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This article reviews artificial intelligence (AI) and machine learning (ML) approaches

for predicting transport behaviors of thermal energy carriers, mainly lattice vibrations

(phonons), in inorganic crystals. Traditional first principles approaches, namely density func-

tional theory (DFT) combined with the Boltzmann transport equation (BTE) (DFT+BTE),

provide accurate predictions but are computationally expensive and not feasible for handling

large-scale screening of unknown materials. State-of-the-art AI/ML methodologies provide

computationally efficient solutions by learning intricate structure-property relations, allowing

for fast calculations of phonon-related thermal properties at minimal computational expense.

We classify AI/ML methodologies into two groups: direct method, which directly predicts

properties like lattice thermal conductivity (κL) from structural descriptors or graphs, and

indirect method, which substitutes computationally demanding force evaluations in DFT

calculations with ML-predicted forces or interatomic force constants, thus retaining physical

interpretability. The recent developments in graph neural networks, machine learning

interatomic potentials, and data-driven feature engineering are discussed, highlighting

their scalability, accuracy, and applicability to a wide chemical space. The article also

outlines current challenges, including dataset quality, transferability, and integration with

high-throughput computational frameworks, and identifies future directions for AI/ML

accelerated thermal materials discovery.
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1. INTRODUCTION

Phonon (lattice vibration) and electron transport behavior influence the thermal properties

of inorganic crystal structures. Phonons are quasi-particles or quantized lattice excitations

that describe the collective motion of atoms. They not only carry atomic vibrational energy

while propagating through the crystal lattice but also act as the primary carriers of heat en-

ergy for semiconductors and insulators. According to the kinetic theory, the lattice thermal

conductivity (κL) of a crystalline material is expressed by κL = (1/3)CvVgl, where Cv

is the constant volume heat capacity, Vg is the average phonon group velocity, and l is the

average phonon mean free path (MFP).1

In semiconductors and insulators, phonons are the dominant contributors to thermal

conductivity, and their transport mechanisms are influenced by both lattice harmonic-

ity and anharmonicity, represented by the intrinsic phonon-phonon interactions. Phonon

transport in solids is also influenced by extrinsic phonon scatterings, such as defects,
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dimensionality [one-dimensional (1D), two-dimensional (2D), and three-dimensional

(3D)], length, interface, and grain boundaries.2 Important indicators for describing phonon

transport properties from the perspective of harmonicity and anharmonicity include phonon

mode, defined by frequency and wave-vector, phonon dispersions, specific heat, phonon

density of states (DOS), group velocity, scattering rate, MFP, and lifetime.1 Strong lat-

tice anharmonicity causes substantial phonon-phonon scattering in materials with intricate

crystal structures, frequently lowering thermal conductivity.2

Electrons, particularly in metals and metallic systems, also influence thermal con-

ductivity. Heat flow is facilitated by the electrons’ unrestricted movement inside the lat-

tice, which transfers energy when they collide with the lattice ions.3,4 Electron density

and scattering mechanisms determine the electron contribution to thermal conductivity,

which is essential in metals. Electron scattering brought on by lattice defects can increase

or decrease thermal conductivity.5 The interaction of phonons and electrons gives inor-

ganic crystals their thermal characteristics. Temperature and crystal structure are two vari-

ables affecting these carriers’ respective contributions. In materials with large electron and

phonon contributions, improving electron mobility while decreasing phonon scattering is

necessary to maximize thermal conductivity.6 Many cutting-edge technological applica-

tions rely on manipulating materials’ phonon transport, including thermoelectrics,7,8 su-

perconductors,9,10 energy conversion,11 thermal management,12 quantum computing,13,14

and photovoltaics.15,16 For instance, in order to maximize the dimensionless figure of merit

(ZT ), a measure used to evaluate the energy conversion efficiency of thermoelectric ma-

terials,17 phonon transport must be suppressed to ensure low thermal conductivity while

maintaining high electrical conductivity. High ZT values indicate better thermoelectric

performance or the material’s ability to convert heat into electricity more effectively.18,19

Similarly, minimizing phonon scattering is also vital in superconductors because electron

pairing, which is essential to the phenomenon of superconductivity, is facilitated by lattice

vibrations through the electron-phonon coupling mechanism.20

To characterize phonon transport in materials, experimental techniques such as X-

ray diffraction,21–23 infrared spectroscopy,24–26 Raman spectroscopy,27,28 inelastic neu-

tron scattering,29,30 and thermoreflectance thermal imaging31 have been used to measure

phonon transport properties but are limited in several ways. Isolating phonon contribution

from other heat carriers like electrons requires high precision, and techniques like Raman

spectroscopy and inelastic neutron scattering require expensive experimental setups and

are also limited in their application because they frequently require large, high-quality

single crystals.32 It is important to note that experimental measurements are susceptible

to external influences. Impurities, defects, and boundary conditions make it difficult for

experimentalists to obtain repeatable results.

Because of the complex structure of atomic interactions and lattice dynamics in materi-

als, phonon properties’ prediction is computationally fraught with difficulties.33 Both har-

monic and anharmonic interactions, which control phonon dispersion relations and scat-

tering mechanisms, respectively, must be thoroughly understood in order to simulate these

features accurately.34 It is challenging to create predictive models that can thoroughly

represent phonon transport activity across many materials due to the inherent complexity
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of these interactions. Traditional methods, including density functional theory (DFT), cou-

pled with the Boltzmann transport equation (BTE) calculations35–37 and molecular dynam-

ics (MD) simulations,37,38,40 have been utilized to predict phonon transport properties. Al-

though the DFT+BTE approach accurately predicts the phonon transport properties with-

out any arbitrary input parameters, it is computationally expensive and one must consider

different levels of phonon-phonon scattering explicitly, such as the three-phonon process

and four-phonon process. MD, on the other hand, naturally captures all orders of anhar-

monic effect and temperature dependency but lacks quantum accuracy, and the quality of

an MD simulation depends largely on the availability and accuracy of interatomic poten-

tials. Resolving mode resolved phonon transport information is another challenge for MD

simulation of phonon transport, which usually would require separate post-processing of

MD simulation results. Both methods face grand challenges when dealing with large-scale

unknown materials, in terms of computational efficiency (for DFT+BTE) and accuracy

(for MD).

Artificial intelligence (AI) and machine learning (ML) are promising substitutes for

these conventional methods. On the one hand, AI/ML models can be trained to map highly

nonlinear relationships between atomic structures and material’s phonon transport proper-

ties, and such models are usually called the direct method. The AI/ML models’ flexibility

enables them to efficiently handle the complexity and diversity inherent in phonon property

predictions, thereby overcoming DFT+BTE limitations,41 and therefore can considerably

decrease the computational requirements for phonon transport property predictions. On

the other hand, in the phonon transport workflow, AI/ML algorithms, such as machine

learning potentials (MLPs), can replace the computationally expensive DFT calculations

by producing predictions orders of magnitude faster than conventional techniques with

comparable accuracy. Such an approach is called the indirect method. This makes it pos-

sible to quickly assess material properties across large design spaces, which is essential

for the practical discovery of new materials.37 AI/ML-assisted MLPs can also replace the

critical part of the interatomic potentials in the MD simulations and thus can accelerate the

prediction of phonon transport properties of many new materials.

A few review papers have discussed the use of ML in materials science, with emphasis

on property prediction and materials discovery. Most reviews, however, either present a

broad overview of ML approaches across diverse materials properties,42–44 or focus on

specific applications such as bandgap prediction,45 formation energy,46 or mechanical

properties.47 Note that some papers have reviewed progress of ML applications in heat

transfer, which usually focus on continuum-level thermal transport research48,49 or a lim-

ited number of phonon transport studies using traditional ML.48,50,51 In contrast, our re-

view is dedicated to the comprehensive applications of ML techniques (both traditional and

advanced ML algorithms) for predicting phonon transport in inorganic crystals, where ac-

curate modeling remains computationally demanding. We provide a twofold perspective:

(i) direct models, in which ML directly maps crystal structures to thermal properties, and

(ii) indirect models, in which ML accelerates conventional workflows by predicting atomic

forces or interatomic force constants (IFCs). This framework structures the core of the re-

view and allows us to synthesize developments in both descriptor-based and graphic neural
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network (GNN)-based methods, as well as ML-interatomic potentials. We further exam-

ine model generalization, data scarcity, and inverse design, which are rarely emphasized

in earlier reviews. Together, these elements position our work as a timely and distinctive

contribution to the field.

As illustrated in the schematic overview presented in Fig. 1, this review will first exam-

ine the traditional computational methods for phonon transport properties prediction and

their inherent drawbacks, in particular from a high-throughput screening point of view.

We will then review the later developments in AI/ML models as an emerging alternative

in predicting the phonon transport properties, offering promising solutions to traditional

approaches’ inherent limitations in terms of computational cost, scalability, and accuracy,

paving the way for efficient properties prediction, thus accelerating the discovery of novel

materials with tailored thermal properties.

