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Abstract: With the construction sector primed to incorporate such advanced technologies as artificial intelligence (AI), robots, and
machines, these advanced tools will require a deep understanding of human–robot trust dynamics to support safety and productivity.
Although other disciplines have broadly investigated human trust-building with robots, the discussion within the construction domain
is still nascent, raising concerns because construction workers are increasingly expected to work alongside robots or cobots, and to com-
municate and interact with drones. Without a better understanding of how construction workers can appropriately develop and calibrate their
trust in their robotic counterparts, the implementation of advanced technologies may raise safety and productivity issues within these
already-hazardous jobsites. Consequently, this study conducted a systematic review of the human–robot trust literature to (1) understand
human–robot trust-building in construction and other domains; and (2) establish a roadmap for investigating and fostering worker–robot
trust in the construction industry. The proposed worker–robot trust-building roadmap includes three phases: static trust based on the factors
related to workers, robots, and construction sites; dynamic trust understood via measuring, modeling, and interpreting real-time trust behav-
iors; and adaptive trust, wherein adaptive calibration strategies and adaptive training facilitate appropriate trust-building. This roadmap
sheds light on a progressive procedure to uncover the appropriate trust-building between workers and robots in the construction industry.
DOI: 10.1061/JCCEE5.CPENG-5656. © 2024 American Society of Civil Engineers.
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Introduction

Increasing automation and the incorporation of state-of-the-art tech-
nologies into workplaces may be akin to an evolutionary jump in
occupational domains, and the interactions between humans and
these technologies will play a substantial role in advancing these
working environments. With the presence of varying robots, ma-
chines, and automated systems, humans remain in the loop to work
alongside different forms of robotic partners at workplaces (Janssen
et al. 2019; Stern and Becker 2017).

Consequently, it becomes vital to boost a harmonious teaming
relationship by cultivating appropriately leveled trust between hu-
mans and their robotic partners (Hu et al. 2019). Trust-building is
challenging and vulnerable to influential factors such as user ex-
perience, robot capabilities, and situational contexts (Billings et al.
2012; Choi and Ji 2015). To address this challenge, trust-building has
been explored in various arenas, including transportation (e.g., trust
between drivers and autonomous vehicles) (Lee et al. 2021; Raats
et al. 2019), manufacturing (e.g., trust between employees and in-
dustrial robots) (Jiao et al. 2020), and agriculture (e.g., trust between
farmers and automated machines) (Sanchez et al. 2014; Vasconez
et al. 2019). Although these domains highlight opportunities for
trust-building between human and technological partners, questions

remain about how broadly previous findings can cross-pollinate in
different situations.

Over the last decade, the construction industry has demonstrated
growing interest and potential for deploying robotics and machines.
However, because construction sites feature safety-critical, dynamic,
and complex situations involving assorted equipment, crews, and
concurrent construction tasks (Chua and Goh 2004; Wanberg et al.
2013), the construction sector has been slower to incorporate
advanced/artificial intelligence (AI) technologies into the real-world
jobsites (Pan and Pan 2020; Wisskirchen et al. 2017). Although
incorporating robots has a notable potential to establish intelligent
jobsites, newly introduced technologies might add extra uncertain-
ties to the already-hazardous construction jobsites. For instance,
drones can be helpful in delivering heavy materials for workers,
but they may also physically collide with workers and draw their
attention away from construction tasks (Chang et al. 2023b; Jeelani
and Gheisari 2022). In respect of robots’ benefits and uncertainties,
workers must establish an appropriate level of trust, neither exces-
sive nor insufficient, in robots to reach their full potential and be-
ware of their risks.

Given construction workplace’s dynamic nature, discussing trust
within the construction industry presents greater complexity com-
pared to other sectors. Although static workplace settings such as
offices allow for more consistent task performance by robots, the
dynamic environment on construction sites may complicate the
operation of robots and provoke their unstable performance. As
explained in the literature, trust has a dynamic nature, meaning that
the trust level in robots can be changed continuously due to various
factors, especially the robot’s performance. Accordingly, workers
observing robots’ behaviors in various contexts may update their
trust levels, raising the need to monitor workers’ trust changes to
prevent improper trust-building.
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However, the present study discerned a research gap in the pauc-
ity of discussing workers’ trust-building in their robotic counterparts
on dynamic and hazard-rich construction jobsites. Therefore, this
systematic review paper aims to (1) interrogate trust development
between humans and varying robots/machines during teaming activ-
ities in construction and other domains; and (2) propose a roadmap
for exploring worker–robot trust within the construction industry.

The driving research questions this study considers are as follows:
• What are the antecedents of trust in the interaction between

humans and robots?
• Which widely used measurement methods can gauge human

trust?
• How do humans calibrate/recalibrate their trust levels when team-

ing with robots?
• What is the current state of investigating trust within construction?
• Which opportunities manifest for exploring the trust between

workers and robots/machines on future construction sites?
The findings here (1) provide recent insights about research re-

garding human trust-building in robots; and (2) identify research
routes for examining and fostering human–robot trust-building
within construction studies.

Background

Human–Robot Teaming in the Current Construction

Although the implementation of robotics/machines in the construc-
tion industry is still in its infancy compared to other industries
(e.g., manufacturing), a variety of technologies have been pro-
gressively incorporated into construction to team up with workers
(Janssen et al. 2019; Stern and Becker 2017). A recent study pre-
sented a taxonomy to categorize the varying types of robots applied
to the jobsites: (1) off-site automated prefabrication systems, (2) on-
site automated and robotic systems, (3) drones and autonomous
vehicles, and (4) exoskeletons (Davila Delgado et al. 2019).

The first category refers to the systems that help automatically
produce building components to facilitate prefabrication. These
systems are motivated by the industrial robots in the manufacturing
sector and are primarily represented by three-dimensional (3D)
printing techniques in recent construction literature (e.g., Wu et al.
2016; Zhang et al. 2018). For example, a critical review of 3D
printing in construction reported the associated benefits (e.g., re-
duced schedule growth and reduced worker power) and challenges
(e.g., large-scale building and mass customization) (Wu et al. 2016).
Unlike off-site systems, onsite automated and robotic systems are
embodied on the jobsites to help execute repetitive tasks and per-
form risky tasks (Bock 2015). For example, robotic arms are usually
mounted on movable platforms to paint walls, spray concrete, han-
dle tasks, assemble and disassemble tasks, and form processes
(e.g., Ardiny et al. 2015; Dritsas and Soh 2019; Prasath Kumar
et al. 2016; You et al. 2018).

The third category denotes the vehicles that can be either piloted
remotely or autonomously (e.g., drones and unmanned ground ve-
hicles). These systems are usually utilized for accessing dangerous
and unreachable environments (e.g., mud eruption zones), exploring
spaces to survey/monitor (e.g., automate bridge inspection), exca-
vating, drilling, demolishing, or transporting materials (e.g., Li
and Liu 2019; Peel et al. 2018; Rakha and Gorodetsky 2018). Lastly,
exoskeletons are wearable systems that augment the capabilities of
workers (Ajoudani et al. 2018; Li and Ng 2018). Exoskeletons can
help workers with high-impact jobs, improve their productivity, and
reduce fatigue and injuries (Kim et al. 2019).

Human–robot teaming depicts that workers and robotic tech-
nologies work interdependently and value common goals (Johnson
et al. 2012). Many studies have emphasized the necessity of
trust-building between two entities for teaming. Nonetheless, most
construction studies paid attention to the technical aspects of tech-
nologies (Chen et al. 2022; Hsu et al. 2021) but disregarded the
importance of trust development.

