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Pantropical tree rings show small effects of drought on stem growth
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Increasing drought pressure under anthropogenic climate change may jeopardize the potential of tropical forests to capture carbon in woody
biomass and act as a long-term carbon dioxide sink. To evaluate this risk, we assessed drought impacts in 483 tree-ring chronologies from
across the tropics and found an overall modest stem growth decline (2.5% with a 95% confidence interval of 2.2 to 2.7%) during the 10% driest
years since 1930. Stem growth declines exceeded 10% in 25% of cases and were larger at hotter and drier sites and for gymnosperms
compared with angiosperms. Growth declines generally did not outlast drought years and were partially mitigated by growth stimulation in
wet years. Thus, pantropical forest carbon sequestration through stem growth has hitherto shown drought resilience that may, however,

diminish under future climate change.

Tropical forests and woodlands are key components of the global car-
bon cycle. They represent much of the carbon stocks in terrestrial
vegetation, contribute strongly to the land carbon sink, and are a key
driver of the interannual variation in this sink (7, 2). The long-term
capture and storage of carbon in tropical woody biomass has a high
potential to contribute to nature-based solutions to climate change by
acting as a CO, sink (3, 4). However, the increasing incidence and
intensity of droughts may fundamentally alter these services (5-8),
temporarily shifting tropical vegetation to a net carbon source (5, 7, 9)
and thus jeopardizing its role in climate change mitigation (10).
Droughts can be caused by low precipitation (P), high atmospheric
water demand (vapor pressure deficit, VPD), or both simultaneously,
leading to a strong climatic water deficit (CWD), calculated as water
demand minus supply. Each of these drought types may reduce tropi-
cal tree growth.

To understand and predict the risks that droughts pose for the long-
term capture of carbon in tropical vegetation, a pantropical assess-
ment of drought effects on stem growth is needed. However, studies
of drought effects on tree growth are scarce and poorly replicated
spatially (171-13). This situation limits the ability to generalize and
contextualize local empirical findings and to validate terrestrial bio-
sphere models, which currently poorly represent the formation (14, 15)
and climate sensitivity of tropical woody biomass (16). These modeling
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uncertainties are bound to persist unless they are constrained by ex-
tensive empirical studies.

Here, we leveraged the recent expansion of tropical tree-ring studies
(17, 18) to assess drought effects on stem growth at an annual resolu-
tion and over multidecadal time scales. We assembled the most exten-
sive pantropical tree-ring network to date, extending across all tropical
climates, to answer the following questions: (i) To what extent is stem
growth reduced during drought years and does this differ across
drought types (i.e., low P, high VPD, and high CWD), seasons (i.e., dry
versus wet), and major clades (i.e., angiosperms versus gymnosperms)?
(ii) Is there evidence for lagged drought effects on stem growth and,
if so, how strong or persistent are these effects? (iii) To what extent
does growth stimulation during wet extremes compensate for stem
growth reduction during droughts? (iv) Does the magnitude of drought
impacts depend on local climatic conditions?

On the basis of current knowledge about growth-limiting factors and
results from extratropical tree-ring studies, we hypothesize drought ef-
fects to be stronger for CWD droughts than for P and VPD droughts and
for gymnosperms than for angiosperms [question (i) (19, 20)]; lag effects
to exist, especially for gymnosperms [question (ii) (19, 21)]; drought-
induced growth declines to be partially compensated for by growth
stimulation during wet extremes [question (iii) (22, 23)]; and drought
effects to be stronger in more arid regions [question (iv) (19, 23)].
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Pantropical tree-ring network

