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ABSTRACT
Strong gravitational lensing provides a purely gravitational means to infer properties of dark matter haloes and thereby constrain
the particle nature of dark matter. Strong lenses sometimes appear as four lensed images of a background quasar accompanied
by spatially resolved emission from the quasar host galaxy encircling the main deflector (lensed arcs). We present methodology
to simultaneously reconstruct lensed arcs and relative image magnifications (flux ratios) in the presence of full populations of
subhaloes and line-of-sight haloes. To this end, we develop a new approach for multiplane ray tracing that accelerates lens
mass and source light reconstruction by factors of ∼100−1000. Using simulated data, we show that simultaneous reconstruction
of lensed arcs and flux ratios isolates small-scale perturbations to flux ratios by dark matter substructure from uncertainties
associated with the main deflector mass profile on larger angular scales. Relative to analyses that use only image positions
and flux ratios to constrain the lens model, incorporating arcs strengthens likelihood ratios penalizing warm dark matter with a
suppression scale mhm/M# in the ranges of

[
107−107.5

]
,
[
107.5−108

]
,
[
108−108.5

]
, and

[
108.5−109

]
by factors of 1.3, 2.5, 5.6,

and 13.1, respectively, for a cold dark matter ground truth. The 95 per cent exclusion limit improves by 0.5 dex in log10 mhm.
The enhanced sensitivity to low-mass haloes enabled by these methods pushes the observational frontier of substructure lensing
to the threshold of galaxy formation, enabling stringent tests of any theory that alters the properties of dark matter haloes.

Key words: gravitational lensing: strong – dark matter.

1 IN T RO D U C T I O N

The abundance and internal structure of dark matter haloes depend
on the particle nature of dark matter (Buckley & Peter 2018). As
such, characterizing the properties of dark matter substructure, the
low-mass (<1010 M#) haloes that surround galaxies and permeate the
cosmos, enables tests of fundamental dark matter physics. On sub-
galactic scales, differences between the concordance cosmological
model of cold dark matter (CDM) diverge from the predictions of
other theories. For example, if the dark matter has a sufficiently large
(!1 kpc) free-streaming length, the abundance and central density of
dark matter haloes become suppressed on scales comparable to those
of a low-mass galaxy, relative to CDM (Bond & Szalay 1983; Bode,
Ostriker & Turok 2001; Bose et al. 2016; Lovell 2020; Stücker et al.
2022). In this class of theory, categorically referred to as warm dark
matter (WDM), the free-streaming scale depends on the formation
mechanism and mass of the dark matter particle (e.g. Schneider et al.
2012; Abazajian & Kusenko 2019). Alternatively, theories with self-
interacting dark matter (SIDM) posit that the dark matter behaves
as CDM on cosmological scales, but experiences self-interactions
inside high-density regions, such as dark matter haloes (Spergel &
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Steinhardt 2000; Tulin, Yu & Zurek 2013). In SIDM, haloes initially
form a central core, and eventually undergo a process referred to
as core collapse that causes an order-of-magnitude increase in their
central density of haloes (Balberg, Shapiro & Inagaki 2002; Gilman
et al. 2021; Gilman, Zhong & Bovy 2023; Nadler, Yang & Yu 2023b;
Yang, Nadler & Yu 2023).

Characterizing the properties of substructure on small scales,
below 109 M#, would have profound consequences for our under-
standing of dark matter and cosmology. In the standard picture of
cosmological structure formation, dark matter haloes emerge from
the collapse of primordial density fluctuations. Halo mass scales
below 109 M# correspond to wavenumber k > 10 Mpc−1, a relatively
unconstrained region of the primordial matter power spectrum that
could hide clues related to inflation, the early Universe, and dark
matter (Zentner & Bullock 2003; Bringmann, Scott & Akrami 2012;
Van Tilburg, Taki & Weiner 2018; Ando, Hiroshima & Ishiwata
2022; Gilman et al. 2022; Esteban, Peter & Kim 2023). Moreover,
the predictions from dark matter theories such as WDM and SIDM
diverge more strongly from CDM predictions as one moves to
progressively smaller scales and lower halo masses.

In search of new physics, observational probes of dark matter
structure from dwarf galaxies (Kim, Peter & Hargis 2018; Correa
2021; Nadler et al. 2021, 2024; Bechtol et al. 2022; Dekker et al.
2022; Akita & Ando 2023; Slone et al. 2023), stellar streams
(Bovy, Erkal & Sanders 2017; Banik et al. 2018, 2021; Bonaca
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et al. 2019), and gravitational lensing (Dalal & Kochanek 2002;
Nierenberg et al. 2014, 2017; Vegetti et al. 2014, 2018; Hezaveh
et al. 2016; Birrer, Amara & Refregier 2017; Gilman et al. 2020,
2021, 2023; He et al. 2022; Sengül et al. 2022; Dhanasingham
et al. 2023; Dike, Gilman & Treu 2023; Keeley et al. 2023; Powell
et al. 2023; Wagner-Carena et al. 2023; Mondino et al. 2024;
Nightingale et al. 2024) characterize the properties of substructure
on sub-galactic scales. If the dark matter has no coupling to
the standard model besides gravity, these cosmic probes of dark
matter constitute the only experiments with which to investigate its
properties (see the reviews by Bechtol et al. 2022; Drlica-Wagner
et al. 2022).

Among the various observational probes that constrain dark matter
properties through studies of low-mass haloes, strong gravitational
lensing provides the unique capability to characterize the properties
of substructure across cosmological distances, and across several
Gyr of cosmic time (see the recent review by Vegetti et al. 2023).
Strong lensing refers to a phenomenon in which multiple highly
magnified and distorted images of a background source appear due
to deflection of light around an intervening cosmic structure, such as a
galaxy. As lensing depends only on gravity, it circumvents systematic
uncertainties associated with using luminous matter as a tracer for the
underlying dark matter, and can characterize both the abundance and
internal structure of dark matter haloes (Minor et al. 2021; Amorisco
et al. 2022; Gilman et al. 2022; Ballard et al. 2024). Through the
direct, purely gravitational detection of dark haloes, strong lensing
can extend the reach of cosmic probes of dark matter structure to
scales below the threshold of galaxy formation (∼107 M#).

Performing such a measurement requires exquisite data. Over the
last decade, radio interferometry (Koopmans, Browne & Jackson
2004; McKean et al. 2007; Spingola et al. 2018), the Hubble Space
Telescope (HST; Nierenberg et al. 2017, 2020; Shajib et al. 2019),
the W. M. Keck Observatory (Nierenberg et al. 2014), and the
JWST (Nierenberg et al. 2024) have observed a particular class of
strong lens system in which a quasar becomes quadruply imaged.
These systems are ideally suited to probe low-mass dark matter
structure because the relative magnifications among lensed images
(flux ratios) experience strong perturbation by low-mass haloes. The
minimum mass sensitivity of the flux ratios is determined by the
size of the lensed background source (Dobler & Keeton 2006),
and recent JWST observations of the ‘warm dust region’ around
the background quasar are expected to provide sensitivity to haloes
at "107 M#.

As shown in Fig. 1, a quadruply imaged quasar can sometimes
appear alongside spatially resolved lensed emission from the quasar
host galaxy, or lensed arcs. While the flux ratios provide sensitive
localized constraints on the lens model, the lensed arcs that encircle
the main deflector impose stringent constraints on the mass profile
across larger angular scales (e.g. Shajib et al. 2020; Powell et al.
2022). Incorporating constraints from the arcs leads to tighter con-
straints on the main deflector mass profile, improving the precision
of model-predicted flux ratios (Oh et al. 2024). However, due mainly
to computational limitations, no existing methodology enables the
self-consistent reconstruction of lensed arcs and quasar flux ratios in
the presence of potentially tens of thousands of dark matter haloes.
As a result, substructure lensing analyses performed with quadruple-
image lenses use only the image positions and flux ratios to constrain
the lens model and the properties of dark matter substructure.

To make best use of existing and future flux ratio measurements,
in this paper we introduce a new lens modelling methodology to
characterize the properties of substructure in quadruply imaged
quasars with extended lensed arcs. To reduce the computational costs

Figure 1. An HST image of J0405−3308, the type of strong lens system
we consider in this work. Four images of a background quasar (labelled A,
B, C, and D) appear alongside a lensed arc that encircles the main deflector.
The methodology presented in this paper develops the formalism to self-
consistently reconstruct the lensed images, the relative magnifications, and
the lensed arc in the presence of dark matter subhaloes and line-of-sight
haloes. The figure is adapted from Shajib et al. (2019).

associated with this analysis, we introduce a new approximation
for multiplane ray tracing that accelerates lens mass and source
light reconstruction by factors of 100–1000, depending on the
number of haloes in the lens model. We demonstrate the accuracy
of this methodology by performing end-to-end Bayesian inference
on simulated data sets. As we will show, the joint reconstruction
of lensed arcs and flux ratios leverages complementary information
from angular scales that span from the typical Einstein radius (∼1
arcsec) down to the milliarcsec scales probed by flux ratios. The
methods we develop enable more robust constraints on the properties
of low-mass dark matter haloes and the nature of dark matter.

This paper is organized as follows: In Section 2, we describe
the Bayesian inference problem of inferring substructure properties
from strong lens modelling. In Section 3, we detail the computa-
tional challenge that has precluded the joint modelling of lensed
quasar flux ratios and lensed arcs, and introduce a methodology
for multiplane ray tracing that alleviates this computational burden.
Section 4 discusses how we create simulated data sets to evaluate
the performance of the lens modelling techniques presented in
Section 3 in the context of constraining WDM. Section 5 presents
the results of applying the methodology to the simulated data sets,
and quantifies the improvement afforded by reconstructing lensed
arcs simultaneously with flux ratios relative to analyses that use
only the image positions and flux ratios to constrain substructure
properties. We summarize our finding and give concluding remarks
in Section 6.

We perform lensing calculations using the open-source software
package LENSTRONOMY1 (Birrer & Amara 2018; Birrer et al.
2021). We generate the populations of dark matter substructure
using the open-source software PYHALO2 (Gilman et al. 2020). To

1https://github.com/lenstronomy/lenstronomy
2https://github.com/dangilman/pyHalo

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/533/2/1687/7721636 by U
C

 - M
erced user on 26 D

ecem
ber 2025

https://github.com/lenstronomy/lenstronomy
https://github.com/dangilman/pyHalo


Lensed arcs and flux ratios 1689

MNRAS 533, 1687–1713 (2024)

perform the forward modelling calculations that interface between
LENSTRONOMY and PYHALO, we use the new open-source software
SAMANA.3 We assume a flat cosmology with "m = 0.32, σ8 = 0.81,
and H0 = 67.4 km s−1 Mpc−1 (Planck Collaboration VI 2020).