Trust Definition

Various definitions have been suggested for trust. At its simplest,
trust can be viewed merely as an interrelation between a trustor
(i.e., humans) and a trustee (e.g., robots and machines). From
a deeper perspective, one generally accepted definition is “the
attitude that an agent will help achieve an individual’s goals in a
situation characterized by uncertainty and vulnerability” (Lee and
See 2004, p. 51). From this definition, uncertainty—which refers to
the possibility of a mismatch between the trustee’s behaviors and
the trustor’s goal—and vulnerability—which denotes a latent loss
hidden in this interrelation between the trustor and trustee—can be
extracted and emphasized (Khavas 2021).

In particular, most studies endeavored to either reduce the uncer-
tainty (e.g., provide the trustor with more information regarding the
trustee) or lower the potential loss underlying this trust relationship
(e.g., avoid overreliance on the trustee) (Kraus et al. 2020; Kunze
et al. 2019). However, mitigating the uncertainty and vulnerability is
challenging because trust is a multifaceted and dynamic concept,
depending on different contexts, trustee partners, and trustor’s affec-
tive and cognitive features (Hancock et al. 2011b).

Previous Review on Trust between Humans and
Robots in Architecture, Engineering, and Construction

As the research on human–robot trust becomes mature in varying
domains, previous studies have conducted a systematic review
of relevant literature (e.g., Brzowski and Nathan-Roberts 2019;
Emaminejad and Akhavian 2022; Khavas 2021; Schaefer et al.
2016). Most of the previously published review papers summa-
rized the influential factors in trust while, more importantly, high-
lighting that trust-building is a context-dependent concept (i.e., the
differences among domains would also influence trust). That is,
the workplaces where the interaction occurs should play a signifi-
cant role in reshaping the trust-building between humans and ro-
bots. Especially in such high-risk workplaces like construction
sites, their dynamic and unpredictable natures must affect trust
development compared to other workplaces (e.g., offices and fac-
tories). Unfortunately, construction-related features have not been
attenuated by most of the trust review papers.

To address this limitation, a recently published paper systemati-
cally reviewed the trust-related literature in architecture, engineer-
ing, and construction (AEC) and other domains (Emaminejad and
Akhavian 2022). Those authors classified the concept of trust into
four dimensions: explainability and interpretability, reliability and
safety, privacy and security, and performance and robustness. Ex-
plainability and interpretability represented whether users could
comprehend how AI systems generate output from input data and
whether the output results were intelligible to users. Reliability and
safety are related to an AI’s ability to continuously manifest expected
behaviors to prevent incidents (e.g., accidents, failures, or malfunc-
tions). Performance and robustness refer to whether the robotic sys-
tems exhibit consistent performance across various deployment
environments. Privacy and security denoted whether robotic sys-
tems would raise concerns about a privacy breach and/or protect
users’ identities or any sensitive information.
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Although that paper provided insights into the importance of the
trustworthiness of AI and technologies, there are a few limitations
in the paper that need to be addressed in future studies. First, the
proposed dimensions were still associated with the influential fac-
tors in trust instead of involving different aspects of trust (e.g., trust
calibration and trust measurement). It is worth noting that this re-
view also suggested future work to discuss workers’ trust calibration
process. Second, the authors did not propose step-by-step directions
for future research to follow. A progressive roadmap could serve as
an efficient guide to accelerate the explorations of trust in construc-
tion. Third, because trust-building has increasingly gained research
interest in recent years, multiple trust-related studies in construction
were recently published but they were not included in previous
review papers. Therefore, it is critical to conduct a comprehensive
literature review on published papers and propose a roadmap for
establishing trust in future construction where workers need to
team up with robots.

Research Methodology

To answer the aforementioned research questions, the present study
used Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA), which provides evidence-based protocol guide-
lines for systematic reviews, to search and select literature (Moher
et al. 2009) (Fig. 1).

Eligibility Criteria

Before searching the literature, eligibility criteria (i.e., inclusion
and exclusion criteria) were defined to determine the scope of this
review paper and to find the most relevant literature. The following
criteria were considered: (1) must be published between 2010 and
2023; (2) must be written in English; (3) only journal papers and
conference proceedings are included; and (4) must be related to the
humans’ trust-building in robots/machines/automation. This study

established a publication year limitation due to the growing empha-
sis on trust-building between humans and robots in the Industry 4.0
era, which emerged in the 2010s. Besides, it was assumed that the
findings of the included publications were highly built upon the
literature predating 2010. On the other hand, only journal and con-
ference papers were considered because of their high credibility and
validation supported by a peer-reviewed process. These sources of
publications usually disclose detailed experiment methodologies
that represent an essential part of trust-related research.

Information Sources and Search Strategy

Afterward, a systematic search of the literature was conducted to
gather relevant publications in construction and other domains within
the databases of Scopus, IEEE Xplore, Elsevier, Springer Link, and
Google Scholar. The definition of search queries is an integral part of
the search strategy. Hence, a couple of search queries were delineated
and adopted, as follows: “Human-machine trust” AND (“factor” OR
“measurement” OR “calibration”); “Human-automation trust” AND
(“factor” OR “measurement” OR “calibration”); and “Human-robot
trust” AND (“factor” OR “measurement” OR “calibration”). Based
on the eligibility criteria and keywords search in article title, abstract,
or keywords, a total of 3,802 publications were identified.

Selection Process

Three rounds of review were conducted to choose the optimal pa-
pers for answering the aforementioned research questions. For the
first-round literature selection, the process involved skimming the
titles of the literature gathered using predefined queries to roughly
screen the irrelevant papers. The second-round selection focused on
scanning the abstracts of the literature that passed the first-round
selection. Scanning abstracts enabled examining the paper’s rel-
evance and removing the literature that did not meet the eligibility
criteria. In the third-round selection, the research team thoroughly
read the papers and documented a summary of each paper, including

Fig. 1. Research framework of the present review paper.
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information regarding the studied problem, methodology, objectives,
findings, and conclusions of the study. The obtained information was
then organized based on the research questions: (1) antecedent of
trust, (2) trust calibration, and (3) trust measurement. The studies
only proposed assumptions or frameworks without any data or val-
idations were eliminated from this review. This comprehensive re-
view of the papers helped reexamine whether inclusion conformed
to the eligibility criteria and whether selected papers were suffi-
ciently relevant to the scope of this study.

A total of 3,802 papers (IEEE Xplore = 371, Scopus = 871,
Elsevier = 167, Springer Link = 225, Google Scholar = 2,168) were
initially identified. In the first-round selection, 460 papers were se-
lected after removing irrelevant studies identified when skimming
the titles. After scanning abstracts during the second-round selec-
tion, 293 papers outside the eligibility criteria were removed. In
the third-round selection, 52 papers were eliminated by thoroughly
reading articles due to their insufficient relevance to the research
questions. Ultimately, 115 studies were included in the present
review paper. Fig. 1 shows a schematic paradigm of the entire
literature-selection process.

The publication years of the studies appear in Fig. 2. The increas-
ing number of papers across the years indicates an upward trend in
trust-related explorations in construction and other domains.

The word cloud in Fig. 3 provides a visualization of the valuable
information within the papers. Trust, Human, AI, and Robot are the
most conspicuous terms shown by the word cloud, and they per-
fectly coincide with the focal point of this study (i.e., trust between
humans and technologies).