We compiled a network of 483 tree-ring width chronologies from
>10,000 trees spanning tropical and subtropical latitudes (30°N to
30°S). This dataset comprises 163 species and 33 plant families, with
similar proportions of angiosperm and gymnosperm chronologies
(Fig. 1A and fig. S1). Chronologies were redeveloped from >20,000
time series of raw tree-ring width measurements using a single, flexible
detrending procedure that retains short-term growth responses to
climate extremes. The resulting ring-width index (RWI) chronologies
represent a relative, population-level measure of tree-growth variabil-
ity. For each site, we identified the 10% driest years since 1930 in terms
of P (lowest values), VPD (highest values), and CWD (highest values)
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in either the wet or dry season. CWD was calculated as cumulative
abs(P-PET) for months during the season when the potential evapo-
transpiration (PET) is greater than P. We studied droughts at the sea-
sonal level because the climate sensitivity of tropical tree growth
differs among seasons (17). We quantified the impacts of droughts (and
wet extremes) on RWI using superposed epoch analysis (SEA) (24), a
technique that compares the mean RWI anomaly in extreme years
with that of random draws from all “normal” years in the chronology
and tests significant deviations (21). We estimated lag effects during
the first and second postdrought years. RWI anomalies provide robust,
site-level estimates of drought impacts and can be interpreted as pro-
portional reductions in stem diameter growth (fig. S2); therefore, we
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vals (CIs) of the weighted median
responses were narrow (Fig. 1B).
Overall, the magnitude of growth
declines during drought years was
modest (Fig. 1B). The pantropical
growth reduction for all drought types
and seasons was 2.5% (weighted
median, 95% CI: 2.2 to 2.7%, with
angiosperms and gymnosperms
combined). Growth reduction was
significantly stronger for dry-
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Fig. 1. Pantropical growth anomalies during drought years obtained from a tree-ring network. (A) Geographical distribution
of 483 tropical tree-ring width chronologies from gymnosperms (n = 273, triangles) and angiosperms (n = 210, circles). The
background color is tree cover percentage (>10%). (B) Pantropical median anomalies of annual tree growth (whiskers indicate
bootstrapped 95% Cls) during the 10% years with the lowest P, highest VPD, or highest CWD. Results are shown for droughts
occurring during the dry season (filled symbols, bold text) and wet season (transparent symbols, normal text) and for
angiosperms and gymnosperms combined (“all") or separately. Results of weighted Mann-Whitney U tests between seasons are
shown (nonsignificant, NS: P > 0.05; *P < 0.05; **P < 0.01; ***P < 0.001). No significant differences in growth anomalies were
found between drought types for any combination of species groups and season (Kruskal-Wallis tests, P > 0.05). Percentage
values represent the proportion of significant negative anomalies in SEA analyses (P < 0.05). Sample size per symbol is provided

intable S1B.

refer to them as “growth anomalies” (or “growth reductions” when
negative). To account for the higher abundance of tree-ring studies at
high elevations and in arid climates (fig. S3), we present pantropical
medians weighted by climatic representativeness.

The drought intensity of the selected 10% driest years (expressed as
the number of standard deviations away from the long-term mean)
was comparable across the three drought types (fig. S4). Overlap in
event years across drought types was small, except for dry-season ex-
tremes in P and CWD (fig. S5), suggesting that CWD droughts are more
driven by very low P than by very high VPD. Across drought types and
seasons, 7% of the droughts occurred during 2 consecutive years, and
0.3% lasted for 3 years. Since 1930, the frequency of droughts has in-
creased for all drought types (fig. S6A), whereas the intensity has
increased for some (VPD and CWD) but decreased for others (P)
(fig. S6B).

Variable but overall modest drought effects

Growth anomalies during the 10% driest years were predominantly
negative (63% of incidences), with strong growth reductions (>10%)
occurring in 25% of the chronologies. However, growth anomalies
varied across the network from strongly negative to moderately posi-
tive (fig. S7A), and growth anomaly variations were stronger for indi-
vidual drought years (fig. S6C) than for averages across drought years.
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P VPD cwb season droughts (3.1%; 95% CI: 2.8

to 3.5%) than wet-season droughts
(1.8%; 95% CI: 1.6 to 2.1%) (Mann-
Whitney U test, P < 0.001). Our as-
sessments focus on the pantropical
level because continental-level com-
parisons are hampered by differ-
ences in climatic representation
(fig. S1D) and local-scale assess-
ments by high local tree diversity
(fig. S1E).

One fourth of the growth anoma-
lies during dry-season droughts
and 15% during wet-season droughts
were significant (P < 0.05; Fig. 1B
and fig. S7A). SEAs of individual ring-width series revealed smaller
proportions of significant growth declines: 10% during the dry season
and 7% during the wet season (fig. S8). These lower percentages likely
reflect a larger role of nonclimatic factors in inducing growth variation
of individual trees (e.g., canopy disturbance and carryover effects) than
varation at the population level.

