all k � 0:

(a) Zero mean, i.e., E[✏(k)i ] = 0.
(b) Bounded mean square, i.e., there is a scalar �2

i such that
E[k✏(k)i k

2

2]  �
2
i  �

2, where � = maxi2M �i.
(c) Each random vector ✏(k)i is independent from ✏(k)j for

j 6= i.
Assumption 4: [Step sizes] All devices use the same step

size for model training. We study the behavior of our algorithm
under two policies for the step size:

(a) Constant step size, having ↵(k) = ↵ where ↵ > 0.
(b) Diminishing step size, in which the step size decays over

time, satisfying the following conditions

lim
k!1

↵(k) = 0,
1X

k=0

↵(k) =1,
1X

k=0

⇣
↵(k)

⌘2
<1.

In particular, setting ↵(k) = ↵(0)/(1 + k/⌘)✓ meets the
criteria of Assumption 4-(b) for ↵(0), ⌘ > 0, and ✓ 2 (0.5, 1].

The previous assumptions are common in the literature [6],
[11]. In the next assumption, we introduce a relaxed version
of graph connectivity requirements relative to existing work
in distributed learning, which underscores the difference of
our decentralized event-triggered FL method compared with
traditional distributed optimization algorithms.

Assumption 5: [Network graph connectivity]
The underlying communication graph satisfies the following

properties:
(a) There exists an integer B1 � 1 such that the graph

union of the physical network graph G
(k) = (M, E(k))

from any arbitrary iteration k to k + B1 � 1, i.e.,
G
(k:k+B1�1) = (M,[B1�1

s=0 E
(k+s)), is connected for

any k � 0.
(b) There exists an integer B2 � 1 such that for every device

i, triggering conditions for the broadcast event occur at
least once every B2 consecutive iterations 8k � 0. This
is equivalent to the following condition:

9B2 � 1, 8i : max {v(k)i , v(k+1)
i , · · · , v(k+B2�1)

i } = 1.

Existing works in the literature either assume (i) a static
physical graph (B1 = 1) with sporadic communications [13],
or (ii) a time-varying physical graph with communications at
every round (B2 = 1) [15]. Our paper is the first to combine
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these two sources of time-variation (physical graph and the
communication graph) for event-triggered decentralized learn-
ing methods, and provide a generalized theoretical analysis
when neither of them are static. We will use Assumption 5 in
the proof of Proposition 1 to analyze the connectivity behavior
of information flow graphs, i.e., G0(k).

B. Main Connectivity Result
in Proposition 1 below, we provide a connectivity guar-

antee of the information flow graph in the presence of
(i) the underlying physical network connecting the agents
being time-varying and (ii) the event-triggering communica-
tion mechanism adding another layer of temporal variation for
inter-device communication, i.e., as in Assumption 5. In prior
works like [52], only the underlying physical graph is time-
varying, and consensus operations are carried out whenever
possible, i.e., at every iteration. As a result, obtaining an
information graph connectivity guarantee has not traditionally
been a key challenge. In contrast, in our paper, consensus
operations do not occur at every iteration due to the unique
heterogeneity challenges in decentralized federated learning
discussed in Sec. I, especially due to inter-device links having
varying bandwidth availability. Thus, even if the underlying
physical graph is connected, more elaborate considerations are
required to establish connectivity results on the information
flow graphs.

Additionally, note that papers like [35], which focus on
event-triggered methods, consider a simplified static under-
lying physical graph. Thus, the analysis in both [35] and [52]
contains only one of the two connectivity criteria we consider
in our analysis.

Proposition 1: Let Assumption 5 hold. Under the EF-HC

algorithm (Alg. 1), the information flow graph G
0(k) is

B-connected, i.e., G0(k:k+B�1) = (M,[B�1
s=0 E

0(k+s)) is con-
nected for any k � 0, where B = (l̃ + 2)B1 and l̃ are
determined via l̃B1  B2  (l̃ + 1)B1 � 1. Note that
B1 and B2 are, respectively, the connectivity bound of the
physical network graph and the bound for the occurrence of
communication events of Assumption 5-(a) and 5-(b).

Proof: See Appendix A in the supplementary material. The
high-level idea behind the proof is (i) carefully keeping track
of all devices that a certain agent has communicated with at
every iteration, and then (ii) finding an upper bound on the
number of iterations until all devices have communicated with
at least one of their neighbors. ⌅

It is important to note that we use the B parameter intro-
duced in Proposition 1 only for convergence analysis. It can
have an arbitrarily large value. Therefore, we are not making
strict connectivity assumptions on the underlying graph.2

C. Intermediate Lemmas for Convergence
In this section, we provide some lemmas which are useful

in the proofs of Theorems 1 and 2 of Sec. III-D. These lemmas
also provide additional characteristics of our methodology.

2If our algorithms required the devices to exchange parameters with their
neighbors upon disconnection, we would have B = max {B1, B2}.

Our first lemma gives a bound on the consensus error over
the course of multiple iterations, i.e., kP(k:s)W(k)

�1mw̄(k)
k,

using the spectral norm of P(k:s)
� (1/m)1m1T

m, which we
show that depending on iteration s, this bound can be made
tighter.

