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Abstract—Diverse critical data, such as location information
and driving patterns, can be collected by IoT devices in vehicular
networks to improve driving experiences and road safety. How-
ever, drivers are often reluctant to share their data due to privacy
concerns. The Federated Vehicular Network (FVN) is a promising
technology that tackles these concerns by transmitting model
parameters instead of raw data, thereby protecting the privacy
of drivers. Nevertheless, the performance of Federated Learning
(FL) in a vehicular network depends on the joining ratio, which is
restricted by the limited available wireless resources. To address
these challenges, this paper proposes to apply Non-Orthogonal
Multiple Access (NOMA) to improve the joining ratio in a FVN.
Specifically, a vehicle selection and transmission power control
algorithm is developed to exploit the power domain differences
in the received signal to ensure the maximum number of vehicles
capable of joining the FVN. Our simulation results demonstrate
that the proposed NOMA-based strategy increases the joining
ratio and significantly enhances the performance of the FVN.

Index Terms—Federated Vehicular Network, NOMA

I. INTRODUCTION

Advancements in Internet of Things (IoT) technologies have
made vehicles more complex and intelligent over the past
decades. As a result, vehicles generate a wide variety of data
from devices such as engines and radars. The collected data
from vehicles serves as a foundation for developing innovative
technologies that enhance the driving experience and improve
road safety [1]. However, privacy concerns, as pointed out
in [2], pose a significant challenge to data exchange and collec-
tion as drivers may be reluctant to share sensitive information
such as location or driving behavior with others.

Federated learning (FL) is a promising technology to ad-
dress privacy concerns. It involves model training across
decentralized devices such as vehicles, which hold local data
samples without exchanging them. By integrating FL into
vehicular networks, federated vehicular networks (FVN) have
emerged to enable vehicles to collaboratively learn and adapt
to new environments while ensuring privacy [3]. However,
implementing FL in vehicular networks poses new challenges,
including selecting appropriate FL clients, ensuring robust
communication between vehicles, and managing the learning
process efficiently across the vehicular network.

Existing works [4], [5] on federated learning mainly study
the impacts of learning parameters such as learning rate,

communication rounds, local epochs, and so on, on the con-
vergence speed, communication efficiency, and performance
of the federated learning model. One under-explored essen-
tial metric in FL is the joining ratio, which represents the
proportion of clients participating in each round of training.
Generally, A higher joining ratio leads to a better performance
of federated learning, as more clients contribute to the model
parameters, allowing the global model to converge faster and
improve its accuracy [6], [7]. When the joining ratio reaches
1, it indicates that all clients are actively involved in the
training process for that round, maximizing the collective
learning potential of the system. However, the mobility of
participant vehicles and dynamic network typologies make it
very challenging to coordinate FL tasks and maintain a stable
set of participating vehicles over time. Thus, it is crucial to
improve the joining ratio in a FVN to enhance the efficiency
of distributed learning algorithms.

Non-Orthogonal Multiple Access (NOMA) is a cutting-
edge multiple access technique for 5G and beyond. Unlike
the traditional multiple access technologies where users are
allocated orthogonal network resources for channel access,
e.g., orthogonal time slots or orthogonal subcarriers, NOMA
allow users to transmit concurrently using the same time-
frequency resource. Thus, NOMA promotes spectrum effi-
ciency and multiple access by allowing users to share the
same resource non-orthogonally. The superimposed signals
with different power levels are then sequentially decoded at
the receiver side based on successive interference cancellation
(SIC) technique [8], [9], [10].

In this work, we propose to apply advanced NOMA com-
munications to augment the joining ratio and fostering collab-
orative and efficient federated learning in vehicular networks.
To this end, we first propose an FVN architecture that uti-
lizes NOMA for vehicle communications. Leveraging dynamic
vehicle trajectories, the transmit power control and vehicle
selections are jointly optimized to maximize the participation
ratio of vehicles in federated learning. To the best of our
knowledge, this is the first work that applies advanced NOMA
communications to improve the performance of a FVN. The
contributions of this paper are listed as follows.

1) We formulate a NOMA-enabled FVN framework which



incorporates advanced NOMA transmissions to promote
vehicles’ participation in distributed learning.

2) We propose a joint vehicle selection and transmission
power control algorithm to maximize the number of
vehicles that can participate in the model training, while
mitigating the mutual interference among concurrent
transmissions of multiple vehicles.