2 DA R K M AT T E R S U B S T RU C T U R E
INFER ENCE

We begin in Section 2.1 by phrasing our objective as a Bayesian
inference problem in which we use image positions, flux ratios, and
imaging data to constrain a set of hyper-parameters that determine
the properties of dark matter substructure. In Section 2.2, we discuss
an approximate Bayesian computing (ABC) method to compute the
joint likelihood function of lensed image positions, flux ratios, and
the imaging data.

2.1 The Bayesian inference problem

For a quadruply imaged quasar with lensed arcs from the quasar
host galaxy, such as the example shown in Fig. 1, the observables
include the relative positions of the four lensed quasar images Opos,
the three flux ratios O f , and the imaging data O img associated with
the lensed arcs. Given a set of hyper-parameters q that parametrize
a dark matter theory, our aim is to compute the posterior probability
distribution:

p (q|O) ∝ π (q)
∏

i

L (O i |q) , (1)

where O = (O1, O2, ....) represents the data from a sample of lenses,
π (q) represents the prior on q, and L (O i |q) represents the likelihood
function for a single lens with data O i ≡

(
Opos, O img, O f

)
. To

connect the hyper-parameters q with O i , we must sample from
an enormous volume of parameter space that specifies the masses,
positions, and density profiles of a typically very large, O

(
103

)
,

number of dark matter subhaloes and field haloes. Hereafter, we will
refer to msub as a realization of substructure that we generate from
the dark matter model specified by q. The likelihood follows from
marginalizing over many realizations:

L (O i |q) = 1
w (q|O i)

∫
p (O i |msub,N )

×p (msub|q) p (N ) dN dmsub. (2)

In the preceding equation, we have introduced a vector of nuisance
parameters, N , which include quantities that parametrize the main
deflector mass profile (hereafter, the macromodel), the spatial extent
and structure of the lensed background quasar, and the surface
brightness profile of the quasar host galaxy; p (N ) represents a
prior on these parameters. We have included importance weights
w (q|O i), a topic we will discuss in Section 2.2.3.

The first term in the integrand, p (O i |msub, N ), is the product
of an astrometric term computed with the lensed image posi-
tions p

(
Opos|msub,N

)
, a term that depends on the imaging data,

p
(

O img|msub, N
)
, and the flux ratios p (O fr|msub, N ). We perform

this integral through Monte Carlo sampling of the parameter space,
and define a likelihood through an ABC approach, as discussed in
the next section.

3https://github.com/dangilman/samana

We compute observables O i using the multiplane lens equa-
tion (Blandford & Narayan 1986):

θK = θ − 1
Ds

K−1∑

n=1

Dnsαn (Dnθn)

︸ ︷︷ ︸
αeff (θ ,msub,N )

, (3)

which describes backward ray propagation through lens planes
indexed by n. For later use, we have also introduced an effective
multiplane deflection angle αeff (θ , msub,N ). The quantity αn repre-
sents the deflection field acting in each lens plane, Di represents an
angular diameter distance to the ith lens plane, and Dij represents an
angular diameter distance between planes i and j . The subscripts s

and n denote the source plane and the lens plane of the main deflector.
The angle θ represents an angle on the sky as seen by an observer.

2.2 Efficient sampling methods and summary statistics

The high dimension of the data vector that includes image positions,
flux ratios, and imaging data, O i , poses challenges related to explor-
ing the vast parameter space of possible lens model configurations,
most of which do not fit all of the available data. Current analysis
methods deal with this issue by reducing the dimension of the data
vector before computing the likelihood function. For example, in an
analysis of eight quadruply imaged quasars that used only the image
positions and flux ratios, Gilman et al. (2020) perform a non-linear
optimization of the macromodel such that each proposed lens model
satisfies the lens equation for the observed image positions in the
presence of substructure.

In this work, we use a similar strategy to focus computational
resources in regions of parameter space that contribute most signif-
icantly to the integral in equation (2). The task at hand involves the
simultaneous reconstruction of the main deflector mass and source
light profile in the presence of a fixed population of dark matter
subhaloes and line-of-sight haloes, msub. Using a particle swarm
optimization (PSO) implemented in LENSTRONOMY, we simultane-
ously reconstruct the imaging data and background source while
applying a non-linear solver to a portion of the lens macromodel to
satisfy the lens equation for the quasar image positions. We guide
the PSO towards viable regions of parameter space by punishing
poor fits to the imaging data on a pixel-by-pixel basis in the
image plane. In Section 3.2, we describe an approximation for full
multiplane ray tracing that we use to accelerate the PSO and any
subsequent multiplane ray tracing calculations in the presence of the
full population of haloes described by msub.

The lens models that result from PSO optimizations provide better
fits to the imaging data than the overwhelming majority lens models
proposed only on the basis of matching the image positions. Once
we have constructed these lens models, we proceed to compute the
astrometric, flux ratio, and imaging data likelihoods, as described in
the next three sections.

2.2.1 The astrometric likelihood

As discussed in the previous section, during the PSO we use the
approach discussed by Birrer, Amara & Refregier (2015) and apply
a non-linear solver to a portion of the lens macromodel such that
the lens equation is automatically satisfied for each proposed lens
model. To handle observational measurement uncertainties in the
lensed quasar image positions, we add astrometric perturbations to
the image positions prior to performing the PSO, and later on we will
evaluate the flux ratios at these new perturbed coordinates. Thus, at
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this stage we have accounted for L
(

Opos|msub, N
)

by selecting
lens models that only reproduce the observed image positions to
high precision.

2.2.2 The flux ratio likelihood

Following existing methods (Gilman et al. 2019), we compute the
flux ratio likelihood using an ABC rejection algorithm based on a
summary statistic S computed with respect to the three observed flux
ratios, O f , and f (msub, N ), the model-predicted flux ratios:

S (O f, msub, N ) ≡

√√√√
3∑

i=1

[
Of(i) − f(i) (msub, N )

]2
. (4)

We accept a realization and the corresponding parameters drawn
from π (q) if S < ε, where ε represents a tolerance threshold. For
a given ε, the number of accepted samples between two regions of
parameter space approximates the relative likelihood between the
two regions of parameter space. ABC rejection algorithms converge
to exact (relative) likelihoods as ε → 0 while the number of samples
tends to infinity.

In our analysis, we generate ∼106 realizations per lens, and accept
the top Naccept = 3000 samples corresponding to the lowest values
of S. This results in values of ε that range between 0.01 and 0.1
among the (mock) lenses in our sample. As in previous work, we
handle observational measurement uncertainties by adding them
post-processing to the model-predicted flux ratios before computing
S. The convergence tests performed for ABC rejection algorithms
applied to image flux ratios by Gilman et al. (2020) motivate
our choice of the tolerance threshold on ε. Finally, we obtain a
continuous approximation of the flux ratio sampling distribution
marginalized over N , p

(
O f |qsub

)
, by applying a Gaussian kernel

density estimator to the accepted samples drawn from the prior
on q.

2.2.3 The imaging data likelihood

We account for the imaging data constraints by applying an ABC
rejection cut to a second summary statistic, L, which we define as the
probability of observing the imaging data L ≡ p

(
O img|msub, N

)
.

In principle, we could incorporate information directly through
importance sampling with weights equal to L, but this causes
numerical stability issues when the relative likelihood among the
accepted samples fluctuates by large factors of ∼e5 due to the high
dimension of the data vector. We define the acceptance threshold
on L as the value of L that corresponds to the top 2 per cent of
the imaging data likelihoods. This choice represents a compromise
between selecting models that best fit the imaging data and accepting
realizations that minimize the S statistic computed with respect to
the flux ratios. The optimum choice for this threshold should depend
on the constraining power of the imaging data, which in turn depends
on the specifics of the lens system in question and in particular the
brightness of the lensed arc.

As we show in Section 5, the imaging data enable stronger
conclusions regarding substructure properties by imposing tighter
constraints on the mass profile of the main deflector than one obtains
from analysing only the image positions and flux ratios. However,
our method of incorporating imaging data exposes the likelihood
function to a systematic bias associated with reconstruction of the
source light profile with substructure in the lens model. This bias
manifests as a systematic preference for lens models with less

substructure. Moreover, in rare cases a dark matter halo imparts a
strong perturbation to the surface brightness of a lensed arc, a feature
of the data that the inference methodology we present in this work
is not intended to properly capture in the likelihood. For reasons we
elaborate on further in Appendix A, we conclude that the imaging
data likelihood will not give a reliable inference of substructure
properties on its own when calculated according to the methodology
we present in this work.

To mitigate the effects of systematics associated with the imaging
data in the presence of substructure, we demand that our posterior
distribution has the property

lim
ε→∞

p
(
q|O img, Opos, O f

)
= π (q) . (5)

That is, the posterior should equal the prior on q when computed
only using the imaging data (as ε → ∞, the flux ratio likelihood term
becomes uninformative). We can arrange that our posterior meets this
requirement by an appropriate definition of the importance sampling
weights in equation (2). We define the importance weights, w (q|O i),
as

w
(
q|O img, Opos

)
= L

(
O img, Opos|q

)

=
∫

p
(

O img, Opos|msub, N
)

×p (msub|q) p (N ) dN dmsub. (6)

In other words, we divide the likelihood computed for all available
data, O i , by the imaging data and astrometric likelihood, ignoring
flux ratio information. As one can easily verify, applying the
importance weights in equation (6) and performing a dark matter
inference without incorporating constraints from the flux ratios yield
a posterior distribution equal to π (q).

