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Abstract—Federated learning (FL) is vulnerable to backdoor
attacks, where adversaries alter model behavior on target clas-
sification labels by embedding triggers into data samples. While
these attacks have received considerable attention in horizontal
FL, they are less understood for vertical FL (VFL), where devices
hold different features of the samples, and only the server holds
the labels. In this work, we propose a novel backdoor attack
on VFL which (i) does not rely on gradient information from
the server and (ii) considers potential collusion among multiple
adversaries for sample selection and trigger embedding. Our label
inference model augments variational autoencoders with metric
learning, which adversaries can train locally. A consensus process
over the adversary graph topology determines which datapoints
to poison. We further propose methods for trigger splitting across
the adversaries, with an intensity-based implantation scheme
skewing the server towards the trigger. Our convergence analysis
reveals the impact of backdoor perturbations on VFL indicated
by a stationarity gap for the trained model, which we verify
empirically as well. We conduct experiments comparing our
attack with recent backdoor VFL approaches, finding that ours
obtains significantly higher success rates for the same main task
performance despite not using server information. Additionally,
our results verify the impact of collusion on attack performance.

Index Terms—Vertical federated learning (VFL), variational
autoencoder (VAE), metric learning, backdoor attack, privacy.

I. INTRODUCTION

EDERATED Learning (FL) [1] has emerged as a popu-

lar method for collaboratively training machine learning
models across edge devices. By eliminating the need for
communication of raw data across the network, FL proves
especially valuable in scenarios where data privacy is criti-
cal. However, the decentralized nature of FL introduces new
security challenges, as individual devices may lack the robust
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security measures of a centralized system, thereby increas-
ing the risk of adversarial attacks that can compromise the
integrity of training.

The two prevalent frameworks of FL, Horizontal Federated
Learning (HFL) and Vertical Federated Learning (VFL), both
face significant vulnerabilities to adversaries [2]. In HFL, the
training data is partitioned by sample data points, with each
device holding different subsets of the overall dataset. Most
of the existing literature on adversarial attacks in FL has
concentrated on HFL, with the goal to tackle vulnerabilities
such as data poisoning attacks [3], [4], model inversion attacks
[5], [6], and backdoor attacks [7]. Conversely, VFL [8], [9]
involves local devices that share the same samples but hold
different features of the samples. In this setup, one node,
referred to as the active party or server, holds the labels
and oversees the aggregation process, while the other devices
function as passive parties or clients, constructing local feature
embeddings and periodically passing them to the server. For
instance, in a wireless sensor network (WSN) [10], each sensor
may collect readings from its local environment (e.g., video
feeds) which collectively form a full sample for the fusion
center’s learning task (e.g., object detection) at a point in
time. Recent research has begun to study the impact of attacks
on VFL, including feature inference attacks [11], [12], label
inference attacks [13], and attribute inference attacks [14].
In this paper, we focus on backdoor attacks [7] for VFL. A
backdoor attack aims to alter the behavior of an FL. model on a
particular label (called the target) when the model encounters
data samples for the label that an adversary has implanted with
an imperceptible trigger pattern. Addressing backdoor attacks
is crucial in both HFL and VFL because these attacks can lead
to severe security breaches without easily detectable impacts
on overall model performance [15]. For example, in the WSN
object detection use-case, a backdoor adversary could implant
triggers in a sensor’s local sample view of a car to force the
system to misclassify the entire sample as a truck.

In this paper, we consider an underexplored scenario where
there are multiple adversaries, and these adversaries have the
capability of colluding over a graph topology to execute a
coordinated backdoor attack. In this setting, the adversaries
gain control of a set of client nodes and establish an ad-hoc
local network among themselves for cooperation. Prominent
examples can be found in defense settings. For instance, in a
contested region, attackers could take control of a few scattered
military assets responsible for e.g., communicating front-line
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conditions, such as drones or tactical mobile devices [16].
Such control could be achieved through a variety of means, for
example, exploiting vulnerabilities over control links to hijack
drones [17] or injecting malicious malware onto the devices
[18]. Taking advantage of this, the adversaries could begin
colluding to analyze and transmit data across a local adversary-
formed network topology. To form this graph, the adversaries
could employ device-to-device (D2D) communication proto-
cols, which have proliferated in 5G wireless and have shown
benefit in distributed learning, allowing devices to synchronize
model parameters and/or gain a better estimate of the overall
data distribution [19], [20], [21]. This decentralized topology
allows for the exchange of information between adversaries
that might not be readily available at an individual level,
i.e., a more complete view of each sample. By pooling their
individual observations, they can potentially infer sensitive
information about the battlefield—such as troop numbers, logis-
tics capabilities, or defensive positions. Moreover, this making
it easier for them to mislead the central decision-making
system via a backdoor attack (e.g., inducing the command
center to misclassify an enemy fighter as a benign node).

Still, the adversaries might be unable to engage in maximal
information exchange (i.e., forming a full mesh graph) due to
e.g., resource constraints, geographical distances, and channel
conditions preventing formation of certain D2D links. We
thus need to understand how adversarial collusion impacts the
attack potency, and the role played by adversarial connectivity.
Moreover, following the common assumption in the literature
that the adversaries have full control over the compromised
node(s) [22], it is important to consider the full range of adver-
sarial capabilities. By doing so, we do not underestimate the
adversary’s capabilities and insights, which could otherwise
lead to overconfidence in the system’s security.

A. Related Work

Extensive research has been conducted on backdoor attacks
in HFL. In these cases, adversaries send malicious updates
to the server, causing the model to misclassify data when
a trigger is present without impacting the overall perfor-
mance of the FL task [23], [24], [25]. In this domain, [7]
proposed a scale-and-constrain methodology, in which the
adversary’s local objective function is modified to maximize
attack potency without causing degradation of the overall FL
task. Reference [26] explored trigger embeddings that take
advantage of the distributed nature of HFL, by dividing the
trigger into multiple pieces. In addition to the various attacks,
defenses for these vulnerabilities in HFL have also been
studied, e.g., [27] and [28]. Another significant issue with the
effectiveness of backdoor attacks in HFL is the presence of
non-i.i.d. data distributions across local clients, resulting in
slower convergence of the global model [29]. In this regard,
an HFL backdoor methodology [30] has been developed to
work with a popular HFL algorithm called SCAFFOLD [31]
by utilizing Generative Adversarial Networks (GANs) [32].

In our work, we focus on backdoor attacks for VFL, which
have not been as extensively studied. The VFL scenario
introduces unique challenges: devices do not have access to
sample labels or a local loss function, and must rely on
gradients received from the server to update their feature
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embedding models. Thus, unlike in the HFL scenario, where
attackers can utilize a “dirty-label” backdoor by altering the
labels on local datapoints [33], an attack in VFL must be a
“clean-label” backdoor attack, since only the server holds the
training labels.

In this context, a few recent techniques have been developed
to carry out backdoor attacks in VFL through different meth-
ods for inferring training sample labels. These include using
gradient similarity [34] and gradient magnitude [35] compar-
isons with a small number of reserve datapoints the adversary
has labels for. In this domain, [13] created a local adaptive
optimizer that changes signs of gradients inferred to be the
target label. In a similar vein, other works have exploited the
fact that the indices of the target label in the cross-entropy loss
gradients will have a different sign, provided that the model
dimension matches the number of classes [36], [37]. Other
works have also considered gradient substitution alignment
to conduct the backdoor task with limited knowledge about
the target label [38]. Moreover, researchers have explored the
implications of backdoor attacks in different settings, such
as with graph neural networks (GNNs) [39]. Further, [40]
considered training an auxiliary classifier to infer sample labels
based on server gradients.

Despite these recent efforts, a major limitation of the
existing approaches is that they rely on information sent from
the server to conduct the backdoor attack, in addition to
using it for VFL participation. This dependency can enable the
server to implement defense mechanisms, particularly during
the label inference phase, which can significantly limit the
effectiveness of the attack [41]. While research on bypassing
the use of server-received information in backdooring VFL
exists, it is limited to only binary classification tasks [42].
Additionally, the aforementioned studies [34], [35], [36], [37],
[42] concentrate on the classic two-party VFL scenario with a
single adversary, which fits them into the cross-silo FL context
[9], leading to a limited understanding of VFL backdoors in
networks where multiple adversaries may collude to carry out
the attack. In particular, unlike cross-silo FL, which typically
involves a few participants such as large organizations, cross-
device FL often encompasses numerous distributed devices
collaborating to construct a global model, thereby significantly
increasing the potential for security malfunctions [1], [7].

B. Research Questions and Approach Overview

These limitations lead us to investigate the following two
research questions (RQs) in this work:

e RQI1:Can an adversary successfully implement a back-
door injection into the server’s VFL model using only
locally available information for label inference?

e RQ2:How can multiple adversaries collude with limited
sharing to construct a backdoor injection in cross-device
VFL, and what is the impact of their graph connectivity?

