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Accurate modeling of the gain spectrum in erbium-doped fiber amplifiers (EDFAs) is essential for optimizing
optical network performance, particularly as networks evolve toward multi-vendor solutions. In this work, we
propose a generalized few-shot transfer learning architecture based on a semi-supervised self-normalizing neural
network (SS-NN) that leverages internal EDFA features—such as VOA input/output power and attenuation—
to improve gain spectrum prediction. Our SS-NN model employs a two-phase training strategy comprising
unsupervised pre-training with noise-augmented measurements and supervised fine-tuning with a custom-
weighted MSE loss. Furthermore, we extend the framework with transfer learning (TL) techniques that enable
both homogeneous (same-feature space) and heterogeneous (different-feature sets) model adaptation across
booster, pre-amplifier, and ILA EDFAs. To address feature mismatches in heterogeneous TL, we incorporate a
covariance matching loss to align second-order feature statistics between the source and target domains. Extensive
experiments conducted across 26 EDFAs in the COSMOS and Open Ireland testbeds demonstrate that the pro-
posed approach significantly reduces the number of measurement requirements on the system while achieving
lower mean absolute errors and improved error distributions compared to benchmark methods. © 2025 Optica
Publishing Group. All rights, including for text and data mining (TDM), Artificial Intelligence (Al) training, and similar technologies,

are reserved.
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1. INTRODUCTION

The relentless growth of global data traffic, driven by emerging
technologies such as 5G/6G, smart cities, autonomous sys-
tems, and the Internet of Things (IoT), has placed increasing
demands on optical networks to sustain higher bandwidth,
lower latency, and enhanced reliability [1]. These require-
ments are further increased by the industry-wide shift toward
access-metro-core convergence, an architectural framework
that integrates disaggregated network layers, optimizes spec-
tral and energy efficiency through software-defined control,
and enables seamless scalability across the edge, metro, and
long-haul domains [2]. A critical component that enables these
advancements is the erbium-doped fiber amplifier (EDFA),
which compensates for signal loss over long distances. This has
an impactful role in optimizing optical network performance,
as the output power of the EDFA determines the launch power
level of each optical channel, which further affects the magni-
tude of nonlinear impairments in fiber. The noise figure of the
EDFA, which quantifies the degradation of the signal-to-noise

ratio (SNR) due to amplification, has a direct impact on key
performance metrics such as the optical SNR (OSNR) and
quality of service (QoT) [3,4]. The performance of EDFAs
is inherently tied to the wavelength-dependent gain profile,
which exhibits complex nonlinear behavior under varying
operating conditions, including pump power, channel load-
ing, and operating mode [5,6]. Recently, increasing demands
for high-bandwidth, low-latency applications have led to the
development of optical spectrum as a service (OSaaS), which
allows multiple parties to utilize the same network infrastruc-
ture, thereby increasing spectral utilization. However, in such
a dynamic scenario with multiple stakeholders, predicting the
system behavior is necessary to optimize performance and min-
imize security risks [7,8]. Therefore, accurate modeling of the
EDFA gain spectrum is critical for optimizing physical-layer
control in dynamic networks, particularly as operators reduce
design margins to improve spectral efficiency.

Traditional EDFA gain models rely on physics-based frame-
works derived from the quantum-mechanical principles of
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erbium-doped fiber (EDF) dynamics or on simplified expres-
sions for the automatic gain control (AGC) mode, which
require only a limited amount of measurements [9]. However,
these models are constrained by oversimplified assumptions
(e.g., idealized two-level erbium systems and a constant gain
spectrum shape under all channel configurations) and neglect
dynamic effects, manufacturing variability, and aging fac-
tors, reducing accuracy in practical deployments. Under
dynamic channel loading conditions, the inaccuracy is further
exacerbated for three reasons:

1. Critical EDFA parameters (e.g., Er’* concentration and
fiber length) are rarely available for commercial units and
are difficult to measure accurately [10]

2. Commercial amplifiers exhibit complex multi-stage
architectures that include gain-flattening filters, photo-
detectors, couplers, and variable optical attenuator (VOA)
elements that are typically emitted in two-stage analytical
models [11].

3. Physical models struggle to reproduce spectral hole burn-
ing (SHB) behavior [12].

Recently, machine learning (ML)-based EDFA models have
been proposed to overcome these limitations by collecting
measurements from EDFA devices [13]. Several methods have
been proposed for predicting the EDFA gain spectrum under
varying input power levels and channel loading configurations
[14,15]. Despite these advancements, comparing reported ML
models is difficult because the literature uses different experi-
mental settings, measurement resolutions, and train—test splits.
To mitigate the high measurement requirements of a purely
data-driven approach, hybrid ML models have been proposed
that combine physical EDFA models with ML techniques,
achieving a favorable accuracy versus measurement trade-off
[16]. Despite these innovations, even the best-performing ML
techniques often require extensive labeled datasets that are
impractical to collect on a live network and are typically trained
on single-vendor devices, limiting their generalizability.