Applying a more stringent selection of drought years (i.e., the 5%
driest years) led to a somewhat stronger, but still modest, mean reduc-
tion of 3.2% (95% CI: 2.7 to 3.5%). This modest drought response is
comparable in magnitude to that from multisite assessments in tropi-
cal forests, which reported 6 to 9% reductions in diameter growth or
woody biomass productivity (11, 30, 3I). The stronger growth reduc-
tions in those studies may be explained by the selection of more ex
treme droughts.

Drought responses differed markedly between angiosperms and
gymnosperms (Fig. 1B). Dry-season droughts induced significantly
stronger growth reductions for gymnosperms (4.4%; 95% CI: 4.0 to
5.1%) than for angiosperms (1.1%; 95% CI: 0.5 to 1.9%) (table S1). By
contrast, wet-season droughts resulted in stronger growth declines for
angiosperms (2.7%; 95% CI: 2.2 to 3.1%) than gymnosperms (1.3%; 95%
CI: 0.8 t0 1.6%) (table S1). Stronger drought responses of gymnosperms
are broadly consistent with the results of extratropical tree-ring stud-
ies (19, 21, 22, 32). These taxonomic differences cannot be explained
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by the drought intensity, which was similar for angiosperms and gym-
nosperms (fig. S4). Possible explanations of stronger drought effects
for gymnosperms include a dominant evergreen leaf phenology (89%
of gymnosperm chronologies), an inherently stronger growth vari-
ability (21), a stronger vulnerability to cavitation for Pinaceae (80% of
our chronologies) (33), and lower concentrations of nonstructural
carbohydrate (NSC) reserves (34). The marked differences in drought
responses and hydraulic architecture between angiosperms and gym-
nosperms call for separate drought analyses of these major clades.

In contrast to our hypothesis about question (i), growth reductions
were not larger during CWD droughts compared with P or VPD
droughts (Fig. 1B and table S1). This may partially be explained by the
high coincidence of CWD and P droughts (fig. S5) resulting in similar
effects on tree growth.

Rapid postdrought recovery

Contrary to our hypothesis about question (ii), drought analyses re-
vealed no evidence for strong or long-lasting lag effects for any drought
type or season (Fig. 2). Compared with drought years, postdrought
years exhibited significantly smaller negative growth anomalies, and
anomalies often shifted to positive. Such significant changes were
found in 80% of the 36 possible comparisons (of clades, seasons, and
drought types) between drought and postdrought years. During post-
drought years, the 95% Cls of growth anomalies included O or were
fully >0 for 70% of the 36 combinations of drought types, seasons, and
clades. Postdrought recovery was similar for angiosperms and gymno-
sperms (Fig. 2) and cannot be explained by postdrought climatic con-
ditions, which were close to normal or only slightly wetter (fig.
S4, B and C).

Robustness tests revealed that these drought responses do not shift
when applying more rigid detrending methods (fig. S9), alternative
climate products (figs. S10 and S11), or more stringent drought
selection criteria (fig. S12, A and B) or when selecting 2-year droughts
(fig. S12C).

Season:

All Angiosperms
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Combined, our results point to a rapid recovery of tree growth to
predrought levels and provide no evidence for the existence of strong
or long lag effects at the pantropical scale. These results are consistent
with the short (<18 months) lag effects in tree growth after droughts
observed in tropical dendrometer studies (11, 35) and extratropical tree-
ring studies (22). However, our results contrast with the strong lagged
drought responses for gymnosperms observed in a tree-ring study across
extratropical sites (19), likely due to differences in site aridity, drought
definitions, detrending methods, and species selection (22).

Drought effects are partially mitigated by wet extremes

To contextualize drought-induced growth anomalies, we compared the
overall effect of the 10% driest years on tree growth with growth
changes during the 10% wettest years (SEA analysis). As hypothesized
for question (iii), these wettest years caused pantropical tree growth
to increase (median 1.8%; 95% CI: 1.5 to 2.0%) (fig. S7B), a magnitude
that is comparable to the 2.5% drought-induced growth reduction
(Fig. 1B). Similar to drought responses, growth anomalies after wet
extreme years were short-lived (fig. S13).

