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Abstract

Antagonistic interactions are critical determinants of microbial com-
munity stability and composition, offering host benefits such as
pathogen protection and providing avenues for antimicrobial control.
While the ability to eliminate competitors confers an advantage to an-
tagonistic microbes, it often incurs a fitness cost. Consequently, many
microbes only produce toxins or engage in antagonistic behavior in
response to specific cues like quorum sensing molecules or environ-
mental stress. In laboratory settings, antagonistic microbes typically
dominate over sensitive ones, raising the question of why both an-
tagonistic and non-antagonistic microbes are found in natural envi-
ronments and host microbiomes. Here, using both theoretical models
and experiments with killer strains of Saccharomyces cerevisiae, we
show that boom-and-bust dynamics caused by temporal environmen-
tal fluctuations can favor non-antagonistic microbes that do not incur
the growth rate cost of toxin production. Additionally, using control
theory, we derive bounds on the competitive performance and iden-
tify optimal regulatory toxin-production strategies in various boom-
and-bust environments where population dilutions occur either de-
terministically or stochastically over time. Our findings offer a new
perspective on how both antagonistic and non-antagonistic microbes
can thrive under varying environmental conditions.

Keywords: Quorum sensing | Interference competition | Micro-
biome | Piecewise-deterministic processes | Stochastic optimal con-
trol

Introduction

Antagonistic interactions are found throughout the microbial tree of
life [1–5], in almost any environment [6–10] and host-associated mi-
crobiomes [11–14]. Microbes have evolved a large variety of mech-
anisms to interact antagonistically with each other [1, 15], from con-
tact dependent antagonism (e.g., via type IV, V, and VI secretion sys-
tems), to short-distance interaction mediated by diffusible antimicro-
bial metabolites (e.g., bacteriocins), to long-range interaction via se-
cretion of volatile antimicrobials [16]. These antagonistic interactions
are thought to be a strong determinant of microbial community struc-
ture [1, 17], to provide benefits to hosts, such as protection against
pathogen invasion [13], and to be a promising avenue for antimicro-
bial control in both natural ecosystems and animal hosts [13, 18, 19].
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Recent experimental investigations have explored the ecological [20–
22] and evolutionary dynamics of microbial antagonism [23] in the
laboratory, where toxin-producing strains are found to dominate over
toxin-sensitive ones. In many microbiomes, however, one finds both
antagonistic and non-antagonistic microbes [24], raising the question
of whether the dominance of toxin-producing strains observed in the
laboratory might be caused by idealized growth conditions in those
settings. Here, we explore how the interplay of environmental fluctu-
ations, costs associated with toxin production, and regulation of toxin
production, play different roles in determining the outcome of the
competition. Although spatial heterogeneity of populations is one of
the popular explanations of why toxin-sensitive strains might be do-
ing well in practice [4, 25–27], we show that environmental fluctua-
tions (e.g., dilutions) can favor toxin-sensitive strains even in spatially
homogeneous populations.

Ecological theory has long recognized the significant impact
of environmental fluctuations on community composition [28–31].
Changes in temperature, nutrient levels, and other abiotic factors crit-
ically shape the structure and dynamics of these communities. Such
disturbances not only disrupt resident populations, possibly allow-
ing new colonizers to invade, but also affect both immediate and
long-term ecological outcomes [32, 33]. Microbial communities in
a diverse array of habitats are subject to “boom-and-bust” dynamics,
where periods of rapid population growth are often followed by sharp
declines. Such dynamics have been observed across various environ-
ments, including phytoplankton and particle-attached microbial com-
munities in marine ecosystems [34–36], soil [37–40], host-associated
microbiomes [41–44], and the built environment [45]. These boom-
and-bust cycles are not only caused by abiotic factors such as nu-
trient availability and environmental disturbances, but also by biotic
interactions including competition, predation, and parasitism. Par-
ticularly, the interactions with phages and predators can drastically
alter microbial community structure, trigger population crashes, and
thereby influence the overall dynamics of microbial ecosystems [46–
48].

Despite the interest in the effect of microbial antagonism and
environmental fluctuations on microbial community composition
[33, 49, 50], the interplay between environmental fluctuations and
antagonistic microbial interactions is surprisingly underexplored. Al-
though data relating the relative abundance of toxin-producing strains
to environmental fluctuations is very scarce, there is some evidence
that environments with higher turnover rates harbor a reduced num-
ber of toxin-producing strains [51, 52]. Mathematical modeling and
laboratory experiments in stationary environments suggest that the
efficacy of toxin-mediated killing is dependent on high population
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densities [21, 53] and consequently frequent population busts could
favor sensitive strains that avoid the metabolic costs associated with
toxin production. Certain microbial species have evolved regulatory
mechanisms for toxin production that are triggered by quorum sens-
ing signals [53, 54] or environmental indicators of stationary phase
[55]. This regulation ensures that resources are not expended on toxin
production at times when it would be least effective, possibly allow-
ing microbes to optimize the cost-benefit ratio of toxin production.
Activation of toxin production genes in response to quorum sensing
signals produced by other strains, a phenomenon known as eaves-
dropping or cross-talk, has also been reported [56]. Regulation of
toxin production in response to self and non-self abundances is thus
theoretically possible and may be exploited to design synthetic ge-
netic systems for pathogen eradication via targeted secretion of an-
timicrobials [57].

Our paper seeks to investigate how boom-and-bust cycles and
toxin regulation affect the antagonistic competition dynamics be-
tween toxin-producing and non-producing microbes. This approach
aims to elucidate the survival strategies of microbial populations and
provide a deeper understanding of the ecological and evolutionary
consequences of microbial interactions under variable environmental
conditions.

Experimental antagonism with periodic dilutions.

To gain intuition for the impact of environmental disturbances on
the dynamics of microbial antagonism, we conducted competition
experiments between a sensitive (S) and a killer (K) strain of Sac-
charomyces cerevisiae, with the latter engineered to secrete the killer
toxin K1 expressed from the galactose-inducible promoter PGAL1

[21]. The toxin K1 kills S cells by disrupting ion balance and mem-
brane potential [58], but does not affect K cells that are immune to it
[59].

In isolation and at low density, strain S grew at a faster growth rate
(rS = 0.28± 0.01 h−1, mean±SD) than strain K (rS = 0.26± 0.03
h−1). Making these two strains compete against each other in well-
mixed liquid cultures, we found that, for the lowest initial popula-
tion sizes tested, the fraction of K cells in the population initially de-
creased and then increased (the lightest curves in Fig. 1). Increasing
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Figure 1. Uninterrupted competitions between the killer and sensitive strains
in experiments initialized with different population sizes (different shades,
N0 = 5.8 · 104 cells/mL) and killer fractions f0 (53% in A and 77% in B).
With small initial populations, the fraction of killers first decreases, due to
the sensitive strain’s higher growth rate, and later increases, due to the toxin’s
action. Lines connect subsequent median fractions. Some data points where
spaced horizontally to ease visualization. Quartiles were computed via
bootstrapping, whiskers report the minimum and maximum values. Could the
toxin-sensitive microbes become dominant in the long term if recurrent
environmental disturbances dilute the population when they are in the
majority?

the initial population size or the initial fraction of K cells reduced the
time window over which their fraction decreased. These dynamics
are consistent with the intuition that at low cell densities, when the
toxin is too dilute to significantly impact S cells, their relative abun-
dance should temporarily increase due to their higher growth rate.

These observations led us to hypothesize that frequent and fortu-
itously timed disturbance events, such as dilutions, could favor the
sensitive strain allowing it to become dominant over time, despite the
presence of the toxin-producing killer strain, which would normally
dominate without such dilutions. To test this hypothesis, we made the
two strains compete against each other by periodically diluting them
with different dilution intervals (Fig. 2). Unlike in the experiment of
Fig. 1, here nutrients were replenished at each dilution, allowing the
population to re-grow (Fig. S1). In agreement with our hypothesis,
we found that both the initial fraction and the interval between succes-
sive dilutions influenced the competition outcome between S and K,
favoring S when dilutions occurred more frequently (Fig. 2). While
some heterogeneity of competition outcomes was observed with the
48 h cycle, the overall trend was clear: when the initial K fraction
was low enough, S ultimately dominated, with the frequency of di-
lutions influencing only the rate at which S became dominant; when
the initial K fraction was much higher, the same was true about the K
domination; but for intermediate initial K fractions, the frequency of
dilutions became a crucial predictor of the ultimate winner.

Overall, these experiments suggest that frequent dilutions can fa-
vor sensitive cells when their growth rates in isolation are larger than
those of the killers. However, several factors may limit the general
applicability of these results. For instance, many antagonistic mi-
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Figure 2. Experimental competitions between a toxin-producing (killer) and
a sensitive strain of Saccharomyces cerevisiae in environments diluted
periodically with periods of T = 1 day (teal) and T = 2 days (pink).
Different panels show different initial fractions of the killer strain. Both the
initial killer fraction and the period of the dilution cycles determine the
outcome of the competition and the rate of extinction of the losing strain,
with longer inter-dilution times favoring the killer strain. Shaded pink and
teal rectangles display uninterrupted periods of growth in the two treatments.
White vertical lines depict dilution events.
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crobes regulate toxin production through quorum sensing or in re-
sponse to environmental cues, rather than producing toxins constitu-
tively. Additionally, nutrient turnover in more realistic environments
could enable toxin-producers to completely eliminate toxin-sensitive
microbes between population busts, unlike in our batch culture exper-
iments where the relative proportions of K and S stabilize once nutri-
ents are depleted (Fig. 1). To more comprehensively characterize how
growth rates, toxin regulation, and environmental fluctuations jointly
affect the dynamics of microbial antagonism, we turn to mathematical
modeling.

Population dynamics.

We start by describing a basic competition model between a toxin-
producing killer (K) and a toxin-sensitive strain (S). The goal is to
keep the modeled mechanisms general, although our main ideas can
be similarly applied to more complex models tied to specific microor-
ganisms, experimental conditions, or environments.

We assume that the growth of both strains is logistic, with respec-
tive intrinsic growth rates (rK, rS) and a shared carrying capacity1 C.
We assume that the killer’s ability to produce the toxin confers to it a
growth rate deficit (i.e., rK < rS) independent of the actual toxin pro-
duction. This deficit could arise from costs related to the regulation of
toxin production, such as quorum sensing [60], but may also reflect
other metabolic or genotypic differences that are unrelated to toxin
production. Additionally, we assume an extra growth rate deficit that
scales linearly with the normalized toxin production rate a ∈ [0, 1],
yielding the realized growth rate rK(1− εa), where ε > 0 is the cost
of producing the toxin at the maximal rate. This deficit accounts for
the metabolic cost of toxin production [53] and other expenses, such
as toxin secretion, which may require cell lysis [3]. The rate of toxin-
induced death of the sensitive strain is assumed to be proportional
to the product of the strain densities (nK and nS, respectively) with
the killing rate µ. After non-dimensionalizing, nK(t) → nK(t)/C,
nS(t) → nS(t)/C, and t → rSt, the resulting dynamics are

dnK

dt
(t) = rKS(1− εa) (1− nK − nS)nK,

dnS

dt
(t) = (1− nK − nS)nS − aγnKnS,

(1)

where rKS = rK/rS is the intrinsic growth rates ratio and γ = µC/rS
is the rescaled killing rate. In our numerical experiments, we set
γ = 1 so that the strength of antagonism (the toxin-induced death
term −γnKnS with the maximum rate of toxin-production a = 1) is
comparable to the inter-strain competition for nutrients (the quadratic
term −nKnS in the logistic). For the sake of consistency, all rates in
the rest of this paper are dimensionless (i.e., scaled by rS).

Distinguishing between the relative values of rKS and ε in pub-
lished datasets is challenging, as both parameters influence the real-
ized growth rate of the killer strain. A review of various studies [61–
63] that compared the growth rates of killer and sensitive strains sug-
gests that the ratio of realized growth rates rKS(1 − ε) typically falls
between 0.68 and 0.98 for strains that produce the toxin at a constant,
maximal rate (referred to as constitutive killers). Since proteinaceous
toxins are often expressed from plasmids, one can estimate char-
acteristic rKS values by comparing the growth rates of Escherichia
coli strains harboring such plasmids, with the toxin-producing genes
deleted, to strains lacking these plasmids. From [64], we derive that

1Unlike in the experiments reported in Fig. 1 (where nutrients were added
at the start and never replenished) and in Fig. 2 (where nutrients were replen-
ished at each dilution), the fixed carrying capacity used in Eq. (1) reflects a
more realistic assumption of continuous nutrient supply.

rKS ≈ 0.85 is a plausible value, based on comparisons of growth
rates between cells with and without ColE1-type plasmids. In our
experiments with killer S. cerevisiae, the cost of constitutive toxin
production (ε) is minor [21], but the deletion of the hexokinase isoen-
zyme 2 gene that allows expression of the toxin from the galactose-
inducible promoter PGAL1 in K carries a growth-rate cost that re-
duces rK compared to rS, resulting in the ratio of realized growth rates
rK(1 − ε)/rS = 0.92 ± 0.03 (mean±SE). Unless otherwise noted,
we will adopt rKS = 0.85 and ε = 0.2 in our computations, aligning
with the lower bound rKS(1− ε) = 0.68 of the range reported in the
literature.

Box 1: Population growth model

Switching from the normalized strain abundances (nK, nS) to the normalized pop-
ulation size (N(t) = nK(t) + nS(t) ∈ [0, 1]) and the fraction of killers
(f(t) = nK(t)/N(t) ∈ [0, 1]), we re-write Eq. (1) as

df

dt
=

F (f,N,a)︷ ︸︸ ︷
f(1 − f)

(
(1 − N)

[
rKS(1 − εa) − 1

]
+ aγfN

)
,

dN

dt
=

G(f,N,a)︷ ︸︸ ︷
N(1 − N)

(
1 +

[
rKS(1 − εa) − 1

]
f
)
− aγN

2
f(1 − f) .