These data and generalization constraints become even more
pronounced once individual amplifier models are stitched
together to predict end-to-end system behavior. When per-
component EDFA models are cascaded to form a multi-span
optical link model, uncompensated error accumulation can
severely degrade prediction accuracy [17,18]. Two broad
adaptive strategies have been investigated: (1) parameter refine-
ment methods that fine-tune physical model parameters after
deployment but only partly correct the accumulated error [4]
and (2) cascaded learning methods, which treat the entire link
as an end-to-end differentiable chain of component models
and use sparse link-level measurements to back-propagate cor-
rections, thereby reducing the link error to the level of a single
component [19,20]. Cascaded learning effectiveness thus relies
on a high-fidelity component model of the EDFA gain profile,
even though some margin for component-level error remains.

Building and maintaining such high-fidelity models for
every amplifier in a large, heterogeneous network is, how-
ever, both computational
Transfer learning (TL) is a promising path to reduce data
dependency by leveraging knowledge from source domains
to accelerate learning in target domains [21]. Specifically, a

and measurement-intensive.

well-characterized EDFA model can be used to model other
devices with only limited additional measurements. Recent
research showed that TL can be effective for modeling same-
type EDFAs (e.g., booster-to-booster), achieving accurate
predictions with just 0.5% of the target dataset [22]. However,
the application of TL across different amplifier types and ven-
dors (e.g., booster and pre-amplifier) remains under-explored.
Particularly, in large networks comprising EDFAs from multi-
ple vendors, TL can offer a viable means to characterize the
power dynamics using minimal additional data. In addition,
existing models only consider external features such as input
power and gain spectra while overlooking internal telemetry
that is readily available in modern commercial EDFAs and
could enhance generalization.

In our prior work [23], we introduced a semi-supervised
self-normalizing neural network (SS-NN) framework that
integrates internal EDFA features for gain spectrum mod-
eling, enabling transfer learning across in-built booster and
preamp EDFAs in reconfigurable optical add-drop multiplex-
ers (ROADMEs). Building upon this foundation, the present

work extends our previous contribution in several key ways:

* We extend our experimental validation by collecting
gain spectrum measurements on four in-line amplifiers (ILAs)
[without embedded optical channel monitors (OCMs)] and
investigate the performance of the SS-NN model on different
EDFA types.

* We investigate whether transfer learning can be applied
across different EDFA types (such as boosters/preamps), as well
as different manufacturers (such as Lumentum in-ROADM
EDFAs/Juniper ILAs).

* We introduce a heterogeneous TL method that utilizes
covariance matching (CORAL loss) to align the feature rep-
resentations between the source and target domains, thereby
addressing the challenges associated with feature mismatches
across diverse EDFA types and vendors.

The contributions of this work can be summarized as
follows:

1. We develop a novel SS-NN architecture that inte-
grates both external and internal EDFA features. By
combining unsupervised pre-training with supervised
fine-tuning, our approach significantly reduces the
number of measurements required for effective training.

2. We introduce a few-shot transfer learning mechanism that
enables efficient knowledge transfer from one EDFA to
another.

3. We incorporate a covariance matching technique
(CORAL loss) for heterogeneous transfer learning,
enhancing domain adaptability across EDFAs with
differing feature sets.

4. We perform a comprehensive experimental evaluation
on 26 commercial-grade EDFAs—including boost-
ers, pre-amplifiers, and ILAs from the COSMOS and
Open Ireland testbeds—demonstrating improved model
performance and reduced measurement requirements.

The remainder of this paper is organized as follows:
Section 2 describes the experimental setup and data collec-
tion methodology for EDFA gain spectrum measurements
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across the COSMOS and Open Ireland testbeds. Section 3
describes the proposed SS-NN model architecture, the training
process, and the results for directly trained models. Section 4
discusses the homogeneous and heterogeneous TL methods
and results for model transfer across different EDFA types.
Finally, Section 5 summarizes our findings.

2. EXPERIMENTAL SETUP AND DATA
COLLECTION

This section outlines the experimental setup and data collec-
tion methodology for EDFAs in the Open Ireland and PAWR
COSMOS testbeds. The Open Ireland testbed [24] is an open
reconfigurable optical-wireless testbed in Dublin, Ireland,
while the PAWR COSMOS testbed [19,25] is a city-scale
programmable testbed deployed in Manhattan, USA.

A. Experimental Setup for Booster/Preamp

Gain spectrum measurements were conducted across multiple
C-band wavelengths using commercial-grade Lumentum
ROADM-20 units—three deployed in the Open Ireland
testbed and eight in PAWR COSMOS. Each unit contains two
EDFAs, yielding data from 11 booster and 11 pre-amplifier
EDFAs. Figure 1 illustrates the experimental topology. A
broadband source generates 95 x 50 GHz wavelength divi-
sion multiplexing (WDM) channels in the C-band following
the International Telecommunication Union (ITU) dense
wavelength division multiplexing (DWDM) 50 GHz grid
specification. Data collection procedures were standardized
across both testbeds [10].

For booster measurements, the MUX wavelength selective
switch (WSS) flattens channels and controls power and loading
configurations. In pre-amplifier measurements, the comb
source connects to an auxiliary ROADM’s line-in port, with
its: DEMUX managing power and channel loading before
forwarding the signal to the EDFA under test. Input and out-
put power spectra for all 95 channels are recorded via built-in
OCMs, while total input/output power through the EDFAs is
captured via integrated power monitors (PMs). Additionally,
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Fig. 1.  Experimental setup for characterization of booster/pre-
amplifier EDFAs of Lumentum ROADMs in the COSMOS and
Open Ireland testbeds.

we collect the internal VOA input/output power (2, PV)

out
and attenuation (PaKn) measurements.

