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Abstract
Despite considerable research on reproductive timing, factors influencing intraspecific variation in gestation length in wild

mammals have received limited attention, largely due to a lack of high-resolution data. We examined potential drivers of
gestation length variation in a wild population of North American red squirrels (Tamiasciurus hudsonicus Erxleben, 1777) in
Yukon, Canada. Drawing on 27 years of conception and parturition data, we found that gestation length was highly conserved,
with minimal variation (35.4 ± 1.49 days; mean ± standard deviation). Gestation length was una(ected by maternal age, litter
size, or litter sex ratio. Likewise, the anticipation of an upcoming food pulse, caused by synchronous conifer seed masting,
had no statistically significant influence on gestation length. This finding stands in contrast to other reproductive traits in
red squirrels, which are known to shift in response to food pulses. Overall, our results suggest that gestation length in red
squirrels is bu(ered against environmental variability, likely due to stabilizing selection or strong heritability.
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Résumé
Malgré les nombreuses études sur le calendrier de la reproduction, les facteurs influençant la variation intraspécifique de

la durée de gestation chez les mammifères ont reçu peu d’attention, en grande partie en raison du manque de données à
haute résolution. Nous avons examiné les facteurs potentiels pouvant expliquer la variation de la durée de gestation dans une
population d’écureuils roux nord-américains (Tamiasciurus hudsonicus Erxleben, 1777) au Yukon, Canada. À partir de 27 années
de données sur les conceptions et les mises bas, nous avons constaté que la durée de gestation était hautement conservée,
avec très peu de variation (35,4 ± 1,49 jours; moyenne ± écart-type). La durée de gestation n’était pas influencée par l’âge
de la mère, la taille de la portée, ou le ratio des sexes. De même, l’anticipation d’un pic alimentaire à venir, causé par une
surproduction synchronisée de graines de conifères, n’avait aucun e(et statistiquement significatif sur la durée de gestation.
Ce résultat contraste avec d’autres traits reproducteurs chez l’écureuil roux, qui sont connus pour réagir aux pics alimentaires.
Dans l’ensemble, nos résultats suggèrent que la durée de gestation chez l’écureuil roux est insensible aux fluctuations envi-
ronnementales, probablement en raison d’une sélection stabilisatrice ou d’une forte héritabilité. [Ceci est une traduction fournie
par l’auteur du résumé en anglais.]

Mots-clés : histoire de vie, investissement, progéniture, reproduction, ressource, rongeur

Introduction
Gestation must be completed successfully if a female mam-

mal is to have any reproductive success, making length of the
gestational period a key component of mammalian reproduc-
tion. Gestation length has been widely studied in domestic
mammals (e.g., Kennedy and Moxley 1978; Foote 1981; Heck

et al. 2017) due to its economic value in predicting birth dates
and managing parturition (Bourdon and Brinks 1982). How-
ever, in wild populations, tracking exact conception dates
is di+cult (Berger 1992; Clements et al. 2010), and reliably
monitoring females poses additional challenges, making ges-
tation length rarely documented in wild mammals. Across a

Can. J. Zool. 103: 1–7 (2025) | dx.doi.org/10.1139/cjz-2025-0075 1

C
an

. J
. Z

oo
l. 

D
ow

nl
oa

de
d 

fr
om

 c
dn

sc
ie

nc
ep

ub
.c

om
 b

y 
U

ni
ve

rs
ity

 o
f C

ol
or

ad
o 

Li
br

ar
ie

s o
n 

12
/2

6/
25

https://orcid.org/0009-0002-3789-9059
https://orcid.org/0000-0001-6555-8425
https://orcid.org/0000-0001-7323-2572
https://orcid.org/0000-0002-3058-265X
https://orcid.org/0000-0001-6317-038X
https://orcid.org/0000-0003-0849-7181
https://orcid.org/0000-0002-0972-6903
mailto:aprilmartinig@hotmail.com
http://dx.doi.org/10.1139/cjz-2025-0075


Canadian Science Publishing

2 Can. J. Zool. 103: 1–7 (2025) | dx.doi.org/10.1139/cjz-2025-0075

broad range of species, detectable patterns exist between es-
timated gestation length and other mammalian life history
traits, such as body size and lifespan (Danis and Rokas 2024).
However, the factors influencing variation in gestation length
within species have received comparatively less attention in
studies of life history evolution.

