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Abstract—We investigate a real-time remote inference system

where multiple correlated sources transmit observations over

a communication channel to a receiver. The receiver utilizes

these observations to infer multiple time-varying targets. Due

to limited communication resources, the delivered observations

may not be fresh. To quantify data freshness, we employ the

Age of Information (AoI) metric. To minimize the inference

error, we aim to design a signal-agnostic scheduling policy

that leverages AoI without requiring knowledge of the actual

target values or the source observations. This scheduling prob-

lem is a restless multi-armed bandit (RMAB) problem with a

non-separable penalty function. Unlike traditional RMABs, the

correlation among sources introduces a unique challenge: the

penalty function of each source depends on the AoI of other

correlated sources, preventing the problem from decomposing

into multiple independent Markov Decision Processes (MDPs),

a key step in applying traditional RMAB solutions. To address

this, we propose a novel approach that approximates the penalty

function for each source and establishes an analytical bound on

the approximation error. We then develop scheduling policies for

two scenarios: (i) full knowledge of the penalty functions and (ii)

no knowledge of the penalty functions. For the case of known

penalty functions, we present an upper bound on the optimality

gap that highlights the impact of the correlation parameter and

the system size. For the case of unknown penalty functions and

signal distributions, we develop an online learning approach that

utilizes bandit feedback to learn an online Maximum Gain First

policy. Simulation results demonstrate the effectiveness of our

proposed policies in minimizing inference error and achieving

scalability in the number of sources.

Index Terms—Age of Information, remote inference, correlated

sources, scheduling, restless multi-armed bandit.

I. INTRODUCTION

{N}{EXT-GENERATION} communications (Next-G) (e.g.,
6G) are expected to support many intelligent applications
such as environmental forecasting, surveillance, networked
control of robot or UAV swarms, communication between
connected vehicles, and massive sensing via the Internet of
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Things (IoTs) [2]. These applications often require timely
inference of dynamic targets (e.g., positions of moving objects,
changes in environmental conditions).

In this paper, we investigate timely inference of mul-
tiple time-varying targets based on observations collected
from remote sources (e.g., sensors, cameras, IoT devices,
UAVs). These observations are transmitted to a receiver over
a capacity-limited communication channel. Furthermore, the
source observations can exhibit correlation in their dynamics.
For example, in environmental monitoring, the data collected
by geographically close sensors measuring the temperature
or humidity would be correlated. In scenarios where vehicles
communicate with other neighboring vehicles, data collected
from them can be spatially correlated. Similarly, in target
tracking with UAV-mounted cameras, observations from cam-
eras with overlapping fields of view are correlated. Timely and
effective scheduling of correlated sources in wireless commu-
nication networks is crucial for minimizing inference errors of
dynamic targets and improving real-time performance.

Due to limited communication resources, observations
delivered from remote sources may not be fresh. Age of
Information (AoI), introduced in [3] and [4], provides a
convenient measure of information freshness regarding the
sources at the receiver. Specifically, consider packets sent
from a source to a receiver: if U(t) is the generation time
of the most recently received packet by time t, then the
AoI at time t is the difference between t and U(t). Recent
works on remote inference [5], [6], [7], [8] have shown that
the inference errors for different tasks can be expressed as
functions of AoI. Additionally, AoI can be readily tracked,
making it a promising metric for determining how to prioritize
resource allocation. Recent works [9], [10] have also shown
that AoI-based scheduling is sufficient to obtain near-optimal
scheduling of correlated Gauss–Markov sources with linear
time-invariant (LTI) system models. While this is promising,
many real-world systems exhibit non-linear dynamics and
complex correlation structures. Motivated by this, in this work,
we pose the following research question:

How can we develop AoI-based scheduling of cor-

related sources with arbitrary correlation structure

to minimize inference errors for target processes?

A. Outline and Summary of Contributions
In answering the above question, we make the following

contributions:
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• To minimize the discounted sum of inference errors for
multiple targets, we formulate the problem of scheduling
correlated sources over a capacity-limited channel. For
the set of all causal and signal-agnostic scheduling poli-
cies in which (i) the scheduler makes its decision based
on the current and the past information available and
(ii) the scheduler does not have access to the realization
of the actual processes, we show that the problem can
be expressed as minimizing the discounted sum of AoI
penalty functions (see Lemma 1 and (12)-(13)).

• The scheduling problem is a restless multi-armed bandit
(RMAB) problem with a non-separable penalty function.
In contrast to the traditional RMAB framework [11],
the penalty functions of all arms in this problem are
intertwined. This is because the penalty function for each
arm depends on the AoI values of all sources. This inter-
connectedness prevents the decomposition of the problem
into independent Markov Decision Processes (MDPs)
even with constraint relaxation, a common approach used
for traditional RMABs [11]. We address this problem by
establishing an information-theoretic lower bound (see
Lemma 2) on inference error and use it to decompose
the problem into multiple independent MDPs. Prior work
[10] also provided a lower bound of inference error
under correlated settings. However, the bound in [10]
was limited to Gauss-Markov sources with an LTI system
model. Our information-theoretic lower bound extends
the bound of [10] to a significantly broader class of
systems, including non-linear and non-Gaussian sources.

• After establishing the approximated function, we develop
a Maximum Gain First (MGF) policy (see Algorithm 1)
when the scheduler has full knowledge of penalty
functions and/or the distribution of targets and source
observations. We present an upper bound on the opti-
mality gap of our MGF policy (see Theorem 2). The
optimality gap highlights the impact of correlation param-
eter and the system size.

• For unknown penalty functions and arbitrary correlation
settings, it is not possible to use the bound developed
for the known penalty function. Towards this end, we
first solve a Lagrangian relaxed problem with a new
method of function approximation. Then, we provide an
Online Threshold Policy for solving the relaxed problem
in Algorithm 2 by using a bandit feedback structure.
Theorem 3 analyzes the behavior of Algorithm 2.

• By using the structure of the Online Threshold Policy
(Algorithm 2) and Gain index (Definition 1), we provide
a novel “Online Maximum Gain First” (Online-MGF)
policy in Algorithm 3. We conduct simulations (see
Section VII) by using a correlation model developed
in [9]. The simulation results show the effectiveness of
our MGF and Online-MGF policies without knowing the
exact correlation structure.

B. Related Works
Over the past decade, there has been a rapidly growing body

of research on analyzing AoI for queuing systems [4], [12],
[13], [14], [15], [16], using AoI as a metric for scheduling

Algorithm 1 Maximum Gain First Policy

Algorithm 2 Online Policy for (36)

policies in networks [17], [18], for monitoring or controlling
systems over networks [19], [20], and for optimizing remote
estimation [21], [22], [23], [24], [25] and inference systems
[5], [6], [7], [8], [26], [27], [28]. For detailed surveys of AoI
literature see [29] and [30].

One of the first works to analyze how AoI values of
correlated source observations affect remote inference was
[5], in which an information-theoretic analysis was provided
to understand the impact of AoI of correlated sources on
inference error. However, the authors of [5] did not provide
any scheduling policies to optimize inference performance
under correlation. In [9], the authors studied the scheduling of
correlated sources based on AoI values. This work considers
a probabilistic model of correlation between the sources, and
then proposed an AoI-based scheduling policy for improving
information freshness at the receiver. However, the proba-
bilistic model does not reflect the impact of correlation on
inference error or estimation of targets. In [10], the authors
developed an AoI-based scheduling policy for minimizing
estimation error of correlated Gauss-Markov sources with an
LTI system model. Our current work is related to these prior
works on AoI-based scheduling of correlated sources [9],
[10]. In particular, this paper generalizes the work of [9] and
[10] to arbitrary systems, loss functions, and target/source
processes. In addition, the prior works [9], [10] consider
that the distribution of the signal processes and the penalty
functions are known to the scheduler. In this paper, we extend
our scheduling policy to the setting, where the distribution of
the signal processes and the penalty functions are not available
to the scheduler.
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Algorithm 3 Online Maximum Gain First Policy

Fig. 1. A remote inference system with M correlated sources, scheduler,
shared channel, receiver, and M predictors.