Overview of approach. We develop a novel backdoor VFL
strategy that addresses the above questions. To answer RQI,
we introduce a methodology for an adversary to locally infer
and generate datapoints of the target label for attack. Our
approach leverages Variational Autoencoders (VAE) [43] and
triplet loss metric learning [44] to determine which samples
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should receive trigger embeddings, avoiding leveraging server
gradients. To answer RQ2, we employ the graph topology of
adversarial devices to conduct cooperative consensus on which
samples should be implanted with triggers. In this regard, we
show both empirically (Fig. 5d & Fig. 6) and theoretically
(Sec. V) that the effectiveness of the attack and gradient
perturbation is dependent on this graph topology. We also
develop an intensity-based triggering scheme and two different
methods for partitioning these triggers among adversaries,
leading to a more powerful backdoor injection than existing
attacks.

C. Outline and Summary of Contributions

e We propose a novel collaborative backdoor attack on VFL
which does not rely on information from the server. Our
attack employs a VAE loss structure augmented with met-
ric learning for each adversary to independently acquire
its necessary information for label inference. Following
the local label inference, the adversaries conduct majority
consensus over their graph topology to agree on which
datapoints should be poisoned (Sec. III-A&IV-A).

e For trigger embedding, we develop an intensity-based
implantation scheme which brings samples closer to the
target without compromising non-target tasks. Attackers
employ their trained VAEs to generate new datapoints to
be poisoned that are similar to the target label, forcing the
server to rely more on the embedded trigger. Adversary
collusion is facilitated via two proposed methods for
trigger splitting, either subdividing one large trigger or
embedding multiple smaller triggers (Sec. III-B&IV-B).

e We conduct convergence analysis of cross-device VFL
under backdoor attacks, revealing the degradation of main
task performance caused by adversaries. Specifically,
we show that the server model will have a stationarity
gap proportional to the level of adversarial gradient
perturbation (Sec. V). We provide an interpretation for
this gradient perturbation as an increasing function of
the adversary graph’s algebraic connectivity and aver-
age degree, which we further investigate empirically
(Sec. VI). We are unaware of prior works with such
convergence analysis on VFL under backdoor attacks.

e We conduct extensive experiments comparing the perfor-
mance of our attack against the state-of-the-art [34], [35]
on five image classification datasets. Our results show
that despite not using server information, we obtain a
30% higher attack success rate for comparable main task
performance. We also show an added advantage of our
decentralized attack in terms of improved robustness to
noising defenses at the server. We also demonstrate that
higher adversarial graph connectivity yields improved
attack success rate with our method, thus corroborating
our theoretical claims (Sec. VI).

II. SYSTEM MODEL
A. Vertical Federated Learning Setup

We consider a network of K nodes within the vertical
federated learning (VFL) setup collected in the set K =

TABLE I
SUMMARY OF MAIN NOTATIONS EMPLOYED THROUGHOUT THE PAPER
Notation Description
k Any client, excluding the server K
m An adversary client
K The set of all clients, including the server
A The set of all adversary clients
G The graph formed amongst adversary clients m € A
Am A subset of A, the neighbors to adversary m in graph G
2 The feature gartition belonging to local client k for sample
k datapoint z(*
X 7(72) The concatenated samples for adversary m received over edges
in G
55,? Sample generated from adversary m’s VAE
20 55}) implanted with the trigger pattern subportion correspond-
m ing to adversary m
z,(q? Latent variable produced from VAE encoder
D The overall dataset without being partitioned amongst clients
Dm, A subset of D containing concatenated datapoints Xy(,?
) A subset of D,,, concatenated samples of only those where
m the label is known
Parget A subset of D,,, concatenated datapoints belonging only to
m target label out of known datapoints
Dgff) Locally inferred datapoints for adversary m
’Dép ) [ Collaborative inference set based off {D%’) |m € A}
2555) m’s feature partition slice of Dgp )
The local model of client k, producing feature embeddings to
Tr be sent to server K
O The server model for server K
P) The parameters for local models fj. For server K, its server
k model is parameterized as 6 x
PYAE Adversary m local VAE
“w The mean vector of an adversarial VAE
Dm,u Auxiliary classifier for adversary m
¢ The poisoning budget
Yt The target label
p The connectivity of the graph G
4(p) The gradient perturbation from adversaries for connectivity p
R The margin value of the triplet loss
a Anchor datapoint for the triplet loss
p Positive datapoint for the triplet loss
n Negative datapoint for the triplet loss

{1,2,...,K}, where k = 1,..., K — 1 are the clients and
k = K is the server. We assume a black-box VFL scenario,
where the clients do not have any direct knowledge about the
server and global objective, e.g., the model architecture, loss
function, etc. We denote the overall dataset as D, and the
total number of datapoints is N = |D|. Each client contains
a separate disjoint subset of datapoint features. We represent
the #*" datapoint of D as 2 = {z{", ..., 2% |}, where 2"
belongs to the local data of client £ = 1,2,..., K — 1. Note
that only the server K holds the labels YV = {y1,...,y5}
associated with the corresponding dataset.

Each client locally trains its feature encoder on its data
partition, and the server is responsible for coordinating the
aggregation process. In particular, we adopt a Split Neural
Network-based (SplitNN) VFL setup [9], where the clients
send their locally produced feature embeddings (sometimes
called the bottom model) to the server. The server then updates
its global model (the top model) and returns the gradients of
the loss with respect to the feature embeddings back to the
clients.

Authorized licensed use limited to: Purdue University. Downloaded on December 25,2025 at 22:12:49 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Server
Mislabeled Truck to Ship
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Adversaries create a graph
for collusion amongst each other

Adversary nodes share their feature
partitions over these edges

Fig. 1. Client-server sharing of embeddings and gradients in VFL. An
example of a feature-partitioned datapoint undergoing a backdoor trigger
implantation is shown. The adversaries send up their poisoned embeddings,
which are then concatenated by the server and cause misclassification.
Moreover, adversaries form a graph amongst each other, sharing their feature
partitions to enhance insights on the samples they wish to poison.

Mathematically, the optimization objective of the VFL sys-
tem can be expressed as

01,10

N
min F(6) := %ZE (yi,(b,( ({f1(a:§i);91)’
i=1

fz(xg);%),---;fKA(JC(I?,l;@Kq)};@K))7 )

where fi denotes the embedding mapping function of client
k € K\ {K} parameterized by 0, ¢, is the server model
parameterized by 6,., 6 = {01,...,0k}, and £ denotes the
loss function of the learning task.

To solve (1), in each VFL training round ¢, the server selects
a set of mini-batch indices. Across clients, the full mini-batch
set is B(t) = {(xgz), ceey :c&?_l)\x,(;) € B,(:)} C D. Each client
k needs to update its own local model 05 on its mini-batch
subset B,(:). However, different from HFL, the gradients of the
clients’ loss function models depend on information from the
server, while the model update at the server also depends on
the mapping computed by the clients. Thus, during round £,
each client £ first computes local low-dimensional latent fea-
ture embeddings H" = {h{" = f(«:6") 2" e B}
After the embeddings ,it) are obtained, as seen in Fig. 1, they

are sent to the server. The server computes the gradient %
K

to update the top model 0, via gradient descent: OS“) —
Hg(t) — ng)%. In addition, the server computes %, which
is sent back to client k£ for the computation of gradients
of the loss function with respect to the local model 0,(:) as

1 or onY . .
gT)ﬁk = 5 thj)eH,(j) K@ﬁ. The client then updates its
k
; ; . plt+D) ) _ 1) oc
model via gradient descent: 0 " <= 0,7 — 1, 5=

B. Backdoor Attacks in VFL

In this work, we investigate backdoor attacks on VFL, where
each adversary is a client in the system (i.e., compromised
client). The goal of the adversaries is to modify the server
model’s behavior on data samples of a target label (i.e., the
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label that adversaries want to induce misclassification on) via
an implanted backdoor trigger on these samples. Importantly,
however, the model should still perform well on clean data for
which the trigger is not present. While modifying the objective
function is a common method for backdoor attacks in the HFL
case [7], this is not feasible in VFL because only the server
can define the loss, and hence the adversaries must follow the
server’s loss function. Therefore, we consider attacks where
an adversary mn implants a trigger o, into a selected datapoint
1 inferred to be of the target label, i.e., producing xg,? + Om-
In addition, we assume that multiple adversarial clients
A C K can collude to plan the attack. In this vein, we
consider a connected, undirected graph G = (A, E') among the
adversaries, where E denotes the set of edges. For adversary
m € A, we denote A,,, = {m’ : (m,m’) € E} as its set of
neighbors. Adversaries will employ G to conduct collaborative
label inference, as will be described in Sec. III-A&IV-A.

III. ATTACK METHODOLOGY

To execute the backdoor attack in VFL, adversaries need to
(i) identify datapoints belonging to the target label (Sec. III-A)
and (i) implant triggers on the corresponding datapoints to
induce misclassification (Sec. III-B). We present the method-
ology for these processes in this section, and give more specific
algorithmic procedures in Sec. IV.