(2)
Under this transformation, the entire horizontal line N = 0 maps to the origin
(nK, nS) = (0, 0) in the original Eq. (1) coordinates. Similarly, the horizontal
line N = 1 corresponds to nK +nS = 1, indicating that the system is at carrying
capacity.
Definitions and Parameters:

• f(0) = f0, N(0) = N0: initial killer fraction and population size;
• rKS := rK/rS: ratio between intrinsic growth rates;
• a(t) ∈ [0, 1]: toxin-production rate;
• ε > 0: cost of producing the toxin;
• γ = µC/rS: rescaled killing rate.

It is also more convenient to restate the dynamics in terms of the
normalized total population size N(t) = nK(t) + nS(t) and the frac-
tion of killers f(t) = nK(t)/N(t). This change of coordinates yields
the ODE model Eq. (2) on a unit square, as summarized in Box 1.
Fig 3A shows the phase portrait for constitutive killers, with all tra-
jectories approaching f = 1 and N = 1 (i.e., (nK, nS) = (1, 0) –
the competitive exclusion of sensitives by killers), which is the only
attracting fixed point of Eq. (2) for any fixed a > 0. Consistently
with experimental data in Fig. 1, when starting from a small initial
population N , the trajectories in Fig 3A bend left (i.e., decreasing the
killer fraction) for a significant amount of time. This reduction is due
to the killers’ growth-rate disadvantage (rKS(1−ε) < 1), which does
not prevent their eventual domination.

Do regular dilutions protect the sensitive?

We begin by assuming that dilutions occur regularly every T time
units and that at each dilution the relative strain abundances are pre-
served, but only a fixed fraction ρ of the total population survives2.
We observe that with relatively frequent dilutions (T = 1, i.e., the
inter-dilution time equal to the inverse growth rate of sensitive cells),
the killers may either progressively increase their relative abundance
(Fig. 3B) or decrease it (Fig. 3C), depending on the initial condition.

2We focus here on such “strictly proportional” dilutions for the sake of
simplicity and computational efficiency. The results in SI Appendix §S9 show
that for most initial conditions the conclusions remain largely the same even
with a probabilistic dilution model, where each cell has probability ρ of sur-
viving each dilution.
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(A) Killers always win
without dilutions

(B) Killers win
despite dilutions

(C) Killers lose
because of dilutions

Figure 3. Trajectories of competitions between constitutive killers and
sensitives in undisturbed (A) and periodically-diluted (B,C) populations. (A)
Killers always win without dilutions. (B,C) With periodic dilutions, their fate
depends on the initial condition. (B) With a high enough initial population
size, e.g., (f0, N0) = (0.5, 0.7), a sequence of dilutions carries killers to an
eventual victory (i.e., f → 1). (C) Starting at a lower population size, e.g.,
(f0, N0) = (0.5, 0.1), the dilutions lead to their demise (i.e., f → 0). In
both cases, the period of dilutions is T = 1, and the pre- and post-dilution
states are shown with black squares and cyan dots respectively. Once either
strain dominates, the population oscillates between the terminal cyan dot and
black square at f = 0 or f = 1. Temporal trajectories associated with panel
B are shown in Fig. 4B. Gray arrows denote the vector field directions
corresponding to Eq. (2) with a = 1. Parameter values: ε = 0.2,
rKS = 0.85, γ = 1, and ρ = 0.65 used here and throughout the paper unless
stated otherwise.

This suggests that while dilution events can disrupt the killers’ dom-
inance, a further investigation is needed to determine under which
circumstances these interventions help the sensitives if T is small.

Numerical methods make it easy to analyze the performance of
constitutive killers for all possible initial states over one cycle; i.e.,
we use linear partial differential equations (PDEs) to compute the
pre-dilution f(T−) = f(T+) and N(T−) = N(T+)/ρ correspond-
ing to all initial (f0, N0); see Fig. 4A and SI Appendix §S7.1. Once
this mapping is computed, we iterate it to determine the asymptotic
outcomes as the number of dilutions approaches infinity. Fig. 4A
shows a general trend: larger initial killer fractions f0 and population
sizes N0 allow constitutive killers to moderately increase their rela-
tive abundance by the end of the first cycle. The region below the
black-dashed curve in Fig. 4A indicates initial conditions for which
killers decrease their fraction in the first cycle; i.e., f(T−) < f0.
Thus, one may expect that populations that start below the black-
dashed curve are exactly the ones that become dominated by the sen-
sitive strain with successive dilutions. However, our calculation of
the asymptotic limit lim

n→∞
f((nT )−), shows that this is not the case.

Fig. 4C-D show that, in the limit of infinite dilutions, the state space
is divided into two regions corresponding to the competitive exclu-
sion of the killer by the sensitive strain (blue) and vice versa (red).
The actual shades of blue and red in Figs. 4C-D represent the time it
takes from the initial (f0, N0) to come within the machine accuracy
of the asymptotic limit for killers’ pre-dilution fraction (which in real
systems would be correlated with the time until the competitive ex-
clusion). We highlight five features generic in these computations,
which mirror the observations from the experiments of Fig. 2:

1. For every initial population size, there exists a critical killer
fraction threshold that determines which strain will eventually
dominate.

2. The closer the initial killer fraction is to that threshold, the
longer it takes to approach competitive exclusion.

3. Changes in relative abundance in the first cycle are not predic-
tive of the asymptotic limit. Accordingly, in our experiments of

(A) Pre-dilution fraction of
killers f(T−) for T = 1

(B) Two scenarios of competitive exclusion
(different initial conditions, same T = 1)

(C) Time until competitive exclusion
(with T = 1)

(D) Time until competitive exclusion
(with T = 2)

Figure 4. Constitutive killers with regular dilutions: pre-dilution fraction and
limiting behavior. (A) Pre-dilution fraction of the killer at the end of the first
cycle, f(T−), for T = 1 and any initial condition. Initial conditions below
the black, dashed curve lead to f(T−) < f0. (B) Temporal trajectories of
killer (red) and sensitive (blue) population sizes (left axes), and killer fraction
(green, right axes), with two different initial conditions (corresponding to the
♦ and ▲ markers in panel C) and dilution period T = 1. (C) Time until
competitive exclusion (red/blue shades) and limiting killer fraction (red and
blue indicate f = 1 and f = 0 limits, respectively) vary with the initial
condition. Within the red and blue regions, the absolute killer and sensitive
population sizes reach nK ≈ 0.45 and nK ≈ 0.69, respectively (see also
panel B). Black dashed line as in panel A. (D) Doubling the dilution period
extends the range of initial conditions leading to domination by the killer and
reduces/increases the timescale over which the killer/sensitive reach
domination, respectively. Both initial conditions marked by ♦ and ▲ now
lead to killer domination.

Fig. 2, the killer’s fraction always decreased in the first cycle
due to the low initial population size.

4. When the dilution period grows, this might change the asymp-
totic limit and the time necessary to approach it. For example,
the ♦-marked initial condition leads to the victory of sensitives
when T = 1 and of killers when T = 2 (Fig. 4C-D). While the
▲-marked initial condition was already leading to killers’ vic-
tory even with T = 1, with T = 2 this exclusion happens much
faster. This is consistent with the comparison of 24 h and 48 h
dilution trajectories in the experiments.

5. With T = 1, neither strain can reach the carrying capacity
within one cycle even after the other strain is excluded in the
limit. The range of such oscillations can be found analytically
(SI Appendix §S3.1), is observed in Fig. 4B, and also consistent
with experimental evidence in Fig. S1.

Do toxin-producers benefit from population-sensing?

The results for constitutive killers are revealing and align well with
our experiments. However, antagonistic strains often use quorum
sensing or environmental signals [53–55] to regulate toxin produc-
tion, and thus may not engage in antagonistic behavior at all times,
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decreasing their growth-rate penalty when the toxin is not produced.
Here, rather than modeling specific types of quorum sensing mech-
anisms, we use a phenomenological approach and explore different
notions of optimality for toxin production policies of “omniscient”
killers. The results will serve as an upper bound on how well more
realistic killers could do given the limits to their sensing abilities.

Supposing that the killers can sense the current size and compo-
sition of the population, they could use this to regulate their rate of
toxin production, also taking into account the remaining time until
the next dilution. More precisely, we will consider a theoretical pos-
sibility of their evolving the optimal toxin production rate in feedback
form: a∗ = a∗(f,N, t) to optimize the resulting pre-dilution fraction
f(T−). We will refer to such killers as “myopically-optimal” or sim-
ply “myopic” since they optimize the results over a single cycle only,
without any regard to the sequence of future dilutions. We use the
methods of control theory [65] to find this optimal toxin-production
policy in the framework of dynamic programming;3 see the sum-
mary in Box 2 and computational details in SI Appendix §S7. The
structure of this control problem guarantees that the optimal policy is
bang-bang; i.e., for generic (f,N, t), it will be optimal to either not
produce the toxin at all (a∗ = 0) or produce it at the maximum rate
(a∗ = 1).

Box 2: Myopic optimal toxin production policy for
population-sensing killers under regular dilutions

The value function u(x, y, t) = sup
a(·)

f(T−) is the best pre-dilution killer frac-

tion achievable starting from f(t) = x, N(t) = y. This value function satisfies
a Hamilton-Jacobi-Bellman (HJB) PDE

−
∂u

∂t
(x, y, t) = max

a∈[0,1]

{
∇u(x, y, t) ·

[
F (x, y, a)
G(x, y, a)

]}
(3)

with terminal conditions u(x, y, T ) = x if y > 0 and u(x, 0, T ) = 0.

F and G are defined in Eq. (2). The myopically optimal toxin-production policy
a∗(x, y, t) is an argmax in Eq. (3), see SI Appendix §S7.1.

The corresponding pre-dilution population size ϕ(x, y, t) = N(T−) starting
from f(t) = x, N(t) = y, and using policy a∗(·) satisfies

−
∂ϕ

∂t
(x, y, t) = ∇ϕ(x, y, t) ·

[
F
(
x, y, a∗(x, y, t)

)
G
(
x, y, a∗(x, y, t)

)] (4)

with the terminal condition ϕ(x, y, T ) = y.

Iterating (u, ϕ) one can obtain the limiting pre-dilution fraction of killers
û∞(x, y) under an infinite sequence of dilutions (SI Appendix §S7.2).

As Fig. 5C shows, these myopic killers try to maximize the early
exponential growth by opting not to produce the toxin at first if the
initial population and/or their initial fraction are low. Fig. 5A demon-
strates that they do better than the constitutive killers over the first
cycle, but at least for these parameter values, this sensing-based ad-
vantage is minor and mostly pronounced when the initial populations
are low. Compared to constitutive killers, the region starting from
which the myopic killers eventually dominate expands only slightly,
for small N0 and relatively large f0 (Fig. 5B). Consequently, the sen-
sitive strain is still protected by periodic dilutions, which allow it to
achieve competitive exclusion starting from a broad range of initial
configurations.

3Our use of dynamic programming ensures that the computed policy is
globally optimal and is obtained “in feedback form”. These are important
advantages over the Pontryagin Maximum Principle approach, which is more
commonly used in biological applications [66].

(A) Improvement in f(T−)

(B) Limiting fraction (û∞)
and convergence time

(C) Optimal toxin-on/off
policy: a∗(x, y, 0)

Figure 5. Myopic killers with regular dilutions: pre-dilution and limiting
behaviors with regular dilutions and T = 1. (A) Population sensing and
myopic planning provide a minor improvement to the killer fraction f(T−)
at the end of the first cycle, mostly for initial conditions with low population
size. Shown here is the maximized f(T−) for myopic killers, minus the
corresponding f(T−) for constitutive killers. (B) In the infinite-dilution
limit, myopic population sensing expands the set of initial conditions leading
to the killer dominance, compared to constitutive killers (black dashed curve
reports the blue/red boundary of Fig. 4C). (C) The optimal toxin production
policy a∗(f,N, t) (shown here for the initial time t = 0 only) is bang-bang,
equal to 1 in the orange region, and to 0 in the black region. Gray arrows
denote the vector field directions corresponding to Eq. (2) with
a = a∗(f,N, 0). When the killers switch from no toxin production to
constitutive production (i.e., as the competition trajectory crosses from the
black to orange region in (f,N) space), the vector field exhibits a jump
discontinuity. However, the angular difference between the vectors on either
side is consistently small (always < 1.27◦), making the discontinuity not
visually obvious. The policy is time-dependent and the toxin production
region changes for t > 0.

Who benefits from randomness in dilution times?

The periodic setting investigated up till now provides useful insights
but may oversimplify the complex dynamics of populations in natu-
ral environments. For example, boom-and-bust dynamics are often
driven by fluctuations that occur randomly in time, rather than peri-
odically. Here, we extend our analysis to randomly distributed per-
turbations.

We model dilutions as random events governed by a Poisson pro-
cess; so, the duration of inter-dilution time intervals T are expo-
nentially distributed with rate λ > 0. As before, we will consider
proportional dilutions, preserving f but instantaneously switching
from N to ρN. Mathematically, this continuous evolution of f(t)
and N(t) punctuated by randomly timed jumps in N can be de-
scribed as a Piecewise-Deterministic Markov Process (PDMP) [67]
and we take advantage of a well-developed theory for optimal con-
trol of PDMPs throughout the rest of this paper. We first note that
any toxin-production policies will now be independent of time since
the last dilution; we will use α = α(f,N) to denote such feedback
policies, to distinguish them from a(f,N, t) used in the periodic case
above.

Second, we note that our criteria for evaluating initial conditions
and the quality of policies become more subtle. Starting from the
same initial (f0, N0) and using any reasonable fixed policy α, a se-
quence of randomly timed dilutions might lead to a competitive ex-
clusion of either strain. Fig. 6 illustrates this for the simplest case
of constitutive killers; from now on, we will use α0 = 1 to denote
their policy. Since a trajectory reaches neither f = 0 nor f = 1 in
finite time, we will select small threshold values γd and (1 − γv ),
declaring killers’ victory4 as soon as f(t) > γv or sensitives’ victory

4It is similarly possible to declare the victory/defeat criteria in terms of
strain populations rather than fractions. For most initial conditions, this does
not affect the qualitative policy and victory probabilities; see SI Appendix S8.
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as soon as f(t) < γd . We then define a new probabilistic metric for
policy performance: ŵα(f0, N0) is the probability of the killers at-
taining their victory (before the toxin-sensitives do) after an arbitrary
number of dilutions starting from (f0, N0) and using policy α. The
rigorous definition and the PDE that ŵα must satisfy are covered in
Box 3. We will use this metric to compare the performance of all
toxin-production policies in stochastic environments.