As a result of the growth increases during extreme wet years, net
growth anomalies of the 10% driest and wettest years combined were
overall very small (-0.4%; 95% CI: -0.2 to -0.5%) and not significantly
different from O for most drought types (Fig. 3). However, wet extremes
mitigated only half (47%; 95% CI: 43 to 52%) of the growth reduction
during drought years (across seasons and drought types and for an-
giosperms and gymnosperms combined; Fig. 3). With increasing fre-
quency or severity of droughts (fig S6, A and B) and in more arid
conditions (23), this wet-year compensation may be reduced.

Drought impacts increase with aridity

We evaluated the climatic drivers of observed drought effects by in-
terpolating growth anomalies across climate space (mean annual pre-
cipitation and temperature). We found that wet-season droughts
reduced growth in angiosperms more strongly in hotter and more arid
climates (Fig. 4A and figs. S14A and
S15A), whereas dry-season droughts
had stronger impacts on gymno-
sperms at more arid sites (Fig. 4A
and figs. S14B and S15B). Path anal-

=— Dry season == Wet season

Gymnosperms

0.051

0.00 1 S

yses yielded consistent results (fig.
S16) and also revealed that the ex-

-0.051

pected role of first-order growth
autocorrelation in shaping drought
effects (22) was very small. Our
finding of aggravating drought ef-

0.051

0.001 —

fects with increasing aridity is con-
sistent with those from earlier
studies on tropical (36) and extra-

---

-0.05 1

tropical (19, 20, 23, 37) tree species.
Strong local variability in drought
responses is common (35), likely

due to interspecific differences in

Tree growth anomaly (yr‘1)

0.051

drought resistance (38), spatial var-
iation in soil parameters, rooting
depth, access to water (39), and var-

-0.05 1

amo

iations in the timing, intensity, and
duration of droughts (37).
‘We projected the climate-space

Years after drought

Fig. 2. Drought effects on pantropical tree growth are short-lived. Growth anomalies during and after years with low P, high VPD, or
high CWD. Responses are shown for droughts occuring during the dry season and wet season and for angiosperms and gymnosperms
combined (“all”) or separately. Bands indicate bootstrapped 95% Cls of medians. Different letters indicate a significant difference
between years (Mann-Whitney U tests; P < 0.05) per season (dry | wet). Sample size per line is provided in table S1B.
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patterns for growth anomalies dur-
ing low-precipitation years (i.e.,
models with highest R?) into geo-
graphic space (Fig. 4B). For angio-
sperms, this model suggests that the
strongest drought-induced growth
reductions occur in dry-forest biomes

535

G707 ‘1€ Anf uo A1eIqrT-yoIeasay pue AJISIOATU() USSUTUASEAA 1B SI0°00UI0s' mmm//:sd)y WOl papeofumo



RESEARCH ARTICLES

Fig. 3. Wet extremes partially mitigate drought effects on tropical tree growth. Pantropical medians (and bootstrapped 95% Cls) of the net growth anomaly of dry and wet
extreme years. Results are shown for extremes occurring in the dry or wet seasons and for angiosperms and gymnosperms combined (“all”) or separately. Droughts (and wet
extremes) were identified as the 10% years with the lowest (highest) P, highest (lowest) VPD, or highest (lowest) CWD. The net anomaly was calculated as the average of the
anomalies of the dry and wet extreme years. Percentages denote the growth loss during drought years that is mitigated during wet extremes per season (dry | wet). Sample size

per symbol is provided in table S1B.

Mean Annual Precipitation (mmy~")

Latitude

Fig. 4. Climatic and spatial distribution of drought-induced anomalies of tropical tree growth. (A) Growth anomalies
during years with low precipitation during the wet season (angiosperms, n = 210) and dry season (gymnosperms, n = 273)
interpolated across climate space. The interpolated climate space was restricted to 95% of the climatic ranges of precipitation
and temperature. (B) Projections of the interpolated values from (A) into geographic space. The geographic distribution of
gymnosperms was restricted to elevations >700 m above sea level (i.e., the 10th percentile of their elevational distribution). For
Africa, the gymnosperm distribution was further restricted by a species distribution model of the only African gymnosperm in
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Longitude

100°E

of drought responses likely hold.
These results offer opportunities to
benchmark and constrain simu-
lated drought responses of woody
biomass production in tropical for-
ests using terrestrial biosphere
models (16, 40).