A. Label Inference

Our label inference methodology is summarized in Fig. 2:

1) Feature Sharing: As in existing work [13], [35], we
assume that the adversaries possess labels for a small (e.g.,
< 1%) set of the datapoints. Even so, when numerous clients
each hold a small feature partition of the samples (Feature
partition block of Fig. 2), extracting meaningful information
without employing gradients from the server (which we aim
to avoid, as discussed in Sec. I) becomes challenging. This
difficulty arises due to the presence of irrelevant features
within sample partitions, e.g., a blank background.

To address this issue, the adversaries utilize their collusion
graph G discussed in Sec. II-B, through which they exchange
feature partitions of their datapoints with their one-hop neigh-
bors (Feature Sharing phase of Fig. 2). Each adversary m
concatenates the partitions as X%) = Um’e A, Um xffl), We
denote this dataset as D,,, C D, a further subset lsm C D,
of which is for known labels.

2) VAE and Metric-based Label Inference: Next, using
Dy, each adversary will conduct local label inference (VAE
and Metric-based Label Inference phase of Fig. 2). We propose
leveraging Variational Autoencoders (VAE) as a framework
for this, deploying one VAE model ¢Y*E on each adversary
device. Unlike their AE counterparts [45], VAEs are simpler
to use for generative purposes, as a variable z sampled from
the VAE’s latent space can be fed through the decoder to
generate new datapoints [43]. To do this, we assume that each
datapoint Xr(,? is generated from latent variables zs,il) following
a distribution p(zgf,,)), which usually is a standard normal
distribution, N(0, I). Therefore, the goal of the VAE’s decoder
model is to learn its parameters to maximize pm7d(X,(,i) |z7(q?).
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Inference via
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VAE Loss Add confident
+ Triplet datapoints to the local
Loss backdoor set

Cﬁml(x i) X” H) D(p)

Qﬁture Partitions

E@[A%ef?’y eco ccccoe ]

Fig. 2. Label inference methodology with modified VAE architecture. Initially, the adversaries share their feature partitions. At the p layer of the VAE, triplet
margin loss is employed to conduct metric learning via the known label datapoints. After training the VAE, the p vectors are used to perform a classification
task for inference of the target label, with the results of local inference being used in a majority voting scheme for a final collaborative inference of the

indices.

However, p(X\)) = fpm,d(Xﬁi)k%))p(zgﬁ))dz%) is com-
putationally intractable, making it unrealistic to calculate the
term directly. Therefore, rather than maximizing p,, 4 directly,
the VAE employs its encoder ¢, . as an approximate model
which outputs a mean p and standard deviation o, reducing the
latent space to a univariate Gaussian N'(u, 0%). The error can
be captured in a KL divergence-based objective [46] which
measures the difference between two probability distributions,
Gm,e(z4)) and p(zi)), denoted as Dy (qm.e(24)[p(z5))-
This term, when included in the loss function, can encourage
the latent space to be closer to a standard normal distribution,
allowing for random sampling from the latent space for
datapoint generation.

Additionally, the VAE aims to optimize its recon-
struction loss. We adopt the mean-squared error (MSE)
metric L7 (z, T (7)) = ||z — Zm(x) |3, where Z,,(z) is the
output reconstructed by the decoder for input x. Combining
these together, a typical VAE trains for any datapoint = on the

objective function

Lont(a, T (2),2) = X+ L7 (2, T (1))
+ (1 - )‘) : DKL(Qm,e(Z)Hp(Z))a 2

where 0 < A < 1 captures the importance weight of each
individual term.

A key advantage of a VAE is its ability to utilize the latent
space to learn separable embeddings. Additionally, existing
work has hypothesized that applying metric learning to the
1 vector can enhance embedding alignment within the latent
space [47]. We leverage this by training a joint triplet margin
loss [44] objective alongside the standard VAE, given by

LE (a,p,n) = max (d?,w(a,p) — dil

where d,, ,(a,7) | fm.u(@) = fm,u(r)|ly- Here, a is the
anchor datapoint, p is a datapoint with the same label (called
the positive), n is a datapoint belonging to a different label
(called the negative), k is the margin hyperparameter, and
fm,u(+) is the function induced by the ;1 vector of the VAE.
The triplet margin loss creates embeddings that reduce the
distance between the anchor a and the positive p in the feature

ala,n) +%,0), (3)

space while ensuring the negative n is at least a distance &
from p. R

Now, using the labeled dataset D,,, the positives and
anchors are the set of datapoints belonging to the target label,
and negatives are from the other labels. However, as outlined in
[44], careful triplet selection is required for a good embedding
alignment. Therefore, we employ the “batch-hard” method
of online triplet selection [48], where the “hardest” positive
and negative are chosen. These include the farthest positive
and the closest negative to the anchor embedding, given by
~ 2 ~
pm,u(a) = argmaxy Hfm,u(p) - fm,u(a)HQ and nm,u(a) =
arg miny, || fm . (n) — fm#(a)Hg respectively (Steps 2 and 3
of Fig. 2). Now, combining these all together, we can formulate
the final loss each adversary VAE trains on as

Lo (X0, XD, 0) = L0 (X, XD, D)
muXD)), @

which is shown as Step 4 in Fig. 2. Our experiments in Sec. VI
will demonstrate the benefit of this hybrid VAE and metric
learning approach, i.e., training on £l versus £YAE,

After training the VAE, we introduce an auxiliary classifier
®m,u» Which is trained in a supervised manner using the
latent embeddings from the p vector (Step 5 of Fig. 2),
denoted by f, ,.(-). We use the cross-entropy loss L(y,§) =
— > ccc Yelog(y.) as the objective function, where y. is an
indicator for whether the data point is from class ¢, . is
the softmax probability for the c¢t* class, and 7, g are_the
corresponding vectors. This is trained on {fy, .. (Xm ( ) Xom ®

m} In this way, the embeddings are trained to be separable
associating label positions in the latent space with their cor-
responding labels [49]. We can then employ this to construct
the set of locally inferred target datapoints from adversary m,
DE) (Step 6 of Fig. 2), as will be described in Sec. IV-A.

3) Collaborative Inference: Upon completing the local
inference phase, the adversaries utilize their locally inferred
labels to reach a consensus over the local graph G on which
datapoints are from the target label (Collaborative Inference
phase of Fig. 2). This consensus can be reached in several
potential ways, e.g., through a leader adversary node perform-

X L (XD B (X0, 7
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ing a Breadth-First Search (BFS) [50] traversal on the graph,
followed by a majority voting scheme (Step 7 of Fig. 2). This
is the method we will employ in Sec. IV-A.

Each of these label inference processes, e.g., feature sharing,
VAE training/inference, and collaborative inference, take place
before the VFL training process begins. This emphasizes one
of our contributions: developing a backdoor attack where
gradients from the server are not utilized for label inference.
As, we will see in Sec. VI-B, this enhances robustness against
server-side gradient noise injection defenses. Further, by min-
imizing the degree to which adversary behavior will deviate
from the VFL training protocol, the possibility of the system
detecting the attack (through e.g., anomalous communication,
computation, or energy consumption) becomes small.

B. Trigger Embedding

In the next step, after the target data points have been
inferred, the VFL training process starts, during which adver-
saries embed triggers into inferred data points. One of the
primary challenges for the adversaries conducting a backdoor
attack is to ensure that both the primary task and the backdoor
task perform effectively. To this end, adversaries poison a
specific subset of the inferred data points, defined as ppois
according to a poisoning budget ( = ‘?%. A smaller budget
also helps prevent detection of the malicious operation.

Formally, during training iteration ¢, if any datapoint ¢ from
DPOB i present in the minibatch B®), adversary m will implant
a trigger o, into its local 2 as 29 = 2V + om. Here, 2
is the datapoint embedded with the trigger, and the adversary
aims for the server to learn and associate this trigger pattern
with the target label. Unlike most existing works, our setup
considers more than one adversary. Therefore, in Sec. IV-B, we
will propose two different methods for generating o,,, across
adversaries m € A as a subpartition or smaller version of the
trigger o that would be embedded by a single adversary.

Our aim is to make the server rely on the trigger while still
learning features relevant to the target label, by leveraging the
VAE’s generative properties. This involves the following steps:

e Data Generation: Using adversary m’s VAE, we gener-
ate datapoints 7, by sampling vector z&" ~ A(0,1)
from the latent space and passing them through the
decoder p, 4.

e Data Substitution and Selective Poisoning: The adver-
sary swaps the original datapoints xﬁ,? similar to [34],
with the newly generated ones %5,?, and embeds them
with the trigger. This is performed on a subset of the
inferred data points during training, according to the
poisoning budget (.

As a result, the server learns more variations of the target
label, which intuitively leads it to rely more on the trigger
for classification. Additionally, the generated samples will still
follow the general structure of the target label, to prevent
misclassification of labels not involved in the backdoor attack.