Findings

Current State of Worker–Robot Trust in the
Construction Industry

To better understand the current state of the literature discussing
the trust-building between construction workers and robotic tech-
nologies, published papers have been thoroughly reviewed and an-
alyzed. To date, only seven studies investigated the trust-building
between workers and robots in the construction contexts (Adami
et al. 2022; Chang et al. 2023a, b; Emaminejad and Akhavian 2022;
Shayesteh et al. 2022; Shayesteh and Jebelli 2022; You et al. 2018).
Table 1 provides detailed descriptions of each literature and organ-
izes their information based on the antecedent of trust, measurement
method, and calibration process.

As presented, most of the literature focused on investigating the
effect of a single factor on trust, and trust was regarded as a static
concept. However, trust is a dynamic and complex phenomenon
(de Visser et al. 2014), and it is critical to review the related liter-
ature regarding trust changes and calibration. Additionally, the ma-
jority of the published papers (71%) within construction utilized
self-report to assess workers’ trust levels in the robotic technologies
(e.g., Chang et al. 2023a; Shayesteh and Jebelli 2022; You et al.
2018). However, various objective measures that have been dis-
cussed for trust measurement in other domains need to be explored
further in the construction. In conclusion, although these studies
have contributed to exploring human–robot trust in construction, it
is valuable to delve into the rich literature to deeply study (1) ante-
cedents of trust, (2) trust calibration, and (3) trust measurement
concepts. Fig. 4 illustrates an overview of the findings that have
been proposed by literature in other domains.

Antecedents of Trust in Human–Robot Teaming

Due to the importance of developing trust in human–robot interac-
tions, previous studies have increasingly explored the factors that
affect trust. Most of the studies categorized related factors based on
the following taxonomy: (1) human properties factors (i.e., trustor),
(2) robotic system properties factors (i.e., trustee), and (3) environ-
mental factors (Hancock et al. 2011b) (Table 2).

Human Properties
Scholars started paying more attention to human trust in technology
when needing to interact and collaborate with various robots in fu-
ture work. The human factors have primarily been discussed in three
subcategories: (1) dispositional factors, (2) situational factors, and
(3) learned factors (Marsh and Dibben 2003) (Table 2).
Dispositional Factors. Dispositional factors are related to demo-
graphics and psychographic factors representing individuals’ over-
all propensity to trust their partners. Regarding demographics,
previous studies showed that gender and nationality could impact
trust-building (Ghazali et al. 2018; Hu et al. 2019). In the study
conducted by Hu et al. (2019), a higher tendency to trust robots
was observed in males rather than females. Similarly, Ghazali et al.
(2018) found that male participants trusted the advice provided by a
physical robot more than female participants. Nationality, which is
correlated with cultural background, also plays a nonnegligible role
in human–robot trust (Hu et al. 2019). For example, in the study
examining how passengers trust autonomous vehicles, US passen-
gers showed a lower trust level than Indian ones (Rice et al. 2014).

Moreover, the impacts of psychographic factors (e.g., personal-
ity traits) on human–robot trust have been discussed in the literature
(Rossi et al. 2018; Zhou et al. 2020). For instance, several studies
used the Big Five personality traits questionnaire (i.e., extroversion,
agreeableness, conscientiousness, neuroticism, and openness) to

Fig. 3. Word cloud of the papers included in this review paper.

Fig. 2. Distribution of publication year for the papers.
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investigate the effect of human traits on trust in human–robot
teaming. In the research carried out by Zhou et al. (2020), the re-
sults indicated individuals with lower openness revealed a higher
trust level in an robot. Those authors speculated low openness was
related to careful reasoning, which is helpful for individuals to
comprehend robotic technology and increase their trust. Regarding
extroversion, Rossi et al. (2018) reported extroverted participants
manifested a higher trust in a household robot. Although these
studies showed correlations, there is minimal evidence in the liter-
ature concerning any causative effects of personality traits on trust
levels toward robots, which has large potential for future research in
the construction domain.
Situational Factors. Apart from dispositional factors that are not
restricted to specific situations, the context-dependent characteris-
tics of humans (i.e., situational factors) might influence human trust

(Hoff and Bashir 2015). Situational factors have been exemplified
by emotion, self-confidence, and attentional control in previous
studies. Emotion has demonstrated its influence on such human
cognitive processes as decision-making. Stokes et al. (2010) found
emotion mainly affected the initial trust level prior to the interac-
tion with an automated system. The effect declined as the interac-
tion began because users can evaluate the system by observing its
performance (Stokes et al. 2010). Further, humans manifested a
higher trust level in automation owing to happiness (Merritt 2011).

On the other hand, self-confidence, which stems from sufficient
domain knowledge or work experience, also exerts an impact on
human trust in robots. For instance, experienced farmers were less
willing to trust the automated alarm system on an agricultural ma-
chine than novices (Sanchez et al. 2014). Notably, the experience
that results in self-confidence is not the same experience as that of

Table 1. Human–robot trust-related literature in the construction industry

Related
references Description Methodology Antecedent Measurement

You et al.
(2018)

This study examined the effect of work area
separation between workers and robots by
developing a masonry experiment in a virtual
reality (VR) environment. They found that work
separation can increase trust and perceived safety
toward the task.

Mixed methods
(experiment and
survey)

Perceived safety (higher
perceived safety because
there was a work area
separation between
workers and robots)

Self-reporting [5-point Likert
scale from Jian et al. (2000)]

Adami et al.
(2022)

This study compared VR-based and in-person
training for a remotely operated demolition robot.
Their results indicated that the VR-based training
enhanced workers’ trust in the robot and helped
workers pay attention to the training-related
information and familiarize themselves with the
operation.

Mixed methods
(experiment and
survey)

Familiarity Self-reporting [5-point Likert
scale from Jian et al. (2000)]

Emaminejad
and Akhavian
(2022)

This study reviewed the papers related to
trustworthy AI or AI-powered robotics and
proposed dimensions to be considered in the AEC
industry. Four dimensions were identified as key
factors to enhance the trustworthiness of AI.

Literature
review

Explainability and
interpretability; reliability
and safety; performance
and robustness; privacy
and security

—

Shayesteh and
Jebelli (2022)

This study created a VR bricklaying experiment to
investigate the impact of automation level on trust
[i.e., building a masonry wall in collaboration with
a semiautonomous robot (i.e., human intervention
included) versus a fully autonomous robot
(i.e., human intervention excluded)]. The results
indicated a higher robot automation level reduced
workers’ trust.

Mixed methods
(experiment and
survey)

Robot automation level Self-reporting [14-item
subscale of the trust scale
from Schaefer et al. (2016)]

Shayesteh
et al. (2022)

This study investigated using EEG signals for trust
measurement in a VR future bricklaying training
platform. The results supported that EEG signals
could function as an indicator of workers’ trust
levels in construction robots.

Mixed methods
(experiment and
survey)

— EEG signals

Chang et al.
(2023a)

This study examined the effect of robot failure and
time pressure on workers’ trust and performance.
Although the failure would force workers to reduce
their trust and pay more attention to robots, the
results revealed a dominating role of time pressure
in quickly recovering their trust.

Mixed methods
(experiment and
survey)

Robot’s failures, time
pressure

Self-reporting [5-point Likert
scale adapted from Muir
(1994)]

Chang et al.
(2023b)

This study investigated the effect of responsibility
attribution on trust when robot failures occurred.
The outcomes showed the workers who perceived
themselves as responsible for robot failures
retained trust in robots whereas the ones who
blamed robots reduced their trust.