One can interpret this term as a prior on the dark matter model
q applied to each lens that depends on the parametrization of the
source light profile in N . The source reconstruction process involves
solving for a configuration of light in the source plane that maximizes
the likelihood of the lensed image in the image plane. As discussed
in Section 4.3, we model the source light profile as a parametric
component plus a shapelet basis expansion, and we optimize the
coefficients of the shapelet sets (Birrer et al. 2015) simultaneously
with the parametric components. Properties of substructure can, to
some degree, be absorbed by the source light profile, and the degree
to which this occurs depends on various choices regarding the source
light model and the process of reconstructing the extended light in
the source plane (e.g. Ballard et al. 2024). The importance weights in
equation (6) reflect our knowledge that choices regarding the source
light reconstruction will affect our beliefs regarding the probability
of a dark matter model q. The importance weights w

(
q|O img, Opos

)

quantify this effect, and their incorporation in the likelihood corrects
for the resulting bias.

3 AC C E L E R AT I N G M U LT I P L A N E L E N S
MODELLI NG WI TH THE DECOUPLED
MULTI PLANE FORMALI SM

The approach outlined in the previous section presents a viable
strategy for performing a dark matter inference using image po-
sitions, imaging data, and flux ratios to constrain the lens model.
As discussed in the first paragraph of Section 2.2, a crucial step
in the inference method involves a non-linear optimization of the
lens mass and source light profile with respect to the imaging data
through a PSO, and a simultaneous non-linear solver applied to the
lens macromodel such that the lens equation is satisfied for the quasar
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image positions, for each realization. However, with exact ray tracing
methods, performing this calculation with thousands of dark matter
haloes along the line of sight is computationally intractable.

In this section, we begin in Section 3.1 by reviewing the methodol-
ogy of lens mass and source reconstruction using existing lens mod-
elling techniques, and explain how the computational intractability
of lens mass and source light reconstruction with line-of-sight haloes
derives from the recursive nature of equation (3). In Section 3.2, we
introduce a new approximation for multiplane lensing that preserves
the non-linear effects associated with equation (3) while accelerating
calculations by factors of 100–1000. In Section 3.3, we show that this
formalism predicts effectively indistinguishable flux ratio likelihoods
from full multiplane ray tracing.

3.1 Multiplane lens modelling

To understand computational challenges posed by equation (3), we
will walk through the step-by-step procedure of performing a lens
mass and source light reconstruction with substructure included
along the line of sight and in the main lens plane. Fig. 2 depicts
the backward ray tracing procedure described by equation (3), and
will serve as a useful guide for understanding the lens modelling
procedures discussed below, as well as the methods introduced in the
next section.

For what follows, we assume that we have generated a realization
of substructure msub from the dark matter model q. The masses,
positions, and density profiles of the haloes are held fixed for the
remainder of the calculation. Our objective is to simultaneously
reconstruct the mass distribution of the main deflector and the lensed
background source in the presence of the realization specified by
msub. The only unknown parameters are those that describe the
mass profile of the main deflector, or more generally, the deflection
associated with the main deflector αmacro. Our task is to determine
αmacro subject to the requirement that these deflection angles satisfy
the lens equation for the four image positions while simultaneously
fitting the imaging data. A standard lens modelling procedure
proceeds as follows:

(i) Using equation (3), we ray-trace from the viewer to the pixel
location in the plane of the main deflector an angle θ . We record the
direction of a light ray as it intersects the main lens plane, θ front =
θ + αfront, and the comoving transverse distance of a light ray where
it hits the main lens plane T x (θ , αfront). Once the light ray reaches
the main lens plane, we compute the deflection angles produced by
main deflector subhaloes, αsub(T x). For a given realization of haloes,
we only need to perform the calculation of T x and αsub(T x) once for
a given angle θ because the ray tracing thus far does not depend on
the unknown αmacro.

(ii) Propose a set of deflection angles αmacro (T x) produced by the
main deflector. This deflection field is unknown, and we will try to
optimize it subject to the constraints imposed by the data. Methods
discussed by Gilman et al. (2019) generate proposals for αmacro by
selecting lens models that satisfy the lens equation. In this work,
we use a PSO to generate proposals for αmacro that satisfy the lens
equation while also reproducing the lensed arcs.

(iii) Using the proposed αmacro, we ray-trace with equation (3)
until reaching the source plane. The deflection angles produced by
haloes at z > zd depend on αmacro due to the recursive nature of
equation (3), so this step involves thousands of function evaluations
per pixel in the lensed image.

(iv) We evaluate the surface brightness of the source light in
the source plane, and then cast this light back to the image plane

to produce a lensed image. We then evaluate the imaging data
likelihood.

(v) Repeat steps (ii)–(iv) until obtaining a maximum likelihood
estimation (or in some cases, a Markov Chain) for the parameters of
interest. During each iteration of steps (ii)–(iv), we must re-evaluate
the deflections by haloes at z > zd because they are coupled to αmacro.

Because step (iii) involves backward ray tracing operations
through all lens planes between the main deflector and the source
plane, the computation time scales in proportion with the number
of haloes in this region. For a typical configuration with a lens at
zd = 0.5 and a source at zs = 2.0, CDM predicts ∼1750 haloes in the
mass range of 106−1010 M# between the main deflector and source.4

Thus, lens mass and source light reconstruction with line-of-sight
haloes between the main deflector and the source takes approximately
1750 times as long as a single-plane reconstruction. The likelihood
function in equation (2) dictates millions of such calculations per
lens. Assuming that the PSO takes ∼1 min for a single-plane recon-
struction, performing the lens modelling for 1000 000 realizations
of substructure would take ∼1750 × 106 CPU minutes, or ∼3000
CPU years per lens. In practical terms, to perform this analysis on a
sample of 10 lenses with a computing allocation of ∼106 CPU hours,
we require an increase in speed by a factor of at least ∼250.

In summary, the computational difficulties that preclude the joint
reconstruction of image flux ratios and lensed arcs in substructure
lensing analyses stem from the recursive nature of the multiplane
lens equation. In the next section, we introduce an approximation for
full multiplane ray tracing that circumvents the repeated evaluation
of step (iii) in the procedure described earlier in this section,
accelerating calculations by factors of up to ∼1000.

3.2 The decoupled multiplane approximation for multiplane
lensing

We begin with a reasonable estimate for the deflection field produced
by the main deflector, α̂macro. As a reasonable estimate for this
deflection field, we choose one that satisfies the lens equation for
the image positions without substructure included in the lens model.
Using equation (3), we can perform steps (i)–(iii) in the lens
modelling procedure described in the previous section, using our
initial guess for α̂macro to ray-trace through the entire lens system
to the source plane. Inserting our choice of α̂macro into equation (3)
for a given realization of substructure, we ray-trace through the lens
system and reach an angular coordinate β̂ given by

β̂ (θ , msub, α̂macro) = θ − αeff (θ , msub, α̂macro) , (7)

where αeff is the effective multiplane deflection angle defined in
equation (3), and where we have explicitly included our proposal
for the macromodel deflections α̂macro in place of the nuisance
parameters N .

Using β̂, we define a deflection field associated with line-of-sight
haloes behind the main deflector, αβ , as illustrated by the blue
line in Fig. 2. This deflection field is a function of the following
quantities: First, T x represents the comoving position where a light
ray strikes the main lens plane; secondly, an angle θ front, which is
the observed angle on the sky θ plus the cumulative deflections from
foreground haloes; thirdly, αsub, the deflection field associated with
main deflector subhaloes; and fourthly, the coordinate on the source

4This number assumes that we render haloes in a volume shaped like a double
cone that opens towards the lens with an opening angle of 6 arcsec, and closes
at the source position.
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Figure 2. An illustration of the angles and comoving distances that appear in the derivation of equation (9). The figure depicts a backward ray tracing operation
beginning from the observer on the left and ending at the source on the right. By performing one ray tracing calculation through the lens volume to the
source plane, we calculate αβ , an effective deflection field from haloes at zd < z < zs, and apply this deflection field across the main deflector lens plane.
This simplification preserves the essential properties of the multiplane deflection field that results from equation (3) while permitting lens mass and source
reconstruction with the same computational cost as a single-plane calculation.

plane β̂ we compute with equation (3) and α̂macro. Expressing αβ in
terms of these quantities gives

αβ = 1
Tds

T x − Ts

Tds
β̂ + θ front − αsub − α̂macro. (8)

The approximation we make is to apply the deflection field αβ across
the main lens plane for any subsequent ray tracing operation for
a given population of dark matter haloes. This results in a lens
equation for a coordinate on the source plane β,

β = β̂ + Tds

Ts
(α̂macro − αmacro) . (9)

Note that we must still evaluate the main deflector deflection angles
αmacro at the positions T x defined in step (i) in the previous section.
This version of the multiplane lens equation resembles a single-plane
lens equation that is linear in the macromodel deflections αmacro.

The deflection field αβ is computed with equation (3), so we
expect that it will capture the small-scale lensing distortions as-
sociated with multiplane ray tracing. However, after performing
a lens modelling operation with equation (9), we cannot go back
to interpret the physical properties (mass, location, density profile,
etc.) of individual dark matter haloes behind the main deflector.
Physically, our assumption implies that the deflection field produced
by the background population of substructures depends primarily
on the intrinsic dark matter characteristics of that population and
other fixed geometrical effects, and that flux ratio statistics we obtain
from considering many realizations of substructure do not depend
strongly on the coupling to the main deflector deflection field. This
formalism shares some similarities with the perturbative formalism
presented by Fleury, Larena & Uzan (2021), but differs in that we

compute αβ with exact ray tracing. Equation (9) increases the speed
of lens mass and source light reconstruction with line-of-sight haloes
included in the lens model because it decouples deflections produced
by haloes behind the main deflector from deflections produced in the
main lens plane. Thus, using equation (9) requires only one full ray
tracing calculation to the source plane per coordinate in the image
plane, circumventing the repeated evaluation of step (iii) for each
new proposal of αmacro. A lens mass and source light reconstruction
with substructure performed according to this procedure takes less
than 10 min, corresponding to an increase in speed by a factor
between 100 and 1000, depending on the number of line-of-sight
haloes behind the main deflector. We have added this decoupled
multiplane approximation for optional use in LENSTRONOMY.5

3.3 Validity of the decoupled multiplane approximation

We can check the validity of the approximation discussed in
the previous section for predicting image positions and flux ratio
statistics through comparisons with the statistics obtained by exact
multiplane ray tracing. First, using exact ray tracing techniques
discussed by Gilman et al. (2019) we compute peqn3

(
Opos, O f |qcdm

)
,

the probability of observing a given set of flux ratios with subhaloes
and line-of-sight haloes included in the lens model with properties
as prescribed by CDM (represented by qcdm). We then repeat this
procedure using the ray tracing approximation discussed in the

5This notebook (https://github.com/lenstronomy/lenstronomy-tutorials/
blob/main/Notebooks/LensModeling/modeling with decoupled multiplane.
ipynb) illustrates the functionality in combination with PYHALO.
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Figure 3. The joint distribution of flux ratios for a simulated mock lens sys-
tem generated with exact multiplane ray tracing (black) and with decoupled
multiplane formalism (blue). The flux ratios of the mock lens system that
does not contain substructure are marked in green. The decoupled multiplane
formalism predicts the same distribution of flux ratios as exact ray tracing.

previous section to compute the likelihood peqn9
(

Opos, O f |qcdm

)
.