3) The proposed NOMA-enabled FVN framework greatly
promotes the joining ratio of FL, leading to accelerated
convergence speed and enhanced learning stability for
both i.i.d. and non-i.i.d. data sets.

The remainder of this paper is organized as follows. The
system model is presented in Section II. A joint vehicle
selection and power allocation scheme is proposed in Section
III, followed by the FL algorithm in Section IV. Performance
evaluation is presented in Section V. Finally, concluding re-
marks are provided in Section VI.

s

II. SYSTEM MODEL

A. NOMA-enabled FVN framework

We consider a wireless FVN with a set of N vehicles, i.e.,
{1, 2, ..., N} and a single BS within a given area as shown in
Fig. 1, where BS is the central server, and vehicles are clients
participate in a FL task, such as street view recognition, traffic
control, etc. Denote the dataset of the n-th vehicle as Dn =

(x(n)
i , y

(n)
i )

kn

i=1, drawn from a distribution Dn over the space
X ×Y . The total dataset size across all vehicles is denoted by
K =

∑N
n=1 kn, where kn is the number of samples of vehicle

n. Thus, the objective of FL can be written as:

min
ω∗

1

N

N∑
n=1

EDn∼x(n)
i ,y

(n)
i

[fn(ωn;Dn)], (1)

where fn : X ×Y → R+ denotes the loss function for the n-th
vehicle, and ω is the model parameters during the training. The
objective of the training process is to obtain the optimal global
model parameters to achieve the best learning performance. To
achieve this, the BS communicates with multiple vehicles to
exchange model parameters. To enable efficient data exchange,
NOMA is adopted for uplink transmissions of vehicles. Due
to high interference among transmitting clients over wireless
channels, it is optimal to select a subset of vehicles for uplink
NOMA transmissions [11]. As such, in the downlink, the
BS broadcasts a global model to vehicles within its coverage
area, the selected subset of vehicles Ut to participate in the
NOMA-based FL training, and the corresponding transmission
powers of the participating vehicles. After several epochs of
local training, the selected vehicles upload their updated local
models, i.e., ω∗ to the BS in the uplink NOMA transmissions.

B. Data Communication Model

Throughout the uplink FL aggregation phase, vehicles are
actively trying to transmit their local model information to

Fig. 1: System Model Illustration.

the BS utilizing the wireless communication channel. Conse-
quently, the signal received at the BS for any given time slot,
denoted by It is thus given by:

It =
M∑
n=1

hn,t

√
ptn,txn,t + σt, (2)

in which M ≤ N is the number of vehicles that transmit the
signals at the same resource block, hn,t is the channel state
information (CSI) between the n-th vehicle to the BS in time
slot t. ptn,t and xn,t are the transmit power and transmission
signal of the vehicle n in slot t respectively, and σt is the
white Gaussian noise.

NOMA is employed during uplink transmissions, which
allows multiple vehicles to simultaneously transmit their
updates using the same resource block, thereby improving
the efficiency of resource usage and ensuring effective data
communication among multiple vehicles. Denote the received
signal strength of vehicle n as

prn,t = ptn,th
2
n,t, ∀n. (3)

Note that the transmit power is upper bounded, where ptn,t ≤
ptn,max. The BS applies SIC to decode the received signals
sequentially, prioritizing them in descending order of their
signal strengths., i.e., pr1,t ≥ pr2,t,≥ · · · ≥ prM,t. The SINR
of the n-th signal is thus given [12] by [13]:

SINRn,t =
prn,t∑n−1

j=1 aj,tprj,t +
∑M

i=n+1 p
r
i,t + σ2

t

, (4)

where aj,t = 0 indicates that the signal j has been successfully
decoded and canceled under the condition that its SINR is
larger than a threshold Γ, i.e., SINRj,t ≥ Γ; and aj,t = 1
otherwise. It is worth noting that for NOMA transmissions, the
signal from vehicle m can only be decoded after signals with
greater received strengths have been successfully decoded and
canceled., i.e., aj,t = 0, ∀j = {1, 2, ...m− 1} [13]. Therefore,
provided that the preceding signals have been successfully
decoded, (4) can be rewritten as

SINRn,t =
prn,t∑M

i=n+1 p
r
i,t + σ2

t

. (5)



The access indicator of the n-th vehicle at the time slot t
under the SINR constraint can be written as:

In,t =

{
1, SINRn,t ≥ Γ,

0, SINRn,t < Γ.
(6)

The number of vehicles access the network at time slot t is
given by Mt =

∑N
n=1 In,t.