B. Experimental Setup for ILA

We collect gain spectrum measurements from two commercial-
grade, bidirectional Juniper TCX-1000 ILA units deployed
in the Open Ireland testbed. The data are collected for both
forward and backward directions (typically denoted as AB and
BA). Although housed on the same equipment, the forward
and backward direction amplifiers function independently.

Figure 2 shows the experimental topology; as in previous
setups for boosters/preamps, a broadband source is used to
generate 95 X 50 GHz WDM channels in the C-band. Unlike
ROADMs, ILAs do not have a built-in OCM, which makes
data collection difficult. Therefore, we employ two auxiliary
ROADMs to collect gain spectrum measurements from both
EDFAs in a single ILA. For the forward direction (AB), the
input and output power spectra are collected using built-in
OCM at the DEMUX output of the first auxiliary ROADM
and at the MUX input of the second auxiliary ROADM, and
vice versa for the backward direction EDFA (BA). The total
input/output power through the ILAs is collected through
built-in PM in the ILAs. It should be noted that there will be
insertion loss between the actual input/output power spectra
between auxiliary ROADMs and the input/output of the ILAs.
To compensate for these losses, a scaling factor (o) is applied
to reflect the actual input/output power spectrum values at
the ILA input/output, respectively. For each measurement, the
scaling factor (o) is calculated as follows:

Tin = Pout’/ Py (1)

out in

and

Oour = PILA/Piﬁux’ (2)

out

where PA™ and PAY are the total input and output powers of
the input and output ROADMs in milliwatts (mW), respec-
tively. PIM and PII* are the total input and output powers
of the ILA EDFA under test. The total power readings are
measured through the in-built PMs in both ROADMs and
ILAs. From Egs. (1) and (2), the normalized power readings for

each channel 7 are calculated as follows:

Aux
Pin()"i) =0Oip * 1)in ()"i)v (3)
and
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Fig. 2.  Experimental setup for characterization of the Juniper

TCX-1000 ILAs in the Open Ireland testbed.
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EDFA Type and Gain Setting
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Fig. 3. Complete set of measurements collected from EDFAs
across the COSMOS and Open Ireland testbeds.

where Piﬁ‘”‘(k,-) and P‘ﬁl‘f‘(k,-) are the measured OCM
power readings at the auxiliary ROADMs for each chan-
nel 7 in the 95 x 50 GHz DWDM channels. It should be
noted that, unlike boosters/pre-amplifiers, the internal VOA

measurements are not exposed for ILAs.

C. Measurement Configuration

The measurement schema for data collection is shown in Fig. 3.
In the Open Ireland testbed, all booster and preamp EDFAs
were characterized at target gain settings of 15/20/25 dB,
while in the COSMOS testbed, the target gains were set to
15/18/21 dB for boosters and 15/18/21/24/27 dB for pre-
amplifiers in high gain mode. All ILAs were measured in the
Open Ireland testbed at target gains of 10/15/20 dB in low
gain mode. All measurements were taken with a 0 dB gain dilt.
The use of varying gain configurations across different EDFA
types and testbeds is intended to replicate the operational
diversity encountered in different network environments. The
dataset comprises 3168 gain measurements (collected across
multiple wavelengths) per EDFA for each designated target
gain setting. Overall, the COSMOS testbed yielded 202,752
measurements across 11 boosters and 11 preamps. In the Open
Ireland testbed, a total of 57,024 measurements were taken in
three boosters and three preamps, while 38,016 measurements
were taken from four EDFAs in two ILAs (in both the forward
and backward directions). All measurements were collected
under three different channel loading configurations:

1. Fixed: This includes fully loaded (WDM), half-loaded
(lower/upper spectrum and even/odd numbered chan-
nels), adjacent single/double channel loads, as well as a
complete set of single/double channel configurations.

2. Random allocation: This configuration comprises random
channel configurations from small-scale single-channel
loads to fully loaded setups.

3. Goalpost allocation: This includes structured channel-
loading configurations across different wavelength bands
(short, medium, and long wavelengths), with both
balanced and unbalanced loads across the considered

bands.

Gain Ripple of different EDFA types
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Fig. 4. Measured gain ripple for differenc EDFA types (ILA,

booster, and preamp) at the same target gain setting of 15 dB.
One device of each EDFA type used in the Open Ireland testbed is
shown. Solid lines show the mean gain ripple, while the shaded areas
represent the min/max range of gain ripple values.

Figure 4 shows the measured gain ripple at a target gain
setting of 15 dB for a booster, pre-amplifier, and ILA in the
Open Ireland testbed. It can be seen that different EDFA types
exhibit different gain ripples. Figure 5 shows the gain ripples
of different devices measured across the booster, pre-amplifier,
and ILA. It can be seen that even devices from the same manu-
facturer exhibit different gain ripples at the same target gain
setting.