While gestation is only one component of the reproduc-
tive period in mammals, it plays a critical role in shaping
o(spring development before birth. Some authors have ar-
gued that lactation is more energetically demanding than
gestation, particularly in small mammals (Gittleman and
Thompson 1988; Kenagy et al. 1989). However, gestation rep-
resents the non-negotiable minimum maternal investment——
completion is essential for reproductive success (Bronson
1989). Unlike lactation, gestation length in wild populations
is a tightly regulated and conserved phase within species
(Michener 1980; Holand et al. 2005), although some vari-
ability exists (e.g., Racey 1981; Weller et al. 2023). Gestation
variation is especially true for heterothermic bats that use
torpor in response to adverse conditions (Fjelldal and van
der Kooij 2024; Zukal et al. 2024). Intraspecific variation in
gestation length, when present, is often linked to specific
biological factors. Reproductive senescence, or age-related
changes, can influence gestation length, with older females
often having longer pregnancies (Emlen 1970; Lemaître et
al. 2020). Younger females may also experience longer ges-
tation as they balance trade-o(s between growth and re-
production (Descamps et al. 2007). In species with multiple
o(spring, gestation length may increase with larger litters
(Huber et al. 2001) or male-biased litters due to the higher
energetic demands of male o(spring (sensu Clutton-Brock et
al. 1982; Mysterud et al. 2009). Similar to other reproduc-
tive traits (Kiltie 1982), gestation length can fluctuate with
food availability, as seen in white-tailed deer (Odocoileus vir-
ginianus Gmelin, 1877; Verme 1965), horses (Equus caballus
Linnaeus, 1758; Howell and Rollins 1951), and sheep (Ovis
aries Linnaeus, 1758; Alexander 1956). Variation in gestation
length may serve as an adaptive mechanism to optimize o(-
spring survival in changing environments. Few hypotheses
address the causes of variation in gestation length in wild
mammals. One hypothesis suggests that gestation in large,
gregarious mammals may be shortened and synchronized
when maternal body condition is good (Berger 1992). How-
ever, hypotheses specifically addressing small mammals are
nonexistent.

Here we focus on gestation length as a key axis of ma-
ternal investment and reproductive timing in a small wild
mammal, North American red squirrels (Tamiasciurus hudson-
icus Erxleben, 1777); hereafter “red squirrels”. We used data
spanning 27 years from a population in Yukon, Canada. Red
squirrels are an ideal species to study gestation because we
are able to monitor pregnancies from conception through
parturition with high resolution, while tracking the local
conditions experienced by females during this time on their
0.2–0.5 ha territories (Price et al. 1986).

Red squirrels have a relatively long lifespan when com-
pared to other small rodents (3.53 ± 0.13 years (mean ± stan-
dard deviation (SD)), median 3.5 years, maximum of 9 years
(McAdam et al. 2007; Petrullo et al. 2024)). Females can breed

up to age 7 years (Descamps et al. 2008). However, after
age 5 years, red squirrels experience the most intense ef-
fects of senescence, which a(ect many traits, including re-
production, body mass, and food cache size (Descamps et al.
2007, 2008; Wishart 2023). In our study population, mating
typically commences in late January to mid-February (Lane
et al. 2007), although females can enter oestrus as late as
April or May (Dantzer et al. 2020). On average, females have
3.02 ± 0.71 o(spring per litter (McAdam et al. 2007). Histor-
ically, gestation length was estimated to be 40 days in this
species, based on the assumption that it would be shorter
than the 44-day average for the larger gray squirrel (Sciu-
rus carolinensis Linnaeus, 1766; Hamilton 1939). Published es-
timates from both wild and captive populations place ges-
tation length between 31 and 35 days (Prescott and Ferron
1978; Lair 1985). Subsequent studies, including ours, have
used 35 days as the standard estimate (e.g., Lane et al. 2008,
2009).