Box 3: Probabilistic performance metric for policies under
randomly-timed dilutions

Definitions and Parameters:

• ∆v = {(x, y) ∈ [0, 1]2 | x > γv}, victory zone (γv –victory threshold);

• ∆d = {(x, y) ∈ [0, 1]2 | x < γ
d
}, defeat zone (γ

d
–defeat threshold);

• ∆ = ∆v ∪ ∆d, terminal set.

(Random) victory time for the killer:
Tv(x, y, α(·)) = inf

{
t > 0 | f(t) ∈ ∆v; f(0) = x, N(0) = y, (5)

with many dilutions
}
.

(Random) defeat time for the killer:
Td(x, y, α(·)) = inf

{
t > 0 | f(t) ∈ ∆d; f(0) = x, N(0) = y, (6)

with many dilutions
}
.

(Random) termination time:
T̂ := T̂ (x, y, α(·)) = min

{
Tv

(
x, y, a(·)

)
, Td

(
x, y, a(·)

)}
. (7)

Terminal cost: g =

{
1, if (x, y) ∈ ∆v,

0, if (x, y) ∈ ∆d.

Performance metric (probability of killers’ victory with α):
ŵ

α
(x, y) = P

(
Tv

(
x, y, α

)
< Td

(
x, y, α

))
(8)

can be found by numerically solving a first-order linear equation:

λ
[
ŵ

α
(x, ρy) − ŵ

α
(x, y)

]
+

(
∇ŵ

α
(x, y) ·

[
F (x, y, α(x, y))
G (x, y, α(x, y))

])
= 0,

(9)with the boundary condition ŵα = g on ∆.

See Remark VII in SI Appendix §S7.3 for the numerics.

(A) “Lucky” timing (B) “Unlucky” timing (C) Typical “fluctuations”

Figure 6. Constitutive killers with random dilution times. Killers can either
progressively increase or decrease their fraction in a “lucky” or “unlucky”
scenario depicted in panels (A, B), respectively. However, in most cases,
their fraction will fluctuate instead (panel C). In all cases, the initial
configuration (f0, N0) = (0.5, 0.1) is plotted with a white dot and followed
by 4 dilution events. The pre-dilution / post-dilution states are again shown
with black squares and cyan dots, respectively. Gray arrows denote the vector
field directions corresponding to Eq. (2) with a = 1.

Since the inter-dilution intervals are random, this also affects the
notion of optimal policy. Extending the same myopic approach to
stochastic setting, we will call the killers tactically-optimal if they
follow a policy α1 chosen to maximize the expected killers’ fraction
just before the next dilution; i.e., E[f(T−)]. The subscript in α1 indi-
cates the temporal horizon for optimizing this policy (one cycle). This
bang-bang policy can be found by solving the so-called “randomly-

terminated” problem [68]; mathematical details are in Box 4, part 2.

Box 4: Different types of toxin production policies under
randomly-timed dilutions

1. Constitutive policy α0: always produce the toxin; i.e., α0(f,N) = 1.

2. Tactically-optimal policy α1:
Maximizes the expected killers’ fraction just before the next dilution. Given the
value function

v(x, y) = sup
α(·)

E
[
f
(
T

−
;α(·)

)
| f(0) = x, N(0) = y

]
, (10)

the tactically-optimal policy α1 can be found by solving a first-order HJB PDE
satisfied by v:

λ
[
x − v(x, y)

]
+ max

a∈{0,1}

{
∇v(x, y) ·

[
F (x, y, a)
G(x, y, a)

]}
= 0, (11)

with the boundary condition

v(x, y) =

{
1, if x = 1 and y ̸= 0

0, if y = 0 or x = 0.
(12)

See SI Appendix §S6.1 for the derivation.

3. Strategically-optimal policy α∞:
Maximizes the probability of killers winning before the sensitives do (without any
limit on the number of dilutions). Given the value function

w(x, y) = sup
α(·)

P
(
Tv

(
x, y, α(·)

)
< Td

(
x, y, α(·)

))
, (13)

the strategically-optimal policy α∞ can be found by solving a first-order non-local
HJB equation satisfied by w:

0 = λ
[
w(x, ρy) − w(x, y)

]
+ max

a∈{0,1}

{
∇w(x, y) ·

[
F (x, y, a)
G(x, y, a)

]}
,

(14)

with the boundary condition

w(x, y) =

{
1, if x > γv and y ̸= 0,

0, if x < γ
d

or y = 0.
(15)

See SI Appendix §S6.2 for the derivation and §S7.3 for the numerics.

We first focus on the case λ = 1, to ensure that E[T] = 1/λ = 1
matches the period of regular dilutions T = 1 considered in the
previous section. Fig. 7 compares the performance of constitutive
and tactically-optimal killers. Unlike in the periodic case (Fig. 5A),
here the advantage of population-sensing (tactically-optimal) killers
is significant: they have noticeably better chances of winning than
constitutives starting from most initial conditions. Another simple
comparison is to focus on the previous boundaries between the blue
(deterministic defeat) and red (deterministic winning) in Figs. 4C
and 5B. Plotting these boundaries as black dashed lines in Figs. 7A
and 7B respectively, we provide a different quantitative measure of
tactically-optimal killers’ advantage: their average chances for suc-
cess starting near this deterministic “no microbe’s land” are ≈ 72%,
compared to only ≈ 46% for the constitutive killers. Interestingly,
the tactically-optimal policy α1(f,N) shown in Fig. 7C is quite close
to the zeroth time-slice of the deterministic myopic optimal policy
a∗(f,N, 0) from Fig. 5C. The difference in performance comes pri-
marily from the fact that α1(f,N) is stationary and that occasional
long intervals (T > 1/λ) really help the tactically-optimal killers.
Nevertheless, the toxin-sensitives still have a significant probability
of winning on a large set of initial conditions, particularly when the
toxin-producers are not starting in the majority.

For each toxin production policy, it is also interesting to ask
whether it performs better in deterministic or stochastic environments
(assuming that the average dilution frequency and strength are the
same in both cases). In the SI Appendix §S4, we perform this com-
parison by fixing a specific initial population size N0 = 0.5 and av-
eraging over possible initial killer fractions f0. The observed perfor-
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(A) ŵ under α0 (B) ŵ under α1

(C)Tactically-optimal policy
α1

Figure 7. Probabilistic performance of (A) constitutive and (B)
tactically-optimal killers with random dilution times (λ = 1). The
probability of attaining competitive exclusion is noticeably higher for the
tactically-optimal toxin-producers starting from most initial configurations.
Dashed black lines show the boundary of the set from which they could
(deterministically) win under periodic dilutions with T = 1. In the current
random dilutions setting, starting near that boundary gives the
tactically-optimal killers an average ≈ 72% chance of winning, compared to
only ≈ 46% for the constitutive killers. This is mainly because the
tactically-optimal killers do not produce the toxin when their fraction or the
overall population size is low (black region in C). In both (A) & (B), the
victory and defeat barriers (γv and γd , respectively) are indicated by vertical
magenta dotted lines. In (C), gray arrows represent the vector field directions
corresponding to Eq. (2) with a = α1(f,N), and the red-dashed line denotes
the lower boundary of the toxin-on region for a different strategically-optimal
policy α∞ discussed below. All parameter values are the same as in Fig. 4C.

mance differences depend non-trivially on ρ and λ; see Fig. S6. But
in general, constitutive killers perform better in stochastic environ-
ments when λ is large and ρ is small, and in deterministic environ-
ments when λ is small and ρ is large. In contrast, tactically-optimal
population-sensing killers always fare better under stochastic dilu-
tions.

Can toxin-producers do better if they are non-myopic?

The optimality of toxin-production policy α1 is tactical (or myopic)
because it is selected with only one upcoming dilution in mind, ig-
noring the ultimate goal of killers to win after arbitrarily many di-
lutions. It is natural to ask whether they would gain a substantial
advantage by selecting a policy that maximizes the probability of at-
taining their victory before the sensitives, ŵα. For fixed values of
dilution frequency λ and survival factor ρ, such strategically-optimal
policy α∞(f,N) can be computed as described in Box 4 part 3. The
subscript in α∞ indicates that the policy maximizes the probability
of eventual victory without any regard to how many dilutions will
be required. The strategically-optimal α∞ prescribes producing toxin
slightly more conservatively than the tactical α1 (see the red-dashed
line in Fig. 7C). But in the end, α∞’s performance is only marginally
better for our chosen parameter values; see SI Appendix §S5 and also
Fig. 8C.

Is the outcome affected by dilution strength and frequency?

The competition dynamics described so far appear to be robust, hold-
ing true for a variety of stochastic environments. In Fig. 8, we fo-
cus on a single initial condition (f0, N0) = (0.5, 0.1) and compare
the performance of constitutive, tactically-optimal and strategically-
optimal toxin-production policies for a range of (ρ, λ) values. Pre-
dictably, all three of them yield higher chances of winning against
the toxin-sensitive strain when the dilutions are rare and weak (small
λ, large ρ) – in these regimes, the population gets closer to the car-
rying capacity in between dilutions, the growth of both strains slows

down, and the toxin’s effect becomes more noticeable. As expected,
the constitutives are far less effective on most of this map. The
biggest surprise is how well the tactically-optimal killers do – their
chances of winning are in the worst case only 2.5% below those of the
strategically-optimal killers. This is impressive since the tactically-
optimal policy α1 is formulated without any reference to ρ, but works
well across a fairly broad range of dilution strengths. But even against
the strategically optimized α∞, the toxin-sensitives still have a chance
of winning above 50% on at least half of this (ρ, λ) map.

(A) ŵ(0.5, 0.1) under α0 (B) ŵ(0.5, 0.1) under α1 (C) ŵα∞ − ŵα1

Figure 8. Comparison of probabilistic performance for different toxin
production policies starting from (f0, N0) = (0.5, 0.1) for a range of
survival fractions and dilution frequencies, with random dilution times.
Policy α1 is recomputed for each λ, while policy α∞ is recomputed for each
(ρ, λ) combination. In general, a larger survival rate ρ combined with a
smaller dilution frequency λ increases the chances of toxin-producers to win
for all three policies. It is clear that the tactically-optimal (panel B) killers
significantly outperform the constitutives (panel A). The differences in
ŵ(0.5, 0.1) between α∞ and α1 are small, with the discrepancy increasing
toward the upper right corner (panel C).

In conclusion, whether dilutions are randomly timed or periodic
and despite the benefits brought by toxin-production regulation to
killers, the sensitive strain can prevail by taking advantage of dis-
ruptions caused by dilutions.

Discussion

The impact of environmental variability on population size and di-
versity is well-established in the literature. For example, it is well
known that environmental switches can make co-existence possible
even if all the “un-switched” versions of the environment would re-
sult in a competitive exclusion with the same winner [69]. Similarly,
the variability in the resulting population is influenced not only by the
frequency but also by the timing (periodic vs random) of switching
events [70]. While most studies employ environmental switches to
model abrupt changes in population dynamics (e.g., instantaneous re-
ductions in carrying capacity or resource processing efficiency), there
is also a growing interest in understanding instantaneous exogenous
events that impact all subpopulations similarly without affecting the
dynamics in between. Dilutions provide a prime example of this,
resulting in boom and bust cycles, where the bust phase is nearly in-
stantaneous [71, 72]. Within this emerging focus, our paper is the
first demonstration that for antagonistic interactions such population
busts can fundamentally alter outcomes, determining which species
achieves competitive exclusion.

We have shown both theoretically and experimentally that dilution
events can benefit toxin-sensitive strains, when their rate of growth in
the exponential phase is larger than that of toxin-producing ones. Us-
ing experiments with strains of S. cerevisiae, one engineered to con-
stitutively produce the killer toxin K1, and the other sensitive to it,
we found that the outcome and dynamics of competition between the
two varied with the frequency of periodic dilution events. Because
toxin production is often regulated in response to quorum sensing
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[54, 55], we used tools of optimal control theory to explore how dif-
ferent toxin-production policies can benefit the producers. Following
this approach, we developed two efficient algorithms that (i) calculate
the deterministic limit of the relative abundances of these strains as
the number of periodic dilutions approaches infinity; and (ii) address
the non-local Hamilton-Jacobi-type equation that includes the jumps
introduced by dilution events in a stochastic environment. Our nu-
merical experiments consistently support the conclusion that, regard-
less of toxin production regulation, dilution events often disrupt the
dominance of the killer, thereby protecting the sensitive strain from
extinction.

Rather than focusing on specific mechanistic models of toxin
production regulated by quorum sensing, which would vary across
species and would require a large number of parameters and model-
ing assumptions, we adopted a phenomenological approach to iden-
tify theoretical performance bounds for “omniscient killers” capable
of measuring population density and fractions. The optimal policies
derived here should thus be regarded as upper bounds on the abil-
ity of toxin-producing strains to out-compete sensitive ones in fluc-
tuating environments. Future work will explore how more realistic,
mechanistic models of toxin production regulated by quorum sensing
compare to the optimal policies investigated here. For example, it
will be useful to consider models in which the concentration of toxin
and/or the concentration of quorum sensing molecules are additional
state variables.

In a seminal paper on allelopathy in spatially distributed popula-
tions [25], Durrett and Levin showed that the competition of toxin-
producing and toxin-sensitive strains displays bi-stability in well-
mixed, undisturbed competitions, with either the killer or sensitive
strain dominating in the long-term limit depending on the initial con-
dition. In their model, such bi-stability depends critically on the mag-
nitude of a (toxin unrelated) death rate term in their governing equa-
tions. In the SI Appendix §S2, we show that using typical laboratory-
measured values for growth and death rates, the range of initial con-
ditions for which the sensitive strain competitively excludes the killer
is extremely small even under the Durrett-Levin model. This theoreti-
cal bi-stability alone is thus unlikely to explain why non-antagonistic
strains are found in many microbial communities, and our analysis
of disruption effects highlights another contributing factor, which is
arguably at least as important. It is of interest to ask how the perturba-
tions investigated here would affect the spatial competition between
killer and sensitive cells explored theoretically in [25], where the two
strain types were shown to coexist by forming dynamic, single-strain
clusters. Similarly, it would be interesting to explore the impact of
dilutions on the nucleation criteria that control the killers’ invasion
success of a spatially-distributed, resident population [21].