2. BRIEF SURVEY OF MAJOR TRADITIONAL COMPUTATIONAL

METHODS FOR PHONON TRANSPORT IN INORGANIC CRYSTALS

2.1 DFT+BTE Approach

DFT is a quantum mechanical computational technique used in physics and chemistry

to investigate the electronic structure of a many-body system. It is based on the first

principle (ab initio) calculations. It is an effective method for ascertaining ground-state

properties by using electron density instead of wavefunctions, thus reducing the comput-

ing complexities relative to the conventional many-body approach, which involves using

FIG. 1: Overview of the different approaches for predicting lattice thermal conductivity

(κL), including first principles methods and machine learning–based strategies
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Born–Oppenheimer approximations to solve the Schrödinger equation. The interaction of

the electrons with each other gives rise to the many-body problem Ĥψ = Eψ, where Ĥ
is Hamiltonian operator, ψ is the wave functional, and E is the energy of the system. The

Hohenberg–Kohn theorems provide the foundation for DFT, specifically, the first states

that the ground-state properties of a many-electron system are uniquely determined by the

electron density n(r), However, by minimizing the energy functionals E[n(r)], the second

theorem offers a variational principle for determining the ground-state electron density.52

These theorems reduce the dependency from the wavefunctions to the electron density,

thus simplifying the original many-body problem. The energy function is expressed as fol-

lows:52,53

E[n(r)] = Te[n(r)] + Vext[n(r)] + V H[n(r)] + Exc[n(r)] (1)

where Te[n(r)] is the kinetic energy of a noninteracting electron gas; Vext[n(r)] is the

external potential energy due to nuclei; V H[n(r)] is the Hartree (Coulomb) interaction

energy; and Exc[n(r)] is the exchange-correlation (xc) energy. Kohn and Sham proposed a

method that reduces the complex interacting electron systems to a simpler, noninteracting

system subject to an effective potential in order to make the Hohenberg–Kohn formalism

computationally practical. The Kohn–Sham equation is expressed as follows:53

[

−
~

2

2m
∇2 + VKS (r)

]

ψi (r) = εiψi (r) (2)

The effective potential VKS is defined as follows:

VKS (r) = Vext (r) + V H (r) + Vxc (r) (3)

where −(h2/2m)∇2 represents the kinetic energy operator for noninteracting electrons

and Vxc is the exchange-correlation potential. The key to the Kohn–Sham framework is the

exchange-correlation function, which captures all quantum-mechanical exchange and cor-

relation interactions among electrons. Although the exact form of Vxc remains unknown,53

various approximations have been developed to enable practical DFT calculations, in-

cluding the local density approximation, the generalized gradient approximations,54 hy-

brid functionals, such as the Perdew–Burke–Ernzehof with zero empirical parameters

(PBE0),55 and many others. The electron density n(r) form the occupied Kohn–Sham

orbitals ψi(r) is given by53

n (r) =
N

∑

i=1

|ψi (r)|
2

(4)

where N is the number of electrons in the system.

Calculating the systems’ total energy and atomic forces is made possible by the ground-

state electron density that results from choosing the proper exchange-correlation functional

and solving the Kohn–Sham equations self-consistently.53,56 Structural equilibria, i.e., the

equilibrium positions of atoms, are determined using the ground-state forces.57 Deriva-

tives of the total energy with respect to atomic displacements around the equilibrium po-

sitions are evaluated in order to calculate the IFCs.58,59 These IFCs at different orders are

fundamental input for lattice dynamics analysis, such as phonon dispersion curves, phonon
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lifetimes, and thermal conductivity computations within harmonic and anharmonic frame-

works.60–62 From this process, one can see that the atomic forces or IFCs are the foundation

of phonon property prediction.

The finite difference method (FDM) is one of the major methods used to calculate the

IFCs. In the finite difference approach, the atoms are displaced from their equilibrium po-

sitions and the resulting atomic forces are calculated using DFT. The number of required

atoms’ movements depends on the complexity and symmetry of the material. Generally

speaking, the more complex and lower symmetry the material is, the more atoms’ move-

ment is required. This is followed by numerical differentiation of the atomic forces with

respect to the displacements to determine the IFCs. The second-order force constant is

given by58

ΦIα,Jβ = −
∂FIα

∂uJβ

(5)

where FIα is the force acting on atom I in direction α due to displacement uJβ of atom J
in direction β.58 The second-order IFCs are often calculated using software packages such

as PHONOPY,58 in conjunction with DFT codes like VASP,63,64 Quantum ESPRESSO,65

and ABINIT.66,67 Third-order IFCs required for phonon scattering and thermal conduc-

tivity are usually calculated using additional software tools, such as ShengBTE62 and

PHONO3PY,68 in addition to DFT computations using VASP or Quantum ESPRESSO.

For complex inorganic crystals, such as those with a large number of atoms in the prim-

itive cells and/or with low material symmetries, FDM is not very efficient to get IFCs be-

cause the number of DFT runs required to get those force derivatives through FDM is huge

and thus it is computationally unbearable. To solve such an issue, methods like compres-

sive sensing lattice dynamics (CSLD) are developed, which require fewer displacement-

force calculations than the traditional FDM and thus reduce computational cost. In contrast

to FDM, all-order IFCs can be efficiently calculated using CSLD,69,70 which exploits the

inherent sparsity of IFC tensors. Instead of relying on extensive DFT evaluations involving

many times of atoms’ movement, CSLD uses compressive sensing optimization to recon-

struct the complete IFC tensor after selecting a small number of atomic displacements. By

reducing the amount of DFT computations required, CSLD technique drastically lowers

computational costs. Accurately obtaining the IFCs is crucial for solving the BTE, a sta-

tistical framework used to predict phonon transport properties and to calculate κL. The

BTE links the microscopic properties of phonons, such as their velocities, lifetimes, and

scattering events, to the macroscopic observable thermal transport behavior, particularly

κL.71,72 The κL under the relaxation time approximation (RTA) is expressed as follows:68

κ
αβ
L =

1

V

∑

λ

Cλvα
λ vβ

λ τλ (6)

where the mode-specific heat capacity Cλ is given by

Cλ =
1

NkBT 2
n0

λ

(

n0
λ + 1

)

(~ωλ)
2

(7)
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where α and β are the cartesian coordinate directions (x, y, z), V is the volume of the unit

cell, Cλvα
λ is the component of the phonon group velocity for the phonon mode λ, τλ is

the phonon relaxation time for the phonon mode λ, kB is the Boltzmann constant, T is

the absolute temperature, N is the total number of phonon wave vectors, ~ is the reduced

Planck constant, ωλ is the phonon frequency, and n0
λ is the phonon occupation number

and follows the Bose–Einstein distributions expressed as follows:68

n0
λ =

1

e~ωλ/kBT − 1
(8)

Computational tools, such as the ShengBTE package, which solves the phonon BTE

using second- and third-order IFCs, have made substantial progress in accurately calcu-

lating κL from first principles. The ShengBTE software computes phonon dispersions,

lifetimes, and κL by explicitly considering phonon scattering processes.62 Figure 2 illus-

trates the DFT+BTE workflow for calculating κL, showing the sequence from the atomic

structure input to the evaluation of phonon properties and solution of phonon BTE.

FIG. 2: Schematic workflow of the DFT+BTE approach for calculating the mode-resolved

lattice thermal conductivity (κL) (Reprinted with permission from the Royal Society of

Chemistry, Copyright 2025)1
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The DFT+BTE approach for predicting phonon properties of inorganic crystals have

been extensively used in the past decade (2015–2025).73–77 Lindsay et al. used first prin-

ciples DFT combined with an iterative solution to the linearized phonon BTE to predict

cubic boron arsenide (BAs) with an exceptionally high κL exceeding 2 × 103 Wm−1K−1

at room temperature, in rivalry to that of diamond and graphite, well known for their su-

perior thermal conductivities.78 As shown in Eq. (6), thermal conductivity depends on

the heat capacity of phonon modes, group velocity, and lifetime. The work by Lindsay

et al.78 highlighted that the extraordinarily long lifetimes of phonons in BAs, particularly

for the heat-carrying acoustic modes, are the result of suppressed three-phonon scatter-

ing rates stemming from the large bandgaps ∼ 10 THz between the acoustic and opti-

cal branches, which effectively limits the phase space for phonon-phonon scattering, thus

leading to higher thermal conductivity. Three-phonon scattering describes the fundamental

anharmonic interactions between phonons, where a single phonon decays into two others,

ωλ = ωλ′ + ωλ′′ , or two phonons combine to form a third ωλ + ωλ′ = ωλ′′ . These

interactions limit phonon lifetimes and are important in determining the κL.79

By comparing BAs with other III-V boron compounds, Lindsay et al.78 demonstrated

that while other materials, such as BP and BSb, also possess high thermal conductivity.