Lemma 1: Let Assumption 1 hold, and let B be the
connectivity bound of Proposition 1. Then the following is
true

(a) From iteration k to k+B� r, where r = 2, · · · , B, we
have ���P(k+B�r:k)W(k)

� 1mw̄(k)
���

 ⇢(k+B�r:k)
���W(k)

� 1mw̄(k)
���



���W(k)
� 1mw̄(k)

��� .

(b) From iteration k to k +B � 1, we have the following
���P(k+B�1:k)W(k)

� 1mw̄(k)
���

 ⇢(k+B�1:k)
���W(k)

� 1mw̄(k)
���

 ⇢
���W(k)

� 1mw̄(k)
��� ,

in which ⇢(k+B�r:k) = ⇢
�
P(k+B�r:k)

�
1
m1m1T

m

�
, ⇢ =

supk=0,1,··· ⇢
�
P(k+B�1:k)

�
1
m1m1T

m

�
, and 0 < ⇢ < 1.

Proof: Since the graph is time-varying, we can only
guarantee the connectivity of P(k+B�1:k). Therefore, 0 <
⇢
�
P(k+B�r:k)

�
1
m1m1T

m

�
 1 for all r = 2, · · · , B, but

0 < ⇢ < 1. The rest of the proof follows from Sec. II-B
of [53]. ⌅

Lemma 1 is essential in the analysis of our method and
helps us to prove the convergence under time-varying com-
munication graphs with an arbitrary connectivity bound.

Definition 1: We define the following gradient matrices:
r

(k) = [rF1(w
(k)
1 ), · · · ,rFm(w(k)

m )]T , r̄(k) = 1
m1T

mr
(k)

and rF (k) = [rF (w(k)
1 ), · · · ,rF (w(k)

m )]T . Furthermore,
note that rF (w̄(k)) 2 R1⇥n, is the gradient of global
objective function evaluated at w̄(k).

Using the previous definition, we next provide two inequal-
ities which help us bound the expressions involving the
gradients in any iteration k, via the values of the model
parameters, scaled by a constant factor.

Lemma 2: Under Assumptions 2-(a) and 2-(b), the following
holds for all k � 0:

���rF
⇣
w̄(k)

⌘
� r̄

(k)
��� 

L
p
m

���W(k)
� 1mw̄(k)

��� .

Also, if ↵(k) < 2
µ+L , then

���w̄(k)
�↵(k)

rF
⇣
w̄(k)

⌘
�w?

��� 
⇣
1� µ↵(k)

⌘���w̄(k)
�w?

��� .

Proof: Follows from Lemmas 1-(c) and 10 of [53]. ⌅
Next, we obtain the following bounds for the average of

gradient approximation errors, which are used to obtain the
results of several subsequent lemmas.

Lemma 3: Let Assumption 3 hold. Provided the definitions

✏̄(k) = 1
m

Pm
i=1 ✏

(k)
i and ✏(k) =

h
✏(k)1 , · · · , ✏(k)m

iT
, we have

E
���✏̄(k)

���
2
�

�2

m
, E

���✏(k) � 1m✏̄
(k)
���
2
�
 m�2.
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Proof: The first inequality follows from Lemma 2 of [21].
For the proof of the second bound, see Appendix C in the
supplementary material. ⌅

Traditional analysis of distributed gradient descent involves
making the assumption of bounded gradient (see [15], [20]).
However, since we have replaced such an assumption with two
different but more general assumptions, namely smoothness
and data heterogeneity (Assumptions 2-(a) and 2-(c)), our
analysis is different compared to the current literature. Inspired
by the gradient tracking literature in distributed learning [21],
[53], in the following lemma, we look at the behavior of
kW(k+1)

� 1mw̄(k+1)
k
2

and kw̄(k+1)
�w?

k
2
, and bound

them simultaneously via a system of inequalities.
Lemma 4: Assumptions 2 and 3 yield the following bounds:

(a) Consensus error on local gradients:
���r(k)

� 1mr̄
(k)
���
2
 2m�2+8L2

���W(k)
� 1mw̄(k)

���
2
.

(b) Optimization error, assuming ↵(k) < 2
µ+L :

E
���w̄(k+1)

�w?
���
2
�
 a(k)11 E

���w̄(k)
�w?

���
2
�

+ a(k)12 E
���W(k)

� 1mw̄(k)
���
2
�
+ c(k)1 ,

where a(k)11 = 1 � µ↵(k), a(k)12 = (1 +
µ↵(k))↵(k)L2/(µm), c(k)1 = (↵(k))2�2/m.

(c) Let Assumption 1 also hold. The Expected consensus
error of model weights is bounded as:

E
���W(k+1)

� 1mw̄(k+1)
���
2
�


a(k)22 E
���W(k)

� 1mw̄(k)
���
2
�
+ c(k)2 ,

where we define a(k)21 = 0, and obtain a(k)22 =

(1 + 2
p
2↵(k)L)

2
and c(k)2 = m(↵(k))

2
(2(1 +

2
p
2↵(k)L)�2/(2

p
2↵(k)L) + �2).