In designing the trigger, we aim for the poisoned data-
points to produce embeddings that are as close as possible to
embeddings of non-poisoned embeddings. This can be thought
of mathematically as looking for triggers that will minimize
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[E[RPS] — B[R |2, where E[RS"] is the expectation over
feature embeddings produced from datapoints 7 implanted
with the trigger and E[R"] is the expectation over feature
embeddings produced from clean datapoints i’ belonging to
the target label. If adversary m had access to the server’s loss
function, it may be possible to incorporate (an approximation
of) this norm difference directly into the adversary’s local VFL
update. However, we are considering a black-box scenario.
Hence, to emulate the desired trigger behavior, we complement
the data substitution and selective poisoning process with
an intensity-based triggering scheme. Detailed in Sec. IV-B,
this scheme enhances the background value of the trigger
by an adversary-defined intensity value ~y, so that the trigger
becomes more prominent within the datapoint. Thus, on the
one hand, %5%) presents the server with more variations of
the target label, causing the server to rely more heavily on
the consistent trigger pattern. Then, combining these harder-
to-identify background features with the y-enhanced trigger
induces heavier reliance of the server on the trigger while
minimizing main task performance degradation (when the
trigger is not present).

The VFL system relies on the bottom models’ outputted
latent embeddings for classification, with updates to these
local models aiming to optimize performance. By embedding
the target datapoints with an intensified trigger, we can pull
the embeddings h}," of the backdoored samples closer to
embeddings hi®" of the target label, making it harder for
the server to distinguish between them.

IV. ALGORITHM DETAILS

We now provide specific algorithms for implementing the
label inference (Sec. IV-A) and trigger embedding (Sec. IV-B)
methodologies from Sec. III.

A. Label Inference

Alg. 1 summarizes our label inference approach. Recall the
goal is to find datapoints of the target label y;, i.e., to find
which datapoints are candidates to be poisoned. This trains the
VAE model ¢YAF and auxiliary classifier ¢,, , for adversary
m, which is then capable of generating datapoints of
based off local inference datapoints D,(ﬁ). As input, the overall
algorithm will utilize the set of adversaries .4 and concatenated
datapoints D,,, for adversary m to infer datapoints of y,. We
detail the steps of Alg. 1 below:

1) Training VAE ¢Y2E and Auxiliary Classifier Omp’
As outlined in Sec. III-A, label inference is performed before
the standard VFL protocol. Firstly, ¢E is trained via (4) and
utilizes the “batch-hard” strategy discussed in Sec. III-A (Line
1 of Alg. 1). The VAE’s reconstruction loss L£Y** employs
Deet € D, where D is the set of known concatenated
datapoints belonging only to the target y;. For the triplet loss
L4, positives are selected from the VAE’s training batch and
the negatives are taken from D,,. Next, ¢,, , takes in the p
embeddings on labeled datapoints and trains via cross-entropy
loss (Line 2 of Alg. 1).

After training the VAE, ¢y, , takes in the y-embeddings of
the datapoints from D,,, with unknown labels as input (Line 3
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Algorithm 1 VAE and Metric-Based Label Inference

Algorithm 2 Distributed Trigger Embedding

Input: VAE model ¢, auxiliary model ¢, 10
adversary index m € A, target yy, known
concatenated datapoints D,,,, all concatenated
datapoints D,,,

1 Train ¢y~E using £ from (4), which uses (2) and (3)
2 Train auxiliary classifier ¢,, , via

{Frnu (X)) X3 € D}
3 for adversary index m € A do

4 for datapoint XT(,? ¢ ﬁmaner(,? € D,, do

s 9 = G (Fnp(X02))

6 if y; = arg max.(y.)and max(j) > 3 then

7 L Insert :Jcsn) to D,(n)

8 | Adjust model architecture and retrain OYAE on D)

9 Get indices D¥) — CONSENSUS(A) from Sec. IV-A
10 for j € D do
1 L Insert datapoint +9) 1o D)

Output: VAE ¢YAE, inferred adversary dataset D)

Step 1: Sample and Generate

2 ) Examples of Generated Data

gen G een i
Zm+1 | — [ Decoder | mump !}Ii")ﬂ 2y |—[ Decoder | mump I }‘EEV)’<2 ’

N

Sample from latent space
L) @~ N©1)

T }55,‘3
1

Step 2a: Split based off Method 1 Method 2 Step 2b: Split Trigger
Trigger Position into Smaller Tnggers
Embed o=(Wxv)+M o (W X 7) + M Embe d
Trigger I + Trlgger
Om
I _I I_ + + -+
-I O = (Wi X 7) + M,
W=+ om Om=Wnx)+Mu | [ Ty B A E,=E o
/ l \ overaitggerposition || Sty ;Ve;:; l
amongst adversaries trigger area remains
B, Bni1| | B, the same

Fig. 3. Image generation and trigger-embedding process. The adversaries
can choose one of two methods: (1) constructing a collaborative trigger on
some position of the known adversary features, or (2) giving each adversary a
smaller trigger. Method 1 may result in some adversaries not possessing any
portion of the trigger pattern, i.e., only having the background.

of Alg. 1), and E)opulate Dfﬁ ), the set of locally inferred target
datapoints. D’ is initially the same as D in terms of
indices. The datapoints are added to the set if the maximum
prediction probability corresponds to the target label y; and
is greater than a confidence threshold f, i.e., max(g) >
and y; = argmax.(J.) (Lines 5-7 of Alg. 1). In this way,
only datapoints ¢, , is confident about will be considered as
targets.

Afterwards, adversary m’s VAE is retrained on D,(f{) (Line 8
of Alg. 1). The retraining allows the target datapoint generation
to match the shape of the feature partition.

2) Consensus Amongst Adversaries: After local label
inference, collaborative inference begins (Line 9 of Alg. 1)
with the following steps:

e Choosing Leader Node and BFS-traversal: One adver-
sary in graph G, denoted m'®®, is chosen by selecting

Input: Server K, client k € K\ {K}, adversary set A,
adversary VAE ¢YAE, bottom-model parameters
0y, to-be-poisoned data Dp," when m € A

fort =01t T—-1do

for clients k € K\ {K} do in parallel

Sample local minibatch B )
for datapoint :ck B(t) do

1
2
3
4
5 if 21" € Dris and client k € A then
6
7
8

Adversary generates T\ = py, (25"

Add trigger pattern from (5)

Adversary replaces original data:
20— 50
k= Tk

9 Compute
t i t
1 = {h) = fiulay): 0l € B}
10 | Transmit H, Y to server K
11 | Server computes {ah(” |h( 2 H(,f’)} ke KC\{K},

sends them back to chent k, computes a%ﬁ and

updates {1+ — () — (B 0L
K
12 for each client k € K\ {K} do in parallel

13 L Compute 2 89 and update

t+1 t t
0](6 )(_ek)_ ](c)%

the node with the highest degree. m'®* will conduct BFS
over GG to collect the local inference results from each
adversary.

e Consensus Voting: Next, given a multiset of the local
inferred datasets D® = {D,(qf)}me A, m'® adopts a
simple majority based voting scheme similar to [40]. If

|—“24‘ times in D®),

it is added to the collaborative inference set Dép ). In
other WOI’dS,Dép) = {j e D@ | m(j,D®)) > PQA—‘ }

where m(j, D)) is the multiplicity of j in D) for an

index j.

e Sharing Final Results: Lastly, m'®® will conduct BFS
again, propagating the final indices of D®) to all adver-
saries, with m’s feature partition slice of Dg(,p ) is defined

as D).

While we adopt the BFS traversal-based method, other
graph traversal methods (e.g., DFS, spanning tree) could also
be used, as long as all adversaries correctly receive the voting
results.

an index j appears for more than

B. Trigger Embedding

Alg. 2 summarizes our trigger embedding algorithm. Recall
that after label inference, our goal is to conduct trigger
embedding on the inferred datapoints. Overall, during the VAE
protocol, we implant a trigger on generated datapoints from
VAE ¢YAE. We detail the steps of Alg. 2 below:

1) Poisoning and Trigger Implantation: To maintain a
high accuracy in the main task along with the backdoor, a
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poisoning budget ¢ outlined in Sec. III-B is utilized to limit
the number of poisoned datapoints. The selected indices to
be poisoned are chosen at random from D ), with the corre-
sponding sub-dataset for adversary m denoted Dp,"° C DS,

Now, the trigger implantation follows a two step process,
depicted in Fig. 3. Firstly, a to-be-poisoned datapoint in a
minibatch is replaced with a datapoint %5,1,,) generated from
the decoder of the VAE, p,, 4 (Line 6 of Alg. 2). Secondly,
an intensity-based trigger is formed and distributed among
adversaries. This can follow one of two methods, which we
consider in the context of image data, where each sample z is a
matrix of pixels (or a tensor in the multi-channel case). Starting
with Method 1, adversaries collaboratively insert a trigger into
a target datapoint at a location specified by centering parameter
¢ = (£, 0,). The trigger has a background of 1’s with area
W = h x w, divided among adversaries based on their feature
partitions’ proximity to ¢. The background’s value is enhanced
by multiplying pixel-wise with an intensity parameter v, which
controls the trigger’s prominence. A cross pattern of 0’s is
added to complete the trigger (see Fig. 3). Overall, the general
trigger pattern is similar to the trigger adopted in [40]. Each
adversary m receives a portion of the trigger according to
their position relative to ¢. The final datapoint with backdoor
implantation is given by

25 = T0) + (Wi x ) + M) 5)
Here, Eﬁ,ﬁ) is created by implanting the trigger into %5,? (Line 7
of Alg. 2), where W,,, is the trigger background portion falling
within adversary m’s local partition, and M, is the local
cross pattern. The trigger pattern is limited by a maximum
area budget € to avoid server detection, i.e., h-w < e.