The problem of scheduling multiple sources to optimize
linear and non-linear functions of AoI can be formulated as
a restless multi-armed bandit (RMAB) problem [20], [26],
[31], [32], [33], [34]. While Whittle index policies [6], [11],
[20], [26], [34] and gain index policies [7], [25], [28], [35]
have been shown to achieve good performance and asymptotic
optimality in certain RMABs [36], [37], they cannot be
directly applied to our problem. This is because the correlation
among sources introduces a non-separable penalty function,
where the penalty for each arm depends on the AoI of other
arms. This interdependence prevents the decomposition of
the problem into multiple independent MDPs, a key step in
applying traditional RMAB solutions. Our paper addresses this
challenge by developing a novel approach to handle correlated
sources with a non-separable penalty function.

Furthermore, our paper contributes to the design of online
policies for RMAB problems. While existing works like [38],
[39], and [40] have explored online policies, they focus on sce-
narios with independent penalty functions and arms. A recent
study [41] investigates RMAB problems with non-separable,
monotonic, and sub-modular global penalty function, in which
the authors develop an approximate Whittle index-based pol-
icy. In contrast, our work considers arbitrary penalty functions
and employs a gain index-based approach. Moreover, we focus
on a signal-agnostic scheduler and provide scheduling policies
for both known and unknown penalty functions, unlike [41],
which assumes full system information.

II. SYSTEM MODEL

Consider M sources communicating over a shared wireless
channel to a receiver (Fig. 1). We assume discrete slotted time
and at every time slot t, each source m observes a time-varying
signal Xm,t 2 Xm, where Xm represents the finite set of pos-

sible observations from source m. A scheduler progressively
schedules source observations to the receiver. At each time
slot t, the receiver uses the received observations to infer M
targets (Y1,t, Y2,t, . . . , YM,t) of interest. Each target Ym,t is
drawn from a finite set Ym and can be directly inferred from
the corresponding source observation Xm,t. For example, Ym,t

can be a function of Xm,t, such as Ym,t = Xm,t. Moreover,
the target Ym,t can be correlated with the observation Xn,t

of any other source n 6= m. The results of this paper are
derived without assuming a specific correlation model. This
ensures the general applicability of our results. An information
theoretic interpretation on the impact of the correlation is
provided in Sec. IV-A.

A. Communication Model
Due to interference and bandwidth limitations, we assume

that at most N out of M sources can be scheduled to transmit
their observations at any time slot t, where 0 < N < M .
If source m is scheduled at time t, it transmits the current
observation Xm,t to the receiver. For simplicity, we assume
reliable channels, i.e., observations sent at time slot t are deliv-
ered error-free at time slot t + 1. Because of communication
constraints, the receiver may not have fresh observations from
all sources. Let Xm,t��m(t) be the most recently delivered
signal observation from source m which was generated �m(t)
time-slots ago. We call �m(t) the age of information (AoI)
[4], [6] of source m. Let Um(t) be the generation time of the
most recent delivered observation from source m. Then, the
AoI can be formally defined as:

�m(t) = t� Um(t). (1)

Let ⇡m(t) 2 {0, 1} be the scheduling decision of source m.
At time slot t, if ⇡m(t) = 1, the m-th source is scheduled to
transmit its observation to the receiver; otherwise, if ⇡m(t) =
0, this transmission does not occur. If ⇡m(t � 1) = 0, AoI
�m(t) = �m(t�1)+1 grows by 1; otherwise, if ⇡m(t�1) =
1, AoI drops to �m(t) = 1.

B. Inference Model
The receiver employs M predictors. The m-th predictor

�m uses the most recent observations from all sources along
with their corresponding AoI values, to produce an inference
result am,t 2 Am for target Ym,t. Specifically, given the most
recently delivered source observations and their AoI values

(Xm,t��m(t),�m(t))Mm=1 = (xm, �m)Mm=1,

the inference result

am,t = �m((xm, �m)Mm=1) 2 Am

minimizes the expected loss function E[L(Ym,t, am)] over all
possible inference results am 2 Am. L(ym, am) is the loss
incurred when the actual target is Ym,t = ym and the predicted
output is am,t = am. The loss function L(·, ·) and the output
space Am can be designed according to the goal of the system.
For example, Am = Ym and quadratic loss ky � ŷk2 can be
used for a regression task. In maximum likelihood estimation,
we can use logarithmic loss function and the output space Am
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can be PYm , which is the set of all probability distributions
on Ym. At time t, the expected inference error for target Ym,t

is given by E [L(Ym,t, am,t)].

III. PROBLEM FORMULATION

We focus on a class of signal-agnostic scheduling policies,
where scheduling decisions are made without knowledge of the
observed process’s current signal values, i.e., at time t the cen-
tralized scheduler does not have access to {(Ym,t, Xm,t),m =
1, . . . ,M, t = 0, 1, . . .}. Moreover, we make the following
assumption on the observed and the target processes:

Assumption 1: The process

{Ym,t, X1,t, X2,t, . . . , XM,t, t 2 Z}

is jointly stationary, i.e., the joint distributions of

(Ym,t, X1,t1 , X2,t2 , . . . , XM,tM )

and
(Ym,t+⌧ , X1,t1+⌧ , X2,t2+⌧ , . . . , XM,tM+⌧ )

are same for all ⌧, t, t1, t2, . . . , tM . Moreover, the assumption
holds for all target process Ym,t with m = 1, 2, . . . ,M .

Assumption 1 implies that the dependence of the inference
target Ym,t on the signals of all sources remains stationary
over time. Further, the correlation structure among the source
observations also remains stationary over time. This allows us
to show that inference error is a time-invariant function of AoI,
as we will see in Lemma 1. It is practical to approximate time-
varying functions as time-invariant functions in the scheduler
design. Moreover, the scheduling policy developed for time-
invariant AoI functions serves as a valuable foundation for
studying time-varying AoI functions [42].

Now, we are ready to formulate our problem. We denote
the scheduling policy as

⇡ = (⇡m(0),⇡m(1), . . .)m=1,2,...,M .

We let ⇧ denote the set of all signal-agnostic and causal
scheduling policies ⇡ that satisfy (i) the scheduler makes its
decision at every time t based on the current and the past
information available to the scheduler and (ii) the sched-
uler does not have access to the realization of the process
{(Ym,t, Xm,t),m = 1, . . . ,M, t = 0, 1, . . .}.

Our goal is to find a policy ⇡ 2 ⇧ that minimizes the
discounted sum of inference errors:

Vopt = inf
⇡2⇧

E⇡

" 1X

t=0

�t
MX

m=1

L(Ym,t, am,t)

#
, (2)

s.t.
MX

m=1

⇡m(t) = N, t = 0, 1, . . . , (3)

where 0 < � < 1 is a discount factor, L(Ym,t, am,t) is
the inference error for the m-th target at time t, and Vopt

is the minimum average inference error. For the simplicity
of theoretical analysis, we consider that the loss function
is normalized to [0, 1]. However, our results can easily be
generalized to any bounded loss function.

We also discuss the time-averaged version of the problem
in Appendix F.

IV. AOI-BASED PROBLEM REFORMULATION

In this section, we first use an information-theoretic
approach and AoI as tools to interpret how the correlation
among the m-th target and the observation from n-th source
affect the inference error for the m-th target. To that end, we
use the concept of generalized conditional entropy [43], [44]
or specifically, the L-conditional entropy [6].