Mixed methods
(experiment and
survey)

Responsibility attribution
for failures (workers or
robots took responsibility
for robot failures)

Self-reporting [5-point Likert
scale adapted from Muir
(1994)]
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interacting with robots; instead, the self-confidence experience rep-
resents how long the users have deployed conventional approaches
and consequently become reluctant to accept innovation.

Attentional control, which includes attention focus and shift-
ing, was also recognized as one of the situational factors affecting
human trust. In research that studied multitasking in the military
(i.e., managing a group of ground robots), participants with lower
attentional control were observed to trust more in the aids provided
by an intelligent agent (Chen and Barnes 2012).
Learned Factors. Learned factors (e.g., experience, expectancy,
and involvement) pertain to an individual evaluation of the robot
that is being interacted with, based on prior or ongoing interactions
(Clare et al. 2015; Lee et al. 2021; Lyons and Guznov 2019; Sanders
et al. 2017; Yin et al. 2019). Experiences refer to the prior interac-
tions with identical or similar robots that considerably impact the
individual’s trust in the current interaction (Hoff and Bashir 2015).
Positive previous experiences result in a higher initial trust rating
and a tendency to rely on the partners (Lee et al. 2021). Likewise,
users who had game-playing experience tended to trust unmanned
vehicles/systems (Clare et al. 2015).

Similarly, expectancy, which is shaped based on prior experien-
ces or high performance (e.g., accuracy), exerted an effect on trust
(Lyons and Guznov 2019; Sanders et al. 2017; Yin et al. 2019).
Studies have shown that the effect of the stated accuracy (i.e., expect-
ancy) became less impactful after users had opportunities to observe
the performance of robots (Sanders et al. 2017).

The involvement factor relates to the extent to which users feel
engaged in the interaction with robots (i.e., be a passive or active
member of this interaction). Involvement also resembles cognition
absorption, a state of deep involvement with new technologies com-
prised of five dimensions: temporal dissociation (i.e., an engaged
interaction makes users unable to register the passage of time), fo-
cused immersion (i.e., an immersed interaction makes users ignore
other attentional demands), heightened enjoyment (i.e., capturing the
pleasurable aspect of the interaction), curiosity (i.e., an interaction
raises users’ cognitive curiosity), and control (i.e., users perceive
being in charge of the interaction) (Agarwal and Karahanna 2000).
In construction research discussing the effect of “human-in-the-loop”
on workers’ trust, research found that humans’ involvement in the
task facilitated their higher trust in robots (Shayesteh and Jebelli
2022). Likewise, Ullman and Malle (2016) reported users displayed
a higher trust level when believing that they could influence the robot

(i.e., control). Future research can conduct further explorations on
the impact of cognitive absorption on trust.

Robotic System Properties
Because enhancing the functional capabilities of robotic systems
has been the primary focus of design and development in the trust-
related research area, the majority of the previously published
studies have explored robotic system factors, specifically attribute-
based characteristics (e.g., gender, appearance, and personality) and
performance-based characteristics (e.g., transparency, competence,
and reliability) (Hancock et al. 2011a). Attribute-based factors re-
present the characteristics inherent to robots before the interaction
begins. Performance-based factors refer to the behaviors or out-
comes that will directly affect users’ perception of the trustworthi-
ness of robots during or after the interaction (Oleson et al. 2011).
Attribute-Based Factors. Social cues embedded in a robot’s ap-
pearance influence how individuals may interact with robots and
perceive the robot’s capability (Charalambous et al. 2016). Pre-
vious literature showed that most attribute-based factors are related
to anthropomorphism, which involves external and internal human-
likeness features (e.g., such external features as gender, appearance,
communication style, and voice, and such internal features as intel-
ligence, emotion, and personality) (Kim et al. 2020; Law et al. 2021;
Torre et al. 2018). Anthropomorphism aims to instill a perception
into human users that they are teaming with a humanlike agent.
Nevertheless, there are contradictory results regarding the effect of
anthropomorphic approaches. Some of the research supported the
idea that anthropomorphism (e.g., robot personality) was beneficial
to increase human trust (Kulms and Kopp 2019; Natarajan and
Gombolay 2020). However, other studies refuted this statement
because anthropomorphism would distract users from the primary
task (Onnasch and Hildebrandt 2022).

The influence of communication style on human trust has also
been investigated by previous studies (Ezer et al. 2019; Hamacher
et al. 2016; Natarajan and Gombolay 2020; Sanders et al. 2014).
In the experiment undertaken by Hamacher et al. (2016), users
were less likely to reduce their trust in the robot with the ability
to communicate (i.e., ask users questions) than the robot without
the ability to communicate when both robots were misbehaving
(i.e., dropping an egg to the ground). In another interesting study that
examined the effect of different communication channels (i.e., text,
audio, and graphic) on trust, participants perceived the robot that de-
livered messages by using graphic information as more trustworthy
(Sanders et al. 2014).
Performance-Based Factors. Performance-based factors—such
as error alarm sequence, adaptation, transparency, competence, pre-
dictability, proximity, and reliability—can directly influence trust
development (Desai et al. 2012; Kunze et al. 2019; Nothdurft
et al. 2012; Przegalinska et al. 2019; Sanders et al. 2014). Among
these factors, transparency—which denotes the user’s comprehen-
sion of the robot’s intention, decision-making process, current/future
actions, and limitations—has been the most investigated factor. For
example, the provision of information regarding the current action of
an unmanned vehicle can increase pedestrians’ trust level compared
to when no information was provided (Liu et al. 2021).

Also, if users were informed of the limitation of an automated
car (i.e., transparency) before the interaction, the decrease in trust
level would be mitigated when malfunctions occurred (Kraus et al.
2020). With such information, humans will have a holistic under-
standing of robot partners and anticipate their behaviors in advance.
Although these benefits are intuitive, transparency may also pro-
voke an adverse reaction because additional information may cause
an increase in human cognitive load (Akash et al. 2020). Balancing
these dynamics remains challenging but important.

Fig. 4. A graphical overview of the subsections explored in the sys-
tematic review.
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Table 2. Antecedents of trust in human–robot interaction identified in this systematic review

Entity Category Factor Description Related references

Human
factors

Dispositional Gender Male/female Ghazali et al. (2018) and Hu et al. (2019)
Nationality Values and social norms embedded in a nation Hu et al. (2019)

Personality traits Behaving in identical ways across diverse
situations

Salem et al. (2015), Yan et al. (2011), and
Zhou et al. (2020)

Situational Emotion A state of physiological arousal and of cognition
appropriate to this state of arousal

Merritt (2011) and Stokes et al. (2010)

Attentional control The ability to focus and switch attention Chen and Barnes (2012)
Self-confidence Individuals’ belief in successfully executing

desired behaviors
Sanchez et al. (2014)

Learned Expectancy A belief that a particular outcome can be produced Lyons and Guznov (2019) and Yin et al.
(2019)

Experience Prior interactions with robots Clare et al. (2015), Lee et al. (2021), and
Sanders et al. (2017)

Involvement The extent to which users feel engaged in the
interaction with robots

Balakrishnan and Dwivedi (2021) and
Ullman and Malle (2016)

Enjoyment Capturing the pleasurable aspects of interactions Aroyo et al. (2018) and Hegner et al. (2019)