BAs exhibits high group velocity and extremely low scattering, making it applicable for

thermal management.78,80,81 While BAs demonstrates exceptionally high κL, attributed to

its intrinsically weak anharmonicity and the suppression of three-phonon scattering mech-

anisms,78 tin selenide (SnSe) shows significantly different thermal behavior. Experimental

studies confirm an ultralow κL of 0.23 ± 0.0 3Wm−1K−1 in single crystal SnSe, attribut-

ing this low value mainly to strong lattice anharmonicity and structural anisotropy.82

To better understand this behavior, Carrete et al. used first principles DFT+BTE to per-

form detailed calculations of phonon dispersion relations, anharmonic IFCs, and phonon

scattering rates. The results indicated a significant anisotropy in the phonon group veloci-

ties along the different crystallographic directions, which accounted for the observed direc-

tional dependence of the thermal conductivity of SnSe.83 Third-order IFCs were calculated

to investigate the impact of anharmonicity, which is crucial for evaluating the phonon-

phonon scattering rates. Strong anharmonic interactions lead to high phonon scattering

rates, effectively reducing phonon lifetimes. The strong anharmonicity is a factor for the

exceptionally low κL of SnSe, thus preventing effective heat transfer across the lattice.

This low κL of SnSe idea, which is dominated by strong intrinsic anharmonicity, makes

it an ideal candidate for application in thermoelectrics. The suppressed thermal transport,

coupled with its favorable electronic properties, results in an extremely high thermoelec-

tric figure of merit (ZT ), ∼ 2.6 at 923 K.82 The dimensionless thermoelectric figure of

merit is given by ZT = S2σT/κ, where S is the Seebeck coefficient, σ is the electrical

conductivity, T is the absolute temperature, and κ is the total thermal conductivity com-

prising of both the lattice and electronic contribution. ZT = 1 is indicative of a more

efficient thermoelectric material.84,85

Although studies of SnSe highlight the effects of strong anharmonic phonon interac-

tions and anisotropy in limiting κL, however, studies from 2016–2025 have shown that the

intricacy of heat transport in certain materials cannot be fully captured by second-order



MACHINE LEARNING FOR THERMAL PROPERTIES OF INORGANIC CRYSTALS 141

perturbative treatments and traditional phonon-gas models.79 This is particularly true in

dynamically unstable or highly anharmonic crystals, where off-diagonal heat flux con-

tributions and higher-order scattering must be considered.86–88 The Wang et al. study of

cesium chloride (CsCl) shows that the anharmonic effects and thermal resistance of CsCl

are underestimated by the conventional three-phonon scattering approximations.89 Em-

ploying an advanced BTE solver and first principles DFT, they incorporated four phonon

scattering and self-consistent phonon (SCPH) renormalization, as well as the off-diagonal

elements of the heat-flux operator, whose contributions are often overlooked in standard

BTE implementations.89

Moreover, studies from 2016–2025 also demonstrate that the κL of many materials

cannot be solely understood by the three-phonon process. Therefore, higher order phonon

scattering, such as the four-phonon process, must be considered for some materials. Math-

ematically, the four-phonon scattering rate Γ(4) for a phonon mode λ, under Fermi’s golden

rule is expressed as follows:90

Γ
(4)
λ =

2π

~2

∑

λ′λ′′λ′′′

∣

∣

∣
V

(4)
λλ′λ′′λ′′′

∣

∣

∣

2

δ (ωλ ± ωλ′ ± ωλ′′ ± ωλ′′′) (9)

where V (4) is the fourth-order anharmonic interaction strengths and delta function is the

energy conservation across all participating modes. Figure 3 shows a schematic of the

four-phonon scattering processes. With the off-diagonal contribution, κL can be expressed

as follows:91

κL
αβ = κ

αβ
d + κ

αβ
nd (10)

where κd is the mode resolved diagonal phonon contribution, including both three-phonon

and possible four-phonon interactions, and κnd is the coherence or mode coupling, the

off-diagonal contribution.

2.2 Molecular Dynamics Simulation

The DFT+BTE approach, although accurate, is limited by the high computational expense,

which is significantly involved in running complex calculations in evaluating atomic forces

across numerous supercell configurations, substantially limiting its use for high-throughput

FIG. 3: Schematic of four-phonon scattering process (Reprinted with permission from the

Royal Society of Chemistry, Copyright 2025)1
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screening of new materials. In contrast, classical MD simulations provide a less expen-

sive computational path for evaluating thermal transport properties.92–95 In MD, atoms are

modeled as interacting particles governed by Newtonian mechanics, where the energy and

momentum are tracked over time by solving Newton’s equation of motion.1,96 The motion

of each atom is determined by integrating Newton’s second law, expressed by

mi
d2ri

dt2
= Fi (11)

where mi is the mass of atom i, ri is the position vector, and Fi is the net force acting

on the atom i due to interactions with other atoms. Integrating Eq. (11) gives the velocity

and position as a function of time, typically done using the finite-difference integration,

such as Verlet algorithm. Thus, we can obtain the time evolution of atomic motion of the

velocity and position at time t + ∆t, where ∆t is the timestep in an MD simulation, given

the state of the system at time t.97 In order to obtain the atomic trajectories, the force Fi

must be determined, which results from the interatomic potential energy function U(r).
The potential U(r), governs how atoms interact based on their positions, and the atomic

force can be expressed by Fi = −(∂U/∂ri).

How the atoms attract and repel is determined by U(r) and is central to MD simula-

tions. The total potential energy (U ) in classical MD is often decomposed into additive

contributions from different orders of atomic interactions, as follows:98

U (1, . . . , N) =
∑

i

U1 (ri) +
∑

i<j

U2 (ri, rj)

+
∑

i<j<k

U3 (ri, rj , rk) + · · · + UN (1, . . . , N)
(12)

where U1, U2, and U3 are the single-body terms, two-body potentials (pairwise distance),

and three-body potentials that capture the angular or directional interactions.

Physically meaningful force fields ranging from simple pairwise interactions, such

as the Lennard-Jones potential, which can be employed in inert gas and colloidal sys-

tems,99,100 and the Morse potential for covalent systems,101,102 to more complex many-

body potentials, such as the Tersoff103 and Stillinger-Weber potential98 for covalent sys-

tems, can be designed. Although in theory the potential energy expansion continues to

four-body and higher order terms, in practice they are often rarely used primarily due to

the high computational cost involved, as the number of interaction combinations increases

with additional order. It is important to note that, for most materials, the inclusion of two-

and three-body terms is sufficient in capturing the essential physics when the many-body

effects are modeled implicitly within the potential form. However, MLP potentials like

MACE104 can effectively capture many-body interactions, bypassing the need to define

high-order terms explicitly.

The technique utilized to extract physical properties is just as important as the selec-

tion and accuracy of the interatomic potential in MD simulations. Two primary meth-

ods are usually used for predicting thermal transport properties of inorganic crystals,
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namely equilibrium molecular dynamics (EMD) and nonequilibrium molecular dynamics

(NEMD), depending on whether the system stays in equilibrium with constant volume and

energy or is driven out by external perturbation, such as heat flux or temperature gradient.

Both methods vary in how transport properties such as thermal conductivity or diffusion

are computed. EMD utilizes the Green–Kubo formalism to calculate the thermal conduc-

tivity, which relates it to the time integral of the heat current autocorrelation function at

equilibrium. The κL in a GK-EMD simulation is expressed as follows:105

κL =
V

kBT 2

∫

∞

0

〈J (0) · J (t)〉 dt (13)

where V is the volume of the system, T is the absolute temperature, kB is the Boltzmann’s

constant, J(t) is the heat current vector at time t, and 〈·〉 is the ensemble average.

In NEMD, thermal conductivity is determined by measuring the heat flux that results

from applying a steady-state temperature gradient across the simulation cell. The thermal

conductivity is determined using Fourier’s law,106 κ = −(J/∇T ), where J is the heat

flux vector defined as the amount of energy transferred in a given time through a surface

of a given area that is perpendicular to the direction of flux, and ∇T is the temperature

gradient. In practice, a steady-state temperature profile is established by applying a heat

source and a heat sink at opposite ends of the simulation domain, thus allowing the system

to evolve until a stable thermal gradient is formed.