Red squirrel reproductive timing is closely linked to the
cone masting of white spruce (Picea glauca (Moench) Voss;
Williams et al. 2014), a synchronised but irregular process
characterised by the production of large quantities of seeds
(Nienstaedt and Zasada 1990). White spruce cone matura-
tion occurs in the autumn, triggering red squirrels to en-
gage in intensive collection of these cones, their primary
food source (Fletcher et al. 2010). Years of high cone pro-
duction, crucial for building food caches, are interspersed
with periods of low cone yields, making red squirrels heav-
ily reliant on the reserves stored during previous spruce mast
years (Haines et al. 2022). In anticipation of an autumn spruce
mast, selection favours increased reproductive output by fe-
male red squirrels; larger litters are seen, second litters may
be attempted, and more yearling females breed (Boutin et
al. 2006; McAdam et al. 2019; Petrullo et al. 2023). Given
the documented variation in gestation length in this species
(range = 29–39 days, see results), we hypothesized that reduc-
ing gestation length during spruce mast years might serve
as a mechanism to increase o(spring production. For in-
stance, females can be both pregnant and lactating at the
same time in mast years, as seen in o(spring overlap of both
the North American red squirrel (Boutin et al. 2006; McAdam
et al. 2007) and the European red squirrel (Sciurus vulgaris
Linnaeus, 1758; Selonen et al. 2015). Shortening the gesta-
tion period could lead to a shorter inter-birth interval, as
in wild chimpanzees (Feldblum et al. 2022). Second litters
do pose challenges because females must balance lactation
with caching of spruce cones late in the season (Archibald
2011). A shorter gestation period would minimize this
overlap.

Given this natural history, our objective was to identify the
factors driving variation in gestation length in female red
squirrels. Based on empirical evidence from other species, we
predicted a longer gestation when females: (1) were younger
or older (e.g., Emlen 1970; Lemaître et al. 2020); (2) had larger
litters (e.g., Huber et al. 2001); (3) produced male-biased lit-
ters (sensu Clutton-Brock et al. 1982; Mysterud et al. 2009);
or (4) conceived in a nonspruce mast year (sensu Boutin et al.
2006; Williams et al. 2014; McAdam et al. 2019; Petrullo et al.
2023).
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Materials and methods

Ethics statement
This project was approved by the University of Alberta

(Animal Care Permit AUP000000028) and the Yukon Gov-
ernment’s Department of Tourism and Culture (Yukon Sci-
ence and Explorers Permit 23-05S&E, 22-08S&E, 22-07S&E,
21-16S&E, 21-11S&E, 20-11S&E, 19-06S&E, 18-08S&E, 17-
13S&E, 16-09S&E, 15-07S&E, 14-07S&E, 13-09S&E, 12-09S&E,
11-04S&E, 10-06S&E, 09-09S&E, 08-03S&E) and Department of
Environment (Wildlife Research Permit 368).

Study area
We collected data from seven study areas near Kluane Lake

(61◦N, 138◦W) in Yukon, Canada, between 1995 and 2022.
To maximise sample size, we included gestation length data
from both control and experimentally manipulated study ar-
eas. Three study areas were part of food addition experiments
conducted between 2004–2017, 2005–2011, and 2006–2012.
Between 2015 and 2022, data also included experimental glu-
cocorticoid manipulations at two study areas. Over our study
period, six spruce mast events occurred, on average every
4.8 ± 1.3 years.

Data collection
We monitored a population of individually marked-female

red squirrels. Most individuals were tagged as juveniles in
their natal nests with permanent alphanumeric ear tags and
visual markers; immigrants were captured and tagged upon
arrival. We assumed unknown-age females were yearlings
based on body mass and nipple condition (Lane et al. 2010;
Martinig et al. 2020; full details in Supplementary Material).
We tracked females across the full gestational period by
maintaining a fully enumerated population and conducting
biannual censuses to monitor territory ownership, survival,
and reproductive status (Dantzer et al. 2020; Martinig et al.
2020).