A. An Information-Theoretic Interpretation
For a random variable Y , the L-entropy is given by

HL(Y ) = min
a2A

EY⇠PY [L(Y, a)]. (4)

The L-conditional entropy of Y given X = x is [6], [43], [44]

HL(Y |X = x) = min
a2A

EY⇠PY |X=x
[L(Y, a)] (5)

and the L-conditional entropy of Y given X is

HL(Y |X) = EX⇠PX [HL(Y |X = x)]. (6)

Moreover, an L-mutual information among two random vari-
ables Y and X is defined as [6], [43], and [44]

IL(Y ;X) = HL(Y )�HL(Y |X). (7)

The L-mutual information IL(Y ;X) quantifies the reduction
of expected loss in predicting Y by observing X . The L-
conditional mutual information among two random variables
Y and X given Z is defined as [6], [43], and [44]

IL(Y ;X|Z) = HL(Y |Z)�HL(Y |X,Z). (8)

If AoI of sources are (�1(t),�2(t), . . . ,�M (t)) =
(�1, �2, . . . , �M ), then we can measure the reduction of
expected inference error for target Ym,t given the freshest
observations possible Xn,t�1 from source n by using the
definition of L-conditional mutual information (8):

IL(Ym,t;Xn,t�1|X1,t��1 , X2,t��2 , . . . , XM,t��M )

= HL(Ym,t|X1,t��1 , X2,t��2 , . . . , XM,t��M )

�HL(Ym,t|X1,t��1 , X2,t��2 , . . . , XM,t��M , Xn,t�1).
(9)

Now, by using the concept of the L-conditional entropy, we
equivalently express the multi-source scheduling problem in
(2)-(3) as the minimization of a penalty function of the AoI
values (�1(t),�2(t), . . . ,�M (t)).

Lemma 1 is first proved in [5]. We restate the result for the
completeness of the paper.

Lemma 1: The inference error for Ym,t can be expressed as

E⇡ [L(Ym,t, am,t)]=HL

�
Ym,t|(Xn,t��n(t),�n(t))

M
n=1

�
, (10)

where �n(t) is the AoI of source n under the scheduling
policy ⇡. Moreover, if Assumption 1 holds, then the L-
conditional entropy

HL

�
Ym,t|(Xn,t��n(t),�n(t))

M
n=1

�

is a function of AoI values (�1(t),�2(t), . . . ,�M (t)).
Lemma 1 implies that the inference error E⇡ [L(Ym,t, am,t)]

can be represented as an L-conditional entropy of Ym,t given
most recently delivered observations from all sources and their

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Purdue University. Downloaded on December 25,2025 at 22:59:47 UTC from IEEE Xplore.  Restrictions apply. 



SHISHER et al.: AoI-BASED SCHEDULING OF CORRELATED SOURCES FOR TIMELY INFERENCE 5

AoI values. Under Assumption 1, the L-conditional entropy is
a function of AoI values (�1(t),�2(t), . . . ,�M (t)). For the
simplicity of presentation, we represent the function as

gm(�1(t),�2(t), . . . ,�M (t))

= HL

�
Ym,t|(Xn,t��n(t),�n(t))

M
n=1

�
. (11)

By using Lemma 1 and (11), we can express the problem
(2)-(3) as a minimization of the discounted sum of the AoI
penalty functions.

Vopt = inf
⇡2⇧

E⇡

" 1X

t=0

�t
MX

m=1

gm(�1(t),�2(t), . . . ,�M (t))

#
,

(12)

s.t.
MX

m=1

⇡m(t) = N, t = 0, 1, . . . , (13)

However, as the number of sources M and the number of
channels N increases, problem (12)-(13) becomes intractable.
Specifically, problem (12)-(13) can be modeled as a Restless
Multi-armed Bandit (RMAB) problem with a global penalty
function:

MX

m=1

gm (�1(t),�2(t), . . . ,�M (t)) ,

where AoI �m(t) serves as the state of the m-th bandit arm.
This problem is classified as “restless” because even when a
source m is not scheduled for transmission, its AoI �m(t)
continues to evolve, incurring a penalty

gm (�1(t),�2(t), . . . ,�M (t)) .

In contrast to the traditional RMAB framework [11], the
penalty function of each arm in this problem are intertwined.
This is because the penalty function gm(· · · ) for each arm
depends on the AoI values of all sources. This intercon-
nectedness prevents the decomposition of the problem into
independent Markov Decision Processes (MDPs), a common
approach used for traditional RMABs [11], even with con-
straint relaxation. This inherent complexity distinguishes our
problem from traditional RMAB problems and poses a greater
analytical challenge.

V. DESIGN OF SCHEDULING POLICY

In this section, we will explore how to find a low complexity
and close to optimal scheduling policy for (12)-(13). We
also consider that the scheduler knows the penalty function
gm(· · · ) for any source m. In Section VI, we will design
scheduling policy with unknown penalty function.

A. Function Approximation fm(�m)
Like any MDP, our problem (12)-(13) can be solved by

using dynamic programming method [45]. However, comput-
ing the optimal policy using dynamic programming becomes
progressively harder in terms of space and time complexity
for larger values of M , as the state-space and the action space
to be considered grows exponentially with M . Whittle index
policy [6], [11], [20] and gain index policy [7], [25], [37]

are low-complexity policies that have good performance for
RMAB problems. For our problem, we can not directly obtain
a scheduling policy like Whittle index policy and gain index
policy. This is because the penalty function gm(·, ·, ·) depends
on the AoI of the other sources. To this end, in this section,
we approximate the penalty function gm(·, ·, ·) by a function
fm(�m(t)) which only depends on the AoI of the source m.
Then, we provide an index-based scheduling policy.

We can define a possible option for fm(�m) as follows:

fm(�m) = HL(Ym,t|Xm,t��m , Z�m,t�1) (14)

where Ym,t is the m-th target at time t, Xm,t��m is the obser-
vation generated from source m at time t � �m, Z�m,t�1 =
[Xn,t�1 : 8n 6= m] is a vector containing the signal
observations generated at time t � 1 from all sources except
source m. This definition of fm(�m) captures the expected
inference error of the current target Ym,t given observation
Xm,t��m of source m generated �m time slots ago and the
recent observations Z�m,t�1 from other sources generated 1
time slot ago.

Since we have knowledge of the penalty function
gm(�1, �2, . . . , �M ), we can evaluate the function fm(�m), by
setting �n = 1 for all n 6= m. This effectively evaluates the
function under the scenario where all other sources have an
AoI of 1 except source m. In Appendix A, we discuss how to
compute the function fm(�) without using gm(·, ·, ·).

Lemma 2: If the sequence (Ym,t, Xn,t�1, Xn,t�k) forms a
Markov chain Ym,t $ Xn,t�1 $ Xn,t�k for all k � 1, then
the following assertions are true.

(a) We have

gm(�1, �2, . . . , �M ) � fm(�m). (15)

(b) We have

gm(�1, �2, . . . , �M )=fm(�m) +O(max
n 6=m

✏2m,n). (16)

where the parameter ✏m,n is determined as

✏m,n

=
r

max
�1,�2,...,�M

IL(Ym,t;Xn,t�1|X1,t��1 , . . . , XM,t��M ),

(17)

and L-conditional mutual information IL() is defined in
(8).

Proof: See Appendix B. ⇤
By the definition of Markov chain Ym,t $ Xn,t�1 $

Xn,t�k, the target Ym,t does not depend on the older obser-
vation Xn,t�k given a new observation Xn,t�1 from source
n. Lemma 2(a) implies that If the Markov chain Ym,t $
Xn,t�1 $ Xn,t�k holds, then fm(�m) is a lower bound of
gm(�1, �2, . . . , �M ).

In (17), we measure the maximum reduction of expected
inference error for target m after adding a new observation
from source n by the parameter ✏m,n. If the parameter ✏m,n

is close to zero, the impact of correlation between target Ym,n

and a new observation from source n on inference error of
Ym,n is nearly negligible. We say if ✏m,n is close to zero,
correlation is low.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Purdue University. Downloaded on December 25,2025 at 22:59:47 UTC from IEEE Xplore.  Restrictions apply. 



6 IEEE TRANSACTIONS ON NETWORKING

Lemma (2)(b) implies that if ✏m,n tends to zero for all n 6=
m, then the approximation error goes to zero, i.e., the function
f(�m) is a good approximation of inference error function
g(�1, �2, . . . , �M ) under low correlation.

Remark 1: Our information-theoretic lower bound, fm(�m),
extends the bound in [10] to a significantly broader class of
systems, including non-linear and non-Gaussian dynamics. As
shown in Appendix A, this bound coincides with the bound
in [10, Theorem 2] when specialized to LTI systems with
Gaussian processes.