Drought responses across
components of productivity

The drought effects on stem growth
are smaller than those on leaf-level
photosynthesis (31) and forest-level
gross primary productivity (GPP)
{ (13) but of comparable magnitude
150°E to effects on leaf fall, flushing, and
mature leaf area (35). In terms of
duration, drought impacts on stem
growth tend to last somewhat longer
(4to 18 months) (27, 35) than effects
on GPP (typically 4 to 6 months)
(41, 42). These comparisons sug-
gest more direct and stronger
drought effects on carbon uptake
through photosynthesis than on
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its sequestration in woody biomass, consistent with the decoupling of
these processes observed in extratropical forests (43).

One of the plausible explanations of the observed drought resilience
of tropical tree growth is the mobilization of NSCs. Tropical tree spe-
cies store large amounts of starch and soluble sugars in stems,
branches, roots, and leaves (44) that are available during dry episodes
for osmoregulation, leaf flushing, and stem growth (13, 34, 45, 46).
NSC mobilization may buffer reductions in stem growth and explain
the decoupling of canopy and stem responses to droughts, but this
remains poorly quantified. Other mechanisms, including shifts in leaf
phenology and stem hydraulics (47), may also contribute to drought
resilience. Long-term, well-replicated field studies measuring func-
tional and productivity changes are needed.

Limitations, mortality risks, and climate change

We acknowledge several limitations of our study that should be ad-
dressed in future studies. First, major sampling gaps exist in Africa
and in extreme arid and humid climates (figs. S1 and S3) (I18). Although
we statistically account for biases, data scarcity can only be solved
through new studies. Second, our chronologies only include cross-dated
RWI series, and our study thus may have excluded individuals that did
not cross-date due to extraordinarily strong (e.g., missing rings) or
weak drought responses. The latter group of individuals may produce
progeny for drought-resilient next generations if weak responses have
a genetic basis. Third, our study species represent a small fraction of
tropical tree richness, and their drought responses may somewhat
deviate from that of the “average” tropical species. Finally, we do not
quantify drought responses at the stand level. Upscaling from the tree
level to the forest level would require comparing tree-ring-based re-
sponses with those from community-wide dendrometer or plot data.

Episodic droughts increase the mortality of tropical trees (6, 48),
and drought-induced stem growth reductions may be associated with
elevated mortality. To provide a first estimate of the mortality risks
associated with the growth reductions reported here for angiosperms,
we used significant growth-mortality associations from 10 tropical
forest field studies (49) (fig. S18, A and B). The resulting estimate is a
first indication of the order of magnitude of additional tree mortality.
We estimate this to be 0.1% per drought year (95% CI: 0.08 to 0.15%)
on top of a 1% year™ ! baseline (fig. SI8C). The resulting carbon loss of
this additional mortality may be substantial at the pantropical scale
and likely recovers slowly (50).

Anthropogenic climate change has intensified drought stress (fig.
S6, A and B), resulting in stronger drought-induced growth reductions
for all drought types (fig. S6C). Future climate change will further
increase the frequency of droughts in tropical forests (51, 52). Our
climate space interpolation and path analyses suggest that future
warming and amplified climatic variability will cause stronger stem-
growth declines during wet-season droughts in angiosperm-dominated
tropical lowland forests and woodlands. For ggmnosperm-dominated
high-elevation forests, the stronger impacts of dry-season droughts
are expected in regions where climate change would reduce precipita-
tion. These shifts are unlikely to be mitigated by concurrent CO, rise
(9) because no consistent CO,-induced growth stimulation has been
observed in tree-ring studies (53).

Stronger and more extensive droughts occurring under future cli-
mate change may shift the modest drought responses observed here
for the past decades toward considerably larger and more widespread
declines in tropical wood productivity. Such shifts may have implica-
tions for the dynamics and residence time of carbon in tropical forests,
especially when stronger growth reductions are accompanied by in-
creasing tree mortality.
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