Proof: See Appendix D in the supplementary material. ⌅
We make two observations from the above lemma. First,

consider the term 2m�2 in Lemma 4-(a). This term reveals
that even if consensus is reached among the devices, i.e.,
kW(k)

� 1mw̄(k)
k
2
= 0, the local gradients would always

be different from each other due to the data heterogeneity
assumption of 2-(c). Second, the system of inequalities is
semi-coupled, as we can bound kW(k+1)

� 1mw̄(k)
k
2

at each
iteration only by its own value at the previous iterations.

Next, we give the the following definition of the parameters
to be analyzed:

Definition 2: The optimization error, i.e., the distance
between the average model and the optimal solution, is defined
as kw̄(k)

�w?
k
2 at iteration k. Also, the consensus error, i.e.,

the distance between model parameters of all devices i 2M

with the average model, is defined as kW(k)
� 1mw̄(k)

k
2 at

iteration k. We also define the following vector as the expected
value of these error terms:

⌅(k) =

2

4
E
h��w̄(k)

�w?
��2
i

E
h��W(k)

� 1mw̄(k)
��2
i

3

5 . (15)

Using this definition, we write the iterate relations defined in
parts (c)&(b) of Lemma 4 as a system of recursive inequalities:

⌅(k+1)
 A(k)⌅(k) +C(k), (16)

in which A(k) = [a(k)ij ]
1i,j2

and C(k) = [c(k)1 , c(k)2 ]
T

, and

the a(k)ij and c(k)i values were defined in Lemmas 4-(b) and
4-(c) for 1  i, j  2.

Next, we derive an explicit relation for the system of
inequalities of (16), starting from an arbitrary iteration s as

⌅(k+1)
 A(k:s)⌅(s) +

kX

r=s+1

A(k:r)C(r�1) +C(k), (17)

in which A(k:s) = A(k)
· · ·A(s). Since a(k)21 = 0, we can

easily compute the following entries of A(k:s) which will be
frequently used in our analysis. We have

a(k:s)11 = a(k)11 · · · a(s)11 , a
(k:s)
21 = 0, a(k:s)22 = a(k)22 . · · · a(s)22 . (18)

As mentioned before Lemma 4, similar analysis to our paper
is common in the gradient tracking literature. But current
research has only shown convergence guarantees over static
communication graphs. Next, we move on to an important
lemma of our paper, which is the key to proving the conver-
gence for time-varying graphs with arbitrary connectivity B.

Lemma 5: Let Assumptions 1-3 hold. Then, using Lemma 4,
we can get the following inequality on the expected consensus
error of the model weights at iteration k +B for any k � 0:

E
���W(k+B)

� 1mw̄(k+B)
���
2
�

�(k)22 E
���W(k)

� 1mw̄(k)
���
2
�
+  (k)

2 ,

in which we have defined �(k)21 = 0, and obtained
�(k)22 = 1+⇢2

2 + 16 BL2

1�⇢2

Pk+B
r=k+1 (↵

(r�1))
2
a(r�2:k)
22 and

 (k)
2 = 2B

P(k+1)B
r=kB+1 (↵

(r�1))
2
n

2
1�⇢2

⇥
m�2 + 4L2

⇣Pr�2
l=kB+1 a

(r�2:l)
22 c(l�1)

2 + c(r�2)
2

⌘i
+m�2

o
. Further

note that 0 < ⇢(k+B�1:k)
 ⇢ < 1 for any k � 0, and B is

the connectivity bound of Proposition 1.
Proof: See Appendix E in the supplementary material. ⌅
We next derive a system of inequalities for the iterate

relations of Lemmas 4-(c) and 4-(b), but instead of writing
a recursive relation between iteration k + 1 and k as in (16),
we use Lemma 5 to obtain a recursive relation between k+B
and k as

⌅((k+1)B)
 �(k)⌅(kB) + (k), (19)

in which �(k) = [�(k)ij ]
1i,j2

, and  (k) = [ (k)
1 , (k)

2 ]
T

.

Next, note that while �(k)21 , �(k)22 and  (k)
2 come from

Lemma 5, the remaining entries of these matrices are obtained
as

�(k)11 = a((k+1)B�1:kB)
11 , �(k)12 = a((k+1)B�1:kB)

12 , (20)

 (k)
1 =

(k+1)B�1X

r=kB+1

⇣
↵(r�1)

⌘2
"
a((k+1)B�1:r)
11

�2

m
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+ 2ma((k+1)B�1:r)
12

 
1 + 2

p
2↵(r�1)L

2
p
2↵(r�1)L

�2 + 2�2

!#

+

�
↵((k+1)B�1)

�2
�2

m
. (21)

Comparing (17) and (19), note that we have
used �(k) = A((k+1)B�1:kB) and  (k) =P(k+1)B�1

r=kB+1 A((k+1)B�1:r)C(r�1) + C((k+1)B�1), except
for two modifications, where we have replaced �(k)22 and  (k)

2

with the values derived in Lemma 5.
Next, we derive an explicit equation for the system of

inequalities of (19), starting from an arbitrary iteration s, as
follows

⌅((k+1)B)
 �(k:s)⌅(sB) +

kX

r=s+1

�(k:r) (r�1) + (k),

(22)
in which �(k:s) = �(k)

· · ·�(s). Since �(k)21 = 0 (see
Lemma 5), we can easily compute the following entries of
�(k:s) that will be used in our analysis

�(k:s)11 = �(k)11 · · ·�(s)11 ,�
(k:s)
21 = 0, �(k:s)22 = �(k)22 . · · ·�(s)22 .