As in any model, simplifying assumptions were made to focus on
the main observed phenomena and to ensure the computational effi-
ciency of our approach. But in the future, it might be desirable to
relax some of these assumptions to reflect additional features present
in realistic environments. One such extension would be to consider
more general dilutions, for example, modeling survival rates ρ us-
ing a Binomial distribution, rather than assuming fixed relative abun-
dances. Although Monte Carlo simulations (SI Appendix §S9) sug-
gest that results remain qualitatively similar, random dilution out-
comes can sometimes produce variability in which strain dominates,
as seen in our experiments (Fig. 2C-D). An even more realistic
model could also incorporate random variability in parameters such
as growth rates (rK, rS), killing rates γ, and dilution factors ρ and
λ, which are influenced by environmental and biological fluctuations
[73, 74]. These fluctuations may better capture population dynam-
ics but would increase computational complexity, requiring a hybrid

model with discrete and continuous random perturbations based on
jump-diffusion processes [75, 76].

Incorporating evolutionary adaptation, such as mutational dynam-
ics, would also enhance our understanding of the competition be-
tween toxin-producing and toxin-sensitive strains in natural environ-
ments over longer timescales. Experiments indicate that killer strains
can lose or alter their toxin-producing ability, and sensitive strains
may develop resistance to the toxin [21, 23, 77]. The ultimate success
of the killer strain in our model is negatively impacted by the costs as-
sociated with toxin production, suggesting that evolutionary adapta-
tion may aim to minimize these costs [77]. Additionally, evolutionary
adaptation may enable antagonistic strains to regulate toxin produc-
tion in response to their environment, population abundance, or the
presence of competitors [55], possibly approaching the performance
of the optimal policies described here. Toxin resistance can arise
through various mechanisms, such as alterations in toxin receptors or
translocation pathways, which may have antagonistic pleiotropic ef-
fects where resistance incurs a cost in terms of growth rate [78]. This
growth rate penalty will, in turn, influence the competitive dynamics
with the killer strain. Finally, in environments experiencing distur-
bances, evolutionary adaptation may promote increased retention (ρ)
[79] or even alter the rate of disturbances (λ). For example, produc-
tion of surface-attachment molecules, pili or fimbriae by microbes
such as Pseudomonas aeruginosa, Vibrio cholerae, Clostridium dif-
ficile and Streptococcus salivarius can help them adhere to surfaces
in their environment and prevent them from being washed away in
fluid environments such as the gastrointestinal tract, the oral cavity,
or natural water bodies [11, 80, 81]. C. difficile and V. cholerae, in
addition to adhering to surfaces such as the intestinal mucosa, can
also cause diarrhea [82] and thus potentially control the environment
dilution rate and intensity, at least transiently.

In conclusion, we posit that the fitness cost incurred by toxin-
producing strains may be particularly detrimental in boom-and-bust
environments in which populations undergo regular or stochastic di-
lutions. We propose this as a possible explanation for why both antag-
onistic and non-antagonistic microbes are found in nature, and why
environments with higher turnover rates may favor the latter [51, 52].

Materials and Methods

Competition experiments.

The killer strain yAG171b expressed the toxin gene K1 from the chro-
mosome from the galactose-inducible PGAL1 promoter. To enable
strain differentiation at the flow cytometer, strain yAG171b expressed
the fluorescent protein CyOFP1opt [83], whereas strain yAG177 ex-
pressed the fluorescent protein ymCitrine (Table 3). Cells of the two
strains could be clearly identified via flow cytometry and separated
in the FL-1A (533±30 nm) vs FL-2A (585±40 nm) emission chan-
nels with excitation at 488 nm. Dead yAG177 cells (confirmed via
Propidium-Iodide staining) formed a separate cluster in the FL-1A vs
FL-2A scatter plot, and were excluded when calculating killer frac-
tions. No dead cells were observed when growing killer cells in iso-
lation. To prevent metabolization of galactose and to make the ex-
pression of K1 titratable, both GAL1 and GAL10 were deleted, and
GAL3 was placed under the constitutive promoter PACT1 [84], in
both strains. In addition, to prevent catabolite repression that would
have prevented expression of the K1 toxin from PGAL1 in the pres-
ence of glucose, we deleted HXK2 in yAG171b. This deletion confers
a growth-rate deficit to yAG171b, compared to yAG177, in addition
to the cost of toxin production. Strain construction is described in
the SI Appendix §S1.2. Experiments were performed with strains
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yAG171b (killer) and yAG177 (sensitive) in filter-sterilized Complete
Synthetic Medium (CSM) buffered at pH 4.5 with succinic acid. The
medium composition is described in the SI Appendix §S1.2. The
medium was supplemented with 500 uM galactose for induction of
the killer toxin gene K1. Experiments were performed in 96 well
plates with flat bottom and a transparent lid, incubated in a plate
reader at 23◦C with orbital shaking at 425 rpm with an amplitude
of 3 mm. For the experiment of Fig. 1, we initialized six technical
replicates for each initial fraction and initial population size. Initial
fractions of killers were measured via flow cytometry. The experi-
ment was initialized with overnights grown in CSM at 30◦C, which
were diluted in CSM with 500 µM galactose by a factor 3125 (N0

treatment), 312.5 (10 ·N0 treatment), 156.25 (20 ·N0 treatment) and
62.5 (50 · N0 treatment). For the experiments of Fig. 2, we initial-
ized four technical replicates for six different 24 h and 48 h dilution
cycle treatments, targeting initial killer fractions of 32%, 36%, 40%,
44%, 48% and 52%. Actual initial fractions were measured via flow
cytometry and were within ±1% of the targeted ones; see Fig. 2. The
experiment was initialized with overnights grown in CSM at 30◦C,
which were diluted by a factor 3125 in CSM with 500 µM galactose.
Successive daily dilutions were performed with a dilution factor of
225. In both experiments, the culture volume was 150 µL per repli-
cate.
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Supporting Information (SI) Appendix

SI Appendix provides additional details for the main text. We continue to use reference numbers of equations and figures
previously introduced in the main text. The numbering of figures in SI text is prefixed with an “S”, and bibliographic references
used here are listed and numbered separately.

S1 Experiments

S1.1 Additional experimental results.

Fig. S1 shows cell density estimates obtained from Optical Density (OD600) measurements taken throughout the experiment
of Fig. 2, showing that populations diluted every 24 h (teal curves) did not reach carrying capacity, whereas those diluted every
48 h (pink curves) did.
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Figure S1. Mean cell density values recorded throughout the experiment of Fig. 2. The mean cell densities in the 24 h cycle replicates are shown in teal, and
the 48 h cycle ones are in pink. (A) Mean cell density across three replicates initialized with 100% killer. (B) Mean cell density across three replicates
initialized with 0% killer. (C) Mean cell density across four replicates initialized with 44% killer. Cell densities were estimated from Optical Density
(OD600) data via a cubic calibration curve. Dashed and dotted lines are predictions of asymptotic pre- and post-dilution cell densities predictions based on
Eq. (S3.1.3) with non-normalized population sizes.

S1.2 Strains, oligos, plasmids and additional methods.

The Complete Synthetic Medium (CSM) composition was, per liter: 0.59 g of amino acid mix, 1.706 g of Yeast Nitrogen
Base without amino acids, carbohydrates, ammonium sulfate, ferric chloride and copper sulfate (USBiological Y2030-03),
20 g of dextrose, 4 mL of a 5 g/L L-histidine hydrochloride monohydrate stock solution, 20 mL of a 5 g/L L-leucine stock
solution, 8 mL of a 2.5 g/L uracil stock solution, 20 mL of a stock solution containing 5 g/L adenine hydrochloride and 5 g/L
L-tryptophan, 11.2 g of succinic acid, 5 g of ammonium sulfate and NaOH to reach pH 4.5. The amino acid mix was made by
mixing 10 g L-arginine hydrochloride, 16 g L-aspartic acid, 10 g L-isoleucine, 10 g L-lysine hydrochloride, 4 g L-methionine,
10 g L-phenylalanine, 20 g L-threonine, 10 g L-tyrosine and 28 g L-valine.

Tables 1, 2, and 3 report oligos, plasmids and strains used for the experiments. We substituted ymCherry in pAG11 with
CyOFP1opt from pRP008 using Gibson assembly, producing pAG134, whose sequence was verified via long-read sequencing.
Strain yAG171 was obtained by digesting pAG134 with PpuMI and transforming it into yAG75 [1] for integration of pAG134
in TCYC1. Strain yAG177 was obtained by digesting pAG5 [1] with PpuMI and transforming it into yAG74 [1] for integration
of pAG5 in PACT1.

1

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 20, 2024. ; https://doi.org/10.1101/2024.08.09.607393doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.09.607393


Oligo name Oligo sequence
oAG187 cgctgaggacTTGACCACACCTCTACCGG
oAG188 gctgaggcatTCGACCTGCAGCGTACGAAG
oAG189 tgcaggtcgaATGCCTCAGCACTAGTCCTG
oAG190 tgcaggtcgaATGCCTCAGCACTAGTCCTG

Table 1: DNA oligos used to assemble pAG134 via Gibson assembly. Bases in capital letters represent homology to the PCR
template (pAG11 for yAG187/188 and pRP008 for yAG189/190) Lowercase bases represent homology to the backbone or
fragment for Gibson assembly.

Plasmid name Relevant transcriptional units Sourced from
pAG5 PACT1-ymCitrine-TADH1 PTEF-KanMX6-TTEF [1]

pAG11 PACT1-ymCherry-TADH1 PTEF-KanMX6-TTEF PGAL1-K1-TCYC1 [1]
pRP008 PTEF1-CyOFP1opt-TADH1 [2]
pAG134 PACT1-CyOFP1opt-TADH1 PTEF-KanMX6-TTEF PGAL1-K1-TCYC1 This study

Table 2: Plasmids used for strain construction.

Strain name Genotype
yAG171 can1-100, his3-11,15, ura3∆0, BUD4-S288C, gal1/10∆::LEU2, prGAL3∆::His3MX6-PACT1-GAL3,

hxk2∆::HphMX4, PTEF1-CyOFP1Opt-TADH1, PTEF1-KanMX6-TTEF, prGAL1-K1-TCYC1

yAG177 can1-100, his3-11,15, ura3∆0, BUD4-S288C, gal1/10∆::LEU2, PGAL3∆::His3MX6-PACT1-GAL3,
PACT1-ymCitrine-TADH1, PTEF1-KanMX6-TTEF

Table 3: Strains used for the experiments.

S2 Comparison with the Durrett-Levin model

In the main text, all of our results are based on a basic competition model between the toxin-producing “killer” strain (K)
and the toxin-sensitive strain (S) (Eq. (1) of the main text). This model assumes the growth of both strains is logistic with
respective intrinsic growth rates (rK, rS) and a shared carrying capacity C. The toxin-induced death rate of the sensitive cells is
proportional to the product of the strain densities, nKnS. Focusing on constitutive killers who produce the toxin at the maximal
rate a = 1, the original Eq. (1) reads 

dnK

dt
(t) = rKS(1− ε) (1− nK − nS)nK,

dnS

dt
(t) = (1− nK − nS)nS − γnKnS,

(S2.1)

where rKS = rK/rS < 1 is the intrinsic growth rates ratio, γ is the killing rate rescaled by rS, and ε is the cost associated with
producing toxin at the maximal rate (a = 1). We note three equilibria (fixed points) of Eq. (S2.1):

1. (nK, nS) = (0, 0) – a nodal source

2. (nK, nS) = (1, 0) – a nodal sink

3. (nK, nS) = (0, 1) – a degenerate node

It follows that a competitive exclusion of the sensitive by the killer will be observed starting from any non-equilibrium initial
condition. Despite this eventual dominance, the sensitive strain may transiently increase its relative abundance depending on
the initial configuration; see Fig. S2. This occurs because the growth rate benefit of not producing the toxin initially outweighs
the deficit caused by toxin-induced death. Fig. S3D further illustrates this phenomenon in a phase plane, showing that the
sensitive population begins to decline once the total population reaches a sufficiently large size.
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Figure S2. Population trajectories for a constitutive toxin-producing strain (based on Eq. (S2.1)) competing against a toxin-sensitive one. Starting with 50%
of each strain and a total population equal to 1% of the carrying capacity, sensitives initially grow faster due to their higher intrinsic growth rate. However, as
the population size approaches the carrying capacity, the intrinsic growth advantage of the sensitive strain diminishes, leading to eventual domination by the
toxin producer due to the toxin’s action. Parameter values: rKS = 0.85, ε = 0.2, and γ = 1.

One natural extension of model Eq. (S2.1) is to incorporate natural (toxin-unrelated) death rates (δK, δS) for both strains.
With both of these rates rescaled by r−1

S , this yields a system of ODEs equivalent to a competition model previously studied by
Durrett and Levin [3] : 

dnK

dt
(t) = rKS(1− ε) (1− nK − nS)nK − δKnK,

dnS

dt
(t) = (1− nK − nS)nS − γnKnS − δSnS.

(S2.2)

By setting both equations to zero, we find four fixed points of this system:

1. (nK, nS) = (0, 0)

2. (nK, nS) =

(
1− δK

rKS(1− ε)
, 0

)
3. (nK, nS) = (0, 1− δS)

4. (nK, nS) =

(
δK

γrKS(1− ε)
− δS

γ
,
δS + γ

γ
− δK(1 + γ)

γrKS(1− ε)

)
Stability analysis shows that the origin is a nodal source, the two boundary equilibria are both nodal sinks, and the interior fixed
point is a hyperbolic saddle if

δK < rKS(1− ε), δS < 1, δS <
δK

rKS(1− ε)
<

δS + γ

1 + γ
. (S2.3)

For this range of parameters, the system exhibits “bi-stability”: starting above the saddle’s stable manifold (the magenta dash-
dotted line in Fig. S3A) leads to competitive exclusion of the killer by the sensitive, while starting below it results in competitive
exclusion of the sensitive by the killer. See Fig. S3A for a detailed phase portrait. It is worth noting that, when the natural death
rates approach zero (i.e., as δS, δK → 0), Eq. (S2.2) reduces to Eq. (S2.1). In the meantime,

1− δK
rKS(1− ε)

→ 1,

1− δS → 1,

δK
γrKS(1− ε)

− δS
γ
→ 0,

γ + δS
γ
− δK(γ + 1)

γrKS(1− ε)
→ 1.