3. MODEL ARCHITECTURE

The SS-NN model is designed to address two challenges in
EDFA gain spectrum characterization: limited training data
and poor transferability across different EDFA devices. The
proposed model integrates internal features of the EDFA, a
self-normalizing activation function, and a two-stage training
process, which enables few-shot learning and improved gen-
eralization capabilities. In the following sections, we provide
a detailed explanation of the model architecture and training
methodology.

A. SS-NN Model

Existing ML approaches for EDFA modeling often treat
the amplifier as a black box, relying solely on input/output
spectra. For boosters and preamps, we incorporate three key
features derived from the internal VOA: input/output power
(Pil/, Poit) and attenuation (Pa‘t/m). VOAs are an internal
component of EDFAs, which indirectly influence the shape
of the gain profile by acting on the signal’s input powers.
This is done to ensure the EDFA operates in its design aver-
age inversion for a flat spectrum gain profile, which matches
the gain flattening filter (GFF) attenuation [26]. The VOA
attenuation is controlled automatically in the EDFA based
on the model’s gain dynamic range, and it grants intrinsic
information on the operation of each EDFA. In addition
to the VOA parameters, the full input feature set includes
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Fig.5. Measured gain ripple of the same EDFA type, across different devices at the same target gain setting. Solid lines show the mean gain rip-
ple, while the shaded areas represent the min/max range of gain ripple values.

the target gain (Gy) with constant-gain configuration, total
EDFA input/output power (P, Pou), input power spectrum
(P(A;)) =[P (A1), P(A2), P(X3), ..., P(hos)]), and a binary
channel-loading vector C = [c,-]?il, where

-

Figure 6 shows the overall architecture of the SS-NN
model, which utilizes a four-hidden layer topology with
200/200/100/100 neurons. The input layer consists of 196
neurons, while the output layer consists of 95 neurons in
all cases, predicting the gain spectrum at 95 wavelengths,
G(A;)=[G(1), ..., G(Ags)]. The final model architecture
was determined through a random search over the sub-
space of (i) the number of hidden layers € {1, 2, 4, 8,10}
and (ii) the number of neurons in each hidden layer
€{50,95,100,150,200,300}. The final model architecture
with four hidden layers and a neuron count of (200-200-100—
100) was chosen optimally on the basis of model accuracy as
well as pre-training computational cost. The model is based on
self-normalizing neural networks (SNNs) with a scaled expo-
nential linear unit (SELU) as the activation function, where the
SELU function is defined as

1, if the 7th wavelength channel is active,

0. ©)

otherwise.

selu(x) =Ax - I(x >0)+a(e*—1)-I(x <0), (6)
where o = 1.673 and A =1.050, and 7/ denotes the indica-
tor function. In ILAs, the missing internal VOA features are
imputed with an extreme value of —999, in order to saturate
the output of input neurons corresponding to the missing
input features. In neurons with the SELU activation function,
the gradient becomes saturated at highly negative inputs such
as —999, essentially acting as a dead neuron.

Typically, batch normalization is commonly applied to
stabilize training by normalizing the outputs of hidden layers
[22]. However, batch normalization tends to perform poorly
when training with limited data, as it relies on the estimation
of batch statistics that can be unreliable in such scenarios [27].
In contrast, SNNs with the SELU [28] activation function
ensure stable variance propagation across layers, even with less
data. This self-normalizing property is a key factor enabling the
SS-NN architecture to effectively perform one-shot training
and achieve cross-device transferability.
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Fig.6. SS-NN model structure with five layers.

B. Training Process

The proposed model employs a two-phase training method-
ology comprising unsupervised pre-training [29,30] followed
by supervised fine-tuning [31]. This approach is driven by two
considerations:

1. Unsupervised pre-training leverages readily available unla-
beled input power spectrum measurements. These data
points are more accessible and can also be simulated in flat
spectrum scenarios, which significantly mitigates the need
for resource-intensive labeled datasets.

2. The pre-training process helps achieve a better weight ini-
tialization compared to random initialization and captures
more complex dependencies between parameters [30].
Furthermore, it introduces implicit regularization prop-
erties that improve generalization, particularly beneficial
when transferring knowledge between different EDFA
configurations and units [32].

Figure 7 illustrates the training procedure. During unsuper-
vised pre-training, weights are initialized progressively using
a layer-wise denoising strategy, where each layer is trained on
512 noise-augmented measurements per gain setting. Gaussian
noise is added to the inputs, and an autoencoder structure,
which matches the dimensionality of the original feature set,
is tasked with reconstructing denoised outputs. The training
employs mean squared error (MSE) loss to evaluate recon-
struction fidelity under noise corruption. Each layer undergoes
sequential training for 1800 epochs (learning rate = le — 03),
with its weights frozen upon initialization to preserve hierarchi-
cal feature representations during subsequent training stages.
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SS-NN model training framework. Steps 1(a) and 1(b) show the greedy layer-wise pretraining of hidden layers using unsupervised pre-

training. This pre-trained model forms the basis for Step 2, where supervised fine-tuning is performed with 256 labeled measurements.

Once all layers are pre-trained, the finalized model serves as the
foundation for supervised fine-tuning.