(23)
In the subsequent proposition, we build on the results

of (22), and obtain the conditions under which the spectral
norm of �(k) would be less than one. Then, we use that to
bound the system of inequalities of (22).

Proposition 2: Let Assumptions 1-3 and 5 hold, and a non-
increasing step size be used such that ↵(k+1)

 ↵(k) for all
k � 0.3 Using the definitions of �(k:s) and  (k:s) in (22),
if the step size satisfies ↵(0)

 (1 � ⇢2)/(8BL(1 + �1)
B�1)

where �1 = (1 � ⇢2)/(2
p
2B), then ⇢(�(k)) < 1 and the

following bound holds

⌅(kB)
 O

⇣
�(k�1:K)
11

⌘
O

⇣
�(K�1:0)
22

⌘
⌅(0)

+O

⇣
�(k�1:K)
11

⌘K�1X

r=1

O

⇣
�(K�1:r)
22

⌘
 (r�1)

+
k�1X

r=K

O

⇣
�(k�1:r)
11

⌘
 (r�1) + (k�1), (24)

where iteration K is determined by �(k)11 < �(k)22 for all k =
0, · · · ,K � 1, and �(k)11 � �

(k)
22 for k � K.

Furthermore, the matrix  (k) can be bounded as

 (k)


⇣
↵(kB)

⌘2
B

"
�2

m + ⌫(kB)

2mB
n
2 �2+2µ↵(kB)⌫(kB)

1�⇢2 + �2
o
#
,

(25)
where ⌫(k) = (2/µ)(B � 1)L2(1 + �1)

2(B�1)((1 +
�1)�2/(

p
2L) + ↵(k)�2).

Proof: See Appendix F in the supplementary material. ⌅
Proposition 2 lays out the constraints on the step size

that have to be satisfied in order for the spectral radius of
the state transition matrix, i.e., �(k) to be less than 1. Our
novel analytical approach provided in Appendix F (see the

3This satisfies the step size policies of both Assumption 4-(a) and 4-(b).

supplementary material) helps us prove that the spectral radius
of the aforementioned matrix is less than 1 despite looking at
its product over B iterations. Furthermore, it implies that if the
spectral norm of �(k) satisfies ⇢(�(k)) = max {�(k)11 ,�(k)22 } <
1, then we can bound the system of inequalities in terms of
the spectral norm. Moreover, the matrix �(k�1:0) is separated
into the product of two terms �(k�1:K)�(K�1:0), and this
is done because we have ⇢(�(K�1:0)) = �(K�1:0)

22 and
⇢(�(k�1:K�1)) = �(k�1:K�1)

11 (see Appendix F (the supple-
mentary material) for more discussion). This lemma is used
directly to prove Theorems 1 and 2.

Next, we analyze the dependence of the constraint on ↵(0)

from Proposition 2 on B, which is the connectivity parameter
of Proposition 1. We have

↵(0)
 O

⇣
1/

h
B(1 + �1)

B�1
i⌘

= O

✓
1/


B
⇣
1 + (1� ⇢2)/(2

p
2B)

⌘B�1
�◆

= O

⇣
1/

h
B(1 + 1/B)B

i⌘
= O(1/B).

We can see that, as expected, the constraint on ↵(0) is inversely
proportional to B, meaning that more frequent communica-
tions over a well-connected graph (lower B) allows us to
choose larger step sizes.

D. Main Convergence Results
We present our most central results, which obtain the

convergence characteristics of EF-HC under the step size
policies of Assumption 4 in Theorems 1 and 2. In Theo-
rem 2, we reveal that using the diminishing step size of
Assumption 4-(b), (a) all devices reach consensus asymptot-
ically, i.e., each device i’s model w(k)

i converges to w̄(k) =
(1/m)

Pm
i=1 w

(k)
i as k ! 1, and (b) the final model across

the devices (i.e., w̄(k), k ! 1) minimizes the global loss.
Using the constant step size of assumption 4-(a), we also
show in Theorem 1 that the same results for consensus
and optimization hold but with an optimality gap which is
proportional to the step size.

We further show in Theorem 2 that the convergence
rate with a diminishing step size is O(ln k/

p
k), which

is a desirable property for decentralized gradient descent
algorithms [47].