2) Alternative Trigger Embedding Method: Next, we
describe an alternative method for adversaries to implant a
trigger, referred to as Method 2 in Fig. 3. In this case, instead
of one collaborative trigger, each adversary implants a smaller
subtrigger on their feature partition. The smaller subtriggers,
when combined, should still have the same total area as the
collaborative trigger; for example, all of their individual areas
can be W,, = % The subtriggers are placed randomly
within the datapoint, preventing the server from memorizing
the trigger pattern by location to enhance generalizability.

V. CONVERGENCE ANALYSIS

We now analyze the convergence of VFL in the presence of
backdoor attacks. We first make the following assumptions:

Assumption 1 (L-Smoothness): The loss function F'(9) in
(1) is L-smooth, meaning that for any = and y, we have

Fly) < Fla) + (VF(),y — ) + 2y >

Assumption 2 (Variance): The mini-batch gradient Vg, £
is an unbiased estimate of Vg, F'(9), and

E”V@k‘C - V@kF<0>||2 < FaVk € ’C7

where I is the variance of Vy, L.
Assumption 3 (Perturbation): There is an upper bound for
the gradient perturbation from adversaries, i.e.,

Evakﬁ - Vek‘cHz < 5([)),Vk' € ]Cv
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where Vi Ldenotes the perturbed gradient and p is a measure
of connectivity for the graph G.

Assumptions 1 and 2 are common in literatures [51]
and [52], while Assumption 3 characterizes the perturbation
induced by the attack. We expect that d(p) is an increasing
function of p: a higher graph connectivity for collusion implies
a higher probability that more datapoints will be targeted, lead-
ing to a larger perturbation. More specifically, as p increases,
adversary m’s concatenated sample Xf,f,) becomes closer to
the full feature set for each datapoint ¢. With more features,
m can infer more samples and achieve lower expected loss
L(y,9) in local label inference. Consequently, adversaries will
tend to perturb more samples from the target label, and the
expected perturbation in Assumption 3 increases. Here, we
can also consider a simple illustrative example: suppose there
are multiple compromised nodes in an image classification
task, aiming to perturb samples corresponding to the “truck”
label. Each adversary holds a small portion of the overall
features (blocks of pixels). When connectivity is low (e.g.,
as with a line graph topology), each adversarial node receives
only a small share of features from neighbors. This may leave
the adversaries without enough information after exchange to
reliably identify samples containing a truck, such as when
all of the received features correspond to pixels offset from
the object (e.g., the surrounding sky). In contrast, with a
higher p (e.g., as with a fully connected graph topology),
each adversary gains a more complete view of the contents
of sample 7 in its concatenated X,(,?. This gives them a
higher chance of identifying presence of trucks, resulting
in more samples to poison after the collaborative inference
process, and thus a higher §. We will observe this relationship
experimentally in Sec. VI, where p is taken as the second
smallest eigenvalue of the Laplacian matrix of G (the algebraic
connectivity or Fiedler value) [53], which often increases with
average node degree.

4 is thus the parameter that connects the attack performance
to the graph connectivity p. We demonstrate its impact on the
model convergence in the following theorem:

Theorem 1: Suppose that the above assumptions hold, and
the learning rate is upper bounded as ngt) = nét) = =
n%) n® < L. Then, the iterates generated by the

iL-
backdoored SplitNN and vanilla SplitNN satisfy

F(g(o))
Zth_ol n®

min
te{o,...,T—
44 ?:01(77(”)2
iz 1
proof: The proof is contained in Appendix.

When there is no attack, ie., d(p) = 0, the bound
in Theorem 1 recovers the result of VFL in [54]. Under
a learning rate 7(*) that satisfies ZtT::)l(n(t))z — 0 and
ZtT;()l n® — oo for T — oo, the first and second terms
in the right-hand side of inequality (6) diminish to zero. The
adversarial attack induces a constant term 2K §(p) within the
convergence bound, reflecting the convergence degradation
due to the adversarial perturbations. Since é(p) is an increasing
function in terms of the connectivity, we see that the gap from

1}{EHW’(Q(”)IIQ}S 4

(KLT + KLS(p)) +2K5(p).  (6)
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TABLE I

NETWORK ARCHITECTURE AND HYPERPARAMETERS
FOR EACH DATASET

Parameters Dataset
MNIST | FMNIST
Margin < 0.4 0.25
Poisoning budget ¢ 1% 1%
Intensity factor ~y 20 30
Confidence threshold 5 | 0.999 0.999
# Auxiliary samples 360 360
% Auxiliary as Target 16% 16%
VAE Latent Dimension 32 64
Parameters Dataset
CIFAR-10 | SVHN [ CIFAR100-20
Margin & 0.2 0.2 0.2
Poisoning budget 1% 1% 0.5%
Intensity factor ~ 30 20 95
Confidence threshold 3 0.9985 0.99995 0.99999
# Auxiliary samples 350 560 487
% Auxiliary as Target 14% 12.5% 15.4%
VAE Latent Dimension 512 256 512

a stationary point induced by the backdoor attack becomes
progressively larger.

VI. NUMERICAL EXPERIMENTS

In this section, we evaluate the performance of our proposed
approach on various datasets. We compare our performance
with two state-of-the-art backdoor VFL attack methods dis-
cussed in Sec. I-A: BadVFL [34] and VILLAIN [35].

A. Simulation Setup

We perform experiments on the MNIST [55], Fashion-
MNIST (FMNIST) [56], CIFAR-10 [57], Street View House
Numbers (SVHN) [58], and CIFAR-100 (CIFAR100-20,
coarse label version) [57], [59], [60] datasets. We consider
fully-connected VAEs for MNIST and FMNIST, a Convo-
lutional VAE (CVAE) with 4 layers each for the decoder
and encoder for CIFAR-10 and CIFAR100-20, and a 4-layer
encoder and 3-layer decoder CVAE for SVHN. For the bottom
model, MNIST and FMNIST adopt a two layer Convolutional
Neural Network (CNN), with CIFAR-10 and CIFAR100-20
having the same architecture as the encoder of the VAE. SVHN
has the same bottom model as CIFAR-10. For the top model,
we adopt a two-layer fully-connected network, which trains
using the Adam optimizer [61]. Further details are given in
Table II.

In our experiments, unless stated otherwise, there are 10
clients with 5 adversaries, with the adversaries utilizing trigger
Method 1 from Sec. IV-B by default. Moreover, since the
baselines do not consider adversary graphs in their method-
ology, we by default consider a fully-connected graph for
fair comparison. In addition, note that both baselines assume
only one adversary, and we extend their method to multiple
adversaries by adding majority voting and trigger splitting to
their label inference and attack processes. All experiments
were conducted on a server with a 40GB NVIDIA A100-PCIE
GPU and 128GB RAM, using PyTorch [62] for neural network
design and training.

B. Competitive Analysis With Baselines

Attack Success Rate (ASR) and Clean Data Acc. (CDA):
First, we assess the accuracy of the backdoor attack and the
main task and compare the performance of our approach to
the BadVFL and VILLAN baselines. We define the accuracy
of misclassifying a poisoned datapoint as the target label as
Attack Success Rate (ASR) and the accuracy of the regular
main task as Clean Data Accuracy (CDA), which is the same
notation utilized in [35]. We intend to show a high ASR,
indicating a successful backdoor, while keeping the CDA close
to the baselines, indicating the main task is not significantly
affected.

To measure the accuracy of both the attack (ASR) and the
main task (CDA), we evaluate the main task on the test dataset,
and select 250 random datapoints from the test set in each
communication round that do not belong to the target label
to embed the trigger for evaluation of the ASR. While we
use a trigger dimension W = 5 x 7 for the proposed method,
for BadVFL [34], we follow their method of a white square,
and set the trigger size to 9 x 9. For VILLAIN [35], the
trigger embedding method involves poisoning the embedding
vector instead of the datapoint, and we poison 35% of the
embedding.

Our results are given in Fig. 4. We note the superiority of our
approach compared to the baselines: our attack achieves higher
ASR across all settings, while the CDA stays relatively con-
stant with the CDAs of the baselines. There are three reasons
for this. First, due to better label inference performance (out-
lined in following section), the adversaries are more accurately
poisoning datapoints belonging to the target, making it more
likely for the server to draw an association between the target
label and the trigger. Secondly, the intensity-based triggers
are more easily captured by the bottom-models, making the
server more reliant on it for classification. Third, the samples
generated by the adversary VAEs follow the same general
patterns and features of the target label, meaning that it is still
learning the overall structure of the clean features properly
when poisoned datapoints are present, keeping both the ASR
and CDA high. Note that our findings are consistent on each of
the datasets; compared to MNIST, Fashion-MNIST, CIFAR-
10, and SVHN, the CIFAR100-20 experiments validate our
results on a larger and more complex dataset. This corroborates
the efficacy of our proposed method in implanting a successful
backdoor on a wide range of learning scenarios.