B. Scheduling Policy
To design a scheduling policy, we first divide entire dura-

tion into episodes, where each episode k contains T time
slots. Here, we approximate infinite time with finite time T .
For discounted penalty problem, the approximation error in
considering finite time T is negligible if T is a very large
number. Next, we use approximated penalty function. Thus,
we reformulated the problem (12)-(13) as follows:

Vf,opt(T ) = inf
⇡2⇧

E⇡

"
T�1X

t=0

�t
MX

m=1

fm(�m(t))

#
, (18)

s.t.
MX

m=1

⇡m(t) = N, t = 0, 1, . . . , (19)

where T is the truncated time horizon, Vf,opt(T ) is the optimal
objective value of the approximated problem (18)-(19) and
⇡f,opt be an optimal policy to (18)-(19).

Theorem 1: We have

|V⇡f,opt(T )�Vopt(T )| 
2(1� �T )

1� �

MX

m=1

O

✓
max
n 6=m

✏2m,n

◆
,

(20)
where V⇡f,opt(T ) is the optimal objective value of (18)-(19)
and Vopt(T ) is the optimal objective value of the problem
(12)-(13) with finite horizon T .

Proof: See Appendix C. ⇤
Theorem 1 provides an approximation bound. Theorem 1

implies that if the correlation among the sources is low, i.e.,
✏m,n is close to 0 for all n 6= m, then the optimal policy
⇡f,opt to the approximated problem (18)-(19) will yield close
to optimal performance for the main problem (12)-(13).

1) Lagrangian Relaxation: After establishing the approx-
imation bound in Theorem 1, our goal is to find scheduling
policy for the approximated problem (18)-(19). Due to con-
straint (19), finding an optimal policy for the approximated
problem (18)-(19) remains computationally intractable. This
problem has been proven to be PSPACE-hard [46]. We relax
the constraint and get the relaxed problem:

Vf,opt(�, T )

= inf
⇡2⇧

E⇡

"
T�1X

t=0

�t
 

MX

m=1

fm(�m(t)) + �t(⇡m(t)�N)

!#
,

(21)

where �t 2 R is the Lagrangian multiplier, � =
(�1,�2, . . . ,�T ), and Vf,opt(�, T ) is the optimal objective
value of the relaxed problem (21).

The dual problem to (21) is given by

max
�2RT

Vf,opt,�, (22)

where �⇤ denotes the optimal Lagrange value to the problem
(22).

2) Gain Index and Threshold Policy: The problem (21)
can be decomposed into M sub-problems, where each sub-
problem m is given by

inf
⇡m2⇧m

E⇡

" 1X

t=0

�t (fm(�m(t)) + �t⇡m(t))

#
. (23)

The optimal value function for each source m at time t is
given by

Jm,�,t(�)

= fm(�) + min {�t + �Jm,�,t+1(1), �Jm,�,t+1(� + 1)} ,
(24)

where � is the current AoI value and Jm,�,t is the value
function associated with the problem (23). The value function
can be obtained by using backward induction method [45].

Lemma 3: Given the AoI value �m(t) = �, the scheduling
decision ⇡m(t) = 1 is optimal to (23), if the following holds:

Jm,�,t+1(� + 1)� Jm,�,t+1(1) >
�t
�
. (25)

Proof: Lemma 3 holds due to (84). ⇤
Lemma 3 implies that if the difference between

Jm,�,t+1(� + 1)� Jm,�,t+1(1)

exceeds a threshold value �t
� , then scheduling source m at time

t is optimal to the problem (23). However, the policy can not
be applied to the main problem due to scheduling constraint.
Towards this end, following [7], [25], and [28], we define gain
index.

Definition 1: [Gain Index] For AoI value � and Lagrangian
multiplier �, the gain index is given by

↵m,�,t(�) := Jm,�,t+1(� + 1)� Jm,�,t+1(1). (26)

The gain index ↵m,�,t(�) quantifies the total reduction in
the discounted expected sum of inference errors from time
t + 1 to time T � 1, when action ⇡m(t) = 1 is chosen
at time t over ⇡m(t) = 0, where the latter implies m-
th source is not scheduled at time t. This metric enables
strategic resource utilization at each time slot to enhance
overall system performance. Prior works [7], [25], [28] used
action-value function to define the gain index, whereas [47]
called it Lagrangian index. In [7], [25], [37], and [47], source
m is scheduled if the difference between two action value
Qm,�,t(�, 0)�Qm,�,t(�, 1) becomes greater than 0, where

Qm,�,t(�, 0) = fm(�) + �Jm,�,t(� + 1) (27)
Qm,�,t(�, 1) = fm(�) + �t + �Jm,�,t(1). (28)

Because the instantaneous penalty fm(�) incurred at time t
is same for whichever decision we take, the policies derived
from (Qm,�,t(�, 0) � Qm,�,t(�, 1)) and our gain index-based
single source scheduling are equivalent.
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For the main problem, our algorithm is provided in Algo-
rithm 1. We call it Maximum Gain First (MGF) Policy. At
each time t, we schedule N sources with highest gain index
↵m,�t,k,t(�m(t)). If multiple sources have same gain index,
we use a tie-breaker index function  t,m(�) that can rank
sources with same gain index value at any time t. We can
use simple random mixing or Markov random mixing policy
to design a tie-breaker index function as discussed in [47].

After every episode k, we update Lagrange multiplier by
using sub-gradient ascent method as follows:

�t,k+1 = �t,k

+
✓

k

 
�t

MX

m=1

1

✓
↵m,�t,k,t(�m(t))>

�t,k
�

◆
��tN

!
,

(29)

where 1(·) is an indicator function and ✓/k > 0 is step size.

C. Performance Analysis
In this section, we analyze the performance of Algorithm 1

with an optimal policy.
Let ⇡gain denote the policy presented in Algorithm 1 and

Vgain(�, T ) represent the objective value under policy ⇡gain
associated with Lagrange multiplier �.

Theorem 2: Given a discount factor � 2 (0.5, 1), an optimal
tie-breaker function  , and the fixed ratio r = N/M , if �k =
�⇤, then in episode k, we have
|Vgain(�⇤, T )�Vopt(T )|

M

 2(1��T )
(1��)

PM
m=1 O

�
maxn6=m ✏2m,n

�

M
+O

 
�

r
(1� r)r

M

!
,

(30)

where
� =

2(2�)T

2� � 1
.

Proof: See Appendix D. ⇤
Theorem 2 shows the normalized optimality gap of our

policy depends on the correlation parameter ✏m,n and the
system size M . In general, for large system size i.e., M ! 1,
the optimality gap can be finite, specifically we have

lim
M!1

|Vgain(�⇤, T )�Vopt(T )|
M

 lim
M!1

2(1� �T )

(1� �)

PM
m=1 O

�
maxn 6=m ✏2m,n

�

M
. (31)

However, for a special case, if the sum of the correlation
parameters satisfies

MX

m=1

O

✓
max
n 6=m

✏2m,n

◆
= o(M), (32)

we have

lim
M!1

2(1� �T )

(1� �)

PM
m=1 O

�
maxn 6=m ✏2m,n

�

M
= 0. (33)

For distributed sensor networks with a large number of sensors,
where only a few sensors exhibit mutual correlation, the
special case (32) can hold.

D. Algorithm Simplification
In Algorithm 1, we consider a large sequence of Lagrange

multiplier � = (�0,�2, . . . ,�T�1). This leads to a Lagrangian
dual problem (22) that is practically difficult to solve in opti-
mality. To address this challenge, we can simplify Algorithm
1 by considering �t = � for all t. For this modification, our
Lagrange update rule becomes

�k+1 = �k +
✓

k

✓ T�1X

t=0

�t
MX

m=1

1

✓
↵m,�k(�m(t)) >

�k
�

◆

� (1� �T )N

1� �

◆
. (34)

VI. DESIGN OF ONLINE SCHEDULING POLICY WITH
UNKNOWN PENALTY FUNCTION

As discussed in the previous section, Algorithm 1 can be
applied when (i) the penalty function gm(�1, �2, . . . , �M ) or
its approximation fm(�m) for all m are known and (ii) the
correlation ✏m,n among the sources are low. In this section,
we establish an online scheduling policy that does not know
the penalty function gm(�1, �2, . . . , �M ), its approximation
fm(�m), and the distribution of the targets and the source
observations. Moreover, we consider an arbitrary correlation
structure, i.e., not limited to low correlation like previous
section.