Theorem 1: Let Assumptions 1-3 and 5 hold, and the
constant step size policy of Assumption 4-(a) be used. Since
using a constant step size will make �(k) and  (k) of (22)
time-invariant, we denote these matrices as � and  . If the
step size ↵ satisfies ↵  1�⇢2

8BL(1+�1)
B�1 where �1 = 1�⇢2

2
p
2B

,
the following bound holds:

⌅(kB)
 O

⇣
⇢(�)k

⌘
⌅(0) +

 
k�1X

r=1

O

⇣
⇢(�)k�r�1

⌘
+ 1

!
 .

(26)
Letting k !1, we will get

lim sup
k!1

⌅(kB)


↵2B

O(1� ⇢(�))

"
�2

m + ⌫

2mB
n
2 �2+2µ↵⌫

1�⇢2 + �2
o
#
,

(27)
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where ⌫ = (2/µ)(B � 1)L2(1 + �1)
2(B�1)((1 +

�1)�2/(
p
2L) + ↵�2).

Proof: See Appendix G in the supplementary material. ⌅
Discussion on Theorem 1. This theorem indicates that,

using a constant step size, linear convergence is achieved due
to the term O(⇢(�)k) in Eq. (26). However, we observe in
Eq. (27) that using a constant step size will result in an
asymptotic optimality gap of (↵2B/O(1� ⇢(�)))[ 1, 2]

T .
This gap is proportional to the step size ↵ and the connectivity
bound of the information flow graph B (see Proposition 1).
Thus, choosing a smaller ↵ and employing a strategy that
conducts communication rounds more frequently (decreasing
B), results in the optimality gap getting smaller. Additionally,
note that the entries of the optimality gap vector in Eq. (27),
i.e.,  1 and  2, depend on the data heterogeneity bound �
(formalized in Assumption 2-(c)) through ⌫, and the gradient
approximation errors � (formalized in Assumption 3-(b)). As
expected, we see that a higher � results in a higher value for
the upper bound. This also implies that in a federated learning
setup where data distributions among devices are non-IID –
that is, � 6= 0 – the optimality gap cannot be made zero when
a constant step size is employed, even if full batch sizes are
used for the gradient updates, i.e., � = 0.

Before presenting Theorem 2, we provide a supplementary
lemma as a better alternative to Lemma 4 in [54]. We will
later use this lemma in the proof of Theorem 2 in Appendix
H (see the supplementary material). This key mathematical
result helps us obtain exact convergence rates on last iterates
in Theorem 2, when the diminishing step size policy of
Assumption 4-(b) is used.

Lemma 6: Let {⇣r}
1
r=0 be a scalar sequence where 0 <

⇣r  1, 8r � 0. For any p � 1, we have

kY

r=s

(1� ⇣r)
p


1

p
Pk

r=s ⇣r
.

Proof: See Appendix B in the supplementary material. ⌅
Theorem 2: Let Assumptions 1-3 and 5 hold, and the

diminishing step size policy of Assumption 4-(b) be used with
↵(k) = ↵(0)

p
1+k/⌘

. If the step size satisfies

↵(0)


1� ⇢2

4
p
2
p
5� 3⇢2BL(1 + �1)

B�1 ,

where �1 = 1�⇢2

2
p
2B

, the following bound holds:

⌅(kB)


1

2µ↵(0)
O

✓
1
p
k

◆✓
3 + ⇢2

4

◆K

⌅(0)

+

(
K � 1

2µ↵(0)
O

✓
1
p
k

◆✓
1 + ⇢2

2

◆
+
↵(0)

2
O

✓
ln k
p
k

◆

+ (↵(0))
2
O

✓
1

k

◆)
B

"
b 1

b 2

#
, (28)

in which we have b 1 = �2/m + ⌫(0),
b 2 = 2mB

�
2(�2 + 2µ↵(0)⌫(0))/(1� ⇢2) + �2

 
, and ⌫(k)=

(2/µ) (B � 1)L2(1+�1)
2(B�1)�(1+�1)�2/(

p
2L)+↵(k)�2

�
.

Letting k !1, we will get

lim sup
k!1

⌅(kB) = 0. (29)

Proof: See Appendix H in the supplementary material. ⌅
Discussion on Theorem 2. Theorem 2 implies that using the

diminishing step size of ↵(k) = ↵(0)
p

1+k/⌘
, a sub-linear rate of

convergence O(ln k/
p
k) can be achieved, and that the models

of all devices asymptotically converge to the global optimum
point. For the more general setup that the diminishing step size
is chosen at ↵(k) = ↵(0)

(1+k/⌘)✓
with ✓ 2 (0.5, 1], see Appendix

I (the supplementary material). Also, the upper bound in Eq.
(28) captures the effect of data heterogeneity level � through
the vector values b 1 and b 2 (since ⌫(0) is a function of �),
where a higher value of � results in a larger value for the upper
bound.