Consequently, the last two equilibria collapse to (nK, nS) = (0, 1) while the second fixed point moves to (nK, nS) = (1, 0).
This means the system loses its “bi-stability” structure as the “sensitive-winning” region shrinks when the natural death rates
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approach zero (see the transitions in Fig. S3). Schink et al. [4] estimated the death rate of an E. coli strain K-12 at 0.018 h−1

in laboratory experiments, whereas the max growth rate was 0.7 h−1. In our time scale, this corresponds to δK = δS ≈ 0.0257.
We see from Fig. S3C that in this scenario, the hyperbolic saddle is extremely close to the “all sensitives” equilibrium and
both of them are close to (nK, nS) = (0, 1). This extremely small basin of attraction for the “all sensitives” equilibrium makes
it harder to explain why sensitive strains are often found in the natural environment. This issue is one of the motivations for
the current paper, and for our conjecture that, with dilutions, the sensitives can win even in the δK = δS = 0 limit, where the
bi-stability disappears; Fig. S3D.

(A) δK = δS = 0.35 (B) δK = δS = 0.2 (C) δK = δS = 0.0257 (D) δK = δS = 0 (our model)

Figure S3. Phase portraits of the Durrett-Levin model (S2.2) with decreasing death rates. The “bi-stability” is noticeable when the death rates (δK, δS) are
comparable in magnitude to the growth rates (panels (A,B)). Using laboratory-estimated death rates values [4], the hyperbolic saddle moves toward the “all
sensitives” stable node, with both converging toward (nK, nS) = (1, 0) (panel C). When (δK, δS) = (0, 0), the Durrett-Levin model reduces to our model
(S2.1), and “bi-stability” disappears (panel D). In (A-C), the hyperbolic saddle is plotted with a red dot while other equilibria are plotted with a blue dot. The
stable manifold is plotted with a magenta dotted-dashed line while the unstable manifold is plotted with a cyan dotted-dashed line. In (D), all equilibria are
plotted with a blue dot. In all of them, gray arrows denote the vector field directions corresponding to Eq. (S2.2). Parameter values: rKS = 0.85, ε = 0.2, and
γ = 1.
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S3 Effect of dilutions on a single-strain logistic growth model

This section presents theoretical and numerical results relevant for a single strain subjected to either regular or randomly timed
dilutions. These findings provide background information for the main text and are relevant after one of the strains becomes
strongly dominant.

S3.1 Effect of regular dilutions.

In this subsection, we prove the theoretical pre-dilution population limit for a population growing according to the logistic
model and undergoing regular dilutions.

Theorem S3.1. Consider the following rescaled logistic growth model

q̇ = rq(1− q), q(0) = x ∈ (0, 1]. (S3.1.1)

If the system undergoes regular dilutions with a fundamental period of T , and after each dilution, a deterministic fraction ρ of
the population survives, i.e.,

q
(
(mT )+

)
= ρq

(
(mT )−

)
, for m = 1, 2, 3, . . . , (S3.1.2)

then

lim
m→∞

q
(
(mT )−

)
=


1

ρ+
1− ρ

1− exp
(
− (rT + ln ρ)

) , if rT + ln ρ > 0,

0, otherwise.

(S3.1.3)

Proof. We begin the proof of Theorem S3.1 by proving the following lemma.

Lemma S3.2. Given the rescaled logistic model Eq. (S3.1.1), the pre-dilution population size up to the m-th cycle is
q
(
(mT )−

)
=

1

ρ+ (1− ρ)
m−1∑
k=0

exp
(
− (rT + ln ρ)k

)
+

1− x

x
exp

(
− (rT + ln ρ)(m− 1)− rT

) ,
q(0) = x ∈ (0, 1].

(S3.1.4)

Proof. We prove the above lemma by mathematical induction. Starting with the first dilution (m = 1), from Eq. (S3.1.4) we
have

q
(
T−) = 1

ρ+ (1− ρ) +
1− x

x
exp(−rT )

=
1

1 +
1− x

x
exp(−rT )

, q(0) = x ∈ (0, 1]. (S3.1.5)

We show it is true by solving Eq. (S3.1.1) analytically. By separation of variables, one can show that the general solution to
Eq. (S3.1.1) is

q(t) =
1

1 + Ce−rt
. (S3.1.6)

With q(0) = x, we have C = 1−x
x . Consequently,

q
(
T−) = 1

1 +
1− x

x
exp(−rT )

, q(0) = x.

Now assume Eq. (S3.1.4) holds true for some integer j > 1. I.e.,

q
(
(jT )−

)
=

1

ρ+ (1− ρ)
j−1∑
k=0

exp
(
− (rT + ln ρ)k

)
+

1− x

x
exp

(
− (rT + ln ρ)(j − 1)− rT

) , q(0) = x.

We now show it holds for j + 1. Notice that q
(
[(j + 1)T ]−

)
with q(0) = x is equivalent to q

(
T−) with q(0) = q

(
(jT )+

)
=

ρq
(
(jT )−

)
under the assumption of proportional dilutions. Given the general solution to Eq. (S3.1.1) in Eq. (S3.1.6), we
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compute the arbitrary constant C by imposing the new initial condition q(0) = ρq
(
(jT )−

)
. It follows that

1

1 + C
= q(0) =

ρ

ρ+ (1− ρ)
j−1∑
k=0

exp
(
− (rT + ln ρ)k

)
+

1− x

x
exp

(
− (rT + ln ρ)(j − 1)− rT

)
=

1

1 + (1− ρ)
j−1∑
k=0

exp
(
− (rT + ln ρ)k

)
ρ

+
1− x

x

exp
(
− (rT + ln ρ)(j − 1)− rT

)
ρ

=
1

1 + (1− ρ)
j−1∑
k=0

exp
(
− (rT + ln ρ)k

)
exp(ln ρ)

+
1− x

x

exp
(
− (rT + ln ρ)(j − 1)− rT

)
exp(ln ρ)

C = (1− ρ)

j−1∑
k=0

exp
(
− (rT + ln ρ)k

)
exp(ln ρ)

+
1− x

x

exp
(
− (rT + ln ρ)(j − 1)− rT

)
exp(ln ρ)

.

Substituting it back into Eq. (S3.1.6), we have

q(T−) =
1

1 +

[
(1− ρ)

j−1∑
k=0

exp
(
− (rT + ln ρ)k

)
exp(ln ρ)

+
1− x

x

exp
(
− (rT + ln ρ)(j − 1)− rT

)
exp(ln ρ)

]
exp(−rT )

=
1

1 + (1− ρ)
j−1∑
k=0

exp
(
− (rT + ln ρ)k

)
exp(rT + ln ρ)

+
1− x

x

exp
(
− (rT + ln ρ)(j − 1)− rT

)
exp(rT + ln ρ)

=
1

1 + (1− ρ)
j−1∑
k=0

exp
(
− (rT + ln ρ)(k + 1)

)
+

1− x

x
exp

(
− (rT + ln ρ)j − rT

)
=

1

[ρ+ (1− ρ)] + (1− ρ)
j−1∑
k=0

exp
(
− (rT + ln ρ)(k + 1)

)
+

1− x

x
exp

(
− (rT + ln ρ)j − rT

)
=

1

ρ+ (1− ρ)

[
1 +

j−1∑
k=0

exp
(
− (rT + ln ρ)(k + 1)

)]
+

1− x

x
exp

(
− (rT + ln ρ)j − rT

)
=

1

ρ+ (1− ρ)
j∑

k=0

exp
(
− (rT + ln ρ)k

)
+

1− x

x
exp

(
− (rT + ln ρ)j − rT

) ,
= q

(
[(j + 1)T ]−

)
, q(0) = x.

Consequently, Eq. (S3.2) holds for all j ∈ N.

Now, we take the limit of Eq. (S3.2) as m approaches infinity. Notice that the second term in the denominator is a geometric
series. It follows that

lim
m→∞

(1− ρ)
m−1∑
k=0

exp
(
− (rT + ln ρ)k

)
=


1− ρ

1− exp
(
− (rT + ln ρ)

) , if ρ > e−rT ,

+∞, otherwise.
(S3.1.7)

With the third term in the denominator of Eq. (S3.1.4) approaching 0 as m→∞, we thus conclude that

lim
m→∞

q
(
(mT )−

)
=


1

ρ+
1− ρ

1− exp
(
− (rT + ln ρ)

) , if ρ > e−rT ,

0, otherwise.
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Therefore, for a population consisting of sensitives only, i.e.,

ṅS = nS(1− nS),

the limiting pre-dilution population size is

lim
m→∞

nS

(
(mT )−

)
=


1

ρ+
1− ρ

1− exp
(
− (T + ln ρ)

) , if ρ > e−T ,

0, otherwise.

(S3.1.8)

For a population consisting of toxin-producing killers only, i.e.,

ṅK = rKS(1− ε)nK(1− nK),

the limiting pre-dilution population size is

lim
m→∞

nK

(
(mT )−

)
=


1

ρ+
1− ρ

1− exp
(
− (rKS(1− ε)T + ln ρ)

) , if ρ > e−rKS(1−ε)T ,

0, otherwise.

(S3.1.9)

Fig. S4 shows the numerical values derived in Eq. (S3.1.8) and Eq. (S3.1.9) in the (ρ, T ) phase plane. It is evident that the
larger the proportion of the population surviving after dilution (higher ρ) and the longer the period (higher T ), the larger the
pre-dilution population size as the number of dilutions approaches infinity. For non-zero limits, sensitives can maintain a higher
limiting population than any killers due to their faster reproduction rate.

(A) Sensitives only (B) Toxin-producing killers only

Figure S4. Pre-dilution single population limits under regular dilutions in (ρ, T ) phase plane. (A) sensitives only (r = 1); (B) Toxin-producing killers only
(r = rKS(1− ε) = 0.68). In both of them, the magenta-dashed line corresponds to ρ = exp(−rT ) with their respective intrinsic growth rate r. The limiting
pre-dilution population is zero below this line.
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S3.2 Effect of randomly-timed dilutions.

Next, we consider randomly timed dilutions, following a Poisson process with rate λ. In this case, any inter-dilution time
T is exponentially distributed with the expected value E[T] = 1/λ. To compare with the previous results, we focus on the
expected pre-dilution population size as the number of dilutions approaches infinity, with the population growing according to
Eq. (S3.1.1). We still assume that a fixed fraction ρ of the population survives after each dilution. As an analytical limit is
unlikely to be obtained, we conducted Monte Carlo simulations with 200 dilutions starting from the initial population q(0) =
0.5. Fig. S5 shows that the general trend remains unchanged: weaker dilution strength (higher ρ) and slower arrival rate (lower
λ) result in higher expected pre-dilution population size in the limit. However, with randomly timed dilutions, the region where
the averaged population is nearly 1 in the limit is significantly reduced in both cases. Surprisingly, the previous “deterministic
boundary” ρ = exp(−r/λ) (the magenta dashed line in Fig. S5) still appears to accurately predict where the population goes
extinct in the limit in the (ρ, 1/λ) phase plane.

(A) Sensitives only (B) Toxin-producing killers only

Figure S5. Randomly-timed dilutions: mean empirical population just before the 201st dilution shown in the (ρ, 1/λ) phase plane. (A) sensitives only
(r = 1); (B) Toxin-producing killers only (r = rKS(1− ε) = 0.68). In both panels, the magenta-dashed line corresponds to ρ = exp(−r/λ) with their
respective intrinsic growth rate r. The population below this line will most likely go extinct. Both panels are produced by Monte Carlo simulations on a
uniform grid with gridpoints (ρi, (1/λ)j) = (i/100, 0.01 + j/20) where i, j = 0, . . . , 100. At each gridpoint (representing a particular environment), we
used 105 random population trajectories starting from the same initial population size of 0.5.

S4 Who benefits from randomness in dilution times?

To check whether the randomness in dilution times and the values of the surviving fraction ρ and dilution frequency λ affect the
performance of constitutive and myopic/tactically-optimal toxin production policies, we introduce a new metric of competitive
advantage and use it across a range of (ρ, λ) values. Assuming that the initial population size N0 is fixed while f0 ∈ [0, 1] is
selected uniformly at random, we examine the probability of killers’ winning. For regular/deterministically-timed dilutions with
period T = 1/λ, this probability (denoted byL(N0)) is simply the width of the killer’s “deterministically-winning” (red) region
on the horizontal line N = N0, e.g., in Fig. 4C-D. With random dilution times, this probability is P(N0) =

∫ 1

0
ŵα

(
x,N0

)
dx.

To quantify the impact of randomness, we define Q̄(N0) = L(N0) − P(N0). Focusing on N0 = 0.5, Fig. S6 presents a heat
map of Q̄(0.5) for various (ρ, λ) values. Panel A shows that, for constitutive killers, the randomness is beneficial in the upper
left half of the parameter space (where dilutions are more severe and frequent) but actually slightly detrimental in the bottom
right half (where dilutions are more moderate and rare). In contrast, for the population-sensing (myopic, optimized for a specific
T or λ) killers, the randomness in dilution times appears to be beneficial across all (ρ, λ) values.
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(A) Q̄ for constitutive killers (B) Q̄ for tactically-optimal killers

Figure S6. The impact of dilution-time randomness and intensity on the performance of constitutive and tactically-optimal killers across a range of (ρ, λ)
values. The performance metric Q̄ (defined in the text) is shown in red wherever the toxin-producers have better chances of winning with regular/periodic
dilutions and in blue wherever their chances are better with randomly-timed dilutions (assuming the same average frequency: λ = 1/T ). (A) For constitutive
killers, the randomness is beneficial when dilutions are more severe and frequent, but it is sightly detrimental when dilutions happen more rarely and are less
drastic. (B) For tactically-optimal killers (with policies optimized for each λ and T = 1/λ), the randomness is beneficial across all tested parameters.