To enhance the join ratio of the FL system, we aim to
maximize Mt, which represents the number of vehicles that
can successfully upload their local model information to the
BS where a global model is implemented at time slot t.

III. VEHICLE SELECTION AND TRANSMISSION POWER
ALLOCATION

In this paper, the strategy to maximize Mt is outlined
with an emphasis on the proper selection of vehicles and the
careful design of the transmission power for each selected
vehicle. This approach ensures that the SINR requirements
are satisfied, facilitating the successful transmission of local
model information to the BS.

Denote the maximum transmit power of the n-th vehicle as
ptn,max, and the channel state information (CSI) between the
n-th vehicle and the base station (BS) as hn,t. Based on the
CSI, the central controller determines the transmit power of
each vehicle, ptn,t, thereby ensuring that the received power
prn,t remains within a certain bound.

Lemma 1. Provided that the signal from the (n+1)-th vehicle
is decodable, the signal from the n-th vehicle will be decodable
if the following conditions are met:

pr
n,t

pr
n+1,t

≥ (1 + Γ), ∀n <

Mt − 1; and prMt−1,t ≥ (prMt,t
+ σ2

t )Γ.

Proof. If the signal of the (n+1)-th vehicle can be decoded,
i.e., SINRn+1,t ≥ Γ, ∀k < Mt−1, the interference and noise
of the (n+ 1)-th signal, denoted as In+1,t, is upper bounded
by:

In+1,t =

Mt∑
i=n+2

pri,t + σ2
t ≤

prn+1,t

Γ
, ∀n < Mt. (7)

If the condition
pr
n,t

pr
n+1,t

≥ (1 + Γ) satisfies, the interference of
the signal for the n-th vehicle, In,t, is upper bounded by:

In,t =
Mt∑

i=n+1

pri,t + σ2
t ≤ prn+1,t +

prn+1,t

Γ

= prn+1,t

(
1 +

1

Γ

)
≤

prn,t
Γ

, ∀n < Mt − 1. (8)

which ensures SINRn,t ≥ Γ, ∀n < Mt − 1.
When it comes to the last two signals, to ensure

SINRMt−1,t ≥ Γ, we have prMt−1,t ≥ (prMt,t
+ σ2

t )Γ. This
completes the proof.

Lemma 2. Given the largest received power at the BS is
pr1,t = pt1,maxh1,t, the maximum joining ratio that can
participate in NOMA-enabled FVN is upper bounded by

J̄ ≤
⌊log ( p

r
1,t

σ2
tΓ

)− log (1 + Γ) + 1⌋
N

, (9)

in which ⌊x⌋ denotes the largest integer smaller than or equal
to x.

Proof. According to Lemma 1, we can observe that whether
the n-th signal can be decoded depends mainly on the power
of the following signals. Thus, if we follow the design that
prn,t = prn+1,t(1 + Γ), and prMt−1,t = (prMt,t

+ σ2
t )Γ, to

ensure SINRMt,t = prMt,t
/σ2

t ≥ Γ, we have that pr1,t =

prMt,t
(1+Γ)M̄t−1 ≥ σ2

tΓ(1+Γ)M̄t−1, Thus, the upper bound
of the maximum number of vehicles that can be successfully
transmitted simultaneously is given by:

M̄t ≤ log (
pr1,t
σ2
tΓ

)− log (1 + Γ) + 1. (10)

Thus, the maximum joining ratio can be written as equation
(10).

Lemma 3. Consider a scenario with Mt vehicles, where the
received signal strengths are defined as follows pr1,t, p

r
2,t ≤

pr
1,t

1+Γ , ..., prMt−1,t ≤ (
pr
Mt−2,t

1+Γ ), prMt,t
≤ (

pr
Mt−1,t

Γ − σ2
t ). If

the signal from vehicle n is reduced by ϵ, then all subsequent
vehicles must also decrease their signal strengths according
to Lemma 1 to ensure that the signal of vehicle n can be
decoded. A subset of vehicle X, ∀x < n, can increase their
received signal strengths, if applicable, by up to ϵ(1+ 1

Γ ) such
that signals of all vehicles can still be decoded.