Effect of communication sparsity. Note that sparse com-
munications would affect the transition spectral radius ⇢(�(k))
of Eq. (19) through the information flow graph connec-
tivity parameter B (see Proposition 1, where we show
how B captures the effects of both physical connectiv-
ity level B1 and communication interval B2 introduced in
Assumption 5). This is because ⇢(�(k)) = max{�(k)11 ,�(k)22 }

(see Appendix F) (the supplementary material), and the
definitions of �(k)11 and �(k)22 given in Lemmas 5 and
Eq. (20) illustrate the dependence of these terms on the
parameter B. However, although a larger B would result
in a higher value of ⇢(�(k)), thus slowing the conver-
gence rate (see Eq. (26) in Theorem 1), our Proposition 1
lays out the constraints on the step size ↵(k) such that we
would still get a spectral radius of ⇢(�(k)) < 1. We would
essentially achieve this by using a smaller step size, as we see
an inverse dependence of step size ↵(k) on the communication
level parameter B in Proposition 1.

Significance of theoretical results. Importantly, note that in
both Theorems 1 and 2, we analyze the convergence behavior
of our methodology for the last iterates of model parameters,
while seminal papers have focused on average iterates [15],
[17], i.e., (1/T )

PT�1
t=0 w(t). We provide exact convergence

rates for the last iterates of model parameters in spite of the
thresholds in the event-triggering mechanism being different
from device to device and the underlying physical network
connecting the agents being time-varying, i.e., based on
Assumption 5. Thus, this is a stronger result that complements
those provided in [15] and [17], and more generally has not
been shown in the literature to date. Furthermore, while papers
such as [13], [16], and [55] also assume strong convexity as
we have done in Assumption 2-(b), they are still confined to
showing convergence for average iterates.

Furthermore, the analysis of existing research was based
on the (sub)-gradient bound assumption [1], while we have
replaced that with two more general assumptions, namely
smoothness (Assumption 2-(a)) and statistical heterogeneity
of data (Assumption 2-(c)). In both Theorems 1 and 2, we
show convergence for a B-connected time-varying graph (see
Proposition 1), in spite of not making the more restrictive
bounded (sub)gradients assumption [35].
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Summary of analysis. To summarize, the goals of Propo-
sition 2 and Theorems 1 and 2 of our paper are to (i) show
that convergence to a globally optimal solution of FL can
be achieved even when the event-triggering thresholds are
personalized for the devices, and (ii) obtain bounds on the rate
of model training convergence under such conditions, i.e., for
general time-varying consensus graphs.

IV. NUMERICAL RESULTS

In this section, we conduct numerical evaluations to assess
the effectiveness of our methodology. We explain the setup
of our experiments in Sec. IV-A and provide the results and
discussion in Sec. IV-B. For further experiments and ablation
studies, please see Appendix J (the supplementary material).

A. Simulation Setup
Datasets and models. We evaluate our proposed method-

ology using two image classification tasks: Fashion-MNIST
(FMNIST) [56], and Federated Extended MNIST (FEMNIST)
[57]. Note that FMNIST contains data belonging to 10 labels,
while FEMNIST contains data points with 62 different labels.
We employ two models as classifiers, a support vector machine
(SVM) and a 5-layer convolutional neural network (CNN).
The loss function `⇠(w) in (1) is chosen as the multi-margin
loss for the SVM model, and the cross-entropy loss for
the CNN. Note that SVM satisfies the convexity assumption
(see 2-(b)), while the CNN does not; thus, we will numerically
evaluate the efficacy of EF-HC using both convex and non-
convex models, although our theoretical analysis only covers
convex loss functions.

Graph topology and data distribution. In the simulations
for the FMNIST and FEMNIST datasets, a network of devices
m = 10 and m = 30 is used, respectively, in which the
underlying communications topology is generated according
to random graphs. We conduct evaluations on two types of
graphs: (i) random geometric graph, resembling local wireless
networks [11], [58], with radius 0.4 by default; and (ii) the
Internet graph of autonomous systems (AS) from [59]. In the
Internet graph, AS are categorized into four types: tier-1, mid-
level, customer and content providers, which are divided into
different regions to model geographical constraints [59]. We
treat each AS as a node in our system. Further, to generate
non-IID data distributions across devices, each device only
contains samples of the dataset from a subset of the labels. For
FMNIST and FEMNIST, we consider 1 and 3 labels/device,
respectively.

Resource heterogeneity. Link bandwidths bi are ran-
domly chosen for each device i from a probability dis-
tribution. For completeness, we have run our experiments
using two different distributions; (i) uniform distribution
U((1� �N )bM , (1 + �N )bM ), with a mean of bM = 5000
and a normalized standard deviation of �N = 0.9, and (ii)
the beta distribution Beta(↵,�) · bM with ↵ = � = 0.5 for a
inverted bell-shaped distribution. For the uniform distribution,
we define �N = �

p
3/bM , in which � is the standard

deviation of the uniform distribution. For uniform distribution,
the heterogeneity of the system resources is controlled by the

standard deviation, since the value of �N = 0 means that all
devices are homogeneous in terms of resource capabilities, and
� ! 1 means choosing bi values from the range U(0, 2bM ).
After randomly choosing bi for each device, we assign the
same value as the bandwidth of all outgoing links of the
device i for simplicity, i.e., we do not assign different values
for each outgoing link of a device i.