If the penalty function or the observation sequences
(Ym,t, (Xn,t�µn)

M
n=1) are not known to the scheduler, it is not

possible to get an online estimate of the function fm defined
in (14). This is because it requires AoI values of all M � 1
sources equal to 1 at some time slots t. But, it is impossible to
schedule M �1 sources at any time t unless N = M �1. For
the online setting, we consider a new function approximation:

fm,k(�) = E⇡k [L(Ym,t, am,t)|�m(t) = �], (35)

which is the expected inference error of target m under policy
⇡k at episode k when the AoI of source m is �m(t) = �. The
approximated function fm,k(�) depends on the policy ⇡k of
episode k. Because the function fm,k(�) depends on the policy,
it is not possible to get the function fm,k(�) before the episode
k. Hence, the scheduler can only decide policy ⇡k based on
the estimation of the functions fm,k�1, fm,k�2, . . . , fm,0.

For designing online scheduling, we consider the following
setting:
• The entire time horizon is divided into episodes

k = 0, 1, 2, . . . ,

each consisting of T time slots. The value of T is
chosen to be sufficiently large such that approximating
the infinite horizon discounted penalty problem with a
finite horizon of length T introduces negligible error.

• Computing the loss function for all time t and in real-time
is computationally infeasible because ground truth target
is not immediately available. To address this challenge,
we adopt a bandit feedback structure. This structure
allows the receiver to compute the loss function only for
the scheduled time slots. The receiver stores the following
quantities for every source m: the predicted output am,t,
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the most recent observation Xm,t��m(t), and ⇡m(t) or
equivalently �m(t). Let’s consider ⇡m(j) = 1, i.e.,
source m is scheduled at time t = j. In this case, the
receiver obtains Xm,j at time t = j + 1. Since we have
assumed the true target Ym,t can be inferred directly from
Xm,t (e.g., Ym,t can be a function of, or equivalent to,
Xm,t), the receiver can use the stored Xm,j to compute
Ym,j . With both the prediction am,j and the computed
true label Ym,j , the receiver can exactly compute the loss
L(Ym,j , am,j). Crucially, this loss is only available at the
scheduled time slots j and not for all t, which defines the
partial feedback characteristic of the bandit setting.

• At the beginning of every episode k, the scheduler
decides a policy ⇡k 2 ⇧ by using an estimate of the
function fm,k�1(�m(t)).

A. Online Scheduling for Lagrangian Relaxed Problem
At first, we establish an online scheduling policy for

Lagrangian relaxed problem. In each episode k, we replace
fm(�m(t)) in (23) by the function fm,k�1(�m(t)) and solve
the following Lagrangian relaxed problem for each source m:

inf
⇡m2⇧m

E⇡

" 1X

t=0

�t (fm,k�1(�m(t)) + �⇡m(t))

#
. (36)

Since the true function fm,k�1(�) is unknown, we use an
empirical estimate, f̂m,k�1(�), calculated as the average loss
for a given state � during episode k � 1:

f̂m,k�1(�)

=

PTk�1
t=Tk�1

1(�m(t) = �,⇡m(t) = 1)L(Ym,t, am,t)

Nm,k(�)
, (37)

where Tk is the starting time of episode k and the frequency
Nm,k(�) is

Nm,k(�) = max

0

@
Tk�1X

t=Tk�1

1(�m(t) = �,⇡m(t) = 1), 1

1

A .

(38)
However, the estimate f̂m,k�1(�) will naturally deviate

from the true value. Given a chosen exploration parameter
⌘ 2 (0, 1), we account for the uncertainty by defining the
following confidence radius

dm,k(�) =

vuut ln
⇣

2
⌘

⌘

2Nm,k(�)
, (39)

which shrinks as we gather more samples for that state.
Moreover, the parameter ⌘ also controls the confidence radius:
The confidence radius increases as the parameter ⌘ decreases.

The confidence radius creates a ball of plausible values,
Bm,k(�):

Bm,k(�)

= {fm,k(�) : |fm,k(�)� f̂m,k(�)|  dm,k(�)}, (40)

Lemma 4 shows that the actual value fm,k(�) is in the ball
of plausible values, Bm,k(�) with probability 1 � ⌘. As the
parameter ⌘ decreases, the ball Bm,k(�) expands and the

uncertainty reduces. However, as we will see next that the
optimistic estimate of the actual value deviates away from the
empirical estimate as ⌘ decreases.

Following the principle of “optimism in the face of
uncertainty” [48], [49], [50], we select an optimistic estimate,
f̃m,k�1(�), given by

f̃m,k�1(�) = max{f̂m,k�1(�)� dm,k(�), 0}. (41)

As the parameter ⌘ decreases, the confidence radius dm,k(�)
increases and the estimate f̃m,k�1(�) deviates away from
empirical value.

This optimistic value f̃m,k�1(�) is used in a value iteration
algorithm to update our policy, ensuring we explore efficiently
while accounting for statistical uncertainty:

Jm,optimistic,k(�) = f̃m,k�1(�)

+ min {�+ �Jm,optimistic,k(1), �Jm,optimistic,k(� + 1)} ,
(42)

where Jm,optimistic,k(�) can obtained by using value iteration
algorithm [45].

To ensure convergence of the estimated value function, we
introduce a weighting parameter ⇣ 2 (0, 1). This parameter
controls the trade-off between relying on the optimistic value
function and retaining information from the history. Using ⇣,
the estimated value function is defined as follows for all �:

J̃m,�,k(�) = ⇣kJm,optimistic,k(�) + (1� ⇣k)J̃m,�,k�1(�),
(43)

where 0 < ⇣ < 1. This step is necessary to ensure convergence
to a stable solution.

Following (43), policy ⇡k is provided in Algorithm 2. The
actual value function of policy ⇡k associated with the problem
(36) can be written as

Jm,�,k(�)

= fm,k(�) + min {�+ �Jm,�,k(1), �Jm,�,k(� + 1)} . (44)

Let J⇤ be the optimal value function. Now, we are ready to
establish the following results.

Theorem 3: The following assertions are true.
(a) There exists a value Jm 2 R such that

lim
k!1

J̃m,�k,k(�) = Jm(�).

(b) Given an exploration parameter ⌘ 2 (0, 1), for any
episode k with probability 1� ⌘, we have

����Jm,�,k(�)� Jm,�,k�1(�)

����

 1

1� �

✓
2max

�
dm,k�1(�) + �k

◆
, (45)

where
�k = max

�
|fm,k�1(�)� fm,k(�)| (46)

Proof: See Appendix E. ⇤
Theorem 3(a) implies that the estimated value function

J̃m,�k,k converges to a stable value function. As the policy ⇡k
depends on J̃m,�k,k, we can say that the policy also converges
to a stable solution, but it is not guaranteed to converge to an
optimal policy.
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Fig. 2. �k vs. Iteration k.

Theorem 3(b) characterizes the distance between the value
function of k-th episode and the value function of the k � 1-
th episode. According to the theorem, the distance is upper
bounded by a confidence radius dm,k�1 and �k. The term
dm,k�1 is related to the uncertainty of the estimation of
fm,k�1. If number of time slot T in every episode increases,
the confidence radius dm,k�1 decreases. On the other hand,
we show in Fig. 2 that �k decreases to 0 for smaller ⇣.

B. Online Maximum Gain First Policy

Algorithm 2 can not be applied as it does not satisfy the
constraint (13). For this reason, similar to Algorithm 1, we
utilize the concept of gain index defined in Definition (26)
and the structure of the Online Threshold Policy provided in
Algorithm 2 and develop a new “Online Maximum Gain First”
policy in Algorithm 3.

Initially, we take Lagrange multiplier �1 = 0 as input. Then,
the Online Maximum Gain First policy proceeds as follows:
• At the beginning of every episode k, we update function

f̃m,k�1 by using (41), where we use the feedback of
inference loss after episode k � 1.