Proof. According to (8), the tolerable interference of vehicles
before n is upper bounded by Ij,t =

∑m
i=j+1 p

r
i,t + σ2

t ≤
prj+1,t(1 +

1
Γ ) to ensure SINRj,t ≥ Γ, ∀j < n. If the signal

strength of vehicle n is reduced by ϵ, the interference of
vehicles before n, i.e., Ij,t, ∀j < m, decrease by ϵ(1 + 1

Γ )
accordingly. Therefore, it is both desirable and feasible to
enhance the signal powers of vehicles preceding vehicle n
by a cumulative amount of ϵ(1+ 1

Γ ). This increase should still
comply with the SINR requirements of all vehicles involved.

Denote the adjusted signal strengths as
p̂r1,t, . . . , p̂

r
n,t, . . . , p̂

r
Mt,t, where p̂rj,t ≥ prj,t, ∀j < n,

p̂rn,t = prn,t − ϵ and p̂ri,t ≥ pri,t, ∀i > n. For any vehicle j

before n, we have
∑n−1

z=j+1 p̂
r
z,t ≤

∑n−1
z=j+1 qz,t + ϵ(1 + 1

Γ ),
and

∑mt

i=n p̂
r
i,t ≤ (prn,t − ϵ)(1 + 1

Γ ). Thus,∑Mt

j=i+1 p̂
r
j,t + σ2

t ≤
∑n

j=i+1 p
r
j,t +

∑Mt

j=n+1 p
r
j,t + σ2

t .



Notice that p̂rj,t ≥ prj,t, ∀j < n, the SINR of vehicle j:

SINRj,t =
p̂rj,t∑Mt

i=j+1 p̂
r
i,t + σ2

t

=
p̂rj,t∑n−1

i=j+1 p̂
r
i,t +

∑Mt

z=m q̂z,t + σ2
t

≥
prj,t∑n−1

i=j+1 p
r
i,t +

∑Mt

z=m prz,t + σ2
t

≥ Γ. (11)

The SINR requirements of vehicles equal to and after n are
satisfied according to Lemma 1.

Algorithm 1 Vehicle Selection and Power Control algorithm
Input: ptn,t, hn,t, N, σ2

t ,Γ.
Initialize sets ptn,t = prn,t = ϵ = 0, i = j = l = 1 and
Ut = Φ = Λ = ∅.

1: Decide the maximum achievable received signal strength
of each vehicle based on their available energy, prn,max =
ptn,maxhn,t, ∀n.

2: Sort prn,max in the descending order pr1,max > ... >
prMt,max.

3: if pr1,max ≥ σ2
tΓ then

4: Set pr1,t = prn,max and add vehicle 1 into Ut;
5: end if
6: for n = 2 : N do
7: if pr

n−1,t

Γ+1 > σ2
tΓ then

8: Add vehicle n into Ut;
9: if pr

n−1,t

Γ+1 < prn,max then
10: Set prn,t =

pr
n−1,t

Γ+1 ;

11: Calculate ϕn,t = prn,max−
pr
n−1,t

Γ+1 , and set λi = n;
i++;

12: else
13: Set prn,t = prn,max, ϕn,t = 0 and update the power

difference ϵ =
pr
n−1,t

Γ+1 − prn,max;
14: while (

∑
λ ̸= 0 & ϵ ̸= 0) do

15: j = λl;
16: if ϕn,t > ϵ(1 + 1

Γ ) then
17: prj,t = prj,t+ ϵ(1+ 1

Γ ); ϕj,t = ϕj,t− ϵ(1+ 1
Γ );

ϵ = 0
18: else
19: prj,t = prj,t + ϕj,t; ϵ = ϵ − ϕj,tΓ

1+Γ ; ϕj,t = 0;
λl = 0; l++;

20: end if
21: end while
22: end if
23: end if
24: end for
25: Calculate ptn,t based on channel inversion, ptn,t =

pr
n,t

hn,t
, ∀n;