In each simulation, the diminishing step size is selected as
↵(k) = 0.1/

p
1 + k, and the threshold decay rate is set to

�(k) = ↵(k). Also, in (3), we set the threshold r = bM ⇥ 5⇥
10�2 for FMNIST, and r = bM ⇥ 10�1 for FEMNIST.

Metrics. At iteration k, we define a resource uti-
lization score as (1/m)

Pm
i=1

Pm
j=1(v

(k)
ij /d(k)i )⇢in, which

for our proposed method where ⇢i = 1/bi, this
score is the same as the average transmission time,
that is, (1/m)

Pm
i=1

⇣Pm
j=1 v

(k)
ij /d(k)i

⌘
(n/bi). The term

Pm
j=1 v

(k)
ij /d(k)i is the utilization of the outgoing links for

device i, making this score the weighted average of link
utilization, penalizing devices with larger ⇢i.

B. Results and Discussion
We compare the performance of our method EF-HC against

three baselines: (1) Distributed learning with aggregations at
every iteration, i.e., using zero thresholds (denoted by ZT),
which is a foundational synchronous method in contrast to our
event-triggered approach; (2) Decentralized event-triggered
FL, with the same global threshold r⇢�(k) across all devices
(denoted by GT), where ⇢ = 1/bM is chosen as the average
of personalized thresholds of EF-HC for a fair comparison;
(3) Randomized gossip, where each device engages in broad-
cast communication with probability of 1/m at each iteration
[21] (denoted by RG). The parameter r in both EF-HC and GT
as discussed in Sec. IV-A of the paper is chosen so that their
frequency of communications would be comparable to RG,
with the difference that RG does not conduct communications
in an intelligent event-triggered way and instead does them
randomly. We illustrate the performance of our method against
these baselines in Fig. 2.

Communication resource usage. We first illustrate the
average transmission time units each algorithm requires per
training iteration in Figs. 2a-(i), 2b-(i), 3a-(i), 3b-(i), 4a-(i)
and 4b-(i). As we can see, EF-HC results in a shorter
transmission delay compared to ZT and GT, significantly
helping to resolve the impact of stragglers by not requiring
the same amount of communications from devices with less
available bandwidth. However, it is important to note that
although a shorter transmission delay per iteration is beneficial
for a decentralized optimization algorithm, it can negatively
impact the performance of the classification task. Hence, a
better comparison between multiple decentralized algorithms
is to measure the accuracy reached per transmission time
units. In this regard, although RG achieves less transmission
delay per iteration compared to our method in most cases,
Figs. 2a-(iii), 2b-(iii), 3a-(iii), 3b-(iii), 4a-(iii) and 4b-(iii)
reveal that it achieves substantially lower model performance,
indicating that our method strikes an effective balance between
these objectives.
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Fig. 1. System diagram of a time-varying decentralized system, illustrating the four events of Alg. 1, namely (i) neighbor connection, (ii) model broadcast,
(iii) model aggregation, and (iv) stochastic gradient descent.

Fig. 2. Performance comparison between our method (EF-HC), global threshold (GT), zero threshold (ZT), and randomized gossip (RG) algorithms on (a)
FMNIST and (b) FEMNIST datasets using an SVM model. The resources are allocated to devices using a uniform distribution U((1� �N )bM , (1 + �N )bM )
under a random geometric graph. The plots show (i) transmission time per iteration, (ii) accuracy per iteration, (iii) accuracy per transmission time, and (iv)
accuracy after a certain number of transmissions with respect to graph connectivity. For this figure, the link bandwidths among devices are generated using
a uniform distribution U((1� �N )bM , (1 + �N )bM ). The devices themselves are connected to each other via random geometric graph. We see how our
EF-HC algorithm achieves higher accuracies with less transmission time passed in Figs. 2a-(iii) and 2b-(iii), and also how its advantage remains consistent
across different graph connectivities in Figs. 2a-(iv) and 2b-(iv).

Accuracy achieved per iteration of training. Figs. 2a-(ii),
2b-(ii), 3a-(ii), 3b-(ii), 4a-(ii) and 4b-(ii) depict the aver-
age accuracy of the devices per iteration. These plots are
indicative of processing efficiency since they evaluate the
accuracy of algorithms per number of gradient descent com-
putations. As expected, the baseline ZT is able to achieve
the highest accuracy per iteration, since it does not take
into account resource efficiency and thus sacrifices network
resources to achieve better accuracy. In other words, the
value of B explained in Proposition 1 for ZT has the min-
imum possible value compared to other algorithms, since
B2 of Assumption 5-(b) has the value of B2 = 1 for it.
In most of these plots, that is, Figs. 2a-(ii), 2b-(ii), 3b-(ii),
4a-(ii) and 4b-(ii), we show that unlike RG, the performance
of our proposed method EF-HC as well as GT, which is
also event-triggered, does not degrade considerably although

they use less communication resources, as will be discussed
next.

Accuracy achieved per total delay. Figs. 2a-(iii), 2b-(iii),
3a-(iii), 3b-(iii), 4a-(iii) and 4b-(iii) are the most critical
results, as they assess the accuracy vs. communication time
trade-off. We see that our algorithm EF-HC can achieve higher
accuracy while using less transmission time compared to all
baselines. These plots reveal that our method can adapt to non-
IID data distributions across devices, which is an important
characteristic of FL algorithms [2], and achieve better accuracy
compared to baselines given a fixed transmission time, that is,
under a fixed network resource consumption.