Robotic
system
factors

Attribute-based Gender Male/female Ghazali et al. (2018), Law et al. (2021),
Simon et al. (2020), and Tay et al. (2014)

Appearance Outward aspects of robots Arts et al. (2020), Calhoun et al. (2019),
Ghazali et al. (2018), and Hamacher et al.
(2016)

Personality traits Behaving in identical ways across diverse situations Tay et al. (2014)
Communication The way that robots impart information to users Ezer et al. (2019), Hamacher et al. (2016),

Natarajan and Gombolay (2020), and
Sanders et al. (2014)

Voice The sound produced by robots Torre et al. (2018)
Emotion A state of physiological arousal and of cognition

appropriate to this state of arousal
Law et al. (2021)

Intelligence The ability to learn or understand Barczak et al. (2010), Kim et al. (2020),
Law et al. (2021), and Rheu et al. (2020)

Automation level The extent of how automated robots are Schaefer et al. (2016) and Shayesteh and
Jebelli (2022)

Performance-based Transparency The user’s comprehension of the robots’ intention,
decision-making process, current/future actions,
and limitations

Akash et al. (2019, 2020), Cai and Lin
(2010), Calhoun et al. (2019), Choi and
Ji (2015), Clare et al. (2015), Du et al.
(2020), Kaniarasu et al. (2013), Kraus
et al. (2020), Kunze et al. (2019), Liu et al.
(2021), Matthews et al. (2020), Maurtua
et al. (2017), Sanders et al. (2014),
Sucameli (2021), and Wang et al. (2016)

Reliability The consistency of robots’ functions Calhoun et al. (2019), Charalambous et al.
(2016), Daronnat et al. (2020), Desai et al.
(2012), Huang et al. (2021), Volante et al.
(2016), and Wright et al. (2020)

Predictability The extent to which robot’s performances are
consistent with users’ expectation

Simon et al. (2020)

Proximity The physical closeness between robots and users Charalambous et al. (2016), Simon et al.
(2020), and You et al. (2018)

Competence Robots’ ability to meet performance standards
(Merritt and Ilgen 2008)

Abd et al. (2017), Choi and Ji (2015), and
Desai et al. (2012)

Adaptation Robots can change their mode of operation
dynamically

Ezer et al. (2019), Nothdurft et al. (2012),
and de Visser and Parasuraman (2011)

Blame The cause of a negative outcome Kaniarasu and Steinfeld (2014)
Alarm sequence The sequence of false alarms (e.g., errors are

followed by a series of correct behaviors/a series
of correct behaviors is followed by errors)

Lu et al. (2020)

Environmental
factors

— Mental workload The amount of mental capacity required during
task(s)

Ahmad et al. (2019), Akash et al. (2019,
2020), Gupta et al. (2020), Kunze et al.
(2019), Wright et al. (2020), Yamani et al.
(2020), and Zhou et al. (2020)

Mental model Individuals’ internal representation of robots Matthews et al. (2020) and Schaefer et al.
(2016)

Time pressure The interaction should be executed in a given
limited time

Robinette et al. (2017)

Task nature The characteristics of the task itself Salem et al. (2015) and Sanders et al. (2019)
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Competence, which means the perceived abilities of a robot to
execute tasks, is another broadly studied performance-based factor
(Fiske et al. 2007; Kulms and Kopp 2019). For instance, van den
Brule et al. (2014) revealed users reduced their trust levels if observ-
ing the robot trembling (i.e., incompetent) when executing a pick-up
task. Likewise, a navigation robot that guided participants with an
efficient route was perceived as more trustworthy than the robot
guiding with a circuitous path (Salem et al. 2015).

Adaptation represents whether a robot can adjust its mode of
operation dynamically based on humans’ demands and contexts
(Scerbo et al. 2003). For example, de Visser and Parasuraman (2011)
designed an adaptive system that was only activated when partic-
ipants were suffering from a high workload. Under their study,
participants were asked to control three (i.e., low workload) or six
(i.e., high workload) unmanned vehicles to execute a reconnais-
sance mission with the aid of an automated system that detected
targets. The participants reported higher trust when the aid was
implemented in a context-dependent manner than in a static man-
ner. More details on performance-based factors and related papers
are tabulated in Table 2.

Interestingly, human and robot factors could be combined to dis-
cuss their (in)equivalent impacts on trust. For example, in recent
construction research examining workers’ trust in a bricklaying ro-
bot, both robot failures (robot factor) and responsibility attribution
for the failures (human factor) were considered in the discussion
(Chang et al. 2023b). The results indicated the workers who per-
ceived themselves as responsible for robot failures retained trust in
robots, whereas the ones who blamed robots reduced trust.

Environmental Factors
Environmental factors relate to the operational environment in
which the interaction occurs and can be represented by mental
workload, mental models, the nature of the task, risk, and time pres-
sure (Robinette et al. 2017; Salem et al. 2015; Sanders et al. 2019;
Yamani et al. 2020). For instance, users experiencing higher mental
workload may misperceive the behaviors of automated systems
because of the insufficiency of their attentional resources, which
further caused a decline in trust levels (Yamani et al. 2020). Also,
in the research conducted by Matthews et al. (2020), individuals’
differences in mental models resulting from observation and
expectations affected trust.

On the other hand, trust is a task-dependent construct and can be
impacted by task-related factors. For example, previous studies in-
dicated that humans preferred robots to be responsible for time-
critical evacuation tasks (i.e., finding an exit in a mazelike space)
(Robinette et al. 2017) and for dangerous tasks (e.g., improvised
explosive device technicians) instead of safe tasks (e.g., warehouse
technicians) (Sanders et al. 2019).

Although abundant papers have investigated the factors impacting
trust, there are a few research gaps that can be filled by future schol-
ars. First, there are discrepancies between the findings proposed by
different papers. These inconsistencies might be related to the small
sample size and the nature of the different studied problems. There-
fore, further investigation of various factors (e.g., validating the effect
of factors on trust or examining the mediators and moderators in
human–robot trust) is still needed.

Second, it remains unclear whether previous findings can be re-
plicated in the construction domains. Due to the distinctiveness of
this industry, the effects of previously proposed influential factors
on trust should be reexamined within construction, and more im-
portantly, more construction-related variables should be taken into
consideration.

Trust Calibration

Considering trust is a multifaceted and dynamic phenomenon
changing over time, individuals decide how to adjust their trust level
(i.e., trust calibration) based on various human, robot, and environ-
mental factors (Demir et al. 2021). Therefore, trust calibration is
defined as a process in which humans continuously update the trust
in their partner by aligning the perceived trustworthiness (i.e., the
perceived capability of executing a specific task) with its actual
trustworthiness (i.e., the actual capability of executing a specific
task) (Lee and See 2004; de Visser et al. 2020).

However, this alignment mechanism is challenging for indi-
viduals to accomplish. Misalignment between these two variables
would compromise the interaction performance and even provoke
negative consequences. For example, the malfunction of an auton-
omous vehicle system (i.e., an autonomous overtaking without
permission) may temporarily decline users’ trust level because its
actual capability was lower than its perceived capability (Kraus et al.
2020). Therefore, this section examines the different trust conditions
and actions during the calibration process during the interaction be-
tween humans and robots.