S5 Comparison of strategically and tactically-optimal killers and constitutive ones

Fig. S7B shows that the strategically-optimal policy α∞ prescribes producing toxin slightly more conservatively than the
tactically-optimal α1, but in the end its performance is only marginally better for our chosen parameter values (Fig. S7D).
However, both of these population-sensing-enabled policies have a very significant advantage over the constitutive α0 = 1; see
Fig. S7C and Fig. 8 in the main text.

(A) ŵα∞ = maxα(·) ŵ
α

(B) “Strategically-optimal”
policy (C) ŵα∞ − ŵα0 (D) ŵα∞ − ŵα1

Figure S7. “Strategically-optimal” killers: performance (A), policy (B), and comparison with constitutive (C) and tactically-optimal (D) killers. The optimal
toxin-on region for the “strategically-optimal” killers (orange in B) slightly shrinks compared to that of the “tactically-optimal” killers (the boundary of which
is shown by a white-dashed line). As a result, the maximized probability of winning (ŵα∞ in panel A) is only marginally better than ŵα1 , with a maximum
difference of just 0.025 (see the absolute difference map in D). However, compared to constitutive killers, the advantage is significant: on a large part of the
domain, the improvement in the chances of winning is above 20% (panel C). For really small N and relatively large f, this advantage is even above 60% –
this is the set of initial conditions where constitutive killers grow much slower and are thus more affected by occasional short inter-dilutions intervals. In all
panels, the victory and defeat barriers (γv and γd , respectively) are plotted with a magenta dotted line. In (B), gray arrows denote the vector field directions
corresponding to Eq. (2) in the main text with a = α∞(f,N). In both (C) & (D), the contour lines are labeled with their respective probability values.
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S6 Derivation of Hamilton-Jacobi-Bellman equations

In this section, we derive the HJB equations for “tactically-optimal” killers (Eq. (11) in Box 4) and the “strategically-optimal”
killers (Eq. (14) in Box 4) via tools of dynamic programming. For the former, see also [5, 6] for more details. The derivation of
the time-dependent HJB PDE for the finite-horizon problem (Eq. (3) in the main text) is omitted here, as it can be easily found
in classical literature, such as [7].

Recall that we model the random dilution events as a Poisson process with a fixed rate λ > 0. Thus, any inter-arrival time
T is exponentially distributed with rate λ. We assume that after each dilution, the fractions (relative abundances) are preserved
while only a fraction ρ of the total population survives.

S6.1 “Tactically-optimal” killers.

Recall the value function for the “tactically-optimal” killer in Box 4 in the main text:

v(x, y) = sup
a(·)

E
[
f
(
T−) | f(0) = x, N(0) = y, following policy a(·)

]
.

Since T ∼ Exp(λ), the expectation is defined as

v(x, y) = sup
a(·)

∫ ∞

0

λe−λtf(t; a(t)) dt =

∫ ∞

0

λe−λtf(t; a∗(t)) dt,

with an assumption that a maximizing/optimal policy a∗(·) exists. Rewriting this formula as

v(x, y) =

∫ ∞

0

e−λt
[
λf(t; a∗(t))

]
dt,

we can now re-interpret it as an infinite horizon problem with running cost
[
λf(t; a∗(t))

]
and a discounting factor λ.

For a sufficiently small h > 0, by Bellman’s Optimality Principle, we have

v(x, y) = sup
a(·)

{∫ h

0

e−λt
[
λf(t; a(t))

]
dt+ e−λhv

(
f(h; a(h)), N(h; a(h))

)}

=

∫ h

0

e−λt
[
λf(t; a∗(t))

]
dt+ e−λhv

(
f(h; a∗(h)), N(h; a∗(h))

)
= h

[
λx

]
+ (1− λh)

[
v(x, y) + hvx(x, y) · F (x, y, a∗(0)) + hvy(x, y) ·G(x, y, a∗(0))

]
+ o(h).

0 = hλx− hλv(x, y) + hvx(x, y) · F (x, y, a∗(0)) + hvy(x, y) ·G(x, y, a∗(0)) + o(h).

Now dividing both sides by h and sending h to 0, we obtain

0 = λ
(
x− v(x, y)

)
+ vx(x, y) · F (x, y, a∗(0)) + vy(x, y) ·G(x, y, a∗(0)),

or, more generally,

0 = λ
(
x− v(x, y)

)
+ sup

a(·)
{vx(x, y) · F (x, y, a(0)) + vy(x, y) ·G(x, y, a(0))} .

Notice that the above equation involves a∗(0) only. It is then natural to switch to a state-dependent optimal control in
feedback form. The HJB equation that v satisfies is then obtained by maximizing over a = a(0) ∈ [0, 1]. By demanding the
above equation holds for all (x, y) ∈ [0, 1]2, the PDE can be written as:

0 = λ
(
x− v(x, y)

)
+ max

a∈[0,1]
{vx(x, y) · F (x, y, a) + vy(x, y) ·G(x, y, a)} , (S6.1.1)

with the boundary condition

v(x, y) =

{
1, if x = 1 and y ̸= 0,

0, if y = 0 or x = 0.
(S6.1.2)

Substituting the actual definitions of F and G, we obtain Eq. (S6.1.1) in the specific form:

0 =λ [x− v(x, y)] + max
a∈[0,1]

{(
∇v(x, y) ·

[
x(1− x)[γxy − εrKS(1− y)]
−xy[γy(1− x) + εrKS(1− y)]

])
a (S6.1.3)

+ ∇v(x, y) ·
[
x(1− x)(1− y)(rKS − 1)
y(1− y)[1 + (rKS − 1)x]

]}
.
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The linear dependence on a yields the bang-bang property:

α1(x, y) = a∗(x, y) =

1, if∇v(x, y) ·
[
x(1− x)[γxy − εrKS(1− y)]
−xy[γy(1− x) + εrKS(1− y)]

]
> 0,

0, otherwise.
(S6.1.4)

S6.2 “Strategically-optimal” killers.

Recall the corresponding value function Eq. (13) from the main text:

w(x, y) = P
(
Tv

(
x, y, a∗(·)

)
< Td

(
x, y, a∗(·)

))
. (S6.2.1)

Let {τi}∞i=1 be an infinite sequence of random dilution times and tm = m∆t, m = 0, 1, 2, 3, . . . be a uniform time discretiza-
tion. We again assume the optimal policy a∗ exists, and let

E0 = E[ · | f(0) = x, N(0) = y, following a∗].

Thus, by Bellman’s Optimality Principle and the law of total expectation, we have

w(x, y) = E0

[
w(f(t1), N(t1)) | τ1 ≤ t1

]
P(τ1 ≤ t1) + E0

[
w(f(t1), N(t1)) | τ1 > t1

]
P(τ1 > t1)

=

(
1− e−λ∆t

)
w

(
f(∆t), ρN(∆t)

)
+ e−λ∆t w

(
f(∆t), N(∆t)

)
+ o(∆t).

A first-order approximation around t0 = 0 gives

w

(
f(∆t), N(∆t)

)
= w(x, y) + wx(x, y) · F (x, y, a∗(0))∆t+ wy(x, y) ·G(x, y, a∗(0))∆t+O(∆t2)

w

(
f(∆t), ρN(∆t)

)
= w(x, ρy) +O(∆t).

And hence

✘✘✘✘w(x, y) =

(
1− e−λ∆t

)
w

(
f(∆t), ρN(∆t)

)
+ e−λ∆t w

(
f(∆t), N(∆t)

)
+ o(∆t)

= (λ∆t)

[
w(x, ρy) +O(∆t)

]
+ (1− λ∆t) {w(x, y) + wx(x, y) · F (x, y, a∗(0))∆t+ wy(x, y) ·G(x, y, a∗(0))∆t}+O(∆t2)

= λ∆tw(x, ρy) +✘✘✘✘w(x, y)− λ∆tw(x, y)

+ wx(x, y) · F (x, y, a∗(0))∆t+ wy(x, y) ·G(x, y, a∗(0))∆t+O(∆t2).

Dividing it by ∆t and taking ∆t ↓ 0, we have

0 = λ [w(x, ρy)− w(x, y)] + wx(x, y) · F (x, y, a∗(0)) + wy(x, y) ·G(x, y, a∗(0)).

Notice that the above equation involves a∗(0) only. It is then natural to switch to a state-dependent optimal control in feedback
form. The HJB equation for Eq. (13) is then obtained by maximizing over a = a(0) ∈ [0, 1]. By demanding the above equation
holds for all (x, y) ∈ [0, 1]2 \∆ (where ∆ is the terminal set, see Box 3), the PDE can be written as:

0 = λ [w(x, ρy)− w(x, y)] + max
a∈[0,1]

{
wx(x, y) · F (x, y, a) + wy(x, y) ·G(x, y, a)

}
, (S6.2.2)

with the boundary condition

w(x, y) =

{
1, if (x, y) ∈ ∆v and y ̸= 0,

0, if (x, y) ∈ ∆d or y = 0.
(S6.2.3)

Substituting the actual definitions of F and G, we obtain Eq. (S6.2.2) in the specific form:

0 = λ [w(x, ρy)− w(x, y)] + max
a∈[0,1]

{(
∇w(x, y) ·

[
x(1− x)[γxy − εrKS(1− y)]
−xy[γy(1− x) + εrKS(1− y)]

])
a (S6.2.4)

+∇w(x, y) ·
[
x(1− x)(1− y)(rKS − 1)
y(1− y)[1 + (rKS − 1)x]

]}
.
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The linear dependence on a yields the bang-bang property:

α∞(x, y) = a∗(x, y) =

1, if ∇w(x, y) ·
[
x(1− x)[γxy − εrKS(1− y)]
−xy[γy(1− x) + εrKS(1− y)]

]
> 0,

0, otherwise.
(S6.2.5)

As mentioned in the main text, our system dynamics with randomly timed dilutions can be interpreted as a Piecewise-
Deterministic Markov Process (PDMP). In general, the value function associated with a PDMP might not be smooth or even
continuous. However, it can still often be interpreted as a unique (discontinuous) viscosity solution of the HJB equation [8].

Remark I: The linear non-local Eq. (9) in Box 3 can be derived in the same way but using a fixed policy â instead of a∗.

Remark II: Let

Υ⃗ (x, y) :=

[
x(1− x)[γxy − εrKS(1− y)]
−xy[γy(1− x) + εrKS(1− y)]

]
.

For both the “tactically-optimal” killer and the “strategically-optimal” killer, the respective HJB equation is linear in a, which
yields a generally bang-bang optimal policy. However, we note that singular controls may arise when either∇v(x, y) · Υ⃗ (x, y)
or ∇w(x, y) · Υ⃗ (x, y) is equal to 0. But by computing the vector field associated with both α1 and α∞, we find no vector
tangential to the boundary of a∗(x, y) = 1, thereby excluding the possibility of singular arcs in our models. The same situation
applies to the optimal policy a∗(x, y, t) for the regular/period dilutions as well.

S7 Numerical methods and implementation details

In this section, we provide the numerical schemes and implementation details of solving: (i) the finite horizon HJB PDE for
u(x, y, t) with regular/periodic dilutions in §S7.1; (ii) the limiting fractions û∞ and total population ϕ̂∞ under regular dilutions
in §S7.2; and (iii) the non-local HJB equation for w(x, y) for the “strategically-optimal” killers in §S7.3. For (i) and (iii), the
optimal feedback policy is found by numerically solving the corresponding HJB equation.

S7.1 For the finite-horizon HJB.

Recall from the main text that we define the fraction-maximizing value function as

u(x, y, t) = sup
a(·)

f(T−), with f(t) = x, N(t) = y, t ∈ [0, T ), (S7.1.1)

where u satisfies a time-dependent HJB PDE

−∂u

∂t
(x, y, t) = max

a∈[0,1]

{
∇u(x, y, t) ·

[
F (x, y, a)
G(x, y, a)

]}
(S7.1.2)

with the terminal condition

u(x, y, T−) =

{
x, if y > 0,

0, if y = 0.

Substituting the actual definitions of F and G, we obtain Eq. (S7.1.2) in the specific form:

−∂u

∂t
(x, y, t) = max

a∈[0,1]

{(
∇u(x, y, t) ·

[
x(1− x)[γxy − εrKS(1− y)]
−xy[γy(1− x) + εrKS(1− y)]

])
a (S7.1.3)

+∇u(x, y, t) ·
[
x(1− x)(1− y)(rKS − 1)
y(1− y)[1 + (rKS − 1)x]

]}
.

The linear dependence on a yields the bang-bang property:

α(x, y, t) = a∗(x, y, t) =

1, if ∇u(x, y, t) ·
[
x(1− x)[γxy − εrKS(1− y)]
−xy[γy(1− x) + εrKS(1− y)]

]
> 0,

0, otherwise.
(S7.1.4)

The time-dependent total population, denoted by ϕ(x, y, t), satisfies a linear PDE

−∂ϕ

∂t
(x, y, t) = ∇ϕ(x, y, t) ·

[
F
(
x, y, α(x, y, t)

)
G
(
x, y, α(x, y, t)

)] (S7.1.5)
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with the terminal condition ϕ(x, y, T−) = y.

We approximate the solution to Eq. (S7.1.2) by a first-order semi-Lagrangian discretization [9] on a uniform rectangular
grid over the (x, y, t) space. I.e., (xi, yj , tk) = (i∆x, j∆y, k∆t), where ∆x = 1/Mx, ∆y = 1/My, ∆t = T/Mt, while
i = 0, ...,Mx, j = 0, ...,My , and k = 0, ...,Mt. We further simplify the notation for the spatial part as Ξ = {(i∆x, j∆y) |
i = 0, . . . ,Mx, j = 0, . . . ,My}. We will use Uk

i,j ≈ u(xi, yj , tk) to denote the discretized approximation at (xi, yj , tk), and
similarly, Φk

i,j ≈ ϕ(xi, yj , tk), Ak
i,j ≈ α(xi, yj , tk).

For a sufficiently small ∆t > 0, a first-order approximation of
(
f((k + 1)∆t; a), N((k + 1)∆t; a)

)
starting from

(f(k∆t), N(k∆t)) = (xi, yj) for any k ∈ {0, ...,Mt}, with a control value a ∈ {0, 1} is

f̃i,a = xi +∆t ∗ F (xi, yj , a),

Ñj,a = yj +∆t ∗G(xi, yj , a).