Effect of graph connectivity. Furthermore, we evaluated
the effect of network connectivity on our method and baselines
in Figs. 2a-(iv), 2b-(iv), 3a-(iv), 4a-(iv) and 4b-(iv). Since
the graphs are generated randomly in our simulations, we
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Fig. 3. Performance comparison between our method (EF-HC) and the baselines using the FMNIST dataset. For this figure, the link bandwidths among
devices are generated using a beta distribution Beta(0.5, 0.5) · bM . The devices in Figs. 3a and 3b are connected to each other via a random geometric graph
and the Internet graph, respectively. We observe that regardless of the network topology, our EF-HC algorithm achieves higher accuracies faster in terms of
the total transmission time passed. Also, comparing Fig. 2a to Fig. 3a, we observe that our proposed methodology outperforms the baselines for both uniform
and beta distribution, which are used to sample the link bandwidths. (Note that the connectivity of the Internet graph is fixed and cannot be varied as for the
random geometric graph).

Fig. 4. Performance comparison between our method (EF-HC) and the baselines using a CNN classifier on the FMNIST dataset. We use a random geometric
graph as the network topology, and sample the link bandwidths in two different ways: (a) uniform distribution U((1� �N )bM , (1 + �N )bM ) and (b) beta
distribution Beta(0.5, 0.5) · bM . We observe that the superiority of our EF-HC algorithm holds when using a non-convex model as well.

have taken the average performance of all four algorithms
over 5 Monte Carlo instances to reduce the effect of random
initialization. It can be seen that higher network connectivity
improves the convergence speed of our method and most of
the baselines. Importantly, however, we see that our method
has the highest improvement per increase in connectivity. This
becomes more pronounced in Figs. 3a-(iv) and 4b-(iv), as the
degree of resource heterogeneity between devices is higher
because they are sampled from a beta distribution (vs. uniform
in Figs. 2a-(iv), 2b-(iv) and 4a-(iv)), and EF-HC is best suited
for highly heterogeneous scenarios.

Non-convex model. To generate non-IID data distributions
across devices, each device only contains samples of the
dataset from a subset of labels, specifically 2 labels/device
in these experiments. Note that in Figs. 4a-(iv) and 4b-(iv),
we change the simulation setup and set r = bM ⇥ 10�3,

and let the devices have samples of only 1 labels/device.
Looking at Fig. 4a, we can see that results similar to those
of the SVM classifier (see Fig. 2 and Sec. IV-B) can be
achieved with a CNN classifier as well, i.e., the results hold
with and without the model convexity assumption used in
our convergence analysis. Furthermore, the gap between the
accuracy achieved by EF-HC in Fig. 4a-(iii) per a given delay
compared to other baselines is more significant than its linear
SVM counterpart.

Summary of improvements. Finally, we note that Figs. 2a,
2b, 3a, 3b, 4a and 4b collectively demonstrate that our EF-HC
algorithm’s improvements hold under various settings. First,
by comparing Figs. 2a and 2b we can see that EF-HC out-
performs all baselines under different datasets that the model
is being trained, i.e., FMNIST and FEMNIST, respectively.
Second, a comparison of Figs. 2a and 3a (or Figs. 4a and 4b)
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illustrates that the improvements of EF-HC hold when dif-
ferent probability distributions are employed for sampling
link bandwidths, i.e., uniform and beta distributions, respec-
tively. Third, Figs. 2a and 3b show that EF-HC maintains its
effectiveness in accuracy vs. resource utilization trade-off for
different graph topologies connecting the devices together, i.e.,
random geometric graph and internet AS graph, respectively.
Finally, we can compare Figs. 2a and 4a (or Figs. 3a and 4b)
that EF-HC maintains its advantage gap from the baselines
for both convex and non-convex models, i.e., linear SVM and
a CNN architecture, respectively.

V. CONCLUSION AND FUTURE WORK

In this paper, we develop a novel methodology for decen-
tralized FL, in which model aggregations are performed
through D2D communications among devices. We proposed
an asynchronous, event-triggered communications mechanism
in which each device decides itself when to broadcast its
model parameters to its neighbors. Furthermore, to alleviate
straggler effects, we developed personalized thresholds for
event-triggering conditions in which each device determines
its communication frequency according to its available band-
width. Through theoretical analysis, we demonstrated that
our algorithm converges to the global optimal model with
a O(ln k/

p
k) rate for appropriate step sizes. Our analysis

holds for the last iterates under relaxed graph connectivity and
data heterogeneity assumptions. To do so, we showed that the
graph of information flow among devices is connected under
our method, despite the fact that sporadic communications are
conducted over a time-varying network graph.

Our work also gives rise to various future directions.
For instance, it is promising to extend our methodology to
consider event-triggering in gradient computations as well,
complementing the event-triggered communications frame-
work established in this work.
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