For supervised fine-tuning, the model is optimized using a
labeled dataset of 512 measurements containing fully loaded
and random channel configurations. We utilize a custom
weighted MSE loss function, and for the 4th measurement, it

is defined as

95
1 k k k
MSEk = 95 k ’ Z Ci ’I:gpred()\'i) - gmeas()\i):l

i=1% i=1

2

(7)

In this phase, the model is fine-tuned using the Adam opti-
mizer with a learning rate of le — 03, over 1200 epochs with
a batch size of 32. To account for the wide dynamic range of
gain-spectrum measurements obtained across different power
levels and channel configurations, we apply gradient clipping
[33] with a threshold of 1.0 to stabilize training and prevent
divergence. During the entire training process, hyperparameter
optimization was performed using a random search to fine-
tune the learning rate, the number of layers, the number of
neurons in each layer, and the batch size.

C. Training and Test Sets

We compare the SS-NN model with a benchmark state-of-
the-art method [10,22]. For equivalent comparison, we follow
the same dataset selection criteria. For each gain setting, we
split the dataset into a training/test set ratio of 0.86/0.14. The
test set contains 436 gain spectrum measurements per gain
setting. This test set contains a mixture of random and goalpost
channel loading measurements, which represent a diverse set
of channel loading configurations. Note that, although the
SS-NN model uses less data for training, we allocate a larger
portion of training data for the benchmark model, which uses
2732 measurements per gain setting.

D. Model Performance

We compare the SS-NN model with the benchmark model
using the same set of features to highlight the benefits of our
approach. Additionally, for boosters/preamps, we demonstrate
the advantage of incorporating internal EDFA features by
comparing the results of the SS-NN model with and without
including these additional features.

Figure 8 shows the distribution of absolute errors of the
gain spectrum predicted by the benchmark model, the SS-
NN model using the same set of features, and the SS-NN
model with additional internal VOA features. The errors are
calculated across 11 boosters, 11 pre-amplifiers, and 4 ILA
EDFAs in the Open Ireland and COSMOS testbeds on the
test set with random and goalpost channel configurations. For
boosters, the SS-NN model achieves a mean absolute error
of 0.05 and 0.07 dB under the random and goalpost channel
configurations. This is comparable to the performance of the
benchmark model, which uses a considerably higher num-
ber of measurements (8196 measurements), compared to a
total of 1792 measurements utilized by the SS-NN model.
Importantly, SS-NN models exhibit a superior error distribu-
tion, with a narrow inter-quartile range, and a 95th percentile
error of 0.15/0.24 dB, compared to 0.38/0.16 dB by the
benchmark model, across the goalpost/random test sets.

For preamps, the SS-NN model achieves a mean abso-
lute error of 0.08/0.05 dB using the same set of features and
0.07/0.05 dB using additional internal features across goal-
post/random channel configurations. This is marginally better
than the benchmark model, which achieves a 0.09/0.05 dB
error across goalpost/random test sets. Additionally, the dis-
tribution of errors for SS-NN models is more stable, with a
narrow inter-quartile range and a 95th percentile error within
0.3 dB across both channel configurations, showing that the
SS-NN model generalizes well to unseen channel configura-
tions even when trained with reduced measurements. It should
be noted that using additional internal features when directly
training EDFA models, i.e., training on the source EDFA’s
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Fig.8. Boxplot distribution of absolute errors across all 11 booster,
11 pre-amplifier, and 4 ILA EDFAs for goalpost and random channel
loading. The boxes denote the inter-quartile range, and the whiskers
denote the min/95th percentile.

measurements without TL, does not provide additional
performance.

For ILAs, we only develop the SS-NN model against the
benchmark model due to the non-availability of internal VOA
measurements in Juniper ILAs. Moreover, because of the
measurement setup involving external ROADMs, the ILA
input and output spectra exhibit more noise compared to
booster/preamps—which are in-ROADM EDFAs. In this case,
the SS-NN model performs much better than the benchmark
model both in terms of mean absolute error (MAE) and dis-
tribution. The model achieves 0.07/0.08 dB error on goalpost
datasets, with a 95th percentile error within 0.4 dB across both
the channel configurations.

Table 1. Computational Overhead for the SS-NN
Model with the Largest Number of Features (Including
Internal Features)®

Parameter Value
Trainable parameters 119,395
Batch size 32
Total training time 1180s
Inference latency 1.1 ms
Inference floating point operations (FLOPs) 238,095

“Latency times are averaged over the entire dataset and approximated to the
first decimal place.

Table 1 summarizes the computational overhead for the
SS-NN model, including the total number of trainable param-
eters, per-inference FLOPs, and approximate training times.
All experiments were conducted on an Nvidia RTX 4090 GPU
in the Open Ireland testbed, with 24 GB of VRAM and a peak
32 bit floating-point throughput of 82.58 tera floating-point
operations per second (TFLOPS) [34]. Training latency is
substantially higher than inference latency because of a smaller
batch size of 32. This was driven by our finding that lower
batch size improved convergence when training with a limited
set of measurements in the fine-tuning step. The inference time
per observation is ~1.1 ms, which is considerably faster than
the 6 s temporal resolution of in-device OCM measurements
on the Lumentum ROADM-20 module [10].

4. TRANSFER LEARNING

Transfer learning improves performance on a target task by
leveraging information from a related source domain [21].
In the context of ML algorithms, TL involves fine-tuning a
model trained on a source domain (Ds) using new feature
representations from a target domain (D7). This approach is
particularly useful for modeling the gain spectrum in EDFAs,
as it can reduce the required measurement time.