To perform MD simulations, a variety of software packages are commonly employed,

including a large-scale atomic/molecular massively parallel simulator,107 a Groningen

machine for chemical simulation (GROMACS),108 nanoscale molecular dynamics

(NAMD),109 DL POLY,110 HOOMD-blue,111 and assisted model building with energy

refinement (AMBER).112 These packages rely on empirical or semi-empirical interatomic

potentials, such as the Lenard-Jones, embedded atom method,113 Tersoff,103 or force fields

like CHARMM114 and AMBER.112

Salaway and Zhigilei115 investigated heat transport in single-walled carbon nanotubes

using the NEMD approach to calculate the thermal conductivity. Empirical Tersoff po-

tential was utilized to model carbon-carbon interactions within the nanotubes with vary-

ing simulation parameters, such as lengths, cross-sectional area, and thermostat settings,

thereby examining their influence on computed thermal conductivity using temperature

gradients via Fourier’s law. Their results revealed that shorter CNTs exhibited κL as a

result of increased phonon-boundary scattering, while longer CNTs show higher thermal

conductivities, reflecting the critical role of long wavelength phonons and the necessity of

capturing phonon MFPs in low-dimensional systems. Several other studies have utilized

EMD and NEMD in calculating the thermal conductivity of various materials,105,116–121

thus showing the effectiveness of classical MD in capturing heat transport phenomena

across different length scales. However, the accuracy is limited to the quality of the empir-

ical interatomic potential used. To bridge the gap between the classical MD and first prin-

ciples accuracy, more efforts have been channeled on the development of MLPs, which

offer comparable DFT-level accuracy and significantly reduced computational cost (see

more details in Section 3).
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In contrast to classical MD, where predefined empirical potentials are usually used, ab

initio molecular dynamics (AIMD) computes the interatomic forces on the fly based on

quantum mechanical principles by DFT. This enables more accurate description of sys-

tems where electronic effects play an important role. The forces on the atoms are directly

obtained from electronic structure calculations at each time step, thereby allowing accu-

rate modeling of materials with complex or reactive bonding environments. Developments

in AIMD since 2014 have been directed toward enhancing its computational efficiency

and scalability without sacrificing its quantum-level accuracy. Notably, second-generation

Car–Parrinello methods have decoupled the time evolution of electronic and ionic degrees

of freedom, enabling longer simulation times and larger sytems.122 Linear-scaling DFT

and real-space representation such as CONQUEST and DFT-FE, have also enable AIMD

to be applied to thousands of atoms.123,124

AIMD remains computationally expensive, especially for systems that require long

time scales such as thermal transport or diffusion studies. Due to the high computational

cost, DFT calculations are limited to short trajectories [∼ (10–100 ps)] and modest system

sizes [(< 10 × 102) atoms]. As a result of these constraints, AIMD is unsuitable for high-

throughput screening or long-time dynamics and this has motivated the development of

MLPs as efficient substitutes.125

3. AI/ML METHODS AS AN INNOVATIVE APPROACH FOR PHONON

PROPERTIES

Predicting phonon properties of inorganic crystals, such as phonon dispersion, group ve-

locity, Grüneisen parameters, and κL, has traditionally relied on first principles calcula-

tions, particularly DFT combined with anharmonic lattice dynamics or MD simulations.

While accurate, these methods are generally computationally expensive, especially for

large or complex systems. Since 2016, AI/ML have emerged as viable alternatives and

accelerators for both DFT calculations and MD simulations. AI/ML techniques can either

directly predict interested phonon properties or indirectly infer them.

The quality and scope of training data have a significant impact on the performance of

AL/ML models in the prediction of phonon properties. Standardized, high-quality phonon

datasets, which are essential for model development and benchmarking, can be obtained in

several open databases, including phonondb@Kyoto University,126 the Materials Project,127

AFLOW,128,129 OQMD,130 and the NOMAD repository.131 These sources offer phonon

dispersion, DOS, and related thermal properties, which are often calculated using DFT.

Aside from data availability, training strategies like multi-fidelity learning and transfer

learning are very frequently used to maximize predictive accuracy with minimal high-

fidelity data. Typically, the workflow involves pretraining on large low-fidelity datasets

(e.g., coarser DFT or empirical potential calculations) and fine-tuning on smaller, high-

fidelity datasets (e.g., highly converged DFT or experimental results).132–136 Using this

approach will thus enable models to capture a wide range of structure-property trends,

while also adapting to the precision of costly calculations, therefore making it particularly

valuable for high-throughput phonon transport screening in data-scarce regimes.
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Section 3 is divided into two parts: direct AI/ML methods, in which AI/ML models

are trained to learn phonon-related quantities directly from training data, i.e., the famous

atomic structure-property relationship, and indirect AI/ML methods, where bottom infor-

mation are predicted first, such as atomic forces in displaced supercells, and then the tra-

ditional workflow of the DFT+BTE approach can be used to predict all phonon properties,

such as group velocities, mean square displacement (MSD), three phonon scattering phase

space (P3 parameter), κL, etc.

3.1 Direct AI/ML Algorithms and Methods

In direct methods, AI/ML algorithms are trained to predict specific phonon-related quan-

tities from atomic or crystallographic input data. These approaches aim to bypass the full

DFT workflow by directly learning the complex relationship between atomic structure and

phonon transport behavior. Traditional ML models and GNNs have been used extensively

over the years to directly predict the phonon properties, especially the κL of inorganic

crystals with high accuracy. The traditional AI/ML models require input representation

called descriptors or features from which the models learn the relationship with the cor-

responding target property. The accuracy of these traditional ML models largely depends

on the effective input representation of the crystal structures.137 Selecting good or effec-

tive descriptors is an important step in directly training the ML model to well predict a

target property. The following are some of the characteristics when selecting a descrip-

tor:37

1. Low Dimensionality: The dimensionality of the descriptors should be as low as pos-

sible. Lower-dimensional descriptors reduce the amount of training data required,

facilitating more efficient model training.

2. Uniqueness and Relevance: The descriptor should uniquely characterize both the

crystalline materials and the property-relevant elementary processes. Ideally, there

should be a one-to-one correspondence between the input (descriptor) and the out-

put (material property), making the ML model easier to train and more accurate.

3. Discriminative Power: Materials that are significantly different (or similar) should

have correspondingly different (or similar) descriptor values. This helps the ML

model adjust its internal parameters effectively to recognize underlying patterns

and relationships.

4. Computational Efficiency: The calculation of the descriptor should be significantly

less computationally intensive than that required for evaluating the target prop-

erty, since the trained ML models will usually be used for subsequent prediction

and screening of large-scale unknown materials. Simple calculation or evaluation

of corresponding material descriptors will facilitate such a process. This is espe-

cially important for phonon property prediction, as traditional approaches, such as

DFT+BTE, are highly time- and resource-consuming.
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The Pearson correlation coefficient, ranging from –1 to +1, is a commonly used metric

for assessing the strength and direction of a linear relationship between two variables. A

value of –1 indicates a strong negative correlation, whereas +1 indicates a strong posi-

tive correlation. Ojih et al.138 have shown Pearson correlation for some typical material

descriptors with κL, as shown in Fig. 4. Several descriptors exhibit considerably nega-

tive correlations with κL, such as the volume of the primitive cell (–0.49), bond length

(–0.45), total atomic weight (–0.21), and average number of electrons (–0.18). These val-

ues suggest that higher values of these descriptors are associated with lower κL. This trend

is physically reasonable, as larger cell volumes or longer bond lengths typically imply

weaker interatomic bonding, which leads to lower phonon group velocities and thus lower

κL. Conversely, atom number density, the number of unpaired electrons, and mass density

FIG. 4: Pearson correlation between material descriptors and κL of inorganic crystals

(Reprinted under a Creative Commons Attribution–NonCommercial 3.0 Unported License,

Copyright 2024; http://creativecommons.org/licenses/by-nc/3.0/)138
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show positive correlations with κL, with Pearson correlation values of 0.54, 0.41, and

0.16, respectively. A higher atom number density generally reflects tighter atomic pack-

ing, which corresponds to stronger interatomic bonds and higher phonon group velocities,

thereby enhancing phonon-mediated energy transport in the lattice.

In contrast, descriptors such as the total number of atoms, the maximum principal

quantum number, and Pauling electronegativity exhibit negligible or weak correlations

with κL. The identification of both positively and negatively correlated descriptors is ex-

pected to facilitate the accelerated screening of large-scale hypothetical structures in future

materials discovery efforts.

Carrete et al.41 and Liu et al.139 used traditional ML methods to directly predict the κL

of half-Heusler structures by training on DFT κL data. Qin et al.140 trained 15 ML models

from fundamental material descriptors to predict the κL of materials, where 80% of the

data were used for training and the remaining 20% for testing. The study demonstrated

that the traditional ML models could effectively capture the correlation between material

properties and κL, enabling accurate predictions across diverse materials. Table 1 shows a

comparison of evaluation metrics for all 15 models. It was found that the long short-term

memory network has the highest performance in training and prediction in terms of lowest

root mean squared error (RMSE) and mean absolute error (MAE) of testing data, highest

R2 score. However, this algorithm has the lowest computing speed (several folders to even

one order of magnitude longer than other ML models, as seen in Table 1).