We also note that our method requires a smaller trigger
area compared to BadVFL [34] to successfully carry out the
attack. Additionally, BadVFL is sensitive to its initial known
datapoint, causing the backdoor to fail during some runs,
accounting for the high variation in the averages. As seen in
Fig. 4, the ASR average is low for CIFAR100-20 and SVHN
due to a poor initial known datapoint being used often. On
the other hand, VILLAIN [35] must wait for a period of
time before label inference and attacking can begin, since the
method requires a well-trained bottom and top model to carry
out an attack. Lastly, the baselines, particularly VILLAIN,
slightly suffer from catastrophic forgetting, where the back-
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NIST, Fashion-MNIST, CIFAR-10, SVHN, and CIFAR100-20. The proposed

method converges to a higher ASR value than the baselines (BadVFL [34] and VILLAIN [35]) due to (1) having a higher label inference accuracy as seen
in Fig. 5a and (2) having an intensity based trigger that makes it easier for the server to draw the association between the target label and trigger.
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oposed method reaches higher accuracy than the baselines (BadVFL [34] and

VILLAIN [35]) even without access to server information. (b) Impact of varying number of adversaries with Fashion-MNIST and MNIST. As the number
of adversaries increases, a general trend in the increase of the ASR is noticed. In addition, the proposed attack is consistently has a higher or comparable
ASR value to the baselines. (c) Varying trigger intensity parameter v. We notice that an increase in  allows for a greater success of a backdoor attack.
(d) Performance of the ASR with different levels of graph connectivity. In general, the more connected the graph is, the better the performance of the backdoor

attack.

TABLE III

IMPACT OF ADDING GAUSSIAN NOISE TO THE GRADIENTS AS A SERVER-

SIDE DEFENSE: OUR PROPOSED METHOD IS MUCH MORE RESISTANT TO

THE DEFENSE DUE TO NOT RELYING ON THE SERVER FOR LABEL INFORMATION. THE BASELINES, PARTICULARLY VILLAIN, EXPERIENCE A
SIGNIFICANT DROP IN ASR WHEN NOISE IS INTRODUCED TO THE GRADIENTS

Task MNIST FMNIST CIFAR-10
Proposed BadVFL [34] VILLAIN [35] Proposed BadVFL [34] VILLAIN [35] Proposed BadVFL [34] VILLAIN [35]
CDA 97.96 £0.18 | 97.91 £ 0.15 | 97.87 £ 0.07 | 88.54 £ 0.08 | 88.56 £ 0.18 | 88.86 = 0.11 | 58.24 £ 0.5 | 58.62 +£0.46 | 58.06 £ 0.32
CDA w/ Noise | 97.97 £0.19 | 97.83+0.2 | 97.51 £0.15 | 88.25+0.41 | 88.07+£0.43 | 85.98 £3.0 | 47.84 £3.63 | 37.12+ 14.18 | 33.25 £ 13.48
ASR 94.89 £ 3.76 | 36.53 £35.9 | 53.29 £ 12.78 | 88.23 £ 4.12 | 63.40 £ 15.73 | 41.57 £21.69 | 93.95 £ 6.86 | 36.45 £ 35.8 | 67.10 £ 16.78
ASR w/ Noise | 86.88 £ 4.03 | 25.88 £ 16.97 | 0.66 £0.38 | 81.47 +7.26|38.64+16.07| 1.33+1.33 [ 89.50+£7.16 | 9.38 £15.23 | 2.26 + 2.36

door task is slowly forgotten over continuous iterations [63],
whereas, our proposed attack consistently performs well.

Label Inference: We compare the accuracy of our label
inference to the baselines [34], [35] in Fig. 5a. We see that the
proposed method of utilizing a combination of metric learning
and VAEs for label inference has the best performance in
terms of label inference accuracy across the datasets, while
not relying on the server information. Note that the proposed
attack can still be quite successful (Fig. 4) even when the label
inference accuracy is not very high (e.g., with the CIFAR-
10 and SVHN datasets). This indicates that some margin
of error in label inference can be acceptable, provided that
the target data points significantly outnumber the combined
total of other labels. As in Fig. 4, the inclusion of these
five datasets validates the label inference accuracy module of
our methodology across a wide range of learning scenarios.
Specifically, while our proposed method achieves high label
inference accuracy on benchmark datasets such as CIFAR-10
and MNIST, the results on the CIFAR100-20 dataset further
demonstrate its robustness and scalability on more complex
and diverse settings.

Robustness against Defense: We evaluate the effectiveness
of our attack against traditional server-side defense mech-
anisms, specifically noising defenses [34], [64]. We insert
noise with variance 10710 in the gradients sent back by the
server, and assess the corresponding ASR values averaged over
several runs in Table III. We note that the proposed method
maintains relatively small degradation in ASR performance
compared to those obtained without any defenses, indicating
the method’s robustness to such strategies. By contrast, the
ASR values drop significantly in presence of noise-injected
gradients for the competing baselines. The reason behind this
is that the baselines both rely on server gradients to construct
the attack: noise addition affects the similarity comparison
of the baselines, leading to poor label inference. Moreover,
the server can employ noising without significantly affecting
the CDA, suggesting that it can defend against baselines
[34], [35], but remains vulnerable to our method. Overall,
these results validate the robustness of our label inference
based on hybrid VAEs rather than server gradients, which is
crucial to maintaining a good ASR in the presence of such
defenses.
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TABLE IV

STUDY ON THE EFFECTIVENESS OF THE PROPOSED VAE-BASED SWAPPING METHOD FOR TRIGGER EMBEDDING: OUR PROPOSED METHOD Is MUCH
MORE RESISTANT TO FORGETTING THE BACKDOOR TASK DUE TO THE SWAPPING OF CLEAN FEATURES WITH SIMILAR BUT HARDER-TO-
DISTINGUISH VAE-GENERATED FEATURES. MOREOVER, THE CDA STILL REMAINS HIGH, EVEN WITH THE SWAPPING, INDICATING THAT
IT Is STILL LEARNING THE OVERALL STRUCTURE OF THE CLEAN FEATURES PROPERLY. LASTLY, COMPARING THE ACCURACY
OF THE NO ATTACK SCENARIO, WE NOTE THAT THE ACCURACY DOES NOT SIGNIFICANTLY DIFFER FROM THE CDA,

INDICATING THE VAE-BASED SWAPPING METHOD SUCCESSFULLY KEEPS BOTH THE ASR AND CDA HIGH. (FOR
THE NO ATK. COLUMN, NO RESULTS ARE GIVEN FOR THE VAE-BASED SWAP ROW AS NO ATTACK
TAKES PLACE)

Task MNIST FMNIST CIFAR-10 SVHN
VAE-based Swap No Swap VAE-based Swap No Swap VAE-based Swap No Swap VAE-based Swap No Swap
ASR-1 93.35 + 6.91 32.97 +£18.48 82.44 +£4.01 46.46 + 11.51 97.65 + 2.49 12.13 £ 8.01 91.97 £ 3.42 40.58 +£9.00
CDA-1 97.94 £ 0.12 97.82 £ 0.12 88.39 £ 0.58 88.23 £ 0.24 58.59 £ 0.17 58.31 £0.21 70.23 £ 2.79 70.20 £ 1.78
ASR-2 73.67 £ 33.50 0.33 £0.67 78.61 £ 22.33 26.34 +49.15 94.95 £ 8.12 0.33 £0.43 81.53 £17.22 5.30 £9.67
CDA-2 98.01 £0.19 97.86 £ 0.10 88.51 £0.13 88.48 +£0.23 58.45 £ 0.57 58.52 £ 0.37 66.65 £ 3.68 69.83 £9.13
No Atk. — 97.84 +£0.30 — 86.96 + 2.14 — 58.99 £+ 0.47 — 71.24 £9.07
TABLE V

STUDY ON THE EFFECTIVENESS OF THE PROPOSED ATTACK IN TERMS OF ASR WITH AND WITHOUT THE USE OF THE CONSENSUS-VOTING SYSTEM
UTILIZING TRIGGER EMBEDDING METHOD 2 FROM FIG. 3. NOTE THAT MANY OF THE VOTING COLUMN RESULTS ARE THE SAME AS ASR-2
AND CDA-2 WITH VAE-BASED SWAPPING IN TABLE IV DUE TO BOTH BEING RUN ON THE SAME SETTINGS AND HYPERPARAMETERS

Task MNIST FMNIST CIFAR-10 SVHN

Voting No Vote Voting No Vote Voting No Vote Voting No Vote
ASR 73.67 £ 33.50 0.22 +0.45 78.61 + 22.33 25.0 & 50.0 98.79 £1.48 34.45+38.86 74.00+£48.72 24.00 & 45.40
CDA 98.01 £ 0.19 97.84 £ 0.30 88.51 +£0.13 86.96 & 2.14 58.70 £ 0.94 59.19 4+ 0.84 66.28 £+ 3.57 69.50 £ 7.74

C. Varying Adversaries and Attack Network

Impact of Varying Number of Adversaries: Now, we
analyze the impact of the number of adversaries on the ASR
on the server’s top model. For this experiment, we utilize the
trigger embedding method of splitting the trigger into smaller
separate local subtriggers (i.e., Method 2 from Fig. 3). We
assume that each adversary holds an 8 x 2 trigger when there
are two adversaries, 4 x 2 triggers when there are four, and
2 x 2 triggers when there are eight, thus all have the same
total area of 32.