For a source domain Dg with » features, the feature
representation for an instance 7 can be expressed as

i __ i i i
X, ={x/, x5, ... x}

Similarly, for a target domain D7 with m features, an instance
J is represented by

X! = {xtjl, xt]2, e xl b

Given a model f; trained on Dg, TL is performed by aug-
menting f; with additional instances from D7. When 7 = m,
TL is considered homogencous, whereas when 7 # m, it is
classified as heterogencous. In the latter case, differences in
feature space dimensionality can lead to information loss and
degraded model performance. Furthermore, if the source
domain contains more information than the target (# > m),
negative transfer may occur [35,36], where the source knowl-
edge adversely affects the target model. Although training both
models on only shared features could improve performance, it
would compromise the source model’s accuracy.

In the case of EDFA TL, a similar trade-off is evident. As
discussed previously, incorporating additional internal EDFA
features enhances model performance. However, a source
model trained with these extra features cannot be directly
transferred to a target EDFA (e.g., an ILA) that lacks the ability
to measure them. Conversely, training a source model with-
out these features would enable direct transfer but require
maintaining dual models or accepting suboptimal perform-
ance in the source domain. Based on these considerations, we
categorize EDFA TL as follows:

1. Homogeneous TL: This applies to TL between EDFAs
with identical feature spaces, including
(@) same-type transfers: B <> B, P <> P, [LA <> ILA,
(b) cross-type transfers: B <> P.
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Fig. 9. CDF plots of absolute errors for TL across same-type homogeneous TL for (i) booster-to-booster TL: random channel loading,

(ii) booster-to-booster TL: goalpost channel loading, (iii) preamp-to-preamp TL: random channel loading, and (iv) preamp-to-preamp TL:

goalpost channel loading.

2. Heterogeneous TL: This covers transfers between models
trained on boosters/pre-amplifiers (with the full fea-
ture set) and ILAs (which lack internal features), i.e.,
BJP < ILA.

Note that same-type TL and cross-type TL between boost-
ers and preamps are categorized as homogeneous TL, as are
transfers among ILAs, given their consistent feature space.
In contrast, TL between an ILA and a booster/preamp is
heterogeneous due to the missing internal VOA features in
ILAs.

In this section, we demonstrate that TL for SS-NN models
can effectively model the gain spectrum across different EDFAs
with minimal additional data. Section 4.A details the TL
techniques and results for same-type and cross-type transfers,
while Section 4.B investigates transfers between EDFAs with
differing feature sets and presents an updated TL approach for
heterogeneous scenarios.

A. Homogeneous Transfer Learning

To transfer an existing model from a source EDFA to a target
EDFA, we fine-tune the source model using a single fully
loaded measurement per target gain setting. The model is fine-
tuned using the Adam optimizer for 10,000 epochs, employing
the MSE loss function as in Eq. (7) and a gradient clipping
threshold of 1.0 to ensure stable training. Instead of using a
uniform learning rate, a differential learning rate is applied
across layers. Rather than completely freezing initial layers,
we adopt an exponentially decaying, layer-wise differential
learning rate strategy [37,38]. The layer-specific learning rate
o for layer / in a neural network with a total of L layers can be
given as

o =aqg - 100D,

where o is a constant denoting the base learning rate, and 6
is the exponential multiplier. Empirically, we found the values
of €g=10"% and 6§ = —1 to work well with convergence.
This strategy enables the output layer to adapt rapidly to the
target EDFA’s specific characteristics, while the lower layers
are fine-tuned more conservatively to prevent overfitting and
promote robust generalization.

1. Same-Type Transfer Learning

Figure 9 presents the cumulative distribution function (CDF)
of absolute errors for same-type TL among booster/preamp
EDFAs under both random and goalpost channel loading
configurations. Error distributions are provided for all possible
booster-to-booster (B — B) transfers across 11 booster EDFAs
and preamp-to-preamp (P — P) transfers across 11 preamp
EDFAs from the COSMOS and Open Ireland testbeds. We
compare the SS-NN model with (i) the benchmark TL tech-
nique [10], which employs the same NN architecture and
(it) the SS-NN model trained without internal EDFA fea-
tures. This comparison highlights the benefit of incorporating
additional internal variables along with the proposed model-
ing technique. Importantly, the benchmark model requires
13 additional measurements per target gain setting for TL,
whereas the SS-NN model requires only 1.

The error distribution—particularly the 90th
percentile—is critical since neural network (NN) models
are prone to overfitting on data subsets. The SS-NN mod-
els, however, exhibit a more favorable error distribution for
both B — B and P — P transfers under both channel loading
configurations. While training directly with internal EDFA
features does not yield a substantial performance benefit,
these variables enhance TL performance, indicating that they
contain distinctive information about the EDFAs under test.