Let Ũk+1
i,j,a ≈ u(f̃i,a, Ñj,a, tk+1). Since Eq. (S7.1.1) is in a Mayer form [7], the discretized dynamic programming equation is

Uk
i,j = max

a∈{0,1}
Ũk+1
i,j,a + o(∆t), (S7.1.6)

where Ũk+1
i,j,a is evaluated by a bi-linear interpolation using the U values from the 4 neighboring gridpoints surrounding

(f̃i,a, Ñj,a). Note that Ak
i,j is found as the argmax of Eq. (S7.1.6) at each gridpoint. This straightforward time-marching

scheme is summarized in Algorithm S1. In all of our numerical experiments, we have used Mx = My = 1600 on each side
of the unit fN -square, and ∆t = 6.25 × 10−3. To obtain the numerical solution for constitutive killers, one can simply apply
Algorithm S1 with a = 1 without the maximization.

Remark III: Despite the time-dependent nature of the problem, one is typically interested in the 0-th time slice of the value
function (i.e., u(x, y, 0)), which predicts the value at t = T starting from t = 0 for all possible initial states. We note that by
setting a sufficiently large T in Algorithm S1, any k-th time slice serves as the 0-th slice for a reduced horizon of T − tk. This
allows us to obtain the prediction for a range of horizons simultaneously in a single sweep.

Algorithm S1: Finite-horizon value function computation

Initialize U , Φ, A at t = T (k = Mt) using the terminal condition;
for tk = k∆t, k = Mt − 1, . . . 0 do

for every (xi, yj) ∈ Ξ do
for a ∈ {0, 1} do

f̃i,a = xi +∆t ∗ F (xi, yj , a);
Ñj,a = yj +∆t ∗G(xi, yj , a);
Uk
i,j,a ← u(f̃i,a, Ñj,a, tk+1) by interpolation;

end
Uk
i,j ← max

a∈{0,1}

{
Uk
i,j,a

}
;

Ak
i,j ← argmax

a∈{0,1}

{
Uk
i,j,a

}
;

end
for every (xi, yj) ∈ Ξ do

f̃i = xi +∆t ∗ F (xi, yj , A
k
i,j);

Ñj = yj +∆t ∗G(xi, yj , A
k
i,j);

Φk
i,j ← ϕ(f̃i, Ñj , tk+1) by interpolation;

end
end

S7.2 Approximating population limits under competitions.

When sensitives and killers compete under regular dilutions, we are interested in whether they can coexist or if one population
will dominate the other. As mentioned in the main text, this can be numerically found by a repetitive mapping using u(x, y, 0)
and ϕ(x, y, 0) computed by Algorithm S1.
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Let û(x, y) = u(x, y, 0) and ϕ̂(x, y) = ϕ(x, y, 0). We will use ûn and ϕ̂n to denote the relative abundance of the killer, and
the normalized total population, respectively, by the end of n-th cycle. Thus, by definition, û1 = û and ϕ̂1 = ϕ̂. Based on our
assumption, after the n-th dilution, f

(
(nT )+

)
= f

(
(nT )−

)
and N

(
(nT )+

)
= ρN

(
(nT )−

)
. It follows that

ûn+1(x, y) = û
(
ûn(x, y), ρϕ̂n(x, y)

)
,

ϕ̂n+1(x, y) = ϕ̂
(
ûn(x, y), ρϕ̂n(x, y)

)
,

with f(0) = x and N(0) = y and following policy α. We repeat the process until
∥∥ûn+1 − ûn

∥∥ is small, and output
û∞ ≈ ûn+1 and ϕ̂∞ ≈ ϕ̂n+1 as the limits. Given our focus on this limit, we describe α as a “myopic” policy. This des-
ignation highlights that α is only optimal for a single period. The truly optimal policy for an infinite number of periods would
typically adapt from one period to the next. Our full method of approximating û∞ with this “myopic” policy is summarized in
Algorithm S2 with the usual notations of solution on the discretized grid: Ûi,j ≈ û(xi, yj), Φ̂i,j ≈ ϕ̂(xi, yj), Ûn

i,j ≈ ûn(xi, yj),
and Φ̂n

i,j ≈ ϕ̂n(xi, yj).

Algorithm S2: Limiting performance of the myopic policy

Initialize Û , Φ̂, Û1, Φ̂1 using the outputs from Algorithm S1;
n = 1 ;
err = 1e6 ;
while err > tol do

for every (xi, yj) ∈ Ξ do
ftemp = Ûn

i,j ;
Ntemp = ρ ∗ Φ̂n

i,j ;
Ûn+1
i,j ← û

(
ftemp, Ntemp

)
by interpolation;

Φ̂n+1
i,j ← ϕ̂

(
ftemp, Ntemp

)
by interpolation;

end
err =

∥∥∥Ûn+1 − Ûn
∥∥∥;

n← n+ 1;
end
Û∞ = Ûn+1;
Φ̂∞ = Φ̂n+1;

Remark IV: Given our interest in the limit as the number of dilutions approaches infinity, we can significantly accelerate
Algorithm S2. Rather than updating just one cycle with û and ϕ̂ per iteration, we can exponentially increase the number of
cycles updated at each iteration. Specifically, at the n-th iteration, we can update 2n cycles by using the results from the
previous iteration. Let ũn and ϕ̃n represent the values at the n-th iteration of this accelerated algorithm, starting with ũ1 = û
and ϕ̃1 = ϕ̂, we now have

ũn+1(x, y) = ũn
(
ũn(x, y), ρϕ̃n(x, y)

)
,

ϕ̃n+1(x, y) = ϕ̃n
(
ũn(x, y), ρϕ̃n(x, y)

)
,

with ũn = û2n and ϕ̃n = ϕ̂2n . This accelerated algorithm is summarized in Algorithm S3.
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Algorithm S3: Accelerated computation of û∞

Initialize Ũ1, Φ̃1 using the outputs from Algorithm S1;
m = 1 ;
err = 1e6 ;
while err > tol do

for every (xi, yj) ∈ Ξ do
ftemp = Ũm

i,j ;
Ntemp = ρ ∗ Φ̃m

i,j ;
Ũm+1
i,j ← ũm

(
ftemp, Ntemp

)
by interpolation;

Φ̃m+1
i,j ← ϕ̃m

(
ftemp, Ntemp

)
by interpolation;

end
err =

∥∥∥Ũm+1 − Ũm
∥∥∥;

m← m+ 1;
end
Û∞ = Ũm+1;
Φ̂∞ = Φ̃m+1;

Remark V: Either Algorithm S2 or Algorithm S3 can be applied to each time-slice in Algorithm S1 to compute the û∞ and ϕ̂∞

for a range of horizons simultaneously in a single sweep. This can be achieved by defining û = u(x, y, tk) and ϕ̂ = ϕ(x, y, tk)
at each k-th slice, and thus obtaining the limits for each reduced horizon T − tk.

S7.3 For the “strategically-optimal” killer.

The HJB PDE (S6.1.1) associated with “tactically-optimal” killers can be numerically computed via standard Value [10–12] (or
Value-Policy [13]) Iterations with a semi-Lagrangian discretization [5, 6, 9]. Here, we propose a similar Value-Policy Iterations
(VPI) scheme to compute Eq. (S6.2.2) for the “strategically-optimal” killers.

Assuming the same spatial discretization Ξ as in §S7.1, we denote the approximate solution to the value function as Wi,j ≈
w(xi, yj). Similarly to §S7.1 (but now with k always fixed at 0), the foot of the characteristics starting from a gridpoint (xi, yj)

reaches a new state (f̃i,a, Ñj,a) for a sufficiently small ∆t with control value a.
Therefore, from the Dynamic Programming Principle (DPP), we have

w(xi, yj) = max
a∈{0,1}

{(
1− e−λ∆t

)︸ ︷︷ ︸
prob of arrival

w
(
f̃i,a, ρÑj,a

)
+ e−λ∆t︸ ︷︷ ︸

prob of not arrival

w
(
f̃i,a, Ñj,a

)}
+ o(∆t) (S7.3.1)

yielding the discretized version

Wi,j = max
a∈{0,1}

{
(1− e−λ∆t

)
W̌i,j,a + e−λ∆tW̃i,j,a

}
, (S7.3.2)

where W̌i,j,a ≈ w(f̃i,a, ρÑj,a) and w(f̃i,a, Ñj,a) are computed through a bi-linear interpolation of the W values from the
four neighboring gridpoints surrounding (f̃i, ρÑj) and (f̃i, Ñj), respectively. The optimal feedback policy Ai,j ≈ α(xi, yj) is
recovered as an argmax in Eq. (S7.3.2).

We start with value iterations where we solve the nonlinear Eq. (S6.2.2) by a Gauss-Seidel relaxation. Let Wn
i,j ≈

wn(xi, yj) and An
i,j ≈ αn(xi, yj) be the discretized solution/policy at the n-th iteration at gridpoint (xi, yj). We use err

to denote the L∞-norm of W -change in the current value iteration. Whenever err stagnates, we proceed to the “policy-
evaluation” (PE) step.

In the PE step, we compute the value function by solving a system of linear equations with a fixed policy α̂ (recovered
from the most recent value iteration). A first-order approximation of the system Eq. (2) starting from (xi, yj) with policy
Âi,j ≈ α̂(xi, yj) is

(
f̃i,Â, Ñj,Â

)
=

(
xi +∆t ∗ F (xi, yj , Âi,j), yj +∆t ∗ G(xi, yj , Âi,j)

)
. We thus solve a linear system of

equations
Ŵ Â

i,j =
(
1− e−λ∆t

)
W̌ Â,ρ

i,j + e−λ∆tW̃ Â
i,j , (S7.3.3)

where W̌ Â,ρ
i,j ≈ ŵα̂

(
f̃i,Â, ρÑj,Â

)
and W̃ Â

i,j ≈ ŵα̂
(
f̃i,Â, Ñj,Â

)
are again computed through a bi-linear interpolation.
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After obtaining the solution to Eq. (S7.3.3), we return to the value iteration part and repeat the process until err < tol,
where tol is a preset tolerance of convergence. In all of our numerical experiments, we have used Mx = My = 1600 on each
side of the unit fN -square, ∆t = 0.025, and tol = 10−6. our full method is summarized in Algorithm S4.

Under mild technical assumptions, Kushner and Dupuis [14, Chapters 10 & 16] showed that the discretized solution derived
from a general jump-diffusion process converges to the value function using standard iterative methods. Our model forms a
PDMP, which is just a specific case of jump-diffusion processes.

Algorithm S4: Value-Policy Iterations for the non-local HJB equation Eq. (S6.2.2)

Initialize W 1 and A1 based on the boundary condition Eq. (15);
Prob_not_arrival = exp(−λ∆t);
Prob_arrival = 1− Prob_not_arrival;
n = 1 ;
err = 1e6 ;
while err > tol do

for every (xi, yj) ∈ Ξ do
for a ∈ {0, 1} do

f̃i,a = xi +∆t ∗ F (xi, yj , a);
Ñj,a = yj +∆t ∗G(xi, yj , a);
W̃temp ← wn(f̃i,a, Ñj,a) by interpolation;
W̌temp ← wn(f̃i,a, ρÑj,a) by interpolation;
Wn+1,temp

i,j,a ← Prob_arrival ∗ W̌temp + Prob_not_arrival ∗ W̃temp;
end
Wn+1,temp

i,j ← max
a∈{0,1}

{
Wn+1,temp

i,j,a

}
;

An+1,temp
i,j ← argmax

a∈{0,1}

{
Wn+1,temp

i,j,a

}
;

if Wn+1,temp
i,j > Wn

i,j then
Wn+1

i,j ←Wn+1,temp
i,j ;

An+1
i,j ← An+1,temp

i,j ;
else

Wn+1
i,j ←Wn

i,j ;
An+1

i,j ← An
i,j ;

end
end
err =

∥∥Wn+1 −Wn
∥∥;

if err stagnates then
“Policy-Evaluation” with An+1

end
n← n+ 1;

end
W = Wn+1;
A = An+1;

Remark VI: This is a semi-Lagrangian-based method for solving the linear non-local probabilistic performance metric Eq. (9)
in the main text, we will apply it to assess the probability performance of α0 and α1.

S8 Population-dependent (hyperbolic) win and defeat boundaries

In the main text, we have focused on fraction-dependent (vertical) boundary arising from the definitions of killers’ victory and
defeat:

Tv(x, y, α(·)) = inf
{
t > 0 | f(t) > γ

v
; f(0) = x, N(0) = y, with many dilutions

}
, (S8.1)

Td(x, y, α(·)) = inf
{
t > 0 | f(t) < γ

d
; f(0) = x, N(0) = y, with many dilutions

}
,

where both stopping criteria depended on the fraction of the killer strain, f(t), only. In the main text, we have used γv = 0.99
and γ

d
= 0.01.
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However, there are many other suitable ways of defining killers’ victory/defeat. In this section, we explore population-
dependent (hyperbolic) win and defeat boundaries and demonstrate that the results remain qualitatively similar to those obtained
in the main text.

Mathematically, we now define the (random) victory/defeat time as

Tv(x, y, α(·)) = inf
{
t > 0 | f(t)N(t) > γh

v
; f(0) = x, N(0) = y, with many dilutions

}
, (S8.2)

Td(x, y, α(·)) = inf
{
t > 0 | f(t)N(t) < γh

d
; f(0) = x, N(0) = y, with many dilutions

}
,

so that the stopping criteria depend on the population size of the killer strain, nK(t) = f(t)N(t).
As a result, while the equations for the “strategically-optimal” killer (w(x, y)) and the probabilistic performance metric

(ŵα(x, y)) remain unchanged, their respective boundary conditions are now specified on two hyperbolas:

w(x, y) =

{
1, if xy > γh

v
,

0, if xy < γh
d
.

(S8.3)

ŵα(x, y) =

{
1, if xy > γh

v
,

0, if xy < γh
d
.