For details regarding the substructure models we use for these tests,
we refer to Section 4.1. We perform these calculations using the
image positions of a reference mock lens model created without
substructure (hereafter, the ‘smooth model’). This reference model
has a cross image configuration with lens (source) redshifts zd = 0.5
(zsource = 1.5), and a mass profile parametrized as an elliptical power
law (EPL) with Einstein radius of 1 arcsec, an axis ratio of 0.75, a
logarithmic mass profile slope of −2.0, and external shear strength
of 0.09. We have also performed a similar test for a fold image
configuration.

Fig. 3 shows the joint likelihoods for the three flux ratios of the
mock lens, with the flux ratios of the reference smooth lens model
marked with the green points. The likelihood computed through exact
ray tracing is shown in black, while the likelihood computed with
the approximation introduced in the previous section is represented
in blue. The likelihoods peak at the smooth model flux ratio values,
which is simply a statement that substructure introduces perturba-
tions around the flux ratios predicted by the smooth lens model. A
dark matter inference with flux ratios requires the characterization of
this multidimensional probability density. Dark matter substructure
deforms the structure of this probability distribution in a distinct way
from other sources of small-scale perturbation, such as multipole
terms added to the main deflector mass profile.

The requirement of the approximation we introduce is that it
predicts identical flux ratio statistics for a given dark matter model.
Kolmogorov–Smirnov tests performed on the marginal distributions
of the flux ratios shown in Fig. 3 return p-values greater than 0.99,
indicating that the distributions of model-predicted flux ratios are
statistically indistinguishable. We have also tested the approximation
for an identical set of 10 000 realizations, as opposed to 10 000 unique
realizations generated from q. We compute the model-predicted flux
ratios with and without the decoupled multiplane approximation, and

initialize the solver applied to the macromodel parameters from the
same random seed. Predicting the same flux ratios for an identical
realization of haloes is not formally a requirement that the method
needs to satisfy to predict consistent flux ratio statistics, but none the
less we find that for identical realizations, 95 per cent of the samples
obtained from exact ray tracing and the approximation we present
differ by less than 5 per cent. We can conclude that the approximation
presented in the previous section does not introduce a detectable bias
in the model-predicted image flux ratios for a CDM dark matter
model while decreasing the time per flux ratio calculation by a factor
of 5−10.

Unlike the flux ratios and image positions, it is computationally
intractable to compare our approximation with exact ray tracing when
reconstructing imaging data for the reasons discussed in Section 3.1.
Instead, we perform tests with simulated data sets to verify that we
obtain unbiased inferences of dark matter substructure properties
when using this approximation to reconstruct imaging data with
substructure included in the lens model. We describe the details of
these simulations in the following section.

4 TESTS ON SIMULATED DATA

This section details how we create simulated data sets with which
to test the lens modelling methodology discussed in the previous
section. Section 4.1 discusses the WDM model on which we test the
methodology. Section 4.2 discusses the properties of the simulated
main deflectors we use in our simulations. Section 4.3 details the
parametrization of the lens and source light models used to create
and model the simulated data sets. Section 4.4 details the modelling
assumptions related to the observing conditions and point spread
function. Throughout this section, we use U to represent a uniform
prior and N to represent a Gaussian prior, not to be confused with
N , the vector of nuisance parameters appearing in equation (2).

4.1 Modelling of dark matter subhaloes and line-of-sight haloes

We test the methodology presented in Section 3 on a WDM model,
although the methodology we present is applicable to any theory that
predicts the abundance and internal structure of haloes. WDM refers
to a class of theory in which the abundance and density profiles of
dark matter haloes become suppressed below a certain mass threshold
determined by the free-streaming length. We model the halo mass
function in WDM using the parametric form

dNWDM

dm
= dNCDM

dm

[
1 +

(
a

mhm

m

)b
]c

, (10)

with a = 2.3, b = 0.8, and c = −1.0 (Lovell 2020), and dNCDM/dm

represents the (sub)halo mass function in CDM. We draw line-of-
sight haloes from the Sheth–Tormen (Sheth, Mo & Tormen 2001)
halo mass function, and generate subhaloes from a mass function of
the form

d2N

dm dA
= 'sub

m0

(
m

m0

)−α

. (11)

We use a pivot scale of m0 = 108 M#, and a logarithmic profile
slope of α = 1.9 (Springel et al. 2008). The normalization is related
to the projected mass in substructure in the range of 106−1010

solar masses by fproj = 107
(
'sub/0.01 kpc−2

)
M# kpc−2, and N-

body simulations of massive ellipticals predict typical values in the
range of ∼2−3 × 107 M# kpc2 (e.g. Fiacconi et al. 2016), although
these numbers are uncertain due to various numerical uncertainties
inherent to the simulations, such as the artificial disruption of
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subhaloes and subhalo finders. To encompass a broad range of
theoretical uncertainties associated with 'sub, we use a log-uniform
prior between log10 'sub = −2.5 and log10 'sub = −1.0. We apply
the same suppression function in equation (10) to both the line-of-
sight and subhalo mass functions.

We model halo density profiles as tidally truncated Navarro–
Frenk–White profiles (Navarro, Frenk & White 1997; Baltz, Mar-
shall & Oguri 2009):

ρ (r, rs, rt) = ρs

(r/rs) (1 + r/rs)2

r2
t

r2
s + r2

t
, (12)

where ρs is a characteristic central density, rs is the scale radius,
and rt implements a tidal radius. For field haloes, we set rt equal
to r50, which is comparable to the splash-back radius of a halo
(Adhikari, Dalal & Chamberlain 2014; Diemer & Kravtsov 2014;
More, Diemer & Kravtsov 2015). We truncated subhalo density
profiles based on the mass and three-dimensional position inside
the host (see Gilman et al. 2020).

The central density ρs determines the lensing efficiency of a halo of
a fixed total mass. The delayed onset of structure formation in WDM
models suppresses the central density of haloes with mass below
mhm (Bose et al. 2016; Ludlow et al. 2016). The concentration–
mass relation establishes the connection between ρs and halo mass
through the concentration parameter, c. We use the concentration–
mass relation presented by Diemer & Joyce (2019), and implemented
with the software COLOSSUS (Diemer 2018), to assign concentrations
to CDM haloes. We compute the concentrations in WDM according
to (Bose et al. 2016)

cWDM (m, z) = cCDM (m, z)
(

1 + 60
mhm

m

)−0.17
(1 + z)β(z) , (13)

where β (z) = 0.026 − 0.04z.
We generate line-of-sight haloes (subhaloes) with (infall) masses

in the range of 106−1010 M#. Haloes more massive than 1010 M#
would likely contain a luminous galaxy, in which case we would
include these objects in the lens macromodel. Haloes less massive
than 106 M# lie below the sensitivity threshold of our data given
our assumptions regarding the background source size (see the next
section).

In the dark matter inference, we sample 'sub from a log-uniform
prior log10 'sub ∈ U (−2.5, −1.0). This is a broad and uninformative
prior that we use to reveal any degeneracies between 'sub and
mhm, and to understand to what degree imaging data can break
these degeneracies. We sample log10 mhm ∈ U (4.0, 10.0). For both
the halo mass function and concentration–mass relation, values
of mhm < 105 M# result in mass functions and concentration–
mass relations that deviate from the CDM prediction below the
estimated sensitivity threshold of our data; thus, we can consider
these realizations as consistent with CDM. We fix the values of all
other parameters introduced in this section to the stated values.

We create two sets of simulated data with which to test our
inference methodology. First, we create a sample of 25 lenses
with a CDM ground truth using 'sub = 0.05 kpc−2 and mhm = 0.
The chosen value of 'sub roughly corresponds to the amount of
substructure inferred by Gilman et al. (2020) and is consistent with
N-body simulations to within an O (10) factor (Fiacconi et al. 2016).
Secondly, we create a sample of 25 lenses with a WDM ground truth
with 'sub = 0.04 kpc−2 and mhm = 107.5 M#. Both sets of mocks
have the same main deflector mass models and background sources,
but the image positions and flux ratios between them differ slightly
due to the different populations of haloes in the lens models.

4.2 Mass profile of the main deflectors

In this section, we discuss how we create simulated main deflector
mass profiles for the mock lenses (Section 4.2.1) and how we model
the mock lenses during the inference performed on the mock data
sets (Section 4.2.2).

4.2.1 Creating mock lens mass profiles

To test the methodology discussed in Section 2, we create a sample
of 25 mock lens systems with properties broadly comparable to the
known population of such systems (Auger et al. 2010; Oguri &
Marshall 2010). The mocks have lens (source) redshifts in the range
of 0.3–0.9 (0.9–3.0). We model the main deflector galaxy as an
EPL mass profile with an Einstein radius set to 1 arcsec for each
system, axis ratios in the range of 0.50–0.95, and logarithmic mass
profile slopes γ drawn from a Gaussian prior N (2.0, 0.1). We apply
external shear across the main lens plane with a random orientation
and a strength γext in the range of 0.02–0.16.

The observed population of elliptical galaxies sometimes exhibits
deviations from ellipticity quantified in terms of multipole perturba-
tions on top of the elliptical mass profile (Bender et al. 1989; Hao
et al. 2006). A multipole perturbation adds convergence6:

κm (r,φ) = am(phys)

r
cos [m (φ − φm)] , (14)

where r is the separation in arcseconds from the mass centroid, the
angle φm determines the orientation, and am(phys) is the amplitude
of the convergence associated with the multipole perturbation. Oh
et al. (in preparation) further explore the implications of these
multipole perturbations in the context of flux ratio analyses in strong
lenses.