• After that by using the function f̃m,k�1, we compute
value function J̃m,�,k by using (43).

• At every time in episode k, we update AoI value �m(t)
for all m and compute the gain index

↵m = J̃m,�,k(�m(t) + 1)� J̃m,�,k(1). (47)

• N sources with highest gain index are scheduled at every
time t.

• After every episode, we update �k+1 using sub-gradient
ascent method.

At the initial episode k = 0, the scheduler can apply
Maximum Age First policy.

VII. SIMULATION RESULTS

Though our theoretical analysis consider finite space Xm

and Ym, our algorithms are general and can be applied to
continuous space. Our algorithms only require countable AoI
values. In this section, we will illustrate the performance of
our Algorithm 1 and Algorithm 3 on a continuous space Xm

and Ym setting.

A. Simulation Model
We use a model from [9] for designing the correlation

structure between sources. At the beginning of every time-
slot, each source m collects information about its own state.
In addition, with probability pm,n, the update collected by
source m also contains information about the current state
of source n. Motivating examples of such correlated sources
are cameras with overlapping fields of view and sensors with
spatial correlation between the processes being monitored.
Here are two examples:

Cameras with Overlapping Fields of View: If camera
m successfully updates, there is a probability (pm,n) that it
also provides an updated view of targets associated with an
adjacent camera n.

Spatially Correlated Environmental Sensors: Sensors
monitoring processes (e.g., temperature, air quality, fire, rain)
often exhibit spatial correlation. The probability (pm,n) that
one sensor’s update contains useful, non-redundant informa-
tion about an adjacent sensor’s state.

We denote the state of source m by Zm,t. The state Zm,t

is considered to evolve as

Zm,t = amZm,t�1 +Wm,t, (48)

where Wm,t follows zero mean Gaussian distribution with
variance 1 and Wm,t are i.i.d. over time t and independent
over source m. Let Xm,t be the update from source m. The
update Xn,t includes state Zn,t of the source n and Zm,t

of source n with probability pm,n. A value of pm,n = 0
suggests that there is never any information at source n about
the state of source m, while a value of pm,n = 1 suggests
that source n has complete information about state of source
m at all times. In all of our simulation, we consider source 1
gets information about states of other sources with probability
pm,1 = p. Sources except 1 never get any information of other
sources, i.e., pm,n = 0 for all n 6= 1 and m 6= n. In this
simulation, we have used discount factor � = 0.7.

Now, we discuss the relationship of the correlation param-
eter ✏m,n and the correlation probability pm,n. By definition
(17), we can write for the system discussed above as

✏2m,1 =

max
�1,�2,...,�M

IL(Zm,t;X1,t�1|X1,t��1 , . . . , XM,t��M ). (49)

We can decompose the conditional mutual information as

IL(Zm,t;X1,t�1|X1,t��1 , . . . , XM,t��M )

= HL(Zm,t|X1,t��1 , . . . , XM,t��M )

� pHL(Zm,t|Zm,t�1, Z1,t�1, X1,t��1 , . . . , XM,t��M )

� (1� p)HL(Zm,t|Z1,t�1, X1,t��1 , . . . , XM,t��M )

= p(HL(Zm,t|X1,t��1 ,. . . ,XM,t��M )�HL(Zm,t|Zm,t�1)),
(50)

where the last inequality holds because Zm,t and Z1,t�1

are independent for all m 6= 1 and given Zm,t�1, Zm,t is
independent of (X1,t��1 , . . . , XM,t��M ) for all �n � 1. From
(49) and (50), it implies that the correlation parameter ✏m,1

increases as the correlation probability p increases. When p is
zero, ✏m,1 is also zero. Also, ✏m,1 is maximized when p is 1.
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Fig. 3. Dis. Sum of Errors vs. p with M = 10 with a2m = 0.9 in half of
sources and other half with a2m = 0.7.

B. Performance Evaluation

In this section, we first evaluate the convergence of our
“Online Maximum Gain First” policy provided in Algorithm 3.
Then, we compare the performance of following six policies.
In our simulation, we consider N = 1.
• Exponential Moving Average Max-weight (EMAM) Pol-

icy: The policy follows [9, Algorithm 1]. The pol-
icy knows the probabilistic correlated structure within
sources.

• Maximum Expected Error (MEE) Policy: The policy is
obtained from [10], where we use that fact that Wm,t are
independent over sources.

• Maximum Age First (MAF) Policy: The policy schedules
the source with highest AoI value.

• Stationary Randomized Policy:Randomized policy selects
client m with probability �m/

PM
m=1 �m, for every client

m with �m > 0. We consider �m = 1.
• Maximum Gain First (MGF) Policy: The policy follows

Algorithm 1. The policy has access to the penalty func-
tion fm(�) defined in (14).

• Online Maximum Gain First (Online-MGF) Policy: The
policy follows Algorithm 3. At episode k = 0, Algorithm
3 applies MAF policy.

Fig. 2 illustrates the convergence behavior of our online-
MGF policy. In Fig. 2, we plot �k defined in (46)
versus episode k, where �k is evaluated empirically �k =
max� |f̂m,k�1(�)� f̂m,k(�)|. As �k converges to zero, policy
⇡k converges. This is because the policy ⇡k and ⇡k�1 are
different only if fm,k and fm,k�1 are different for a given
Lagrange multiplier �. From Fig. 2, we observe that smaller
values of ⇣ ensures faster converges.

Figs. 3–4 plot the discounted sum of inference errors versus
the correlation probability p. The results show that the Online-
MGF, MGF, and EMAM policies significantly outperform the
MAF, Random, and MEE policies. EMAM becomes the best-
performing policy, which is expected since it is specifically
designed for this correlation model. A key advantage of the
Online-MGF and MGF policies is their generality. Unlike the
EMAM policy, which is tailored for a specific probabilistic
correlation structure, our policies are derived without assuming
any model and are thus applicable to any correlation type,
but the policy EMAM can not be applied to other correlation

Fig. 4. Dis. Sum of Errors vs. p with M = 10 with a2m = 0.9 in all sources.

Fig. 5. Dis. Sum of Errors vs. M with p = 0.6.

Fig. 6. Dis. Sum of Errors vs. M with p = 1.

structure. Despite this model-agnostic design, it is noteworthy
that both MGF and Online-MGF perform close to EMAM.
Furthermore, the Online-MGF policy performs comparably to
the MGF policy without requiring knowledge of the penalty
function.

Figs. 6–5 plot discounted sum of inference errors vs. number
of sources M with p = 0.6 and p = 1, respectively. Here, we
set a2m = 0.9 for half of the sources and a2m = 0.7 for the
other half. Similar to Figs. 3–4, Figs. 6–5 also illustrate that the
Online-MGF, MGF, and EMAM policies significantly outper-
form the MAF, Random, and MEE policies for any number of
sources. As expected, EMAM achieves the best performance
by leveraging its knowledge of the probabilistic correlation
structure. When p = 1, both the MGF and EMAM policies
achieves the lowest inference error possible by scheduling the
source with correlated updates.
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VIII. CONCLUSION AND FUTURE WORK

This paper investigated AoI-based signal-agnostic schedul-
ing policies for correlated sources to minimize inference errors
for multiple time-varying targets. We developed scheduling
policies for two scenarios: (i) when the scheduler has full
knowledge of the penalty functions and (ii) when the scheduler
has no knowledge of these functions. In the first scenario,
we proposed an MGF policy and we showed an upper
bound of the optimality gap in an asymptotic region. In
the second scenario, we first developed an online threshold-
based scheduling policy for a relaxed version of the problem.
We then leveraged the structure of this policy to design a
novel online-MGF policy for the original problem. Simulation
results demonstrate that our online policy effectively learns
and exploits the correlation structure and system dynamics to
achieve significant performance gains compared to Maximum
Age First and random policies.