Female red squirrels enter oestrus for ∼1 day during late
winter (Lane et al. 2007), and we recorded mating dates based
on observed copulations or mating chases. Opportunistic ob-
servations occurred throughout the study, and we conducted
systematic monitoring in 2003–2005 and 2008. We inferred
copulations based on vocalisations and underground pairing
durations (≥60 s; Lane et al. 2008; see Supplement Material
for protocols across years). To estimate gestation length, we
backdated birth dates based on pup mass at first nest entry
(McAdam et al. 2002) and determined the gestation period by
subtracting the mating chase date (i.e., date of conception)
from the birth date, to the nearest day. This adjustment likely
reduced variation in gestation length estimates by standardis-
ing the estimation of birth dates across individuals. Without
this adjustment, di(erences in the timing of first nest entry
(e.g., if pups were first observed at 2 vs. 5 days old) would
introduce additional noise, inflating the variance in gesta-
tion estimates due to inconsistent observational lag rather
than biological di(erences. Thus, the backdating procedure
improves comparability and precision in estimated gestation

lengths. At first nest entry, we recorded litter size, sex, and
pup mass, and used these data to calculate sex ratios.

Data analysis
We analysed gestation length (in days) using a Gaussian lin-

ear regression. Our final dataset included 174 litters from 160
females with observed mating chases. To account for among-
year variation not explained by measured covariates and the
nonindependence of repeated measurements of females, we
included year and maternal identity, respectively, as random
e(ects. We included maternal age (both linear and quadratic
terms to capture potential nonlinear e(ects), litter size, lit-
ter sex ratio, and their interaction as fixed e(ects. Although
the linear and quadratic terms for age were highly correlated
(as expected for polynomial terms) multicollinearity was as-
sessed and found to be negligible (see Supplemental Materi-
als). We also included treatment group (control, experimen-
tal, or food-supplemented), cone abundance from the previ-
ous autumn (see Supplemental Material for detailed method-
ology), and whether the pregnancy occurred prior to a spruce
mast (1 = spruce mast in autumn and 0 = no spruce mast in
autumn), as fixed e(ects. We mean-centred and standardised
numerical predictors within study area and year to facilitate
interpretation. We report means ± SD throughout unless oth-
erwise noted. We conducted all analyses in R, version 4.2.0
(R Development Core Team 2024; see Supplementary Mate-
rial for packages and full model details). We provide addi-
tional information on model interpretations, standardisation
procedures, and collinearity assessments in Supplemental
Material.

Results
Females had a mean gestation length of 35.4 ± 1.5 days (me-

dian = 35, range = 29–39, n = 160 females and 174 litters). Ma-
ternal age did not significantly a(ect gestation length (Fig. 1a;
Table S1), although yearling females had the shortest mean
gestation length (34.9 ± 1.18 days; n = 19 females and 19 lit-
ters). Females between 2 and 6 years old had similar gestation
lengths, with an overall mean of 35.4 ± 1.2 days. The longest
gestation lengths in our dataset were recorded for the two 7-
year-old females (37 and 38 days; n = 2 litters). Litter size and
composition (including the interaction term), experimental
manipulations, previous year’s cone abundance, and the oc-
currence of an upcoming spruce mast, had no significant ef-
fect on gestation length (Fig. 1b; Table S1). The marginal R2

was 0.12 and the conditional R2 was 0.34.

Discussion
Quantifying gestation length in wild populations is chal-

lenging due to the need for precise conception dates
(Clements et al. 2010) and detailed monitoring of known indi-
viduals. Consistent with findings in other species (Michener
1980; Holand et al. 2005), we found that red squirrels ex-
hibit relatively invariable gestation lengths, although a few
cases resulted in a large range around the mean. Maternal
age, litter size, litter sex ratio, previous or upcoming cone
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Fig. 1. (a) Sources of variation in gestation length (days; n = 160 females and 174 litters) for female North American red
squirrels. We mean-centred and standardised variables within study area and year prior to analysis. Numbers above estimates
are point estimates from a linear regression model (Gaussian with identity link) for fixed e(ects with bars indicating 95%
confidence intervals (CIs). We present full results in Table S1. (b) Gestation length (days) did not significantly change with
maternal age (years).
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abundance, and experimental manipulations had no signifi-
cant impact on gestation length.