We base our implementation of the multipole perturbations on the
observed properties of 847 elliptical galaxies presented by Hao et al.
(2006). The shape of the isodensity contours inferred from the light
(and assuming that light traces mass) can be related to the physical
amplitude of the perturbation by am(phys) = am × θE/

√
q, where θE is

the Einstein radius, q is the axis ratio of the ellipse, and am represents
the deviation from ellipticity of the light. The third- (m = 3) and
fourth-order (m = 4) moments make the dominant contribution to
the multipole expansion of galaxy shapes (Bender et al. 1989).
Hao et al. (2006) find a3 distributed as N (0.0, 0.005) with values
of φ3 uncorrelated with the position angle of the underlying mass
profile. Hao et al. (2006) also measure a4 ∈ N (0.0, 0.01) with an
orientation that tends to align with the orientation of the underlying
mass profile. When the a4 orientation aligns with the orientation of
the underlying ellipse, the profile appears boxy (a4 < 0) or disky
(a4 > 0). The observed amplitudes a3 and a4 have no apparent
correlation.

Based on the findings by Hao et al. (2006), when creating mock
deflectors we include the dominant m = 3 and m = 4 terms and use
priors for their observed amplitudes a3 ∈ N (0.0, 0.005) and a4 ∈
N (0.0, 0.01). Based on the measurements by Hao et al. (2006) and
Oh et al. (2024), we enforce alignment between the a4 orientation and
the underlying EPL profile (producing boxy or disky contours), and
sample φ3 ∈ U (−π/6, π/6). For additional discussion regarding
the role of multipole perturbations in dark matter inferences with
quadruply imaged quasars, we refer to Appendix B.

6Convergence refers to a projected mass normalized by the critical surface
mass density for lensing.
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4.2.2 Modelling of the lens mass profile

When modelling the mock lenses, all of the parameters that describe
the EPL profile are left free to vary while reconstructing the imaging
data, as well as the strength and position angle of the external shear.
We draw a3, a4, and φ3 from the same priors as those used to create
the simulated data sets. During the reconstruction of the imaging
data for each realization, we keep the multipole terms fixed to the
values drawn from their respective priors. We eventually constrain
these parameters when down-selecting on the imaging data and flux
ratio summary statistics, as discussed in Section 2.2.

We have experimented with allowing a3 and a4 to vary freely while
reconstructing the imaging data, but find that this causes their inferred
amplitudes to take on unphysical values. This unexpected behaviour
could arise from degeneracies in the imaging data likelihood between
multipole perturbations to the lens model and full populations of
dark matter haloes, as well as limitations associated with the PSF
and source reconstruction. During the lens modelling, we include a
Gaussian prior on γ , the logarithmic slope of the main deflector mass
profile, with a mean of −2.0 and standard deviation of 0.2.

4.3 Source and lens light models

In the next two sections, we discuss the lens and source light
models used to create the simulated data sets (Section 4.3.1), and
how we model the lens and source light profiles in the inference
(Section 4.3.2).

4.3.1 Creating mock lens and source light profiles

We parametrize the main deflector light as a circular Sérsic profile
(Sérsic 1963). The source light model includes two components: the
lensed quasar and its host galaxy. For the quasar, we assume flux
ratios measured from the warm dust region now observable with
JWST (Nierenberg et al. 2024) with a physical size of ∼1−10 pc.
To create the mocks, we model the quasar emission as a circular
Gaussian with a full width at half-maximum sampled from a uniform
prior U (1−10) pc. We assume a flux ratio measurement precision of
3 per cent, and an astrometric precision in the relative quasar image
positions of 5 mas, based on the recent measurements (Nierenberg
et al. 2024).

To create realistic lensed arcs, we place the spiral galaxy shown in
Fig. 4 at the source redshift for each of the 25 mock deflectors. We
extract this source from the COSMOS survey catalogue (Koekemoer
et al. 2007) using the software package PALTAS (Wagner-Carena
et al. 2023). This particular galaxy was selected because it exhibits
enough morphological complexity (spiral arms) to warrant a small-
scale basis set expansion of its light profile to reproduce a lensed
image. Many real strong lens systems exhibit this level of complexity
in their inferred source light profiles, and we include this feature
in our simulations to determine whether our methodology yields
unbiased inferences of substructure properties with a complex source
morphology.

4.3.2 Modelling of lens and source light profiles

We model the main deflector light as an elliptical Sérsic profile. We
model the quasar emission region as a circular Gaussian, and sample
its size uniformly from a prior U (1, 10) pc for each system. We
model the quasar host galaxy with an elliptical Sérsic profile with
additional small-scale complexity implemented through shapelet
basis functions (Birrer et al. 2015). An integer nmax determines

Figure 4. The spiral galaxy used in the mock lens systems as the lensed
quasar host galaxy. This image was extracted from the COSMOS catalogue
(Wagner-Carena et al. 2023).

the degree of complexity these functions can describe, with the
complexity of the reconstructed image with increasing nmax.

To choose an appropriate level of source complexity in the model,
we choose the value of nmax that minimizes the Bayesian information
criterion (BIC) defined as

BIC = k log (n) − log (max [L]) , (15)

where k is the number of model parameters, n represents the number
of data points, and max [L] represents the maximum likelihood of
the data given the model. The BIC statistic compensates between
obtaining a better fit to data and overfitting a model. To calculate
the BIC, we fit a smooth lens model (i.e. a lens model without
substructure) to each mock. For each mock system, we found that the
BIC reaches a minimum for a source model consisting of an elliptical
Sérsic profile plus shapelets at nmax = 10. With this source model,
we obtain a reduced χ2 per degree of freedom; χ2/DOF ≈ 1.2, with
DOF = 3694, for the lens models accepted based on the imaging data
likelihood. Appendix A provides additional discussion regarding the
reconstruction of the source light in our simulations.

4.4 Point spread function and observing conditions

Most of the known quadruply imaged quasars, and many of those
with flux ratios recently measured by JWST, have archival HST
imaging (Shajib et al. 2019; Schmidt et al. 2023). Anticipating use
of these data, we therefore assume HST-like observations with a
pixel size of 0.05 arcsec, an rms background noise per pixel of 0.006
photons s−1, and an exposure time of 1600 s. We use a Gaussian
point spread function model with a width of 100 mas in the creation
and modelling of the mock lenses.7

7In practice, one typically reconstructs the PSF simultaneously with the lensed
image and source light. This methodology is possible within our analysis
framework, but it was not included in our tests on simulated data.
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Figure 5. The imaging data (left) and the true convergence in dark matter substructure (right) for mock lens #4. This system has flux ratios consistent with
those predicted by a smooth lens model.

Figure 6. The imaging data (left) and the true convergence in dark matter substructure (right) for mock lens #6. Several dark matter haloes and line-of-sight
haloes near image A impart a strong perturbation to the magnification of this image.

5 R ESULTS

This section presents the results of the inference of the lens model
and substructure properties obtained from 25 simulated strong lens
systems assuming a CDM ground truth, and 25 lens systems created
assuming a WDM ground truth. Both sets of lens systems are
analysed using the inference methodology discussed in Section 2, the
lens modelling approach discussed in Section 3, and the simulation
details presented in Section 4. We begin in Section 5.1 with case
studies of four mock lens systems created with a CDM ground truth.
We discuss in detail how the image positions, flux ratios, and imaging
data work in tandem to simultaneously constrain the mass profile of
the main deflector and the properties of substructure in each system.
In Section 5.2, we present the joint constraints on the normalization
of the subhalo mass function and the free-streaming length of dark
matter obtained from the full sample, and quantify the degree to
which including constraints from lensed arcs improves constraints
on substructure properties relative to existing analysis methods that
use only image positions and flux ratios.

5.1 Case studies

We begin by analysing the results of applying our inference method-
ology to four mock lenses created with a CDM ground truth to
gain physical insight into how the joint modelling of lensed arcs,
image positions, and flux ratios constrains the lens model and the
properties of substructure. Figs 5–8 show the four lenses chosen for
these case studies. We pick these four systems because they exhibit a
variety of image configurations, lens and source redshifts, experience
varying degrees of perturbation by haloes, and have among the most
informative likelihood functions. The left panels show the simulated
lensed images, while the right panels display the true convergence in
dark matter substructure for each mock. As in previous work (Gilman
et al. 2019), we define the convergence for a multiplane lens system
in terms of the divergence of the deflection field (see equation 3):

κ ≡ 1
2
∇ · αeff . (16)

To illustrate the distribution of dark matter substructure, we subtract
the convergence from the lens macromodel, κmacro, from the total
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Figure 7. The imaging data (left) and the true convergence in dark matter substructure (right) for mock lens #11. Like Mock 4, this system has flux ratios
consistent with those predicted by a smooth lens model.

Figure 8. The imaging data (left) and the true convergence in dark matter substructure (right) for mock lens #23. Like Mock 6, the flux ratios in this system
experience perturbation by haloes.

convergence given by equation (16). In place of the deflection field
from background haloes, we take the divergence of αβ , the effective
deflection field from haloes behind the main deflector defined in
Section 3.

5.1.1 The complementary information conveyed by imaging data
and flux ratios

As the imaging data subtend angular scales comparable to the image
separation, we expect that the reconstruction of the lensed arcs will
impose the strongest constraints on the large-scale mass profile of
the main deflector. Figs 9–12 show the inference on a subset of
the parameters that describe the main deflector mass profile. The
parameters shown in each figure include the normalization of the
main deflector mass profile θE, the axis ratio q, the ellipticity position
angle φq, the external shear strength γext, the external shear position
angle φext, and the amplitude of the m = 3 and m = 4 multipole
moments a3 and a4. Contours show the 68 and 95 per cent credible

intervals for the parameters after marginalizing over the properties
of substructure in each lens. The black contours show constraints
obtained from the ray tracing methods presented by Gilman et al.
(2019) that use only image positions and flux ratios to constrain the
lens model. Blue contours show constraints obtained from applying
methods discussed in Sections 2.2 and 3 to compute the likelihood
and model the image positions and imaging data. The magenta
contours show constraints obtained from combining the flux ratio
likelihood with the image position and imaging data likelihoods.