TABLE 1: Comparison of evaluation metrics for all 15 ML models for predicting κL

(Reprinted with permission from the Royal Society of Chemistry, Copyright 2023)140

ML models RMSE of test set R2 of test set MAE of test set Time cost(s)

Linear 26.493 0.8096 13.5803 6.49

Ridge 26.3697 0.8103 13.5384 3.46

SGD 17.4929 0.8241 9.5713 3.58

LinearSVR 11.9823 0.8479 6.8762 3.68

SigmoidSVR 20.6119 0.3432 9.7734 1.94

rbfSVR 14.6274 0.7547 6.9582 1.80

PloySVR 12.0221 0.7496 7.2365 3.61

Decision tree 19.378 0.5348 8.6358 4.56

DGBT 10.3623 0.8158 6.957 5.69

RF 9.6385 0.8767 6.0574 3.76

LightGBM 12.9994 0.7398 7.7365 4.56

ANN 8.7211 0.8593 5.7933 18.19

CNN 8.4061 0.8799 5.1674 19.57

RNN 8.3726 0.8748 5.3209 61.03

LSTM 8.3593 0.8866 5.4011 125.46
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Chen et al.141 proposed a data-driven framework for predicting the κL of inorganic

materials using traditional ML techniques. They compiled a dataset of ∼ 100 inorganic

solids with experimentally measured κL values and employed various regression mod-

els, with a particular focus on Gaussian process regression (GPR). The descriptors used

to describe the materials included fundamental physical and chemical properties such as

atomic mass, bond length, unit cell volume, and Debye temperature, which were extracted

from either first principles calculations or experimental databases. Feature selection and di-

mensionality reduction techniques, such as principal component analysis (PCA), were ap-

plied to identify the most relevant descriptors for κL prediction. The GPR model achieved

strong predictive performance, with a low MAE and high correlation coefficient on the

test set, outperforming traditional physics-based models, such as the Slack formula. The

study also conducted uncertainty quantification to evaluate model robustness. Importantly,

the authors demonstrated the model’s ability for generalization by applying it to screen

a large database of hypothetical compounds, identifying potential materials with low or

high κL. Despite the small dataset used, this work highlights the potential of traditional

ML approaches in accelerating thermal materials discovery and offers a practical work-

flow that combines domain knowledge, data curation, and statistical modeling for κL pre-

diction.

Tranas et al.142 focused on predicting the κL of half-Heusler compounds using a com-

bination of DFT, random forest (RF) regression, PCA, and active learning. The goal is

to enhance model accuracy while reducing the number of costly DFT calculations. The

workflow begins by calculating a small number of κL values using DFT for a subset of

half-Heusler compounds. These values, along with descriptors, such as atomic radius, elec-

tronegativity differences, and crystal structural features, serve as the training data for a RF

regression model. PCA was applied to reduce descriptor dimensionality and capture the

most significant variance in the data. To further improve efficiency and model generaliza-

tion, the authors incorporated active sampling, a form of active learning. Here, instead of

selecting training samples randomly, they iteratively chose new data points based on the

model’s uncertainty and PCA space coverage. This was to ensure a more diverse and infor-

mative training set, leading to better model performance with fewer training samples. The

study shows that with active learning, the RF model can achieve accurate κL predictions

across a large chemical space while minimizing the number of DFT calculations needed.

The final model can rapidly screen half-Heusler compounds and identify promising candi-

dates for thermoelectric applications.

The GNN models, on the other hand, combine the descriptors and learning model into

one inseparable step, i.e., the model learns material properties directly from the connec-

tion of atoms in the crystal. The crystal graph convolutional neural network (CGCNN)

developed by Xie and Grossman was one of the first GNN models to represent periodic

materials using graph structures.143 Although initially developed for electronic properties,

later adaptations have shown that it can be used to predict phonon DOS and related ther-

mal properties. Other GNN models have been developed over the years with each having

unique descriptors from the crystal structures to improve prediction. Some representa-

tive GNN models in this line include atomistic line GNN (ALIGNN),144 orbital graph



MACHINE LEARNING FOR THERMAL PROPERTIES OF INORGANIC CRYSTALS 149

convolution neural network (OGCNN),145 global attention GNN (deeperGATGNN),146

Improved CGCNN (iCGCNN),147 Materials Graph Network (MEGNet),148 etc.

Ojih et al.138 trained different types of GNN models for predicting κL with high ac-

curacy. Figure 5 shows the training and testing data for their work. While the deeperGAT-

GNN model has the highest performance for training data in terms of lowest MAE and

highest R2 score, the performance for testing data do not show very high performance.

In contrast, the ALIGNN model has excellent overall performance for both training and

testing data, and therefore this model is recommended for further development and train-

ing if more data are available. This work also suggests that more research effort is needed

for further evaluation of various GNN models on an even larger scale of training data in

order to cover diverse material compositions and symmetries, due to the highly nonlinear

relationship between atomic structures and thermal transport properties.

FIG. 5: Testing (top panels) and training (bottom panels) results of κL for the three predic-

tive GNN models for 942 and 3769 structures, respectively, are as follows: (a) ALIGNN,

(b) OGCNN, (c) deeperGATGNN, (d) ALIGNN, (e) OGCNN, and (f) deeperGATGNN.

The ALIGNN model shows the best performance for the testing (unseen) data (Reprinted

under a Creative Commons Attribution–NonCommercial 3.0 Unported License, Copyright

2024; http://creativecommons.org/licenses/by-nc/3.0/).138
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Ojih et al.149 trained a deeperGATGNN146 model on five mechanical properties,

namely, bulk modulus, shear modulus, Young’s modulus, Poisson ratio, and hardness us-

ing 10,158 elastic constants by DFT calculations as training data. It is known that the κL of

a crystalline material is proportional to the phonon group velocity, and the phonon group

velocity is proportional to Young’s modulus and bulk modulus, shown as follows:

k =
∑

Civiτi, v ∝

√

E

ρ
, B =

E

3 (1 − 2v)
(14)

where ρ, B, E, and v are the mass density, bulk modulus, Young’s modulus, and Poisson’s

ratio, respectively. This gives vital information that κL is proportional to bulk modulus.

Ojih et al.149 used this information and predicted the bulk modulus of 775,947 inorganic

crystal structures from the open quantum material database (OQMD) using ALIGNN and

verify the κL of 338 materials randomly selected from the predicted bulk modulus, as

shown in Fig. 6. It can be clearly seen that the κL is proportional to the bulk modulus. It

is worth pointing out that calculating bulk modulus of a crystal by direct DFT calculations

through elastic constants is not very heavy, which suggests that the bulk modulus can

be used as a descriptor for screening extremely high or low κL materials through high-

throughput DFT calculations.

Ojih et al.150 also used the MSD and P3 parameters to investigate the κL of materials.

Both the MSD and P3 parameters were trained on 4041 DFT-κL data and used to predict on

22,899 dynamically stable structures to get structures with low κL. Validation was done on

FIG. 6: Correlation between bulk modulus and κL for 338 recommended structures

(Reprinted under a Creative Commons Attribution 4.0 International License, Copyright

2023; https://creativecommons.org/licenses/by/4.0/)149
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359 structures, as shown in Fig. 7. It is found that κL inversely correlates with both MSD

and P3 parameters, meaning high MSD and high P3 parameters usually correspond to low

κL, and vice versa. Such correlation is consistent with phonon transport physics consider-

ing that high MSD corresponds to soft lattices and usually strong phonon anharmonicity,

while a high P3 parameter corresponds to a large space of three-phonon scattering, both

of which therefore lead to low κL. This study demonstrates that the large P3 parameter

and large MSD are good material descriptors for quick screening materials with ultralow

κL. It is worth pointing out that both the P3 parameter and MSD can be calculated by

the second-order IFCs and well trained by medium-size DFT data. Therefore, these two

material descriptors provide an efficient approach for future ML model development for

phonon transport property.

While predictive accuracy is a top priority, the interpretability of AI/ML models is

equally important for advancing the physical understanding of phonon transport. For descri-

ptor-based models described herein, where features like primitive cell volume, bond length,

atomic mass, or MSD are explicitly defined, interpretability is accessible via correlation

analysis, feature importance rankings from tree-based algorithms, or Shapley additive ex-

planation values.148,151,152 Not only do such analyses confirm established physical rela-

tionships (e.g., the inverse correlation between κL and cell volume), but they can also

potentially uncover unexpected trends that may seed new hypotheses regarding structure–

property relationships. For end-to-end methods, such as the GNN models described here,

interpretability methods involve attention weight analysis, node/edge saliency mapping,

FIG. 7: Correlation between bulk modulus and κL for 338 recommended structures

(Reprinted under a Creative Commons Attribution 4.0 International License, Copyright

2023; https://creativecommons.org/licenses/by/4.0/)149
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and latent-space visualization.143,153 These analyses have the potential to indicate which

atomic environments, bonding motifs, or symmetry features most strongly determine the

models’ prediction of phonon-related properties. In several instances, GNN-learned em-

beddings have been correlated with physical quantities like bond stiffness or anharmonic-

ity,154 thus bridging the gap between abstract learned representations and concrete phonon

physics. Including such interpretability analyses not only enhances confidence in AL/ML

predictions but also offers a complementary path toward uncovering and refining the un-

derlying mechanisms of thermal transport.

3.2 Indirect AI/ML Algorithms and Methods

MLPs are a key subclass of the “indirect” AI/ML approach, as they replace expensive ab

initio force evaluations with fast surrogate models while retaining compatibility with es-

tablished lattice dynamics and BTE workflows. Widely used MLP families include the

Behler–Parrinello high-dimensional neural network potential,155 the Gaussian approxi-

mation potential with smooth overlap of atomic positions (SOAP) descriptors,156,157 the

moment tensor potential (MTP),158,159 the spectral neighbor analysis potential,160 and the

deep-learning potential package DeepMD/DeePMD-kit.161,162 From 2018 onwards, E(3)-

equivariant GNN models, such as NequIP163 and the atomic cluster expansion (ACE) and

its modern variants (MACE),104,164 have been developed to improve data efficiency and

transferability.