Figure 10 shows the CDF of absolute errors for TL across
four ILAs under random and goalpost channel loading con-
figurations in the Open Ireland testbed. The SS-NN model
demonstrates a superior error distribution compared to the

in
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Fig. 10.  CDF plots of absolute errors for TL across ILAs in the

Open Ireland testbed.
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Fig. 11.  Transfer learning MAE matrix of the SS-NN model for
four ILAs in the Open Ireland testbed, shown across random and
goalpost channel loading configurations. The (7, j) entry corre-
sponds to the TL-based ILA model, where the 7th and jth EDFA
serve as the source and target models, respectively.

benchmark model, particularly in the 95th percentile where
the absolute error is <0.2 dB in both test sets. Figure 11 dis-
plays the MAE matrices (in dB) for the SS-NN model across
four ILAs under both channel loading configurations. In
each matrix, the diagonal entry (7, 7) corresponds to a directly
trained model (without TL), while the off-diagonal entry (i, f)
corresponds to a transferred EDFA model with the 7th and jth
EDFAs serving as the source and target, respectively. These
results indicate that the SS-NN model generalizes well to other
ILAs even when TL is performed with only a single measure-
ment per target gain setting. Specifically, the SS-NN-based TL
model achieves a per-EDFA MAE below 0.14 dB across both
test sets.

2. Cross-Type Transfer Learning

Cross-type TL in EDFAs is more challenging than same-type
TL due to significant differences in the feature space. Boosters
and preamps are designed for different purposes: preamps are
low-noise, high-gain EDFAs that can substantially improve a
transceiver’s SNR, whereas boosters are optimized for oper-
ation in the gain saturation range to enable long-distance
transmission [26].

Figure 12 shows the CDF plots of absolute errors for cross-
type TL between boosters and preamps, evaluated under both
random and goalpost channel loading configurations. The

B --> P: Random B --> P: Goalpost
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results include error distributions for all possible combinations
of 11 boosters and 11 preamps from the COSMOS and Open
Ireland testbeds. As before, comparisons are made with the
benchmark TL model and the SS-NN model trained without
internal EDFA features. Although cross-type TL performance
is slightly inferior to same-type TL, the SS-NN model still
demonstrates a more favorable error distribution than the
benchmark. In particular, under random channel loading,
the SS-NN model achieves an absolute error of <0.2 dB for
95% of the measurements and outperforms the benchmark in
goalpost configurations. Enhancing the error distribution in
goalpost scenarios remains an area for future work.

B. Heterogeneous Transfer Learning

Transferring a source model trained on booster/preamp EDFAs
(which incorporate internal EDFA features) to an ILA EDFA is
non-trivial for the following reasons:

1. Booster/preamp EDFAs are in-ROADM devices, where
gain measurements are obtained via built-in OCMs.
In contrast, ILAs typically lack integrated OCMs; their
gain spectrum measurements are collected using external
OCMs. Although these external variables are accounted
for during data processing, they introduce additional
noise.

2. SS-NN models for booster/preamp EDFAs achieve opti-
mal performance when trained with additional internal
features. However, these features may not be available
for ILAs due to vendor constraints. While it is possible
to transfer a source model trained without these extra
features, doing so would require maintaining dual models
or sacrificing performance on the source EDFA.

TL in these cases suffers from non-significant differences
in source and target feature distributions, as well as a fea-
ture mismatch. This often leads to significant changes in the
model’s input representations, requiring more measurements
for domain adaptation. We utilize a covariance matching
technique for TL—correlation alignment for deep domain
adaptation (CORAL) [39,40]—in order to align the fea-
ture representations between the source and target models.
Essentially, CORAL loss aligns the second-order statistics
(i.e., covariance matrices) of the source and the target domain
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Fig. 12.  CDF plots of absolute errors for TL across cross-type homogeneous TL for (i) booster-to-preamp TL: random channel loading,

(ii) booster-to-preamp TL: goalpost channel loading, (iii) preamp-to-booster TL: random channel loading, and (iv) preamp-to-booster TL:

goalpost channel loading.
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for increased domain adaptability. The heterogeneous TL
process is implemented as follows:

1. Reference covariance computation: From the training
set of the source EDFA model, 128 randomly selected
measurements are sampled. The output of the last hidden
layer (with 4 =100 neurons) is recorded; let this be rep-
resented by the matrix Fg € RV, where N =128. The
covariance matrix Cg is then computed as

L (Bs —F)" (s F 8

Cs—m(s— s) (Fs—Fg), (8)

where Fy is the mean feature vector over the batch. This
matrix is saved as a fixed reference.

2. Feature imputation: For the target EDFA, any missing
internal VOA features are imputed with —999 to ensure
consistency in the model architecture.

3. Differential fine-tuning: The source EDFA model is fine-
tuned using 7 additional measurements from the target
EDFA. A differential learning rate is applied: the output
layer is updated with a larger learning rate of 1 x 1072,
while each hidden layer is assigned a learning rate that
is 10% of that of the subsequent layer. Moreover, the
learning rate for each layer is halved every 2000 epochs.

4. Loss function update: During fine-tuning, for each
batch, the target model’s last hidden layer features
Fr e RV%4 are obtained and their covariance matrix
Cr is computed similarly. From Eq. (7), the overall loss
function £, for the £#th measurement is defined as

95

1 2

L= 2 [ ghaCii) = gl 0]
Zi:l ¢; i=1

1
+e 5 1Cs = Crllf, ©)
where || ||z denotes the Frobenius norm, and A is the

weighting factor for the CORAL loss.