By comparing the volume enclosed by the black and blue dis-
tributions in Figs 9–12, we conclude that the imaging data impose
significantly stronger constraints on the main deflector mass profile
than those one obtains from only image positions and flux ratios.
Using all available data (magenta), we obtain the tightest constraints
on the macromodel parameters, but adding flux ratio information
to lens models already constrained by imaging data leads to only
marginal improvement. These trends persist among all the mock
lenses we analyse in our simulations, and are consistent with a
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Figure 9. The inference on the macromodel parameters in Mock 4 in the CDM ground truth sample. The black distribution shows the inference obtained from
using only image positions and flux ratios to constrain the lens model. The blue distribution results from using image positions and imaging data to constrain
the lens model, and the magenta distribution results from using image positions, flux ratios, and imaging data. These distributions are marginalized over the
properties of substructure in each system. From left, the x-axis labels correspond to the normalization of the main deflector mass profile θE, the axis ratio q, the
position angle of the main deflector ellipticity φq, the external shear strength γext, the position angle of the external shear φγ ext, the logarithmic profile slope of
the main deflector γ , and the multipole moments a3 and a4. Contours enclose 68 and 95 per cent credible intervals, and the true lens model parameters for the
mock lens are marked with the green crosshairs.

physical picture in which the large-scale mass distribution of the
lens is primarily constrained by imaging data.

The flux ratios, however, convey vital information for constraining
the properties of the deflection field on angular scales below those
probed by imaging data.8 Fig. 13 shows the joint likelihood function
computed with the image positions, flux ratios, and imaging data for

8We recall that we have constructed the likelihood function in such a way that
the posterior distribution of substructure properties given the data can only
differ from the prior if one incorporates constraints from the flux ratios (see
Section 2.2 and equation 6).

each of the four case study lenses shown in Figs 5–8. The parameters
shown in the figures are 'sub and mhm, the normalization of the
subhalo mass function (equation 11) and the cut-off scale of the
halo mass function (equations 10 and 13). The colour scale in Fig.
13 corresponds to the relative likelihood between positions in the
parameter space. The top-left region of parameter space includes
dark matter models with a significant suppression of the halo mass
function and relatively few subhaloes, while the bottom-right corner
of parameter space includes a plethora of subhaloes and a CDM-like
halo mass function.
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Figure 10. The inference on the macromodel parameters in Mock 6 in the CDM ground truth sample obtained from only the image positions and flux ratios
(black), from the image positions and imaging data (blue), and from the image positions, flux ratios, and imaging data (magenta).

The likelihoods shown in Fig. 13 exhibit clear preferences for
models with a plethora of substructure in the case of Mocks 6 and 23,
and for relatively little substructure for Mocks 4 and 11. Note that the
improvement in the inference of the macromodel parameters shown
in Figs 9–12 after adding flux ratio information does not significantly
change between the four case study lenses, and thus the degree to
which the flux ratios constrain the large-scale mass distribution of
the lens does not depend on the amount of substructure required to
fit the flux ratios. However, as we will discuss in the next section,
the imaging data strengthen inferences of substructure properties
by breaking degeneracies between large-scale deformation of the
main deflector mass profile and small-scale perturbations caused by
haloes.

5.1.2 Visualizing accepted and rejected realizations

A useful feature of the open-source code we present with our
analysis, SAMANA,9 is the ability to recreate a lens model from
a random seed assigned to each realization that we record as a
model parameter. Thus, after down-selecting on lens models and
substructure realizations following the methodology discussed in
Section 2.2, we can regenerate lens models from the random seeds to
gain physical insight as to why we reject or accept certain realizations
when computing the likelihood.

Figs 14–17 each shows two examples of lens models accepted
based on fitting the imaging data and flux ratios (top two rows), and

9https://github.com/dangilman/samana
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Figure 11. The inference on the macromodel parameters in Mock 11 in the CDM ground truth sample obtained from only the image positions and flux ratios
(black), from the image positions and imaging data (blue), and from the image positions, flux ratios, and imaging data (magenta).

two examples of lens models that we would accept based on the image
positions and flux ratios, but which we reject based on a poor fit to
the imaging data (bottom two rows). From left, the columns show the
reconstructed lensed image, the projected multiplane convergence in
substructure obtained from subtracting the macromodel convergence
from the total convergence, i.e. 1

2 ∇ · αeff − κmacro, and the normalized
residuals from the fit to the imaging data. In the centre panels, we
label the observed (model-predicted) flux ratios in green (black), and
the true (model-predicted) critical curves in green (black). We have
included the critical curves in these figures to serve as a proxy for the
shape of the main deflector. Alignment of the critical curves indicates
an accurate reconstruction of the main deflector mass profile.

As shown in the top two rows of each figure, the realizations
that we accept simultaneously match the small-scale properties of

the deflection field constrained by the flux ratios and the large-
scale properties of the deflection field primarily constrained by the
imaging data. The bottom two rows of Figs 14–17 show examples
of realizations that match the observed image positions and flux
ratios, but which we reject based on a poor fit to the imaging data.
In the rejected lens models, a particular configuration of dark matter
haloes conspires with a large-scale deformation of the deflection
field to produce the correct flux ratios, but these configurations of
the lens model cannot reproduce the observed lensed arcs. These
figures provide a visual illustration of how incorporating imaging
data breaks degeneracies between large- and small-scale properties
of the lens model, isolating flux ratio perturbations caused by haloes
from large-scale deformations of the deflection field constrained by
the arcs.
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Figure 12. The inference on the macromodel parameters in Mock 23 in the CDM ground truth sample obtained from only the image positions and flux ratios
(black), from the image positions and imaging data (blue), and from the image positions, flux ratios, and imaging data (magenta).

Figs 14–17 also serve to aid in the interpretation of the likelihood
functions shown in Fig. 13, with Mock 6 providing a particularly clear
illustration of how perturbations by dark matter haloes manifest in
the likelihood. Closely examining the true multiplane convergence
map for Mock 6 in right panel of Fig. 6, a collection of dark matter
subhaloes and line-of-sight haloes appear in close proximity to image
A (the bottom-right image). The collective impact of these structures
imparts an ∼12 per cent perturbation to the magnification of this
image. To match this feature in the data, substructure models that
match the flux ratios in Mock 6 tend to have a single massive halo, or
a collection of low-mass haloes, perturbing image A. These haloes
appear prominently in the convergence maps shown in the centre
panels of Fig. 15.

Substructure realizations with haloes perturbing the images in
Mocks 6 and 23 occur more frequently in CDM than in WDM, and
thus the likelihood functions shown in Fig. 13 for these systems

punish models with fewer haloes. On the other hand, Mocks 4 and
11 have flux ratios consistent with those predicted by a smooth
lens model to within the measurement uncertainties. As such, the
substructure realizations that match the flux ratios for Mocks 4 and
11 tend to have fewer haloes than the dark matter models that match
the flux ratios in Mocks 6 and 23, as reflected in the likelihoods. The
likelihood function from the full sample of mock lenses results from
a product of the individual likelihoods, and is discussed in the next
section.

5.2 Inference on substructure properties from the full sample

Fig. 18 shows the joint inference on the normalization of the subhalo
mass function, 'sub, and the half-mode mass, mhm, obtained from
25 mock lenses. The black contours show the inference resulting
from applying the ray tracing methods presented by Gilman et al.
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Figure 13. The likelihood functions for the normalization of the subhalo mass function, 'sub, and the turnover scale of a WDM mass function, mhm, for Mocks
4, 6, 11, and 23 in the CDM ground truth sample. These likelihoods result from the down-selection on flux ratio and imaging data summary statistics described
in Section 2.2. The colour scale indicates relative likelihood between different points in parameter space.

(2019), which use only the image positions and flux ratios to
constrain the lens model and substructure properties. The magenta
contour in Fig. 18 shows the constraints resulting from applying
the methodology presented in Section 2, in which we use the
lensed arcs, image positions, and flux ratios to constrain the lens
model. Both distributions assume a flux ratio measurement precision
of 3 per cent. To make a direct comparison between these two
approaches and evaluate the relative improvement, we compute the
likelihood obtained from only the image positions and flux ratios
(black contours) using the same tolerance threshold ε to down-select
on the flux ratio summary statistics when computing the magenta
constraints, which make use of all available data.

In terms of credible intervals, incorporating imaging data improves
the 95 per cent exclusion level by 0.5 dex; with only image positions
and flux ratios, we find log10 mhm < 107.7 M#, and log10 mhm <

107.2 M# when incorporating imaging data with a log-uniform prior
on mhm ∈ U (4, 10). We can also quantify the improvement gained
by incorporating imaging data in terms of relative likelihoods, which
do not depend on the prior. First, we define a region of parameter
space associated with CDM as having 4.0 < log10 mhm/M# < 4.5,
and regions of parameter space associated with WDM as bins in
log10 mhm with a width of 0.5 dex between 107 and 109 M#. We
then compute the relative likelihood between CDM and WDM as the
volume of the posterior with log10 mhm < 4.5 to the volume of the
posterior with log10 mhm in each bin.

Table 1 summarizes the inferred likelihood ratios. In the ‘coldest’
WDM bin with mhm in the range of 107−107.5 M#, incorporating con-
straints from the lensed arcs improves the likelihood ratios punishing

WDM models by a factor of 1.3. At scales of mhm ∈ 107.5−108 M#,
adding imaging data strengthens the likelihood ratios by a factor of
2.5, eventually reaching a factor of 13.1 for mhm ∈ 108.5−109 M#.
The likelihood function shrinks the volume of the posterior dis-
tribution relative to the prior volume by a factor of 4 using only
image positions and flux ratios, and by a factor of 7 using the image
positions, flux ratios, and imaging data.

Figs 19 and 20 show the inference on 25 lenses created with
a WDM ground truth mhm = 107.5 M# using the lensed arcs and
flux ratios. Fig. 19 assumes a flux ratio measurement precision of 1
per cent, and Fig. 20 assumes a flux ratio measurement uncertainty of
3 per cent. The black distribution corresponds to a log-uniform prior
on the amplitude of the subhalo mass function, and the magenta
results from assuming a prior on the amplitude of the subhalo mass
function log10 'sub = −1.4 ± 0.2.