The results are given in Fig. 5b. We see a general trend
where an increase in the number of adversaries leads to a
higher ASR, suggesting that more adversaries result in a
stronger attack, even when the area threshold parameter e
remains unchanged. We also observed (not shown) that varying
the number of adversaries did not significantly affect the CDA,
indicating that the presence of multiple adversaries does not
impact the main task across different methods.

Impact of Trigger Intensity:We next analyze the impact
of the intensity value 7 on the ASR. The results across
three datasets are shown in Sc. The analysis reveals that
a stronger trigger produces a higher ASR, with the top-
performing server model showing a stronger association to
the target as the trigger’s intensity increases. Notably, while
MNIST and CIFAR-10 achieve relatively good performance
even at lower v values, Fashion-MNIST requires a higher
trigger intensity to attain desirable ASR accuracy. This is likely
due to a significant portion of Fashion-MNIST datapoints
(being covered in white), matching the background of the
trigger, thus necessitating a stronger trigger to differentiate
from the clean features.

Graph Connectivity: Next, we investigate how the alge-
braic connectivity p of the adversary graph affects the attack
performance. We simulate this by progressively increasing the
average degree of the graph, beginning from a line topology,

TABLE VI

STUDY OF THE EFFECTIVENESS OF THE ATTACK IN TERMS OF ASR WITH
AND WITHOUT THE USE OF TRIPLET LOSS ON THE
ADVERSARIAL VAES

Architecture Dataset
MNIST FMNIST CIFAR-10
VAE Only 84.00 £9.78 | 89.10 + 10.81 | 76.18 = 11.93
Hybrid VAE & Triplet | 89.23 £6.09 | 91.74 + 4.61 | 92.72 4+ 9.38

and consider Method 2 from Fig. 3 for trigger embedding. The
results are given in Fig. 5d. We see that the attack efficacy
tends to get enhanced (i.e., ASR increases) with the increase
of p, indicating that §(p) from Theorem 1 is increasing in p.
This is because the adversaries receive a higher share of the
features for higher p. Note that due to the increased complexity
of features in CIFAR10, the server becomes more reliant on
the trigger, meaning a lower p is sufficient to achieve a high
ASR.

Ablation Studies: We conduct several ablation studies. First,
we explore the impact of incorporating the triplet loss into the
VAE for label inference in (4), i.e., whether it results in a
higher attack potency. The corresponding results are shown in
Table VI, which demonstrate significant improvement in ASR
values for all three datasets compared to the VAE-only loss.
Additionally, we note that the CIFAR-10 dataset experiences
a significantly larger enhancement compared to MNIST and
Fashion-MNIST datasets in terms of ASR: the datapoints in
CIFARI10 involve a more complex structure, where triplet loss
may play a crucial role in refining embedding quality, facil-
itating a more effective attack. Overall, our findings validate
our choice of hybrid VAE and metric learning for improving
the attack performance.

In addition, we investigate the addition of the VAE-
generated datapoint swapping mechanism in (5) to investigate
whether it results in better overall attack performance for both
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Methods 1 (ASR-1 and CDA-1) and 2 (ASR-2 and CDA-2)
outlined in Fig. 3. For Method 2, each adversary adopts a
subtrigger size of 4 x 2 for a total area of 40. Given the results
in Table IV, we show that the VAE-based swapping of original
samples with VAE-generated samples i%) (VAE-based Swap
in Table IV) plays a crucial role in the success of the attack
for both Methods 1 and 2. When no swapping mechanism is
utilized (No Swap in Table IV), the ASR is significantly lower
(= 85% and above with CIFAR-10) compared to when VAE-
based swapping takes place, resulting in a failed attack. We
also note that Method 1 of trigger embedding is more stable
in its attack performance, with less variation in the averages
compared to the attack utilized by Method 2. This is because
the location where each adversary places the subtrigger for
Method 2 varies instead being centered like Method 1, making
it harder for the top model to learn the pattern. This means
that having a denser adversary graph allows for better attack
facilitation, as having a complete graph allows for the usage
of Method 1. However, both methods still overall achieve high
attack success rates across all four datasets. Moreover, when
comparing the CDA of the proposed method to when no attack
takes place, the accuracies are similar, indicating that the VAE
generated samples still allow the top model to learn the general
clean features of the target label well in addition to the trigger.

Finally, we also investigate the importance of the addition
of majority voting in the label inference module by comparing
the proposed method to no voting taking place. When no vote
takes place, each adversary embeds its local trigger partition
based off its local label inference results. Looking at the results
presented in Table V, we notice a significant decrease in ASR
performance when only local voting is considered on each
adversary device, highlighting the importance of the majority
voting module in the overall effectiveness of the attack. This
is because no consensus has been reached on which final
datapoints to poison, and so often the trigger implanted for
each sample is incomplete, making it harder for the top model
to fully learn the trigger pattern. Moreover, this also means
that it is often the case that only a portion of the poisoned
adversary-owned features is swapped out with VAE-generated
sample EE%), making it less likely for the server to rely on
the trigger for classification due to the presence of more
unchanged features, thereby resulting in a failed attack.

Effectiveness of Attack under Differing Latent Sizes: We
analyze whether the latent embedding size that the server
requires each local bottom model to send affects the overall
effectiveness of the proposed attack, as outlined in Table VII.
We note that no matter the size of the embedding required by
the server, the attack in terms of the ASR remains high. This
means that the proposed attack can accommodate and learn
the trigger with both small and large latent space dimensions.
Moreover, when an increase in the latent space dimension
improves the overall main learning task (CDA), as is the case
with SVHN, the ASR remains largely unchanged. Overall,
this indicates the robustness of the proposed attack to varying
embedding sizes required by the server.

Effectiveness of Attack under Differing Margins: Next,
we analyze whether the choice of the margin value k¥ when
training the triplet-based VAE affects the overall performance

IEEE TRANSACTIONS ON NETWORKING

TABLE VII

CDA AND ASR EVALUATION METRICS FOR DIFFERING LATENT SPACE
DIMENSIONS OF THE EMBEDDINGS PRODUCED BY THE BOTTOM MOD-
ELS ON EACH CLIENT. FOR BOTH SMALL AND LARGE LATENT

EMBEDDING VALUES, THE TRIGGER PATTERN IS SUCCESS-
FULLY INJECTED INTO THE LEARNING PROCESS OF THE
SERVER’S TOP MODEL, RESULTING IN A SUCCESSFUL
BACKDOOR ATTACK

Dimension | Datasets ASR CDA
MNIST 89.23 + 6.09 97.92 +0.15
39 FMNIST 96.34 + 2.32 88.33 £ 0.09
CIFAR-10 | 95.74 +4.21 56.37 + 0.31
SVHN 94.07 + 5.98 45.02 £ 9.60
MNIST 87.07 £ 9.65 98.09 £ 0.12
64 FMNIST 98.53 +1.13 88.33 £ 0.28
CIFAR-10 | 97.55+2.43 57.55+0.10
SVHN 90.50 +10.36 | 52.29 + 13.63
MNIST 86.49 + 7.28 98.15 £ 0.06
128 FMNIST 99.65 4+ 0.22 87.33 £ 2.66
CIFAR-10 | 96.03 £2.16 57.44 £ 0.72
SVHN 86.96 4+ 7.87 60.28 + 7.88
MNIST 86.93 +12.40 | 98.02 4+ 0.16
256 FMNIST 97.70 + 3.15 88.45 +0.14
CIFAR-10 | 95.65+5.14 58.24 4+ 0.44
SVHN 87.33 +£10.63 | 69.85 + 3.06
MNIST 95.02 4+ 2.69 98.18 £+ 0.08
512 FMNIST 98.10 + 0.53 87.72 £ 2.36
CIFAR-10 | 97.38 £1.44 59.50 £ 0.71
SVHN 93.29 + 4.37 71.57 £1.92

of the backdoor attack, as outlined in Table VIII. We note
that in all data sets, the choice of K does not significantly
impact both the CDA and ASR. This could be attributed to
the use of an online batch-hard triplet mining strategy during
training (Sec. III-A), meaning difficult negatives are always
used in the training of the adversarial VAEs, no matter the
margin value chosen. However, some margin values, such as
0.3 vs 0.15 for SVHN or 0.25 vs 0.40 for FMNIST, perform
better than others. In addition, with the case of SVHN, we
note that arbitrarily selecting too high a margin value results
in a &~ 9% drop in CDA performance. This might happen
if the latent space is not well-separated, leading to many
samples of differing classes to be selected. This could possibly
create a lack of consistency in the type of data points that are
trigger-embedded, in addition to the types of samples the VAE
generates, leading to a degradation of the CDA. Overall, these
findings indicate that while the margin is not a highly sensitive
parameter that requires meticulous tuning, some consideration
should be taken when selecting an ideal value for maximal
attack potency and main task performance.