Signal-aware scheduling problem is an important future
direction, where the centralized scheduler has access to the
signal values of the sources. While existing research [22],
[23], [25] has demonstrated that signal-aware scheduling can
improve performance compared to AoI-based scheduling, it
often comes at the cost of increased complexity. In contrast,
AoI-based scheduling offers the advantages of low complexity
and privacy preservation, which are important considerations
in many applications. Moreover, distributed scheduling of
correlated sources is an interesting future direction.

APPENDIX A
HOW TO COMPUTE PENALTY FUNCTION fm(�)

It is possible to get closed form expressions of fm(�m) for
some well known random processes. An example is provided
below:

Example 1: Let observation of m-th source Xm,t and the
target Ym,t = Xm,t evolves as follows:

Xm,t = amXm,t�1 +Wm,t, (51)

where the noise vector Wt = [W1,t,W2,t, . . . ,WM,t] is an
i.i.d. multi-variate normal random variable across time, i.e.,
Wt ⇠ N (0, Q) and Q is the covariance matrix. Let qi,j
denote the (i, j)-th element of the covariance matrix Q. For
this example, if L(y, ŷ) = (y � ŷ)2 is a quadratic loss, then
we have

fm(�) =

8
<

:

q̄m,m�, if am = 1,

q̄m,m
a2�m � 1

a2m � 1
, otherwise,

(52)

where

q̄m,m = qm,m � qmQ�1
�1q

T
m,

qm = [qm,1, . . . , qm,m�1, qm,m+1, . . . , qm,M ]

is the covariance of the m-th noise process with other process,
and Q�1

�1 is the noise covariance sub-matrix of the other
processes excluding source m.

Empirical Estimate of fm(�): We can also estimate the
penalty function fm(�) by using dataset collected in offline.

Example 2: Let {(Ym,t, Xm,t)Mm=1}nt=1 be the dataset that
contains n samples of signal values from time t = 1 to t = n.
Then, the empirical estimate of fm(�) is given by

fm(�) =

Pn
t=�+1 L(Ym,t,�m(Xm,t��, Z�m,t�1))

n� �
. (53)

APPENDIX B
PROOF OF LEMMA 2

For the simplicity of presentation, we prove Lemma 2 for
M = 3 and m = 1.

Part (a): we have

g1(�1, �2, �3) = HL(Y1,t|X1,t��1 , X2,t��2 , X3,t��3)

� HL(Y1,t|X1,t��1 , X2,t�1, X3,t��3)

� HL(Y1,t|X1,t��1 , X2,t�1, X3,t�1)

= fm(�1), (54)

where the inequalities hold due to [43, Lemma 12].
Part (b): We have

g1(�1, �2, �3) = HL(Y1,t|X1,t��1 , X2,t��2 , X3,t��3)

= HL(Y1,t|X1,t��1 , X2,t��2 , X3,t��3)

+HL(Y1,t|X1,t��1 , X2,t��2 , X3,t��3 , X2,t�1)

�HL(Y1,t|X1,t��1 , X2,t��2 , X3,t��3 , X2,t�1)
(a)
= HL(Y1,t|X1,t��1 , X2,t�1, X3,t��3)

+HL(Y1,t|X1,t��1 , X2,t��2 , X3,t��3)

�HL(Y1,t|X1,t��1 , X2,t��2 , X3,t��3 , X2,t�1)
(b)
= HL(Y1,t|X1,t��1 , X2,t�1, X3,t��3)

+ IL(Y1,t;X2,t�1|X1,t��1 , X2,t��2 , X3,t��3)
(c)
= HL(Y1,t|X1,t��1 , X2,t�1, X3,t�1)

+ IL(Y1,t;X3,t�1|X1,t��1 , X2,t�1, X3,t��3)

+ IL(Y1,t;X2,t�1|X1,t��1 , X2,t��2 , X3,t��3),
(d)
 fm(�1) + ✏21,3 + ✏21,2  fm(�1) + 2max

n 6=1
✏21,n

 fm(�1) +O(max
n 6=1

✏21,n), (55)

where (a) holds due to Markov chain Y1,t $ X2,t�1 $
X2,t��2 [43, Lemma 12], (b) is obtained by definition (8),
(c) can be obtained by using similar steps of (a)&(b), and (d)
holds because of (17). This completes the proof for M = 3
and m = 1.

Following the same steps, we can prove it for any values
of M and m.

APPENDIX C
PROOF OF THEOREM 1

We define

⇧c =

(
⇡ 2 ⇧ :

MX

m=1

⇡m(t) = N, 8t = 0, 1, . . .

)
. (56)

Then, from (12)-(13) and (18)-(19), we have

Vopt(T )
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inf
⇡2⇧c

E⇡

"
T�1X

t=0

�t
MX

m=1

gm(�1(t),�2(t), . . . ,�M (t))

#

a
= inf

⇡2⇧c

E⇡

"
T�1X

t=0

�t
MX

m=1

fm(�m(t))

#

+
T�1X

t=0

�t
MX

m=1

O

✓
max
n=6=m

✏2m,n

◆

= Vf,opt(T ) +
1� �T

1� �

MX

m=1

O

✓
max
n 6=m

✏2m,n

◆
, (57)

where (a) is due to (16).
Moreover, we can write

V⇡f,opt(T )

= E⇡f,opt

"
T�1X

t=0

�t
MX

m=1

gm(�1(t),�2(t), . . . ,�M (t))

#

b
= E⇡f,opt

"
T�1X

t=0

�t
MX

m=1

fm(�m(t))

#

+
T�1X

t=0

�t
MX

m=1

O

✓
max
n=6=m

✏2m,n

◆

= Vf,opt(T ) +
1� �T

1� �

MX

m=1

O

✓
max
n 6=m

✏2m,n

◆
, (58)

where (b) is due to (16).
By combining (57) and (58), we obtain (20).

APPENDIX D
PROOF OF THEOREM 2

By using triangle inequality, We can write

|Vgain(�
⇤, T )�Vopt(T )|  |Vgain(�

⇤, T )�Vf,gain(�
⇤, T )|

+ |Vf,gain(�
⇤, T )� Vf,opt(T )|

+ |Vf,opt(T )� Vopt(T )|, (59)

where we define

Vf,gain(�
⇤, T ) = E⇡gain

"
T�1X

t=0

�t
MX

m=1

fm(�m(t))

#
. (60)

From (57), we obtain

|Vf,opt(T )� Vopt(T )| =
1� �T

1� �

MX

m=1

O

✓
max
n 6=m

✏2m,n

◆
(61)

Similar to (57), we can also get

Vgain(�
⇤, T )

= E⇡gain

"
T�1X

t=0

�t
MX

m=1

gm(�1(t),�2(t), . . . ,�M (t))

#

=E⇡gain

"
T�1X

t=0

�t
MX

m=1

fm(�m(t))

#

+
T�1X

t=0

�t
MX

m=1

O

✓
max
n=6=m

✏2m,n

◆

= Vf,gain(�
⇤, T ) +

1� �T

1� �

MX

m=1

O

✓
max
n 6=m

✏2m,n

◆
. (62)

For an optimal tie-breaker function  the gain index-based
policy satisfies [47, Proposition 5]:

Vf,gain(�
⇤, T )�Vf,opt(T )Vf,gain(�

⇤, T )�Vf,opt(�
⇤, T )


T�1X

t=0

�t
p
N(1� r), (63)

where �t = �t

2��1 ((2�)
T�t � 1) as provided in [47, equation

(24)]. Next, we have [47, equation (59)]
T�1X

t=0

�t =
1

2� � 1


2�T (2T � 1)� 1� �T

1� �

�
. (64)

For � > 0.5, we have 2� � 1 > 0. Then, we can drop the
negative terms

� 2�T

2� � 1
� 1� �T

1� �

and get

Vf,gain(�
⇤, T )� Vf,opt(T )

 O(�
p
N(1� r)) = O(�

p
Mr(1� r)), (65)

where � = 2(2�)T

2��1 .
By substituting (61)–(63) into (59), we obtain Theorem 2.

APPENDIX E
PROOF OF THEOREM 3

Part (a): From [51], we can say that our sub-gradient ascent
method ensures the convergence of �k. Let �k converge to �.
Next, as k goes to 1, ⇣k goes to 0. Hence, from (43) we can
say that

lim
k!1

J̃m,�k,k = J̃m,�k�1,k�1.