Our inference method recovers the input values for these param-
eters, even after marginalizing over the main deflector mass profile
including third- and fourth-order multipole perturbations, the size
of the warm dust region surrounding the lensed quasar, and the
lensed quasar host galaxy light. The covariance between 'sub and
mhm manifests more prominently for these inferences than for the
CDM ground truth (Fig. 18), but incorporating an informative prior
for the amplitude of the subhalo mass function can aid in breaking
this covariance. In practice, such a prior could come from N-body
simulations or semi-analytical models (e.g. Benson 2012; Fiacconi
et al. 2016; Jiang et al. 2021; Mansfield et al. 2024; Nadler et al.
2023a; Du et al. 2024), which make increasingly robust predictions
for the number of main deflector subhaloes that appear in projection
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Figure 14. Reconstructed lensed image (left), substructure convergence (centre), and normalized residual map from the reconstructed imaging data of Mock
4 in the CDM ground truth sample. The top two rows depict realizations accepted based on matching the image positions, flux ratios, and imaging data. The
bottom rows show examples of systems that match the flux ratios, but which we reject due to a poor fit to the imaging data. The green (black) numbers and
curves show the true (model-predicted) flux ratios and critical curves, respectively.
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Figure 15. The same as Fig. 14, but with four example realizations generated for Mock 6 in the CDM ground truth sample. Simultaneously reproducing the
flux ratios and imaging data in this system requires dark matter substructure near image A. As shown by the rejected lens model configuration in the third row,
incorporating imaging data allows us to rule out lens model configurations that match the flux ratios through large-scale deformation of the lens mass profile,
isolating the effects of substructure on these data.
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Figure 16. The same as Fig. 14, but with four example realizations generated for Mock 11 in the CDM ground truth sample. This system has flux ratios
consistent with those predicted by a smooth lens model, so accepted realizations are more likely to have fewer haloes. As seen in the bottom row, the information
encoded by the imaging data allows us to rule out lens model configurations that match the flux ratios through a combination of substructure and large-scale
deformation of the lens mass profile.
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Figure 17. The same as Fig. 14, but with four example realizations generated for Mock 23 in the CDM ground truth sample. Proposed lens models accepted
for this system tend to have substructure perturbing image B.
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Figure 18. The posterior distribution for 'sub and mhm obtained from modelling only image positions and flux ratios (black), and image positions, flux ratios,
and imaging data (magenta). These posteriors are marginalized over nuisance parameters that include the mass profile of the main deflector, including multipole
moments a3 and a4, the finite size of the quasar emission region, and the surface brightness of the lensed quasar host galaxy. Black and magenta vertical bars
in the marginal likelihood for mhm correspond to 95 per cent exclusion limits. The red crosshairs indicate the ground truth used to create the simulated data,
and the vertical lines in the marginal likelihood for mhm correspond to 95 per cent exclusion limits. For visualization, we have marked the CDM ground truth
mhm = 0 as mhm = 104.2 M#. The inference assumes flux ratio measurement precision of 3 per cent and astrometric precision of 0.005 mas.

Table 1. Summary of WDM constraints.

Data set used Likelihood ratio CDM:WDM Likelihood ratio CDM:WDM Likelihood ratio CDM:WDM Likelihood ratio CDM:WDM
7.0 < log10 mhm/M# < 7.5 7.5 < log10 mhm/M# < 8.0 8.0 < log10 mhm/M# < 8.5 8.5 < log10 mhm/M# < 9.0

Image positions and flux ratios 3:1 4:1 9:1 23:1
Image positions, flux ratios,
and imaging data

4:1 10:1 50:1 301:1

near the Einstein radius in typical host haloes of ∼1013 M#. Alter-
natively, a prior on the amplitude of the subhalo mass function could
come from measurements of the halo mass function in lenses from
gravitational imaging (e.g. Vegetti et al. 2014; Hezaveh et al. 2016;
He et al. 2022; Wagner-Carena et al. 2023). The marginal likelihood
of mhm excludes CDM for the posteriors that assume a prior on 'sub,

with log10 mhm/M# > 6.7 and log10 mhm/M# > 5.2 for flux ratio
measurement uncertainties of 1 and 3 per cent, respectively.

Comparing Figs 19 and 20, the inference on WDM parameters
is particularly sensitive to the measurement uncertainty in the flux
ratios. The systems observed by JWST (Nierenberg et al. 2024) have
typical uncertainties of 3 per cent, but we have included the inference
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Figure 19. The joint posterior on the normalization of the subhalo mass
function 'sub and the half-mode mass mhm for a simulated data set with a
WDM ground truth mhm = 107.5 M#. The posterior results from flux ratio
measurement uncertainties of 1 per cent. Black contours show the posterior
with a log-uniform prior on 'sub, and magenta contours show the result of
incorporating a Gaussian prior on 'sub centred on the ground truth value of
log10 'sub = −1.4 with a width of 0.2 dex. As in Fig. 18, contours correspond
to 68 and 95 per cent credible intervals, the red crosshairs mark the input
ground truth, and the vertical bars in the mhm marginal likelihood represent
95 per cent exclusion limits.

Figure 20. The same as Fig. 19, but assuming flux ratio measurement
uncertainties of 3 per cent.

assuming 1 per cent uncertainties to demonstrate that our inference
methodology can recover input ground truth with sufficient mea-
surement precision. The constraints obtained assuming 1 per cent
precision suggest that a larger sample of lenses with 3 per cent
uncertainties could yield a statistically significant constraint on
WDM models with a turnover of mhm ∼ 3 × 107 M#.

6 C O N C L U S I O N S

We present a self-consistent formalism to jointly model lensed image
positions, flux ratios, and extended lensed arcs in strong lens systems
comprised of a multiply imaged quasar and extended emission from
a background galaxy. To address the computational challenge that
has precluded the joint reconstruction of flux ratios and lensed arcs
to date, we develop an approximation scheme for full multiplane ray
tracing. To validate the methodology, we test it on 25 simulated strong
lens systems to constrain a fiduciary WDM model with simulated data
sets prepared assuming CDM. We assume that observations of lensed
arcs come from the HST, and flux ratios from the warm dust region
observed by JWST with measurement uncertainties of 3 per cent. Our
simulations account for finite source size effects in the calculation of
image magnifications, and we marginalize over the unknown source
size for each system. The simulated lenses include a complex source
morphology in the form of a spiral galaxy, and deviations from an
elliptical symmetry in the main lens mass profile parametrized by
m = 3 and m = 4 multipole terms. As a point of comparison for the
new lens modelling techniques we present, we analyse the same set
of 25 mock lenses using the lens modelling methods presented by
Gilman et al. (2019), which use only image positions and flux ratios
to constrain the lens mass profile and substructure properties. Our
main results are summarized as follows:

(i) Incorporating lensed arcs leads to stronger constraints on the
free-streaming length of WDM than analyses that use only image
positions and flux ratios to constrain the lens model. The 95 per cent
exclusion limit on the half-model mass mhm improves by 0.5 dex.
The relative likelihood of CDM to WDM improves by factors of 1.3,
2.5, 5.6, and 13.1 for WDM models with mass function turnovers
of mhm ∈

[
107−107.5 M#

]
,
[
107.5−108.0 M#

]
,
[
108.0−108.5 M#

]
, and[

108.5−109.0 M#
]
, respectively, and the posterior volume shrinks by a

factor of 1.8. In Section 5.1, we show that this additional constraining
power comes from breaking degeneracies between large-scale defor-
mation of the deflection field, which we constrain with the lensed
arcs, and small-scale perturbation to image magnifications by dark
matter haloes.

(ii) Our method can recover the free-streaming cut-off in a WDM
mass function, although the ability to detect a WDM cut-off near
107 M# requires measurement precision of 1 per cent, or a larger
sample of lenses with both flux ratio measurements and lensed
arcs than the 25 considered here. Theoretically motivated priors
for the amplitude of the subhalo mass function can aid in breaking
covariance between the number of subhaloes and the free-streaming
cut-off.

(iii) The presence of multipole perturbations in the lens mass
profile, provided we also include these terms in the lens models used
to analyse data, does not incur a detectable source of systematic bias
in inferred substructure properties when only image positions and
flux ratios are used to constrain the lens model. Thus, we can apply
the methods presented by Gilman et al. (2019) to model quadruply
imaged quasars without prominent lensed arcs.

The methodology we present can be applied to any dark matter
model that predicts the form of the halo mass function and halo
density profiles. For example, in SIDM theories haloes can undergo
core collapse, a process that significantly increases their central
density and therefore their lensing efficiency (Gilman et al. 2021,
2023; Minor et al. 2021; Yang & Yu 2021; Nadler et al. 2023b).
In fuzzy dark matter models, wave interference effects produce
density fluctuations in the lens mass profile that impact both flux
ratios and lensed arcs (Laroche et al. 2022; Powell et al. 2023). In
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terms of a direct test of a key prediction of CDM, incorporating
constraints from lensed arcs increases sensitivity to perturbation by
low-mass substructure, as indicated by the stronger constraints on
mass function turnovers on scales below 107.5 M#. This increased
sensitivity will aid in pushing constraints from strong lensing to
scales below the threshold of galaxy formation, to scales ∼107 M#
and below.

To test the methods described in this paper, we have made various
simplifying assumptions when creating the simulated data sets and
in the modelling of dark matter substructure. First, we have assumed
perfect knowledge of the PSF when reconstructing the imaging
data. In practice, one must simultaneously reconstruct the PSF with
the lensed image and source. We can easily incorporate the PSF
reconstruction in our analysis when analysing real data. Secondly, we
have made several simplifying assumptions regarding the dark matter
substructure model, including perfect knowledge of the amplitude
of the line-of-sight halo mass function and logarithmic slope of
the subhalo mass function. Improved treatments of the substructure
models based on the semi-analytical model GALACTICUS are being
developed for use in forthcoming analyses, but these models were
not developed at the time we created the simulated data used in this
work.10 We expect that an improved treatment of the tidal evolution of
subhaloes will lead to stronger constraints on dark matter models, but
it does not affect our conclusions regarding the relative improvement
from incorporating constraints from lensed arcs.