Output: ptn,t, Ut

To achieve maximum Mt, we propose a heuristic algorithm
in Algorithm 1. We first determine the maximum achievable

signal strength for each vehicle, denoted as, ptn,max, using their
maximum available transmission power. The vehicles are then
organized in descending order based on prn,max = ptn,maxhn,t.
If the first vehicle in this sequence meets the SINR threshold,
i.e., SINR1,t ≥ Γ, then the maximum power should be
applied for transmission, pr1,t = pt1,th1, t, the vehicle should
then be added to the transmission set Ut. To guarantee the
successful decoding of vehicle 1, the transmission powers
of the following vehicles need to be set based on certain
requirements prn,t/pn+1,t ≥ (1 + Γ) according to Lemma 1,
subject to the available energy prn,max. If prn,max ≥

pn−1,t

Γ+1 ,

vehicle n has sufficient power but should use prn,t =
pr
n−1,t

Γ+1
to ensure previous vehicles can be decoded successfully, in
which case vehicle n has extra power ϕn,t. Otherwise, vehicle
n uses its maximum power for transmission, prn,t = prn,max,
and the power difference is ϵ = (

pn−1,t

Γ+1 − prn,max). Based on
Lemma 3, if vehicle n’s signal is reduced by ϵ, any vehicles
before n can increase their signal strength by up to ϵ(1 + 1

Γ )
such that all vehicles can be decoded. Thus, we check all
vehicles before n that have extra powers, i.e., ∀j < n, and
ϕj,t > 0.

A vehicle j can increase its signal power given that the
increased signal strength does not exceed the available extra
power ϕj,t, and the total increased signal strength does not
exceed ϵ(1 + 1

Γ ). The round of power increase for vehicles
before k completes when ϵ(1 + 1

Γ ) is added to vehicles
before n and ϵ is reset to 0; or all extra power of vehicles
are used up, ϕn,t = 0, ∀j < n. We continue to check all
vehicles and add those with satisfactory SINR into Ut, and
adjust their transmission powers based on the received signal
ptn,t =

pr
n,t

hn,t
∀n.

IV. FEDERATED LEARNING

In this section, we develop a NOMA-enabled FL (NFL)
algorithm that extends the traditional Federated Averaging
(FedAvg) algorithm, as shown in Algorithm 2, by integrating
the user selection and power control for NOMA transmissions
described in Sec. III.

Local model initialize. We denote the training iteration
as t ∈ {0, 1, 2, ..., T − 1}. The central server first sends the
initialized model to each vehicle to initialize the local models
of all FL vehicles in the current iteration using the downlink
communication channel, i.e.,

ω(t,0)
n ← ω(t) ∀n ∈ Ut, (12)

where n is the index of n-th selected vehicle, and ω
(t,0)
n rep-

resents, n-th vehicle’s initial model at the t-th communication
iteration. Additionally, ω(t) is the global model.
Local model update. For each of the selected FL vehicles in
Ut, they apply stochastic gradient descent (SGD) to minimize
their loss function fn : X × Y → R+ in τ iteration of local
training. The n-th FL vehicle’s local model update can be
written as:

ω(t,τ+1)
n ← ω(t,τ)

n − 1

kn
η∇fn(ω(t,τ)

n , ξtn), (13)
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Fig. 2: Average number of successfully connected vehicles
versus the total number of vehicles in the network.

where ξtn is a sample uniformly chosen from the local data
Dn at the t-th iteration and η is the learning of local training.
Central BS model aggregation After local training, the
selected FL vehicles send their models to the server at BS
using the uplink wireless communication channel. The server
aggregates those local models for the next communication
iteration as follows:

ω(t+1) ←
∑
n∈Ut

αnω
(t,τ+1)
n , (14)

where αn is the weight of the n-th vehicle such that αn > 0
and

∑
n∈Ut

αn = 1.

Algorithm 2 NFL Algorithm

Input: Learning rate η, initialize global model ω(0), se-
lected FL vehicles set Ut, number of communication
rounds T , local dataset ξ

(t)
n for t ∈ {0, 1, ..., T −

1}.
1: for t ∈ {0, 1, ..., T − 1} do
2: Obtain the selected FL vehicles set Ut;
3: for Vehicle n ∈ Ut do
4: Let ω(t,0)

n ← ω(t);
5: for τ ∈ {0, 1, 2, ..., τ∗ − 1} do
6: Local model update:

ω
(t,τ+1)
n ← ω

(t,τ)
n − 1

kn
η∇fn(ω(t,τ)

n , ξtn);
7: end for
8: end for
9: for BS received all local models from n ∈ Ut do

10: Update global model: ω(t+1) ←
∑

n∈Ut
αnω

(t,τ∗)
n ;