Several comprehensive reviews summarize the theoretical foundations, training strate-

gies, and applications of MLPs to materials simulations.165–167 In the context of phonon

and thermal transport, MLPs have been successfully applied in combination with Sheng-

BTE for high-throughput lattice thermal conductivity (κL) prediction168 and in Green–

Kubo molecular dynamics for strongly anharmonic systems such as zirconia,169 achieving

near-DFT accuracy with orders-of-magnitude reductions in computational cost. In general,

the indirect approach does not predict phonon properties directly from material descrip-

tors. Instead, it focuses on learning intermediate physical quantities—most commonly

interatomic forces (bottom information) or upper-level parameters such as IFCs. These

quantities are then fed into established physics-based frameworks (e.g., anharmonic lat-

tice dynamics plus BTE) to derive κL and other phonon-related properties. This AI/ML

method effectively replaces the most computationally expensive step in the DFT+BTE

workflow (i.e., force calculations as indicated by the center vertical arrow in Fig. 8), while

maintaining the rigor and interpretability of traditional DFT+BTE method.

A simpler version for replacing atomic force evaluation by ML model in the tradi-

tional DFT+BTE workflow or MD simulations can be easily realized for a single material

or some limited number of materials or material families. Such a method is usually called

an MLP or machine learning force fields (MLFFs). There are many studies in this area

since the high-cost DFT calculations are usually much smaller than the abovementioned

universal MLPs that try to cover very broad material compositions and symmetries. Koro-

taev et al.170 developed an MLP and trained it on DFT data to model the lattice dynamics of

complex compounds, specifically skutterudites. By employing active learning strategies,
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FIG. 8: Schematic of the deployment of indirect AI/ML algorithms and methodologies

(center vertical arrow) in phonon transport. The middle horizontal arrows indicate the

traditional DFT+BTE approach for phonon property prediction. The top horizontal arrows

denote the direct AI/ML model for structure-phonon property relationship and forward predic-

tion of phonon transport properties (Reprinted under a Creative Commons Attribution 4.0

International License, Copyright 2024; https://creativecommons.org/licenses/by/4.0/).37

they minimized the number of expensive DFT calculations required for training. The MLP

accurately reproduced vibrational spectra and κL values, demonstrating that accurate and

reliable potentials can be obtained with a limited number of quantum-mechanical calcu-

lations. This approach significantly reduces computational costs while maintaining high

accuracy in predicting thermal properties.

Srivastava et al.171 introduced a ML-assisted method to extract anharmonic force con-

stants efficiently. Applying their approach to a dataset of 220 ternary materials, they

achieved a reduction in computational time from 48 × 104 CPU hours to < 12 × 103

CPU hours, while maintaining κL prediction accuracy within 10%. This significant ac-

celeration facilitates high-throughput screening of materials for thermal applications. Lu

et al.172 combined on-the-fly MLFFs with MD simulations to study the κL of ZrSe2. This

hybrid approach allowed them to capture anharmonic phonon interactions effectively, lead-

ing to accurate κL predictions. The methodology enables the analysis of large supercells

and long-wavelength phonons, which are challenging for traditional ab initio methods.

Ouyang et al.173 developed an MLP based on a matrix tensor algorithm to study phonon

anharmonicity in materials like cubic BAs and diamond. Their approach accurately cap-

tured phonon mode softening and linewidth broadening induced by anharmonicity at finite

temperatures. The ML potential enabled efficient MD simulations, providing insights into

thermal transport properties with reduced computational effort.
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In the indirect ML approach to predict phonon properties of large-scale materials in-

stead of a single material or family, the process begins by generating a dataset of atomic

structures where accurate atomic force information is needed (Fig. 8). These structures

may come from random displacements around equilibrium positions, snapshots from MD

simulations, or known crystalline configurations. For a selected subset of these structures,

DFT calculations are performed to compute the atomic forces, which serve as high-fidelity

reference data. Each atom’s local environment is converted into a set of descriptors that

capture its chemical and structural context. These descriptors may be handcrafted, such as

symmetry functions or SOAP, or they may be learned automatically using ML architec-

tures like GNNs. The ML model is then trained to learn the mapping from atomic environ-

ments to the corresponding atomic force vectors. The model is optimized to minimize the

prediction error when compared to the DFT-calculated forces.

Once trained, the ML model is used to predict atomic forces for new, unseen struc-

tures, or displaced configurations of a target material. Using these ML-predicted forces,

one can reconstruct the IFCs using FDMs or regression-based fitting schemes. These IFCs

capture the harmonic and anharmonic interactions between atoms and are essential inputs

for subsequent calculations of full phonon properties. The reconstructed IFCs are then fed

into lattice dynamics tools, such as Phonopy,58 which computes phonon dispersion rela-

tions, group velocities, and heat capacities, and into thermal transport solvers like Sheng-

BTE,62 which calculates phonon scattering rates and ultimately solve phonon BTE. From

this, the κL is obtained. This indirect workflow allows researchers to retain the accuracy

of traditional DFT-based approaches while significantly reducing computational costs by

replacing expensive force calculations with fast, ML-based predictions.

Beyond accelerating the computation of IFCs, ML can also be employed at later stages

of the phonon transport workflow, particularly for expediting the evaluation of phonon

scattering rates. This is a critical step in solving the phonon BTE and can become a com-

putational bottleneck, especially when higher-order processes are included. Since 2021,

studies have shown that ML can dramatically accelerate the calculation of phonon scatter-

ing rates, a critical bottleneck in predicting κL, particularly when considering higher-order

processes such as four-phonon scattering. Guo et al. proposed a surrogate ML model ca-

pable of predicting phonon scattering rates and κL with high accuracy compared to first

principles direct approaches, up to two orders of magnitude reduction in computational

cost.174 In a related work, Guo et al. proposed a maximum-likelihood estimation strategy

to efficiently sample phonon scattering events, thus enabling highly converged thermal

conductivity calculations using minimal computational resources.175 These advances are

indicative of a promising path for high-throughput predictions of thermal transport in com-

plex materials.

Various ML models, such as CHGnet,176 MACE,104 etc., can be used for predicting

atomic forces in displaced supercells. Rodriguez et al.37,177,178 developed an ML model

called the Elemental Spatial Density Neural Network Force Field (Elemental-SDNNFF)

to predict atomic forces with near-DFT accuracy. Elemental-SDNNFF distinguishes itself

through a novel 3D mesh of density functions that collectively map the atomic environ-

ment, offering a physically intuitive representation of forces exerted on the central atom.
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The efficiency and precision of the Elemental-SDNNFF approach arise from three key

innovations: (i) eliminating reliance on the chain rule for total energy derivatives, a major

source of error in ML-derived atomic forces; (ii) training the model using only a central

atom and its local environment, enabling a scalable n × m growth of training data, where

n is the number of atoms in a supercell and m is the number of structures evaluated via

first principles methods; and (iii) drastically reducing both the parameter count and man-

ual effort required to train a neural network model that achieves convergence in per-atom

properties. Trained on 9.4 million atomic environments using active learning, the model

was applied to 11,866 Heusler structures,178 including full, half, and quaternary types.

The predicted atomic forces were used in the traditional DFT-based phonon workflow to

calculate phonon properties, such as κL. The study identified 774 Heusler structures with

ultralow κL (< 1 Wm−1K−1). This work showcases a scalable, indirect ML approach

for high-throughput materials discovery and also highlights how p–d orbital hybridization

plays a key role in reducing κL.

Rodriguez et al. further demonstrate the Elemental-SDNNFF approach to predict ato-

mic forces across ∼ (8 × 104) cubic crystals spanning 63 elements (Fig. 9).179 A key

strength of the Elemental-SDNNFF framework is its ability to resolve phonon transport

physics with parity to first principles accuracy, enabling simultaneous prediction of di-

verse phonon properties through a unified model. Trained on 3182 first principles datasets

and applied to 77,091 unexplored structures, the method identifies 13,461 dynamically

stable cubic systems with ultralow κL (< 1 Wm−1K−1), including 36 structures validated

against first principles benchmarks. On the basis of the screening of such large amount

of ultralow κL materials, they further propose two computationally efficient descriptors—

mean square displacement and bonding-antibonding metrics—to streamline the identifica-

tion of ultralow κL materials, reducing reliance on costly DFT simulations. The model also

quantifies the interplay between off-diagonal coherence and diagonal phonon populations,

capturing the transition from particle-like to wave-like heat transport. The Elemental-

SDNNFF framework holds significant promise for accelerating the discovery of advanced

phononic materials for applications in thermoelectrics, superconductivity, and topological

phonons for quantum technologies.

4. CHALLENGES AND OPPORTUNITIES FOR AI/ML-DRIVEN

RESEARCH FOR PHONONS

Although data-driven AI/ML methods offer promising avenues for reducing the compu-

tational cost of ab initio phonon calculations (e.g., DFT+BTE) and predicting phonon

properties, several challenges hinder their widespread adoption.