Calibrated Trust versus Overtrust versus Undertrust
Fig. 5 provides a schematic overview of three conditions in the trust
calibration process. Calibrated trust refers to the condition that a
human’s trust level exactly corresponds with the actual capability
of robots. Humans may manifest neither excessive nor inadequate
trust in their partners (Demir et al. 2021). Calibrated trust is the
optimal circumstance of the trust calibration process and a vital
component for people to use their robotic partners appropriately.
Facilitating appropriate trust-building is crucial to preventing the
misuse (overtrust) and disuse (undertrust) of robots and exploiting
their full potential while preventing adverse effects on their perfor-
mance (Ullrich et al. 2021).

Overtrust (the region above the line in Fig. 5) represents the state
when the perceived trustworthiness is higher than the actual trust-
worthiness. This misalignment would cause humans’ overreliance
on robots because the established trust exceeds system capability:
robots are perceived to be more competent, reliable, and trustwor-
thy than their actual state, leading to misuse (Aroyo et al. 2021;
Inagaki and Itoh 2013). Overtrust is seemingly challenging to evade;
it would also be exacerbated by specific contexts (e.g., time pres-
sure, mental workload, and prior positive experiences) (Itoh 2012;
Li et al. 2014; Robinette et al. 2016; Ullrich et al. 2021).

In a study examining an emergency evacuation scenario, a robot
was used to guide participants to a meeting room with either an
efficient or a circuitous path (Robinette et al. 2016). In the case
of fire in the building, having most participants trust (i.e., overtrust)
the evacuation paths provided by the robot demonstrated that time

Fig. 5. Three trust conditions in the trust calibration process.
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pressure is one of the factors that cause overtrust. Also, Li et al.
(2014) conducted an experiment in which participants were re-
quired to execute a computer-based moving task with a robot, in-
cluding controlling a robotic arm, planning trajectories, selecting
desired camera views, and monitoring camera views while an au-
tomated system helped them plan the trajectories (Li et al. 2014).
The results indicated participants tended to overrely on the system
and failed to recognize its failures due to the higher mental work-
load of the task.

Moreover, other studies presented four latent reasons for over-
trust in robots: instant rewards (e.g., immediate benefits of reducing
workload from humans by releasing tasks), inappropriate generali-
zation (e.g., generalizing from a positive experience of using a ro-
bot in one task to another success in a different task, e.g., a ripple
effect), transfer of social concepts from human-human interaction
to human–robot interaction, and wishful thinking (e.g., believing
the robot is perfect when using it) (Itoh 2012; Ullrich et al. 2021).
Although these factors were frequently mentioned in the previous
literature, there is a paucity of reliable empirical evidence to val-
idate their effects on overtrust.

Undertrust stands for the conditions where perceived trustwor-
thiness is lower than the actual trustworthiness, leading to disuse
(Fig. 5). Trust-related research has generally assumed that humans
are capable of independently and accurately completing tasks with-
out the assistance of robots. In fact, this assumption might be con-
troversial because human errors have been regarded as one primary
reason for compromising human–robot interaction (Honig and Oron-
Gilad 2018). In other words, a robot may perform functionally
(e.g., warning about a potential car collision) but human users con-
sider not trusting it (e.g., ignoring the warning). This paradigm of
undertrust could engender an adverse consequence (e.g., collision)
or even a considerable loss for humans (e.g., injury or fatality).

Undertrust has also been mainly discussed alongside the “trust
violation” concept due to its causal relationship (Khavas 2021).
Trust violation was defined as “unmet expectations concerning an-
other’s behavior or when [the trustee] does not act consistent with
one’s values” (Bies and Tripp 1996, p. 248). Even though techno-
logical advancements have tremendously improved the quality of
robots, their performances are far from ideal, and trust violations
are inevitable (Baker et al. 2018). The trust violation can be cat-
egorized into (1) competency-based violations (e.g., a robot fails
to execute a task); and (2) integrity-based violations (e.g., a robot
intentionally does something contrary to human interest) (Lee et al.
2021; Salem et al. 2015).

For example, Salem et al. (2015) found that participants were
unwilling to follow a robot’s instructions after it executed faulty
navigation. This incorrect behavior is a typical competency-based
violation that lowers users’ trust levels. Further, Sebo et al. (2019)
provided examples of a competency-based violation (i.e., a robot
mistakenly hitting a wrong button) and an integrity-based violation
(i.e., a robot intentionally hitting a wrong button), and suggested
the importance of two types of trust violations. Notably, although
competency-based violations happen more commonly to traditional
automated partners (e.g., robots without AI) that only execute pre-
defined actions, integrity-based violations will be more prevalent in
robots that can intelligently make their own decisions (de Visser
et al. 2018). Therefore, both violations might exert an effect on
undertrust and should be taken into consideration.

Given that overtrust and undertrust could jeopardize human–
robot teaming, improving calibrated trust plays an important role
in the entire trust calibration process. A recent study developed a
framework based on relationship acts, regulation acts, and net victim
effects to depict the trust calibration cycle (de Visser et al. 2020).
Specifically, the relationship act represents the acts (undertaken by

the trustee) that the trustor considers as either harmful (e.g., trust
violation) or beneficial (e.g., superior performance) to trust, causing
either undertrust or overtrust. Relationship regulation acts denote the
acts that provide corrective actions (i.e., trust repair and dampening)
for the relationship acts to encourage calibrated trust. Finally, the net
victim effect combines the effects of the relationship act and the
related regulation acts (i.e., the updated trust).

This framework aligns with a recent narrative study viewing
trust as a sociocognitive concept (Chiou and Lee 2023). In their
study, Chiou and Lee (2023) emphasized that the actions performed
by either humans or robots in a relationship will dynamically in-
fluence trust. Previous literature identified trust repair and damp-
ening as the behaviors undertaken by robots to address overtrust
(i.e., decreasing perceived trustworthiness) and undertrust (i.e., in-
creasing perceived trustworthiness), respectively (Fig. 5) (Chancey
and Politowicz 2020).

Trust Repair versus Trust Dampening
There are various trust repair approaches such as (1) commitment to
change (e.g., promise), (2) apology, (3) denial, and (4) trustworthy
actions, which can ameliorate undertrust and which are adopted
from human–human interaction (Baker et al. 2018; Khavas 2021).
Baker et al. (2018) proposed that the repair strategies for the inter-
actions between humans could be applicable to the trust between
humans and robots, based on the premise that robots were per-
ceived as humanlike. Specifically, commitment to change refers to
the promise made by robots to perform well in the following tasks.
For example, an automation system would say, “I promise to do
better,” after breaking human trust through unpredictable behaviors
(Albayram et al. 2020).

Furthermore, whereas apology represents the robot confessing a
mistake and asking for forgiveness from the human, denial con-
versely indicates the robot desires to convince the human of its in-
nocence by providing explanations (Fratczak et al. 2021; Sebo et al.
2019). In trustworthy actions, the trustee (robot as violator) dem-
onstrates a series of reliable actions to restore trust. Denial was rec-
ommended for integrity-based violations, and others were suitable
for competency-based breaches (Kim et al. 2004; Kohn et al. 2018;
Sebo et al. 2019). For example, Sebo et al. (2019) observed that
competency-based violations (i.e., a wrong button was hit by a ro-
bot mistakenly) could be effectively fixed by an apology and prom-
ise (i.e., apologizing for the error and promising not to make a
mistake again) whereas integrity-based violation (i.e., the robot in-
tentionally hit the wrong button) can be better addressed by a denial
(i.e., denying hitting the wrong button).