Function Analysis of 6(p): Finally, we examine the
relationship between d(p) and p from our analysis in Sec. V.
We compute d as the L2 norm difference between the gradients
used to update the top model under attack and under benign
conditions. To enable broader analysis of connectivity over
a larger range of p, we resize the samples [65], [66], [67],
[68] to 64 x 64. This adjustment allows for accommodating
20 total clients, including 10 adversaries, thereby supporting
a denser adversary graph. Starting with a line topology, we
incrementally add edges until the network becomes fully
connected. Each adversary adopts a subtrigger size of 2 x 2
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TABLE VIII

CDA AND ASR EVALUATION METRICS ON DIFFERENT & MARGIN VALUES DURING TRIPLET MARGIN LOSS (3) FOR LABEL INFERENCE WITH THE
ADVERSARIAL VAES. OVERALL, THE ATTACK IN TERMS OF THE ASR REMAINS HIGH ACROSS ALL DATASETS, BUT SOME MARGIN VALUES
PERFORM BETTER THAN OTHERS AND ARE MORE STABLE IN THEIR PERFORMANCE. IN ADDITION, WITH THE EXCEPTION OF SVHN,

THE CDA STAYS MOSTLY THE SAME AND IS UNAFFECTED BY THE MARGIN VALUE ADOPTED BY THE ADVERSARIES

PPN MNIST FMNIST CIFAR-10 SVHN
Margin (k)
ASR CDA ASR CDA ASR CDA ASR CDA

0.10 91.13 £ 5.78 97.94 + 0.10 94.67 £ 1.96 88.34 +£0.53 95.82+£2.73  58.13+0.32 91.97 + 2.66 65.83 + 14.49
0.15 91.36 + 2.58 97.93 + 0.10 88.12 + 3.11 88.41+0.42 92.37+4.76 58.70£0.18 81.44 4+ 10.97 69.50 + 3.64
0.2 87.30 + 9.62 97.91 + 0.17 91.59 + 2.27 88.23+0.50 97.76 £1.09 57.98 £ 0.61 89.28 + 7.76 68.48 +1.16
0.25 86.17 +11.38 98.05+ 0.05 85.10 4+ 16.31 88.63 +0.17  87.87+£9.08 58.49 +0.43 89.14 + 6.15 71.33 +5.90
0.30 92.54 + 1.17 97.89 + 0.12 87.99 + 7.12 88.85+0.17 91.16 £3.83 58.67 £0.17 92.15 + 3.56 73.81 4+ 3.06
0.35 90.38 + 6.52 98.02 + 0.22 95.46 + 4.89 86.23 +3.35 91.97 £7.88  58.89 + 0.96 83.15 + 7.27 72.97 + 5.87
0.40 89.23 + 6.09 97.92 +0.15 96.14 + 4.90 87.89+0.35 94.90 £3.56 58.54 £ 0.20 95.16 4+ 2.90 64.69 + 5.31
0.45 86.39 + 9.05 97.98 + 0.12 94.99 + 2.99 88.24 +0.28 97.00 £2.18  58.46 £+ 0.53 90.52 + 6.18 69.20 4+ 6.50

Function Analysis of Graph Connectivity

EEE VNIST - - -
B Fashion-MNIST

20 HEEE CIFAR-10
=3 SVHN

15

10

le-01

6e-01 2e+00 3e+00 6e+00

le+01

0

Fig. 6. The gradient perturbation in the top model from the adversaries for
differing levels of connectivity p. This validates the hypothesis in Sec. V
that 6(p) is a non-decreasing function of p. As p increases, the perturbation
saturates quickly. When no perturbation takes place, it is marked with an “x”,
as seen for some datasets when p € {0.1,0.6}.

with a total trigger area of 40. For CIFAR-10 and SVHN, the
VAE architecture is adjusted to a 2-layer encoder and decoder
CVAE.

The results are shown for each dataset in Fig. 6. We see that
as the connectivity p increases, the gradient perturbation intro-
duced by the attack increases until it saturates once a certain
level of connectivity is reached. When connectivity is lower,
the number of poisoned datapoints is lower, resulting in a
smaller disturbance during the training process. In addition, the
poisoning budget ( set by the adversaries prevents excessive
poisoning, limiting the amount of perturbation presented to the
top model. Moreover, we note that the perturbation increases
more dramatically when the connectivity is lower, as indi-
vidual adversaries benefit more from receiving features from
other adversary devices when their shared knowledge is more
limited. The function saturates rather quickly, highlighting the
potency of the attack even for relatively sparsely connected
graphs (i.e., p ~ 1). Therefore, if the adversaries decide to
utilize Method 2 (Fig. 3) for their attack, a fully-connected
graph is not necessary. Finally, we remark that when dealing
with low connectivity values for MNIST and SVHN (i.e.,

p = 0.1), no datapoints are inferred via the consensus voting,
leading to no datapoints being poisoned, i.e., no perturbation.

VII. CONCLUSION

In this paper, we introduced a novel methodology for con-
ducting backdoor attacks in cross-device VFL environments.
Our method considers a hybrid VAE and metric learning
approach for label inference, and exploits the available graph
topology among adversaries for cooperative trigger implan-
tation. We theoretically analyzed VFL convergence behavior
under backdooring, and showed that the server model would
have a stationarity gap proportional to the level of adversarial
gradient perturbation. Our numerical experiments showed that
the proposed method surpasses existing baselines in label
inference accuracy and attack performance across various
datasets, while also exhibiting increased resilience to server-
side defenses.

APPENDIX
A. Proof of Theorem 1

First, we denote the mini-batch gradient of the loss function
as

Vo L = [(vawc)T, (vey)ﬁ)i o (v(,%)c)T]T.

Due to the adversarial attacks, the gradients used for the
updates will be perturbed. We denote the perturbed gradient
as

Vo £= (Ve £)T (Ve £)T, . (Vo0 £)T]T,
1 2 K
which is further used for model update in VFL, i.e.,
ot = o) — V50 L.
Hence, the update of the whole model can be expressed as
P+ _ p(t) — _77(t)[(vo§t)£’)T7 (Vegt)ﬁ)—r’ o (VO%)E)T]T
[ (Ve )T = (Ve L), T
k k

A®)

From Assumption 1 and the above iterative equation, we
have

F(Q(t+1))

L
< F(e® F(OWY gt+1) _ gty 1 Zy1pt+1) _p(t) 12
S FOW)+(VF(6'"),0 0 >+2H9 6]
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< F(O0) = (VE(0), 10V g0 £ + 70 AO)

L
+5 7OV gy £+ P AD |2, (7)

Next, from Assumption 2, we have E[V,, L] = E[V,, F(0)].

Therefore, taking expectation over (7) leads us to
E[F(9T)]
< F(OY) =W VE@EW)|? + ("
nWE(VF(6), AD) + (5
TR + 50 FE0)?

)2 LE[A®2
N2LE( Vg L||?
< F(G(“) —

+ 2nOBAN + (1O LE]V o £

+ (O LR O]
< FOO) = (5 = 4 = (OPL) IVFEO) P

(O LE||V g0 £ — VF(OD)|2

+ L OEI AP + ()2 LE| A2

< FO) - (1) = 51 = 6L ) IVFO)

(n)’KLi(p),

®)

[\)

1
+ (W2 KLT + 5n“)K(S(p) + 9)

I

where we utilize (c1,co) < lle H + HCZ [52] to obtain (8),
and Assumptions 2 and 3 to 0bta1n (9) Now, letting 1(*) <
4. we have n® —In® —(n®M)2L > 1 2 Hence, (9) can be
rewritten as

(t)
7

TIIVF(G(”)H2

—E[FOU“)] + (nW)2KLD
()2 K L5 (p).

< F(OW)

1
+ 5K () + (10)

Taking expectation of the above inequality over #(*), we have

VE|IVF(0Y)|?
< AE[F(9WV)] — 4E[F(01+D)] 4 4(n®)2K LD
+4(nW)2LKS(p) + 20 K5 (p).
Summing the above inequality from ¢ = 0 to 7' — 1 and

utilizing the fact that the loss function is non-negative, i.e.,
E[F(6T)] > 0, we have

T—1 -
nWE|VFOW)|? < 4F(6°) + 4 Z Y2 ) KL
t=0 t=0
T-1 T-1
+4 (D W) ) LES(p)+2 | D ' | Ké(p). (11)
t=0 t=0

Dividing the both sides by ZtT;()l n® leads us to

Z T <o BIVE(OV))?
t=0 t:O
( T—1
t
< im ot ) | KLr
t=0 t=0

Furthermore, as min;—q ...
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T-1

Z (t)

t=0

LK6(p) + 2K6(p). (12)

T-1%t < o2t We thus com-

t*

plete the proof of Theorem 1.
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