The number of mock lenses we have analysed in this work is
partially motivated by the number of strong lens systems for which
we currently have archival HST imaging data of lensed arcs and
flux ratio measurements suitable for a millilensing analysis of dark
substructure. Suitable flux ratios for millilensing must come from
a region surrounding the background quasar spatially extended by
!1 pc such that it becomes immune to contamination from stellar
microlensing. Such measurements can come from observations of
nuclear narrow-line emission from Keck and the HST (Nierenberg
et al. 2014, 2017, 2020), radio measurements from very long baseline
interferometry (Koopmans et al. 2004; McKean et al. 2007; Hsueh
et al. 2020), or emission from the warm dust region measured with
JWST (Nierenberg et al. 2024). The synthesis of strong lensing flux
ratios and extended lensed arcs, in combination with these various
data sets from ground- and space-based observatories, advances the
observational frontier of cosmic probes of dark matter physics to
uncharted territory.
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APPENDI X A: THE I MAGI NG DATA
L I K E L I H O O D

As discussed in Section 2.2, our strategy for incorporating the
imaging data likelihood is one in which the imaging data alone
do not constrain dark matter hyper-parameters. This requirement
differs from the likelihood function relevant for gravitational imaging
of individual haloes (e.g. Vegetti et al. 2014; Powell et al. 2022,
2023), in which one explicitly uses imaging data to characterize
the mass and position of a dark substructure. Obtaining a reliable
likelihood of substructure properties from the imaging data requires
a careful calibration of the sensitivity function of the lensed arc
and various systematics associated with the lens and source light
models (Vegetti et al. 2014; Cao et al. 2022; Despali et al. 2022; He
et al. 2023; O’Riordan & Vegetti 2024). The strategies to calibrate
the sensitivity function and contend with systematic uncertainties in
current gravitational imaging studies with single-halo models do not
necessarily carry over to our analysis methods because we perform
the lens mass and source light reconstruction with full populations
of subhaloes and line-of-sight haloes.

Fig. A1 shows the imaging data likelihoods derived in our analysis.
The four panels show the distribution of log-likelihoods derived
from fits to the imaging data for the four case study mock lenses.
Vertical bars represent varying degrees of knowledge regarding the
true population of haloes and the true structure of the lensed source,
as indicated by the figure legend. The black and red distributions
show the log-likelihoods obtained for WDM realizations (mhm >

108 M#) and CDM-like realizations (mhm < 106 M#) that match the
flux ratios, as indicated by the tolerance threshold for acceptance
based on the flux ratio summary statistic S (equation 4).

Several features apparent in Fig. A1 dissuade us from using
the imaging data likelihood to directly constrain the properties of
substructure. First, we see that randomly generated populations of
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Figure A1. The log-likelihood of the imaging data inferred for the four mock case study lenses after down-selecting on realizations that fit the observed flux
ratios, as indicated by the threshold applied to the S statistic in each panel. The grey and red histograms show values of the log-likelihood for realizations with
mhm above 108 M# and below 106 M#, respectively. Vertical bars represent the log-likelihoods from fits to the mock data when portions of the lens and source
light model are known perfectly. Green vertical bars represent the log-likelihood obtained with perfect knowledge of the source. Black vertical bars represent the
log-likelihood computed with imperfect knowledge of the source. Solid lines correspond to the log-likelihood obtained with knowledge of the ‘true’ population
of substructure, while dashed lines correspond to a smooth lens model fitted to the mock lens.

haloes, i.e. the ‘wrong’ substructure models, sometimes result in
better fits to the imaging data than the ‘correct’ population of haloes
when we have imperfect knowledge of the source. Secondly, models
with fewer haloes (shown in red) systematically improve the imaging
data likelihood relative to models with many haloes (black). Both of
these features could arise from degeneracies between small-scale
structure in the lens mass distribution and small-scale features in
the source light. These considerations motivate the inclusion of the
importance sampling weights in equation (6), which one can interpret
as an adjustment of the prior volume associated with the source light
model such that all dark matter models are equally likely when
constrained by imaging data alone.

We have experimented with re-running the analysis for some mock
systems with shapelets having nmax = 20. This drives the χ2

DOF to
values "1, which implies a certain degree of overfitting. However,
the systematic bias in which models with fewer haloes are preferred
by the imaging data persists, and we do not obtain significantly tighter
constraints on the main deflector mass profile.

APPEN D IX B: THE EFFECT OF MULTIPO LES
O N S U B S T RU C T U R E C O N S T R A I N T S

Shortly after this work appeared, Cohen et al. (2024) (hereafter
C24) claimed that the presence of multipole perturbations to galaxy

density profiles – in particular, the m = 3 and m = 4 moments that
we considered in this work – preclude inferences of substructure
properties from quadruply imaged quasars. C24 draw this conclusion
from a series of lens modelling experiments in which they fit a
model that includes only m = 3 and m = 4 multipole perturbations
to the image positions and flux ratios of mock lenses perturbed by
substructure. C24 speculate that a minor difference in the modelling
of the position angle of the m = 4 term, φ4, explains the discrepancy
between their findings and the constraints on substructure properties
we obtain from analysing only the image positions and flux ratios of
25 mock lenses (shown by the black posterior in Fig. 18); we fix φ4

to the position angle of the underlying EPL profile, while C24 allow
it to vary freely.

Using the methods discussed in this paper, we can investigate
the claims by C24 regarding the effect of multipole perturbations in
substructure inferences. To begin, we repeat the inference presented
in Section 5 assigning the same degree of model flexibility to the
multipole terms as advocated by C24. Specifically, we sample a3,
a4, and φ3 from the priors described in Section 4.2, but now allow
φ4 to vary freely between −π/8 and π/8. Fig. B1 shows the result
of analysing the 25 mock lenses with a CDM ground truth using the
more flexible prior on φ4. We emphasize that the mocks in our sample
have non-zero amplitudes of a3 and a4, and thus our simulations do
not have priors centred on the ground truth.
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Figure B1. The posterior distribution for 'sub and mhm obtained from
modelling only image positions and flux ratios for the 25 lenses created with
a CDM ground truth. The black posterior shows the result of analysing the
mock data while allowing the orientation of the m = 4 multipole perturbation
to vary freely, and the blue posterior shows the effect of adding importance
weights that enforce alignment with the position angle of the underlying EPL
profile.

After marginalizing over a3, a4, φ3, and φ4, we obtain the
black posterior distribution shown in Fig. B1. The blue posterior
distribution in Fig. B1 includes importance sampling weights that
enforce alignment between the m = 4 term and the underlying EPL
profile to isolate the effect of a freely varying φ4 angle on the
constraints. Assigning the same degree of flexibility to the lens model
as advocated by C24, we see no evidence for a systematic bias in the
inferred model parameters, or a degeneracy between multipoles and
haloes that would preclude the constraints shown in Fig. B1.

To understand these results in the context of the claims by C24, we
note that for most problems there exists some other model besides
the one under consideration that can fit the data set. C24 consider
a model in which only multipoles can resolve flux ratio anomalies,
and compute the required properties of the multipole terms in this
scenario. However, to conclude that models with substructure are
indistinguishable from lens models that include only multipoles,
one must actually calculate the likelihood function and demonstrate
that the data cannot distinguish the models statistically when both
dark matter haloes and multipole terms are present in the lens
model. C24 fundamentally cannot make statements regarding relative
likelihoods, and therefore the constraining power of the data, because
they do not include substructure in the model they use to analyse
mock data.

Models including substructure are strongly preferred from the
perspective of Bayesian model selection, in both our sample of mock
lenses and the four cases considered by C24. For the 25 mocks in this
paper and the 4 cases generated by C24, we generate 600 000 possible
lens models that include both dark matter substructure and multipole
perturbations, and 600 000 lens models that include only multipole
perturbations. We draw samples of a3, a4, φ3, and φ4 from the same
prior distributions for each calculation, with the amplitudes and
orientations of these terms allowed to vary freely, and we assign the

Figure B2. The posterior odds’ ratios, or Bayes factors (equation B1), for
the 25 mock lenses in our sample (black histogram), and the 4 mock lenses
considered by C24 (coloured vertical bars). A number greater than 1 indicates
a Bayesian preference for a model that includes dark matter substructure and
multipole perturbations, while a number less than 1 indicates that a model
with only multipoles is preferred. The dashed grey vertical bar marks a Bayes
factor of 1.

same priors for 'sub and mhm as discussed in Section 4.1. For the 29
systems in consideration, we perform a Bayesian model comparison
by evaluating the posterior odds given the image positions and flux
ratios:

p
(
M1|O img, O f

)

p
(
M2|O img, O f

) = p (M1)
p (M2)

L
(

O img, O f |M1
)

L
(

O img, O f |M2
) . (B1)

Here, M1 represents the model that includes both substructure
and multipoles, and M2 represents the model that only includes
multipoles. The first term on the right represents the ratio of our prior
beliefs regarding the probability of M1 and M2, and the second term
is the Bayes factor. For this test, we will ignore the multiple lines of
evidence pointing towards the existence of dark matter substructure
and assume that both models are equally likely. We can approximate
the Bayes factor from the number of accepted samples generated
under the ABC approach outlined in Section 2. We use a stringent
acceptance threshold of ε < 0.01 for these calculations to match the
flux ratios precisely.

Fig. B2 shows the distribution of the posterior odds for each
mock lens, with numbers greater than 1 indicating that a model
with substructure and multipoles is preferred relative to a model that
only includes multipoles. The 25 mocks we generate with a CDM
ground truth are represented by the black histogram, and the odds
for the 4 cases considered by C24 are marked with vertical bars. One
in four of the mocks considered by C24 exhibits a notable Bayesian
preference (odds > 2) for substructure in the lens model, compared
with one in five of the mocks we generate. The 4 mocks considered
by C24 have a joint Bayes factor (the product of the individual Bayes
factors) of 26, and for the 25 mocks we consider with a3, a4, φ3, and
φ4 allowed to vary freely, we obtain a joint Bayes factor of 1140.
From Fig. B2, we conclude that the mock lenses considered by C24,
which they use to support the claim that quadruply imaged quasars
cannot constrain substructure properties, actually exhibit a Bayesian
preference for substructure in the lens model consistent with what
one expects in CDM.

The reason we can constrain substructure properties, even with
multipoles included in the lens model with the same degree of
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flexibility as advocated by C24, is that models including substructure
reproduce the observed data more frequently than lens models
that include only multipoles. As a result, the ‘multipoles-only’
explanation for the data is heavily disfavoured from a Bayesian
standpoint. Accounting for lens models that include both substructure
and multipole terms requires the careful evaluation of the integral in
equation (2), as outlined in this paper and in previous work (Gilman

et al. 2019, 2020). These tests emphasize the importance of a rigorous
statistical treatment of the problem in order to validate statements
regarding the constraining power of certain data sets over different
models, and the importance of validating modelling assumptions
through tests on realistic data sets.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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