To alleviate overtrust, recent studies have mainly explored two
trust-dampening strategies: (1) confidence score; and (2) trust cal-
ibration cue. The confidence score represents the chances that robots
perform correctly (Desai et al. 2013; Helldin et al. 2013; Zhang
et al. 2020). It is still impossible to guarantee the perfection of robots
because their actions correspond to probabilistic models. Individuals
might be prone to overtrust in robots when ignoring this uncertainty
(Tomsett et al. 2020). Therefore, the confidence score provides in-
formation about uncertainty for human users to avoid overtrust. For
example, in the study investigating the trust calibration in a driving
task, Helldin et al. (2013) mentioned that providing the confidence
score of a car automation system (i.e., whether automation is reliable
under the current condition) was beneficial for drivers to appropri-
ately calibrate their trust.

Compared to proactively providing a confidence score, the trust
calibration cue is a reactive strategy, activated when human over-
trust is detected (de Visser et al. 2014). For instance, Okamura and
Yamada (2020) utilized four types of cues (i.e., visual, auditory,
verbal, and anthropomorphic) in an experiment where participants
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were asked to execute a pothole inspection task with a drone. Par-
ticipants needed to determine either to use the autonomous inspection
provided by the drone—which might not always be accurate—or to
inspect the pothole manually. If an algorithm identified the users’
overtrust (i.e., users’ perceived capability of the drone was higher
than its actual capability), one of the four cues was presented for
them to reduce their trust level. The results support the benefits of
the cues to mitigate overtrust.

The detection of overtrust (or undertrust) is an integral part of
using trust calibration cues. Until now, two challenges complicate
this detection: non-real-time judgment and nonobservable property
of overtrust (Liu and Hiraoka 2019). Non-real-time judgment means
we can identify the situation of human overreliance on robots/
machines only after the situation already happened (i.e., the feed-
back is already known). That is to say, real-time identification of
overtrust is difficult to achieve when the situation is happening
because the accuracy of robots is still unknown. The nonobserv-
able property of overtrust refers to the difficulty of understanding
a human’s trust state. Researchers should predefine a behavioral
pattern (e.g., following a robot’s advice right after it erred) or an
algorithm (e.g., users’ perceived capability of a drone was higher
than actual capability) to discern human overtrust, but both re-
sponses might be subjective and unreliable (Okamura and Yamada
2020; Robinette et al. 2016). Therefore, more studies are needed to
investigate the real-time approaches to authentically detect human
overtrust/undertrust.

Although several trust repair and dampening methods have been
proposed, a follow-up issue would be whether the methods could
be equivalently effective across a variety of individuals. For exam-
ple, the provision of additional information (e.g., confidence score)
can improve the calibrated trust, but the information might not be
understandable to some target users (e.g., children, workers, and
people with disabilities) (Wagner and Robinette 2021). On the other
hand, trust resilience, which represents human resistance to losing
trust when encountering a trust violation, could provide an example
that a trust repair method might be more useful for people with
higher trust resilience (de Visser et al. 2016). Hence, this paper rec-
ommends future studies to consider how to make these methods
more adaptive for individuals.

Trust versus Distrust versus Untrust
Previous studies argued that there are three types of trust: (1) trust,
(2) distrust, and (3) untrust (Fig. 6). Most of the studies would pre-
sume a dichotomy between trust and distrust, but distrust is just an
adverse form of trust rather than a negation of it (Abdul-Rahman
2005). For example, when the trustor says, “I do not trust the in-
formation provided by the trustee,”more evidence would be needed
for the trustor to manifest trust or distrust. Thus, there is a gap be-
tween trust and distrust, called “untrust” (Fig. 6) (Marsh and Dibben
2005). When trust conditions (i.e., calibrated trust, overtrust, and
undertrust) and trust-related actions (i.e., trust dampening and trust
repair) were explored by previous studies, the main focus was on

trust and distrust. Consequently, untrust remains understudied in
human–robot trust studies.

Distrust refers to a situation where a human’s trust level is be-
low zero. When the trust level exceeds the cooperation threshold
(i.e., humans believe robots will be of any help in this situation)—a
threshold that varies among individuals—the human is willing to
cooperate with the robot (i.e., trust). Untrust is when the trust level
is higher than zero but not high enough to achieve the cooperation
threshold; this span between distrust and the cooperation threshold
indicates that the human needs more evidence to adjust their trust
level (Marsh and Dibben 2005). The trust level may fluctuate among
the three types of trust during the interaction due to violations and
recovery by trust repair methods.

As highlighted previously, trust calibration has been unexam-
ined by previous construction literature. This dynamic process will
be decisive in establishing a successful human–robot teaming on
future jobsites. Because workers are still unfamiliar with working
alongside robotic technologies, correctly calibrating their trust in
robots will be challenging for them, imposing some latent safety
issues. Thus, it is critical to further explore the issues with trust
calibration in future construction workplaces and develop effective
interventions to better prepare the next generation of the workforce.

Trust Measurement Methods

Understanding the calibration process entails an effective and reliable
trust measurement. To gauge the trust between humans and robots,
several methods have been used in the literature: (1) self-reports,
(2) behavioral methods, and (3) psychophysiological methods.

Self-Report Trust Measurement
Self-reporting is the most used method for measuring trust between
humans and robots. Previous studies have either applied preexisting
trust scales or developed a customized questionnaire for measuring
trust after the primary experiments were completed (e.g., Chang
et al. 2023b; Shayesteh and Jebelli 2022; You et al. 2018). The
widely used trust scales include the Negative Attitudes toward
Robot Scale (Nomura et al. 2006), Trust in Automation Scale
(Jian et al. 2000), and Muir’s questionnaire (Muir 1994).

The main benefit of using self-reporting is its ease of use
(Khavas 2021), but some limitations and biases also undermine the
reliability of this method (Hu et al. 2016; Lu and Sarter 2020):
(1) these questionnaires are post trials, and subjects need to respond
to questions based on their perceptions and attitudes toward part-
ners after completing the designated task (Brzowski and Nathan-
Roberts 2019); and (2) the reliability of subjective reports might be
impacted by participants forgetting details or intending to align their
answers to what experimenters anticipate (Khavas 2021). Therefore,
more objective trust measurement methods have been proposed to
address the limitations of the self-report methodology.

Behavioral Trust Measurement Methods
An alternative for measuring trust is the behavioral method, which
observes specific humans’ behaviors during the interaction to under-
stand their trust. Behavioral trust can be measured through three
metrics: (1) task delegation, (2) behavioral change, and (3) following
advice (Law and Scheutz 2021).

Task delegation represents human participants who are willing
to defer their task to robots or to take back the task. The trust level
of humans can be measured by the user’s willingness to release/
retrieve tasks—a potential distrust in the robot can be implied by
humans’ unwillingness to assign the task to their partners. For
example, although a robot performed flawlessly in feeding pets
regularly, pet owners still tended to prepare food themselves
(Ullrich et al. 2021).Fig. 6. Schematic framework of trust calibration.
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Behavioral change is another fruitful metric when people cannot
control the behaviors of robots (e.g., shutting down the machine or
taking over the task again) (Law and Scheutz 2021). People may
undertake behavioral adjustments to correspond with their trust lev-
els. For instance, participants may place both hands underneath
an object that was being delivered by a robot to take a precaution
against a latent fall (Onnasch and Hildebrandt 2022). Similarly,
observing the frequency that humans ask for robot help can indicate
their trust level (Ghazali et al. 2018).