Low variability in gestation length is common among wild
mammals (Michener 1980; Holand et al. 2005; but see Racey
(1981) regarding bats), and is considered a robust feature of
mammalian reproduction (Asher 2007). Although we are not
aware of any evidence for delayed implantation in red squir-
rels, this mechanism, observed in species such as mustelids,
can o(er reproductive timing flexibility and may help ex-
plain gestation variation in other taxa (Sandell 1990). For
females, the physiological costs of reproduction, including
impacts on survival and longevity (Millar 1977), make con-
sistent gestation periods advantageous by reducing negative
cascading e(ects on life history timing. Resource trade-o(s
among gestation, lactation, and rearing are finely tuned to
optimize both maternal and o(spring survival. In red squir-
rels, female survival is positively correlated with population
growth (McAdam et al. 2007), and changes in reproductive
traits, particularly those tied to generation time, can influ-
ence population dynamics (Gaillard et al. 2005). As such, sta-
bilizing selection likely acts strongly on gestation length,
maintaining it near an optimal duration for the species. The
limited intraspecific variation observed in red squirrels sug-
gests that gestation length is a highly conserved trait (Asher
2007), linked to both reproductive success and o(spring via-
bility (Danis and Rokas 2024).

Although adequate female body condition is one of the few
physiological requirements for pregnancy in many species
(Clauss et al. 2021), red squirrels rely on multiple food sources
to sustain reproduction (Fletcher et al. 2013). Ecologically, red
squirrels function as capital breeders, accumulating energy
in advance of reproduction. Yet, physiologically, they behave

more like income breeders, drawing from their cache to fuel
reproduction. During nonspruce mast years, red squirrels
survive by combining stored resources from previous spruce
mast events with newly acquired food (Dantzer et al. 2020).
Despite this reliance on cached resources, cache size does not
influence body mass (Wishart 2023), suggesting a resource
budgeting strategy that explains the lack of detectable e(ects
of resource abundance, whether past or present, on gestation
length. While interannual variation in regional food abun-
dance has population-wide e(ects (McAdam and Boutin 2003;
Boutin et al. 2006; Williams et al. 2014; Dantzer et al. 2020,
2022; Petrullo et al. 2023), it does not appear to extend to ges-
tation length.

None of the other variables we examined were signif-
icantly associated with gestation length. Previous studies
show that female red squirrel body mass and body compo-
sition have limited e(ects on reproduction (Humphries and
Boutin 1996). Energy-intensive factors, such as larger litters
or male-biased compositions, may not impose the same selec-
tive pressures on gestation length in red squirrels as they do
in other species (Huber et al. 2001; Mysterud et al. 2009). De-
spite experimental manipulation, females that experienced
food supplementation (Dantzer et al. 2022) or glucocorticoid
manipulations (Westrick et al. 2021) did not exhibit changes
in gestation length, further supporting the idea that gesta-
tion length is relatively stable in this species.

Regarding maternal age, yearlings and older females face
di(erent reproductive energy allocations (Descamps et al.
2007, 2008). Yearling females must balance growth and repro-
duction, as they are sexually mature but not yet fully grown
(Descamps et al. 2007). Approximately two thirds of yearling
females reproduce (McAdam et al. 2007), and those that do
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typically have higher-quality territories than their peers as a
result of an earlier birth date (Descamps et al. 2006). In con-
trast, older females experiencing senescence allocate more
energy toward reproductive success (Descamps et al. 2007).
The majority of females in our study were between 2 and 6
years old, limiting the sample sizes of yearlings and oldest
females, potentially masking any age-related e(ects on ges-
tation length. These life history trade-o(s across age classes
may partly explain the observed stability in gestation length
across the population.

Our findings underscore the stability of gestation length as
a life history trait, even in the face of population-wide vari-
ations in resource abundance that influence other reproduc-
tive traits in red squirrels. Neither individual-level factors nor
annual resource fluctuations significantly a(ected gestation
length in our study. Understanding how life history traits,
even those with low variability, respond to changing biotic
and environmental conditions is crucial for predicting the dy-
namic relationship between populations and their environ-
ments (Hantak et al. 2021).
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