4.1 Data Limitations: Quality, Quantity, and Accessibility

Phonon properties are inherently complex, with highly nonlinear and implicit relationships

to material structure. Generating sufficient high-quality training data to cover diverse ma-

terial families and symmetries remains a bottleneck. Although DFT+BTE remains the gold
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FIG. 9: (a) Comparison of the RMSE of phonon frequency normalized by the structure’s

specific frequency range. (Insets) Phonon dispersions linked to the relative error containing

DFT and prediction for visualization. (b) Lattice thermal conductivity at 300 K between

DFT and the developed single neural network Elemental-SDNNFF model for 3107 stable

structures predicted by DFT. (Inset) The comparison between the predicted and DFT LTC

of 64 untrained structures on the same scale (Reprinted under a Creative Commons Attri-

bution 4.0 International License, Copyright 2023; http://creativecommons.org/licenses/by/

4.0/).179

standard for data accuracy, progress hinges on building robust phonon databases. A cen-

tralized, publicly accessible phonon database (Fig. 8) could revolutionize the field by: (i)

providing standardized, curated phonon data (band structures, lifetimes, scattering rates)

alongside existing material databases, such as Materials Project, ICSD, OQMD; (ii) offer-

ing interactive tools for data visualization, comparison, and user-contributed DFT results;

and (iii) facilitating global collaboration via user-friendly upload protocols and feedback

channels, accelerating data accumulation, and enabling cross-disciplinary innovation.

4.2 High Computational Cost MD

From a computational cost perspective, machine learning interatomic potentials (MLPs)

offer orders-of-magnitude speedup over AMID by replacing on-the-fly quantum mechan-

ical force calculations with pretrained surrogate models, enabling simulations of much

larger systems and longer time scales. However, generating high-quality training datasets—

often requiring extensive AIMD or DFT calculations—can itself be computationally
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expensive, particularly when diverse chemical environments, defects, or wide thermo-

dynamic ranges must be represented. Moreover, in terms of large-scale MD simulations

equipped with MLPs, additional cost-related limitations arise, including substantial mem-

ory and storage demands for millions of atoms and long trajectories, communication over-

head and load imbalance in massively parallel computing, the need for femtosecond time-

step to maintain numerical stability, and the computational burden of post-processing mas-

sive datasets. Also, finite-size effects may still necessitate further scaling to capture long-

wavelength phonon contributions, which can offset some of the efficiency gains offered by

MLPs.

4.3 Constraints in Modeling Thermal Transport in Complex Crystal Systems

Another important limitation lies in the intrinsic complexity and diversity of crystal sys-

tems, which poses a fundamental challenge for direct ML predictions of thermal conduc-

tivity. Thermal transport in solids arises from a highly material-specific interplay of factors,

including chemical bonding characteristics, lattice symmetry, phonon dispersion relations,

higher-order anharmonic processes such as four-phonon scattering, and even contributions

from non-propagating vibrational modes (diffusions). These mechanisms can differ sub-

stantially between materials, meaning that patterns learned from one subset of compounds

may not transfer reliably to others with different bonding types or dominant heat-carrying

processes. Consequently, the confidence in applying direct ML models—particularly those

trained on limited or compositionally biased datasets—to predict the thermal conductiv-

ity of entirely new materials remains uncertain. Future work should aim to quantify and

improve this generalization capability, for example, by expanding training data diversity,

incorporating physically informed descriptors, and systematically evaluating model per-

formance across contrasting thermal transport regimes.

4.4 Bridging Multi-Resolution Data Gaps

Current AI/ML models for phonon properties rely on limited datasets (often just hundreds

of κL values) due to the high computational cost of ab initio methods. Conversely, approx-

imate theoretical models generate abundant but lower fidelity data. Hybrid approaches that

integrate multi-resolution data (combining high-accuracy DFT and scalable theory-based

datasets) could train ML models to balance speed and accuracy. Such models would better

generalize to unexplored materials, addressing the critical “extrapolation problem,” where

ML struggles beyond training domains.

4.5 Developing and Comprehensively Evaluating Universal Machine

Learning Potentials

Though MLPs accelerate phonon predictions by orders of magnitude, most are narrowly

tailored to specific materials or families. Training universal MLPs (uMLPs) capable of

handling diverse chemistries, symmetries, and atomic species requires massive datasets.
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Recent efforts (2021–2023; e.g., CHGNet,176 M3GNet,180 MACE,104 and Equifor-

merV2181) leverage large-scale DFT datasets (e.g., Materials Project, ICSD, and OQMD)

to pretrain broad MLPs. First, we need to understand the accuracy of existing uMLPs

for phonon transport property prediction. Especially related to phonons, the accuracy of

atomic force evaluation by the uMLPs is the most concern, either for replacing force eval-

uation in the DFT+BTE approach or for running MD simulations. Efforts in this regard

have just begun.182 Second, to overcome the impossibility of exhaustive DFT sampling,

active learning could identify critical gaps in training data, guiding targeted DFT calcu-

lations to refine uMLPs iteratively. With speeds nearing empirical models, uMLPs hold

immense potential for high-throughput screening.

4.6 Enhancing Generalization and Inverse Design

Most AI/ML models excel at interpolation (predicting within known data regimes) but

falter at extrapolation. Discovering novel materials with exceptional phonon properties

demands generative models capable of inverse design—proposing structures with tar-

get phonon behaviors (Fig. 8). Emerging tools like Google DeepMind’s GNoME, which

claims to predict more than 38 × 104 stable materials via active learning and GNNs, high-

light progress. However, questions remain about dynamic stability (e.g., phonon-mediated

instabilities), underscoring the need for AI/ML frameworks that uncover hidden phys-

ical laws rather than relying on interpolation. For example, many ML-enabled crystal

structure prediction models failed to generate dynamically stable materials with a high

success rate, which could waste lots of CPU time on filtering out the unstable structures

by subsequent DFT calculations. Therefore, implementing dynamic stability into the hy-

pothetical structure generation from the very beginning is an urgent task to do in this

field.

4.7 Unlocking Hidden Physics and Chemistry of Phonons from Data

AI/ML can also enable the discovery of hidden physics and chemistry rules and principles

by analyzing complex, high-dimensional datasets to uncover patterns and relationships im-

perceptible to traditional methods. By training on experimental or simulated data, AI/ML

models, such as neural networks or graph-based algorithms, can infer latent governing

equations, material properties, or reaction mechanisms, even in systems with incomplete

theoretical frameworks. Techniques such as symbolic regression,183 unsupervised learn-

ing, or attention mechanisms help distill interpretable rules or features, revealing under-

lying principles of molecular interactions, phase transitions, or energy dynamics, all of

which could be linked or related to phonon transport in inorganic crystals. For example,

how can the AI/ML models help us with extracting physics and chemistry rules for dy-

namic stability, i.e., generating new materials free of negative vibrational frequencies in

the Brillouin zone? Is it possible to get new rules for materials with strong phonon anhar-

monicity beyond those mechanisms that have already been understood such as lone-pair

electrons, rattling effect? The data-driven approach is expected to accelerate hypothesis
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generation, bridge gaps in multiscale modeling, and unlock predictive insights for novel

materials, chemical processes, or physical phenomena.

4.8 Expanding Current AI/ML Approach Beyond Single Crystals and

Phonons

Real-world applications (e.g., thermoelectrics) require understanding thermal transport in

heterogeneous systems (interfaces, disordered materials). Current AI/ML models, trained

on single-crystal phonon data, struggle with symmetry-breaking interfaces or aperiodic

structures. Universal MLPs could enable large-scale MD (e.g., NEMD) to study interfa-

cial thermal conductance (ITC). Hybrid workflows combining ML-predicted phonon DOS

overlap and semi-empirical models (e.g., diffuse mismatch model in almaBTE) may ac-

celerate interface screening. ML-driven studies of disordered superlattices have already

challenged conventional wisdom, revealing optimized phonon suppression in aperiodic

systems. AI/ML models for ITC prediction and screening based on single crystal DFT-

IFC data have been developed and demonstrated on high electron mobility transistors with

wide bandgap materials.184,185

As phonons play central roles in many societally important science and technology

applications, it is then intuitive to expand the current AI/ML approach beyond phonon

itself. Phonon-mediated superconductivity arises from the interaction between electrons

and lattice vibrations, where phonons facilitate the attractive force that binds electrons

into Cooper pairs, enabling resistance-free electrical current. This mechanism, central to

conventional superconductors described by Bardeen-Cooper-Schrieffer theory, hinges on

the strength of electron-phonon coupling and the material’s phonon spectrum. Since 2015,

advances in high-pressure hydrides (e.g., H3S, LaH10) have demonstrated record-high crit-

ical temperatures (Tc) under extreme conditions, reigniting interest in optimizing phonon-

driven superconductivity through tailored lattice dynamics. Computational tools like DFT

and ML are now highly expected to aid in screening and designing novel superconductors

with favorable phonon properties,bridging quantum interactions and macroscopic super-

conducting behavior for next-generation energy technologies.