This proves Theorem 3(a).
Part (b) To prove Theorem 3(b), the following Lemma is

important.
Lemma 4: For the penalty function fm,k, we have

Pr (fm,k(�) 2 Bm,k(�)) = 1� ⌘. (66)

Lemma 4 can be directly proven by using the following
Hoeffding’s inequality.

Lemma 5 (Hoeffding’s inequality): Let Z1, Z2, . . . , Zn are
i.i.d. samples of a random variable Z 2 [0, 1]. For any ⌘ > 0,
we must have

Pr

(����E[Z]� 1

n

nX

i=1

Zi

���� 
r

ln(2/⌘̄)

2n

)
� 1� ⌘. (67)

Now, using Lemma 4, (42)–(44), we prove Theorem 3(b).
By using triangle inequality, we can have

����Jm,�,k(�)� Jm,�,k�1(�)

����

 |Jm,�,k(�)� Jm,optimistic,k(�)|
+ |Jm,optimistic,k(�)� Jm,�,k�1(�)|. (68)
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By using [52, Theorem 12], we can have with probability 1�⌘:

|f̃m,k�1(�)� fm,k�1(�)|  dm,k�1(�). (69)

This yields:

|Jm,optimistic,k(�)� Jm,�,k�1(�)|

 1

1� �
max
�0

|f̃m,k�1(�
0)� fm,k�1(�

0)|

 1

1� �
max
�0

dm,k�1(�
0) (70)

and

|Jm,�,k(�)� Jm,optimistic,k(�)|

 1

1� �
max
�0

|fm,k(�
0)� f̃m,k�1(�

0)|

 1

1� �
max
�0

|fm,k(�
0)� fm,k�1(�

0)|

+
1

1� �
max
�0

dm,k�1(�
0). (71)

By substituting (71), (70) into (68), we obtain Theorem 3(b).

APPENDIX F
MINIMIZATION OF TIME-AVERAGED SUM OF INFERENCE

ERRORS

Our goal is to find a policy ⇡ 2 ⇧ that minimizes the time-
averaged sum of inference errors:

Lopt =

inf
⇡2⇧

lim sup
T!inf

E⇡
1

T

"
T�1X

t=0

MX

m=1

gm(�1(t),�2(t), . . . ,�M (t))

#
,

(72)

s.t.
MX

m=1

⇡m(t) = N, t = 0, 1, . . . , (73)

where gm(�1(t),�2(t), . . . ,�M (t)) is the inference error for
the m-th target at time t and Lopt is the minimum average
inference error.

For M = 2 sources and N = 1, we are able to find a low-
complexity optimal policy to (72)-(73). According to Theorem
4, the optimal policy is a stationary cyclic policy.

Definition 2 (Stationary Cyclic Policy): A stationary cyclic
policy is a stationary policy that cycles through a finite subset
of points in the state space, repeating a fixed sequence of
actions in a particular order.

Theorem 4: For M = 2 source case and N = 1, there
exists a stationary cyclic policy that is optimal for (72)-(73),
where the policy consists of a period ⌧⇤1 + ⌧⇤2 and in each
period, source 1 is scheduled for ⌧⇤1 consecutive time slots,
immediately followed by source 2 being scheduled for ⌧⇤2
consecutive time slots. The period ⌧⇤1 and ⌧⇤2 minimizes

Lopt = min
⌧1=0,1,...
⌧2=0,1,...

1

⌧1 + ⌧2

✓ ⌧1�1X

k=0

2X

m=1

(gm(1, 2 + k))

+
⌧2�1X

j=0

2X

m=1

(gm(2 + j, 1))

◆
,

(74)

where Lopt is the optimal objective value of (72)-(73).
Proof: Given (�1(t),�2(t)) = (�1, �2), we can show that

there exists a stationary deterministic policy that satisfies the
following Bellman optimality equation [45]:

h(�1, �2) = min
(⇡1(t),⇡2(t))2A0

g(�1, �2)� Lopt

+ ⇡1(t)h(1, �2 + 1) + ⇡2(t)h(�1 + 1, 1), (75)

where g(�1, �2) =
P2

m=1 gm(�1, �2), A0 = {(0, 1), (1, 0)},
h(�1, �2) is the relative value function for the state (�1, �2),
Lopt is the average inference error under an optimal policy,
(1, �2+1) is the next state if source 1 is scheduled, (�1+1, 1)
is the next state if source 2 is scheduled.

We can further express the Bellman equation (75) for state
(�, 1) at time t as follows:

h(�, 1)= min
⌧22{0,1,...}

⌧2X

k=0

(g(� + k, 1)� Lopt) + h(1, 2), (76)

where ⌧2 = 0, 1, . . . is the time to keep scheduling source 2
after time t. By solving (76), we get that the optimal ⌧2(�)
satisfies

⌧2(�) = inf
�
⌧ 2 Z+ : �1(� + ⌧) � Lopt

 
, (77)

where �1(� + ⌧) is defined as

�1(�) = inf
k=1,2,...

1

k

k�1X

j=0

g(� + 1 + j, 1). (78)

Similarly, we can express the Bellman equation (75) for state
(1, �) as follows:

h(1, �)= min
⌧12{0,1,...}

⌧1X

k=0

(g(1, � + k)� Lopt) + h(2, 1), (79)

where ⌧1 = 0, 1, . . . is the time to keep scheduling source 1
after time t. By solving (79), we get that the optimal ⌧1(�)
satisfies

⌧1(�) = inf
�
⌧ 2 Z+ : �2(� + ⌧) � Lopt

 
, (80)

where �2(� + ⌧) is defined as

�2(�) = inf
k=1,2,...

1

k

k�1X

j=0

g(1, � + 1 + j). (81)

Moreover, by using (76) and (79), we get

h(1, 2) =

⌧1(2)X

k=0

(g(1, 2 + k)� Lopt) + h(2, 1)

=

⌧1(2)X

k=0

(g(1, 2 + k)� Lopt)

+

⌧2(2)X

k=0

(g(2 + k, 1)� Lopt) + h(1, 2), (82)

which yields

Lopt

=

P⌧1(2)
k=0 (g(1, 2 + k)) +

P⌧2(2)
k=0 (g(2 + k, 1))

⌧1(2) + ⌧2(2)
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= min
⌧1=0,1,...
⌧2=0,1,...

P⌧1
k=0 (g(1, 2 + k)) +

P⌧2
k=0 (g(2 + k, 1))

⌧1 + ⌧2
.

(83)

Notice that the optimal objective Lopt is same as if source 1
is scheduled for ⌧⇤1 consecutive time slots, followed by source
2 being scheduled for ⌧⇤2 consecutive time slots. ⇤

Remark 2: Theorem 4 presents a low-complexity optimal
cyclic scheduling policy for two correlated sources. To our
knowledge, this is the first such result. Prior work [53] showed
the existence of an optimal cyclic policy but required solving a
computationally difficult minimum average cost cycle problem
over a large graph. Our result provides a significantly more
efficient solution for M = 2 sources.

For larger values of M , we can have a gain index-based
policy similar to discounted version of the problem, but with
average cost version. To get the gain index of the average cost
version, we determine the value function as follows:

The optimal relative value function for each source m is
given by

hm,�(�) = fm(�)� fopt,� +min {�, hm,�(� + 1)} , (84)

where � is the current AoI value and hm,� is the relative value
function associated with the problem

fopt,� =

inf
⇡m2⇧m

lim sup
T!inf

1

T
E⇡

"
T�1X

t=0

fm(�m(t)) + �⇡m(t)

#
, (85)

with hm,�(1) = 0, f(�) is defined in (14). The relative value
function can be obtained by using relative value iteration
algorithm [45]. The average cost gain index is given by

↵m,�(�) = hm,�(� + 1)� �. (86)

For the average cost problem, the Lagrange update rule
becomes

�k+1 = �k +
✓

k

 
1

T

T�1X

t=0

MX

m=1

1 (↵m,�k(�m(t)) > 0)�N

!
.

(87)
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