11: end for
12: end for
Output: Optimal global model: ω∗

V. PERFORMANCE EVALUATION

The vehicle trajectory data utilized in this research was
collected through a volunteer-based data collection initiative.
This dataset provides a comprehensive list of activities for each
individual, recorded at three-second intervals. Specifically, the
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Fig. 3: Average number of successfully connected vehicles
versus the total number of FL joining ratio.

study extracted and employed the data corresponding to the
specific moment with the highest volume of vehicles captured
within a 6-mile radius of Elmhurst, IL. To evaluate the impact
of varying the number of FL clients, which we refer to as
the joining ratio, we utilize the widely recognized CIFAR-10
image classification dataset for training. We consider a total of
80 vehicles in the network and for each vehicle in the coverage
area of the BS, we partition the local data into training and
testing sets, i.e., allocating 75% of the data for training and
25% for testing. Additionally, we consider both i.i.d. and non-
i.i.d. data sets to show the impacts of the joining ratio on
the overall learning performance of the FNV. Moreover, the
non-i.i.d. datasets of vehicles follow the Dirichlet distribution
with αd = 0.4. We apply the FedAvg algorithm for FL with
learning rate η = 0.05. The training process consists of 500
communication rounds for the i.i.d. scenario and 1,000 rounds
for the non-i.i.d. scenario to ensure convergence by using
a 3-layer Resnet neural network. Without loss of generality,
Rayleigh fading is considered for the communication links
between vehicles and the base station.

Our analysis starts by comparing our vehicle selection
and power control algorithm with the results obtained from
orthogonal multiple access (OMA) methods and a referenced
power allocation algorithm which is done by using CVX [14].
Fig. 2 displays the number of successfully connected vehicles
versus the total number of vehicles in the network. We can
observe that, compared to other solutions, our algorithm can
support the largest number of vehicles to upload the local
model information. Specifically, due to resource limitations,
OMA can connect only one vehicle at a time. In contrast,
the CVX algorithm, as discussed in [14], supports multiple
vehicles simultaneously. However, this approach also results
in a higher outage probability when the number of vehicles
is high. In [14], it is required that the SINR of all vehicles
involved in NOMA transmissions exceed a threshold, Γ, which
can lead to errors in CVX when no solution can be found,
and leads to the performance degradation when the number
of vehicles are increased in the network. On the other hand,
our algorithm not only controls transmit power but also assists
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(b) Test Accuracy of non-i.i.d. data.
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Fig. 4: Federated Learning results with CIFAR-10 data.

in vehicle selection, thereby ensuring successful transmissions
consistently. Additionally, Fig. 3 also shows that our proposed
NFL algorithm can achieve a higher joining ratio compared to
CVX and OMA.

With the output from the FL vehicle selection with power
control, we further apply the NFL algorithm to evaluate the
training performance. We present the comparison of distributed
learning algorithms over i.i.d. and non-i.i.d. data distributions
using the CIFAR-10 dataset with 80 clients. Our proposed
NFL algorithm outperforms the baseline algorithms CVX and
OMA, achieving higher test accuracy with less variability
across communication rounds. Specifically, in the i.i.d. sce-
nario, our algorithm converges faster to a test accuracy near
0.7, indicating a robust and effective learning process. When
dealing with the non-i.i.d. scenario, which better reflects real-
world data distributions, our algorithm shows its resilience and
adaptability, shown in Fig. 4, reaching similar accuracy levels
as in the i.i.d. scenario, though requiring more communication
rounds due to the inherent complexity of non-uniform data.
Additionally, the train loss for both i.i.d. and non-i.i.d. scenar-
ios show superior efficiency and stability compared with the
other two baselines. The advantage of our approach is further
highlighted in the non-i.i.d. environment, where despite the
increased complexity and the naturally extended convergence
process, our algorithm markedly outperforms the baselines,
achieving a lower and more stable training loss.

VI. CONCLUSION

In this paper, we have proposed a NOMA-enabled FVN
frame. A joint vehicle selection and power allocation algorithm
has been developed to improve the joining ratio of the FVN.
Extensive simulations have shown that our algorithm not only
significantly increases the joining ratio but also substantially
enhances the overall performance of the FVN. In our future
work, we plan to explore adaptive federated learning for
services beyond CIFAR-10 such as real-time traffic monitoring
and management.
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