(S8.4)

Let wv denote the value function with vertical boundaries and wh the one with hyperbolic boundaries. Using the same
parameter values as in Fig. S7 in the main text but with γh

d
= 0.005 and γh

v
= 0.95, we find that α∞ computed with hyperbolic

boundaries (Fig. S8B) is mostly the same as in Fig. S7B, except for the bottom right corner of the orange region. Consequently,
the value function remains qualitatively the same too. To quantify the difference between wv (Fig. S7A) and wh (Fig. S8A),
we calculate the mean absolute difference

D̄(y) =

∫ 1

0

|wv(x, y)− wh(x, y)| dx. (S8.5)

and plot it for all initial populations y ∈ [0, 1]. Fig. S8C shows that D̄ is only large when y < 0.05 due to a more abrupt
transition from zero to a positive winning probability in wv compared to wh when x is close to 1 and y is small. This is
not surprising since these initial conditions are much closer to the hyperbolic defeat boundary xy = γh

d
than they are to the

vertical defeat boundary x = γ
d
. For y > 0.05, this x-averaged difference is very close to zero, suggesting that for most initial

conditions the probability of killers’ winning is largely insensitive to the type of boundary used.

(A) Maximized probability of winning w(x, y) (B) Optimal toxin-on/off policy (C) Mean absolute difference for every initial population

Figure S8. “Strategically-optimal” killers with hyperbolic win/defeat boundaries. The optimal toxin-on region (orange in panel B) is almost the same as the
one computed with vertical boundaries in Fig. S7B. (The toxin-on/off switch curve from the latter is shown here as a white-dashed line). As a result, the
maximized probability of winning (panel A) is also very similar to the one computed with vertical boundaries in Fig. S7A. Panel C shows the x-averaged mean
absolute difference between panel A and Fig. S7A across all initial populations N0 = y ∈ [0, 1]. This difference is only noticeable when y < 0.05. In (B),
gray arrows denote the vector field directions corresponding to Eq. (2) in the main text with a = α∞(f,N) computed using hyperbolic win/defeat boundaries.
In all panels, the victory and defeat barriers (γv and γd , respectively) are plotted with a magenta dotted line. All parameter values are the same as in Fig. S7.

This conclusion also generally holds true when using the above hyperbolic boundaries to compute ŵ with α0 and α1. Anal-
ogously to Fig. 8 in the main text, we again focus on the initial condition (f0, N0) = (0.5, 0.1) and compare the performance
of these toxin-production policies for a range of (ρ, λ) values. Fig. S9 shows that these heat maps are both qualitatively and
quantitatively similar to those in Fig. 8.
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We similarly quantify the boundary-related difference in the probabilistic performance of constitutive and tactically-optimal
killers in Fig. S10. Let ŵv and ŵh denote the probabilistic performance with vertical and hyperbolic victory/defeat boundaries,
respectively. Focusing on the same initial condition (f0, N0) = (0.5, 0.1), we observe that |ŵv − ŵh| is negligible across half
of the heat map (ρ ≥ 0.6) for both α∞ and α1. In these two cases, a noticeable difference (with a maximum of approximately
0.017) is observed when the dilutions are strong (ρ ≤ 0.55). For α0, the maximum difference is slightly lower, around 0.014,
while the region with noticeable differences is larger (ρ ≤ 0.6). This is expected, as a stronger dilution more likely leads to a
defeat under hyperbolic boundaries (due to a significantly larger ∆d) compared to vertical boundaries. These results indicate
that our observations and conclusions in the main text remain largely unaffected by whether the victory or defeat of the killer is
defined by its fraction or population.

(A) ŵ(0, 5, 0.1) under α∞ (B) ŵ(0, 5, 0.1) under α0 (C) ŵα∞ − ŵα1

Figure S9. Hyperbolic boundaries: comparison of probabilistic performance for different types toxin-production policies starting from (f0, N0) = (0.5, 0.1)

for a range of dilution strengths and frequencies. Policy α1 is recomputed for each λ, while policy α∞ is recomputed for each (ρ, λ) combination. The results
remain both qualitatively and quantitatively similar to Fig. 8 in the main text. A stronger survival rate (larger ρ) combined with less frequent dilutions (smaller
λ) increases the chances of toxin-producers winning for all three policies. It is clear that the strategically optimal (panel A) and tactically optimal killers
significantly outperform the constitutives (panel B). The differences in ŵ(0.5, 0.1) between α∞ and α1 are still small, with the discrepancy increasing toward
the upper right corner (panel C).

(A) |ŵv − ŵh|(0.5, 0.1) under α∞ (B) |ŵv − ŵh|(0.5, 0.1) under α1 (C) |ŵv − ŵh|(0.5, 0.1) under α0

Figure S10. Hyperbolic boundaries: absolute difference in ŵ(0.5, 0.1) resulting from two types of boundaries computed for a range of ρ and λ values. The
differences under α∞ (panel A) and α1 (panel B) are again similar, with a maximum difference of around 0.017 when ρ = 0.5. For α0 in panel C, the region
of noticeable differences is slightly larger (ρ ≤ 0.6) although the maximum difference remains relatively small (≈ 0.014). All three panels share the same
colorbar.
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S9 Monte Carlo simulations with “Binomial dilutions”

The results in the main text are all produced under “deterministic” dilution outcomes. That is, after each dilution, the relative
abundances are preserved while only a ρ proportion of the total population survives. In this section, we present results under a
specific form of random dilution outcomes and demonstrate, using Monte Carlo (MC) simulations, that they are qualitatively
similar to the previous results.

In particular, we adopt a “Binomial Sampling” strategy to produce random dilution outcomes, which we refer to as “Bi-
nomial dilutions.” Let f− be the pre-dilution fraction of the killers, and N− be the pre-dilution total population. Accord-
ingly, the actual pre-dilution number of killer cells is n−

K = f−N−C, and the pre-dilution number of sensitive cells is
n−

S = (1 − f−)N−C. We assume each cell has an independent survival probability ρ after each dilution. As a result, the
post-dilution number of cells is a Binomial random variable:

• Post-dilution number of killer cells: n+
K = Bi(n−

K , ρ);

• Post-dilution number of sensitive cells: n+
S = Bi(n−

S , ρ).

Consequently, the random post-dilution (normalized) total population is N+ =
n+

K + n+
S

C
, and the random post-dilution fraction

of killers is f+ =
n+

K

n+
K + n+

S

, which will serve as the initial condition for the next cycle.

We first conduct Monte Carlo simulations on a uniform grid. Starting from each (xi, yj) = (i/10, j/10) with i, j =
1, 2, . . . 9, each sample was simulated with n = 200 dilutions. Fig. S12 shows the empirical distributions of f((nT )−) with
T = 1 and Fig. S11A shows their respective means. We observe that most distributions are unimodal, being either nearly 0
(all sensitives) or nearly 1 (all killers). The two exceptions with a bimodal distribution, peaking at 0 or 1, intersect precisely
with the boundary (black-dashed line in Fig. S11A) that separates the initial conditions leading to a deterministic victory of
the killers under proportional dilutions. Additionally, the killer-winning region (dark-red background in Fig. S11A) under
“Binomial dilutions” aligns well with this “deterministically-killer-winning” region shown in Fig. 4C in the main text. This is
not surprising since the stochastic fluctuations introduced by “Binomial dilutions” can be sufficiently large to cause samples
starting near the boundary to drift towards either competitive exclusion over successive dilutions. See Fig. S11C for such an
example starting from (f0, N0) = (x, y) = (0.5, 0.4). However, these fluctuations are typically insufficient to alter the fate of
samples starting further from the boundary, where initial conditions strongly favor one strain.

Considering that focusing on a single initial condition for all samples might not capture enough information, we conducted
additional Monte Carlo simulations using “Binomial dilutions” with uniformly random in a cell initial conditions. Specifically,
for each grid cell centered at (xi, yj), the initial condition for each sample was chosen uniformly at random from the square
(f0, N0) = (x, y) ∈ [xi − 0.05, xi + 0.05] × [yj − 0.05, yj + 0.05]. This strategy diversifies the range of initial conditions,
increasing the likelihood of intersecting the boundary of the “deterministically-killer-winning” region. As a result, we see from
Fig. S11B that almost all cells intersecting or near the dashed-line boundary now exhibit intermediate mean values. Moreover,
Fig. S13 shows that these cells again have a bimodal distribution, with random dilution outcomes pushing the dynamics towards
one of the two competitive exclusions. Comparing Fig. S13 with Fig. S12, we further observe that the median at each grid cell
remains unchanged. This consistency underscores the robustness of our simulation results, indicating that the conclusions in
the main text would largely remain valid even under “Binomial dilutions.”
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(A) Mean of the empirical distributions
(“Binomial dilutions” only)

(B) Mean of the empirical distribution
(“Binomial dilutions” + “random initial

conditions”)
(C) Sample paths starting from
(f0, N0) = (x, y) = (0.5, 0.4)

Figure S11. Monte Carlo simulations with “Binomial dilutions” on a uniform cell grid. (A) The mean of the empirical distribution, sampled with “Binomial
dilutions” starting from the center of each cell in (f0, N0) = (x, y) space. The resulting distribution is almost always unimodal (dark blue - all sensitives;
dark red – all killers). The exceptions are seen in only two cells among those intersected by the boundary (shown by a black dashed line) that separates the
initial conditions leading to a deterministic victory of the killers under proportional dilutions (cf. Fig. 4C in the main text). (B) Most means of the empirical
distribution, sampled with both “Binomial dilutions” and “uniformly random in a cell” initial conditions, are also close to 0 or close to 1 in most cells.
However, most cells that intersect or are close to that dashed line boundary now have more diverse intermediate mean values. In both cases, such cells exhibit
a bimodal distribution with peaks at 0 and 1; see Figs. S12&S13 for the actual distributions. Panel (C) shows two sample trajectories starting from
(f0, N0) = (x, y) = (0.5, 0.4) resulting in different competitive exclusion outcomes due to the randomness in Binomial dilutions. All Monte Carlo
simulations were conducted with 105 samples and 200 dilutions using parameter values T = 1, ε = 0.2, rKS = 0.85, γ = 1, and ρ = 0.65. In (A), all
samples for each grid cell start from the same initial condition (xi, yj) = (i/10, j/10) with i, j = 1, . . . , 9. In (B), for each grid cell centered at (xi, yj),
the initial condition for each sample was chosen uniformly at random from the square (f0, N0) = (x, y) ∈ [xi − 0.05, xi +0.05]× [yj − 0.05, yj +0.05].
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Initial fraction of the killer (x = f0)
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Figure S12. Empirical distributions of the fraction of killers with “Binomial dilutions” on a uniform grid. Most of the distributions are unimodal (either
almost entirely 0 or almost entirely 1), except for two that are bimodal. The horizontal axis (of the entire figure) represents the initial fraction of the killer
while the vertical axis encodes the initial total population for the simulations. For each panel, an empirical distribution of f (starting from the same
(xi, yj) = (i/10, j/10) with i, j = 1, . . . , 9) after 200 dilutions is shown by a histogram. All panels share the same horizontal and vertical axes. The
parameter values are the same as in Fig. S11A.
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Mean initial fraction of the killer (x = f0)
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Figure S13. Empirical distributions of the fraction of killers with “Binomial dilutions” and “uniformly random in a cell” initial conditions on a cell grid. Most
of the distributions are unimodal (either almost entirely 0 or almost entirely 1). However, the ones near the boundary of the “deterministically-winning”
region (depicted as a black-dashed line) are bimodal. The horizontal axis (of the entire figure) represents the mean initial fraction of the killer while the
vertical axis encodes the mean initial total population for the simulations. For each panel, an empirical distribution of f(t) after 200 dilutions, with the initial
condition chosen uniformly at random within the grid cell centered at (xi, yj) = (i/10, j/10) with i, j = 1, . . . , 9, is shown by a histogram. All panels
share the same horizontal and vertical axes. The parameter values are the same as in Fig. S11B.
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The results presented above appear to be qualitatively similar for all tested parameter values. As the penalty for the ability
to produce toxin and the penalty for actually producing it decreases (i.e., rKS → 1 and ε → 0), it becomes more difficult for
the sensitives to win and the dark blue region in Fig. S11A significantly shrinks; e.g., Fig. S14A. Nevertheless, when starting
in the overwhelming majority, the sensitives can occasionally win under “Binomial dilutions” even if rKS = 1; see Fig. S14A.
I.e., Binomial dilutions might wipe out even super-competitive killers if they are added in small numbers to an established
population of sensitives. If the Monte-Carlo simulations are started from randomly chosen initial conditions, the part of the
(f0, N0) = (x, y) domain where both strains have a chance to win increases; see Fig. S14B. This observation aligns well with
the results obtained for rKS < 1 (Fig. S11B), confirming the strong dependence of competitive exclusion on initial conditions,
even when rKS = 1.

(A) Mean of the empirical distribution
(“Binomial dilutions” only)

(B) Mean of the empirical distributions
(“Binomial dilutions” + “random initial

conditions”)
(C) Sample paths starting from
(f0, N0) = (x, y) = (0.1, 0.2)

Figure S14. Monte Carlo simulations with “Binomial dilutions” on a uniform cell grid with rKS = 1 and ε = 0.1. (A) The mean of the empirical distribution,
sampled with “Binomial dilutions” starting from the center of each cell in (f0, N0) = (x, y) space. The killers will always win (dark red) if f0 > 0.1 while
the sensitives will always win (dark blue) if f0 < 0.1. Bimodal distributions, peaking at 0 or 1, occur for f0 = 0.1. (B) When sampling with both “Binomial
dilutions” and “uniformly random in a cell” initial conditions, more bimodal distributions with more diverse intermediate mean values appear near f0 = 0.1.
Panel (C) shows two sample trajectories starting from (f0, N0) = (x, y) = (0.1, 0.2) resulting in different competitive exclusion outcomes due to the
randomness in Binomial dilutions. All Monte Carlo simulations were conducted with 105 samples and 200 dilutions using parameter values T = 1, ε = 0.1,
rKS = 1, γ = 1, and ρ = 0.65. In (A), all samples for each grid cell start from the same initial condition (xi, yj) = (i/40, j/10), with i = 2, . . . , 6, and
j = 1, 2, . . . , 9. In (B), for each grid cell centered at (xi, yj), the initial condition for each sample was chosen uniformly at random from the square
(f0, N0) = (x, y) ∈ [xi − 0.0125, xi + 0.0125]× [yj − 0.05, yj + 0.05].
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