Phonon-assisted superionic conductors are materials where lattice vibrations (phonons)

enable exceptionally fast ion diffusion through a solid (anions) framework, mimicking

liquid-like ionic mobility. In these systems, phonons lower energy barriers for ion (cations)

hopping by dynamically distorting the lattice, creating transient pathways for ions to mi-

grate. This mechanism is critical in high-performance solid electrolytes (e.g., lithium gar-

nets) used in batteries and fuel cells. Studies from 2016–2025 have leveraged computa-

tional tools like AIMD and ML to design materials with optimized phonon spectra and

ion-phonon coupling, aiming to enhance ionic conductivity while retaining structural sta-

bility. Such advancements promise safer, more efficient energy storage technologies by

replacing flammable liquid electrolytes with robust phonon-engineered solids.

Advancements in AI/ML algorithms for phonon research promise to unlock unprece-

dented insights into thermal transport across the material universe. By integrating gener-

ative design, uMLPs, and multi-resolution data strategies, these tools will enable rational
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engineering of materials with tailored thermal properties—ushering in a new era of inno-

vation for energy, electronics, and quantum technologies.

5. CONCLUSION

ML is rapidly reshaping the prediction of κL in inorganic crystals by offering scalable,

data-driven alternatives to conventional first principles and MD approaches. In this re-

view, we first outlined the foundations of prediction using classical MD and the DFT+BTE

framework, establishing the baseline for accuracy and computational cost. We then exam-

ined progress in AI/ML-based methods since 2016, categorizing them into direct mod-

els, which map crystal structure descriptors or learned representations directly to κL, and

indirect models, which accelerate intermediate steps such as force and IFC calculations

through MLPs. We summarized advances in descriptor engineering, GNNs, and ML force

fields, and discussed emerging strategies such as multi-fidelity learning, transfer learn-

ing, and inverse design. Key challenges remain, including limited high-quality phonon

datasets, generalization to unexplored chemistries, and rigorous uncertainty quantification,

yet the trajectory of progress is clear. Looking ahead, the integration of ML with physics-

based constraints, active learning, and experimental feedback loops is poised to deliver

accurate, interpretable, and high-throughput κL prediction tools. Such approaches will be

instrumental in accelerating the discovery and optimization of materials for thermoelec-

tric, thermal barrier coatings, and solid-state ionic conductors, bridging the gap between

theoretical design and real-world applications.

ACKNOWLEDGMENTS

This work was supported in part by the NSF (Award Nos. 2030128, 2110033, 2311202,

and 2320292), SC EPSCoR/IDeA Program under NSF OIA-1655740 (23-GC01).

DATA AVAILABILITY

There is no new data produced in this article.

REFERENCES

1. Wei, Y., Liu, Z., and Qin, G., Prediction Methods for Phonon Transport Properties of Inorganic

Crystals: From Traditional Approaches to Artificial Intelligence, Nanoscale Horiz., vol. 10,

pp. 230–257, 2025.

2. Zeng, Z., Shen, X., Cheng, R., Perez, O., Ouyang, N., Fan, Z., Lemoine, P., Raveau, B.,

Guilmeau, E., and Chen, Y., Pushing Thermal Conductivity to Its Lower Limit in Crystals

with Simple Structures, Nat. Commun., vol. 15, no. 1, p. 3007, 2024.

3. McClure, Z.D., Reeve, S.T., and Strachan, A., Role of Electronic Thermal Transport in Amor-

phous Metal Recrystallization: A Molecular Dynamics Study, J. Chem. Phys., vol. 149, no. 6,

p. 064502, 2018.



MACHINE LEARNING FOR THERMAL PROPERTIES OF INORGANIC CRYSTALS 161

4. Smith, M.F. and Whitley, J.B., Properties of Materials, in Physics of Plasma-Wall Interactions

in Controlled Fusion, Boston: Springer US, pp. 539–605, 1986.

5. Liao, B., Qiu, B., Zhou, J., Huberman, S., Esfarjani, K., and Chen, G., Significant Reduction

of Lattice Thermal Conductivity by the Electron-Phonon Interaction in Silicon with High

Carrier Concentrations: A First-Principles Study, Phys. Rev. Lett., vol. 114, no. 11, p. 115901,

2015.

6. Protik, N.H. and Kozinsky, B., Electron-Phonon Drag Enhancement of Transport Properties

from a Fully Coupled Ab Initio Boltzmann Formalism, Phys. Rev. B, vol. 102, no. 24, p.

245202, 2020.

7. Chen, Z., Zhang, X., and Pei, Y., Manipulation of Phonon Transport in Thermoelectrics, Adv.

Mater., vol. 30, no. 17, p. 1705617, 2018.

8. Kim, W., Strategies for Engineering Phonon Transport in Thermoelectrics, J. Mater. Chem.

C, vol. 3, no. 40, pp. 10336–10348, 2015.

9. Yin, Z.P., Kutepov, A., and Kotliar, G., Correlation-Enhanced Electron-Phonon Coupling:

Applications of GW and Screened Hybrid Functional to Bismuthates, Chloronitrides, and

Other High-Tc Superconductors, Phys. Rev. X, vol. 3, no. 2, p. 021011, 2013.

10. Bardeen, J., Electron-Phonon Interactions and Superconductivity, Science, vol. 181, no. 4106,

pp. 1209–1214, 1973.

11. Chen, G., Phonon Transport in Low-Dimensional Structures, Semicond. Semimetals, vol. 71,

pp. 203–259, 2001.

12. Khan, S., Shi, X., Feser, J., and Wilson, R., Thermal Conductance of Interfaces between

Titanium Nitride and Group IV Semiconductors at High Temperatures, Appl. Phys. Lett., vol.

125, no. 4, p. 041601, 2024.

13. Varnavides, G., Jermyn, A.S., Anikeeva, P., and Narang, P., Nonequilibrium Phonon Transport

across Nanoscale Interfaces, Phys. Rev. B, vol. 100, no. 11, p. 115402, 2019.

14. Kefayati, A., Bird, J.P., and Perebeinos, V., Detection of Single Phonons via Phonon Drag in

Two-Dimensional Materials, Phys. Rev. B, vol. 106, no. 15, p. 155415, 2022.

15. Wang, Q., Wang, C., Chi, C., Ouyang, N., Guo, R., Yang, N., and Chen, Y., Phonon Transport

in Freestanding SrTiO3 Down to the Monolayer Limit, Phys. Rev. B, vol. 108, no. 11, p.

115435, 2023.

16. Piyathilaka, H.P., Sooriyagoda, R., Whiteside, V.R., Mishima, T.D., Santos, M.B., Sell-

ers, I.R., and Bristow, A.D., Hot-Carrier Dynamics and Transport in III–V Heterostructures

for Photovoltaic Applications, J. Photon. Energy, vol. 12, no. 3, p. 032209, 2022.

17. Snyder, G.J. and Snyder, A.H., Figure of Merit ZT of a Thermoelectric Device Defined from

Materials Properties, Energy Environ. Sci., vol. 10, no. 11, pp. 2280–2283, 2017.

18. Ma, Z., Wei, J., Song, P., Zhang, M., Yang, L., Ma, J., Liu, W., Yang, F., and Wang, X.,

Review of Experimental Approaches for Improving zT of Thermoelectric Materials, Mater.

Sci. Semicond. Process., vol. 121, p. 105303, 2021.

19. Zhang, X. and Zhao, L.D., Thermoelectric Materials: Energy Conversion between Heat and

Electricity, J. Materiomics, vol. 1, no. 2, pp. 92–105, 2015.

20. Boeri, L., Hennig, R., Hirschfeld, P., Profeta, G., Sanna, A., Zurek, E., Pickett, W.E., Am-

sler, M., Dias, R., Eremets, M.I., Heil, C., Hemley, R.J., Liu, H., Ma, Y., Pierleoni, C.,

Kolmogorov, A.N., Rybin, N., Novoselov, D., Anisimov, V., Oganov, A.R., Pickard, C.J.,



162 ANNUAL REVIEW OF HEAT TRANSFER

Bi, T., Arita, R., Errea, I., Pellegrini, C., Requist, R., Gross, E.K.U., Margine, E.R., Xie, S.R.,

Quan, Y., Hire, A., Fanfarillo, L., Stewart, G.R., Hamlin, J.J., Stanev, V., Gonnelli, R.S., Pi-

atti, E., Romanin, D., Daghero, D., and Valenti, R., The 2021 Room-Temperature Supercon-

ductivity Roadmap, J. Phys. Condens. Matter, vol. 34, no. 18, p. 183002, 2022.

21. Jurgilaitis, A., Enquist, H., Andreasson, B.P., Persson, A.I.H., Borg, B.M., Caroff, P.,
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namics. II. Efficient Phonon Calculations and Long-Range Interactions, Phys. Rev. B, vol.

100, no. 18, p. 184309, 2019.

70. Zhou, F., Nielson, W., Xia, Y., and Ozoliņš, V., Compressive Sensing Lattice Dynamics. I.
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