5. Training: Finally, the target EDFA model is trained
with the updated loss function for 10,000 epochs, using
A=0.4. A base learning rate (o)) of oy =1e — 02 was
found to perform better in this case, as compared to
o = 1le — 03 used in homogeneous TL.

1. Model Performance

We first investigate the number of additional measurements
required to effectively transfer a source EDFA model to a
target EDFA. The additional measurements for fine-tuning
are randomly loaded and fully loaded channel configurations.
To evaluate this, we compare the TL performance of our pro-
posed SS-NN model incorporating the CORAL loss with two
alternative TL configurations:

1. TL with a source model trained without additional
features: In this case, the source model is trained using
only the basic features, excluding the internal EDFA mea-
surements. This configuration serves as a baseline for TL
when additional internal features are not available.

2. TL with a source model trained with additional fea-
tures (MSE loss): Here, the source model is trained with

the complete set of internal features, and TL is performed
using the standard MSE loss.

It should be noted that the direction of transfer introduces
fundamentally different challenges. In the (booster/preamp)
— ILA TL scenario, there is an information loss problem: the
source booster/preamp models are trained with additional
internal features, which are missing in the target ILA dataset.
In contrast, the ILA — (booster/preamp) TL represents a case
of information gain—the source ILA model is trained with
imputed additional features and is then transferred to a dataset
with a complete feature set.

Figure 13 shows the MAE of TL models as a function of
the number of additional measurements per target gain setting
used during training. The results, aggregated across all combi-
nations of EDFAs in the COSMOS and Open Ireland testbeds
under both random and goalpost channel configurations,
indicate that heterogeneous TL requires more data points than
homogeneous TL, which needs only a single fully loaded gain
spectrum measurement. Moreover, the performance of a full-
feature set SS-NN model degrades even with a large number of
additional measurements, exhibiting negative TL. In contrast,
models employing the CORAL loss achieve performance com-
parable to those trained with a reduced feature set. Notably, the
MAE is higher for (booster/preamp) — ILA TL than for ILA
— (booster/preamp) TL. We attribute this asymmetry to the
greater difficulty of unlearning the pre-trained source represen-
tations under a conservative training mechanism; optimizing
this directional model asymmetry will be a focus of our future
work.

Based on these results, we selected 32 additional measure-
ments per target gain setting for ILA — (booster/preamp)
TL and 48 additional measurements for (booster/preamp) —
ILA TL. Figure 14 presents the CDFs for both TL scenarios
across all EDFAs in the COSMOS and Open Ireland testbeds
under random and goalpost allocations. Models employing
the modified loss function with the CORAL loss perform
similarly—and in some cases better—than the benchmark
models. Specifically, for ILA — (booster/preamp) TL, the
CORAL loss yields superior performance with an absolute
error of <0.22dB across all test sets. For (booster/preamp)
— ILA TL, while models using CORAL loss outperform
the benchmarks, overall performance is lower compared to
other TL combinations, particularly under goalpost channel
configurations.

These results demonstrate that incorporating CORAL
loss into the SS-NN framework can enhance TL perform-
ance across EDFAs with different feature sets—eliminating
the need to train and maintain multiple versions of the same
model. Homogeneous TL is achieved with minimal addi-
tional measurements, while heterogeneous TL—particularly
in the (booster/preamp) — ILA scenario—requires a larger
dataset to overcome information loss and feature mismatches.
The proposed approach not only mitigates negative transfer
effects but also yields consistent performance as evidenced
by improved error distributions and lower MAE values.
These findings provide a basis for further investigation into
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model trained with internal EDFA features but TL without CORAL loss, and (iii) the source model trained with additional features and TL incor-
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model trained with additional features and TL incorporating CORAL loss.

covariance alignment techniques for transfer learning in opti-

cal networks, especially in multi-span field networks where

multiple vendor technologies are used.

5. CONCLUSION AND FUTURE WORK

In this paper, we introduce a generalized few-shot transfer
learning architecture for EDFA gain spectrum modeling that
integrates internal amplifier features within a SS-NN. The

proposed two-phase training process,

combining unsuper-

vised pre-training with supervised fine-tuning, enables the
SS-NN model to achieve high accuracy with limited labeled
data. Furthermore, by incorporating a covariance matching
(CORAL) loss, our approach effectively addresses domain
discrepancies in heterogeneous transfer learning scenarios,
particularly between booster/pre-amplifier EDFAs and ILAs.
Experimental results on the COSMOS and Open Ireland

testbeds show that the proposed framework not only reduces
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the required measurement overhead but also yields improved
error distributions and lower mean absolute errors compared to
state-of-the-art benchmarks.

Building on these findings, we aim to pursue several open
challenges in the future. First, although an initial 10-month
follow-up suggests that gain spectrum drift in the COSMOS
EDFAs is below 0.1 dB [10], a multi-year dataset is required
to quantify the impact of EDFA aging effects on model per-
formance. Additionally, systematic exploration in the SHB
region, especially under extreme channel configurations, could
improve model reliability in power excursion scenarios. Finally,
with the rise of flex-grid systems such as OSaaS [7], our future
work will also focus on adapting these fixed-grid models to
flex-grid operation.

Funding. Science Foundation Ireland (12/RC/2276_p2, 18/RI/5721,
22/FFP-A/10598); National  Science  Foundation = (CNS-1827923,
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