Trust can also be measured based on an individual’s decision to
follow the advice provided by robots during the interaction or not.
Regardless of the accuracy of the provided advice, the determination
to adopt or disregard the advice (Aroyo et al. 2018) and response
time (Lu et al. 2020) are rooted in users’ trust. Specifically, a shorter
time for deciding to follow the advice implies a higher trust level
than a longer response time.

Compared to self-reports, the behavioral method is less biased
and more accessible in real-time (Akash et al. 2020). Trust levels
can be derived from the observation of subjects’ particular behaviors
during the experiment instead of collecting data at the end of the
experiment. This method is highly based on the premise that those
behaviors correctly reflect humans’ trust level or attitude (Khavas
2021), so it might become controversial if the premise is not sup-
ported. Furthermore, it is challenging to generalize the relationship
between those behaviors and trust across varying individuals. There-
fore, an alternative method can be utilized or combined with this
method to collect relatively implicit trust data.

Psychophysiological Methods
The psychophysiological method is an unobtrusive and objective
approach. Unlike the behavioral method, which explicitly observes
behaviors, this method implicitly measures trust by examining hu-
man psychological states and physiological responses and by iden-
tifying psychophysiological patterns. With the advancement of
sensing technologies, psychophysiological responses have recently
been used for trust measurement purposes.

The common psychophysiological methods used in the selected
trust-related studies include electroencephalogram (EEG) (e.g.,Akash
et al. 2018; Gupta et al. 2020; Hu et al. 2016; Shayesteh et al. 2022),
electrodermal activity (EDA) (e.g., Cominelli et al. 2021), galvanic
skin response (GSR) (e.g., Akash et al. 2018; Gupta et al. 2020; Hu
et al. 2016), heart rate (e.g., Gupta et al. 2020; Kunze et al. 2019; Lu
et al. 2020), and eye-tracking (e.g., Kunze et al. 2019; Lu and Sarter
2020; Lu et al. 2020). For instance, signals from central regions of the
brain (e.g., C3 and C4) collected by EEG sensors were discovered to
be related to human trust. In an experiment, participants were re-
quired to determine whether to trust the detection results provided
by an obstacle detection system, and EEG sensors identified trust
metrics (Akash et al. 2018). Also, using eye-tracking sensors, Lu
et al. (2020) measured human trust by conducting a multitasking
experiment (i.e., a searching task assigned to a drone and a tracking
task assigned to participants). The results indicated that participants
with higher trust in the drone allocated more attention to the drone-
irrelevant area, which was an interface for participants to execute
the tracking task.

Although these findings are promising, an evident challenge in
the psychophysiological method is the ambiguity of the correla-
tion between trust and psychophysiological signals. Specifically,
instead of a one-to-one correlation (i.e., one psychophysiological
signal corresponding to one trust state), this correlation is analo-
gous to a one-to-many relationship (i.e., one trust state affects sev-
eral psychophysiological signals) (Ajenaghughrure et al. 2020).
Therefore, there is still a paucity of a comprehensive understand-
ing of psychophysiological responses as trust metrics.

Each trust measurement method has its advantages and lim-
itations. Instead of gauging trust by a single method, many stud-
ies recommended incorporating two or more methods together
(e.g., Salem et al. 2015), shown in Fig. 7. Incorporating different
methods can facilitate cross-validation and consolidate the reli-
ability of findings. Among the reviewed papers using any meas-
urement methods, 6% of papers combined all three methods
(i.e., Dizaji and Hu 2021; Gupta et al. 2020; Kunze et al. 2019;
Lu et al. 2020; Zhou et al. 2020). It is worth noting that measuring
trust in human–robot teaming is not a straightforward task. Most of
the previous studies measured a momentary state of trust rather
than its prolonged changes over time. In addition, trust data were
mainly collected in a structured experiment instead of in natural
and realistic scenarios.

Previous construction literature primarily focused on deploying
self-reports as the trust measurement method; however, this subjec-
tive method suffers from some limitations (e.g., non-real-time and
biased). Although behavioral and psychophysiological methods
could provide a real-time and objective understanding of trust,
construction-related features might complicate their deployment.
For example, construction is a physically demanding industry in
which workers inevitably make physical movements that may lead
to additional artifacts in psychophysiological signals. Hence, find-
ing a suitable trust measurement in the construction domain de-
serves more researchers’ attention.

Discussion

Synthesis and Prospects for Trust-Building between
Humans and Robots in Construction

Although the previous literature contributed to portions of the trust-
related body of knowledge, the findings of this comprehensive lit-
erature review demonstrated that its construction exploration is still
nascent compared to other industries. Specifically, Fig. 8 pres-
ents the body of knowledge in construction and other domains. The
synthesized comparison illustrates multiple research areas still unex-
plored by the current construction literature. The primary research
gaps are (1) the effect of environmental factors on trust has not been
examined, (2) the dynamic nature of trust-building has not been con-
sidered, and (3) trust calibration and effects of that are not investi-
gated by construction literature (Fig. 8). Thorough understanding of
workers’ dynamic trust levels can be obtained from environmental
and other human–robot-related factors, and the selection of strat-
egies can be built upon the knowledge of workers’ dynamic trust
levels.

Fig. 7.Measurement methods distribution within the reviewed papers.
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A Framework toward Worker–Robot Trust in Future
Construction Industry

Although the findings from research in other domains could pro-
vide valuable insights, construction-related factors must be consid-
ered to further discuss human–robot trust in construction (Chua and
Goh 2004; Wanberg et al. 2013), as shown in Fig. 8. Due to the
special considerations of the construction industry and the com-
plexity of trust-building, it is crucial to establish guidance for
prospective construction researchers to accelerate advances in
these research areas. Taking advantage of this systematic review, the
present study builds a three-phase roadmap for researching worker–
robot trust in construction (Fig. 9).

Phase I: Static Worker–Robot Trust
Prior studies have verified trust is affected by three entities: hu-
mans, robots, and the environment (Hancock et al. 2011b). In con-
struction, the entities become workers, robots, and the construction
site. The first phase (i.e., static worker–robot trust) investigates the

static relationship between three entities (i.e., the effect of a single
entity on trust):
Worker-Related Factors. The construction industry is character-
ized as labor-intensive compared to other industries, and various
worker crews concurrently execute tasks on jobsites. Given the va-
riety of workers, it is readily expected that human factors (Table 2)
will influence workers’ trust in robots. However, previously pub-
lished papers in the construction domain mainly focused on system
properties. Thus, future studies into worker-related factors are rec-
ommended to highlight and explore the importance of such factors
as self-confidence, motivation, and disability.

Self-confidence (i.e., complacency) is estimated to seriously im-
pact workers’ trust-building in robots, and individuals with more
self-confidence were observed to manifest less trust in their partners
(Sanchez et al. 2014). Similarly, construction workers who have
worked in the construction sector for decades might be unwilling
to relinquish their work because they feel confident in performing
better than robots. Additionally, the capability of robots to execute

Fig. 8. Summary of the findings and the major research gaps in construction identified by this study.
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dynamic and unpredictable construction tasks might be underesti-
mated by workers. This unwillingness could pose an underlying
issue for the jobsites, so a further investigation into the effects of
construction workers’ self-confidence in trust building is needed.

Another notable factor is workers’ motivations to build their
trust in robots. As highlighted, the construction sector is labor-
intensive, so it offers considerable job opportunities for construc-
tion workers. The incorporation of robots into construction sites
may indirectly reduce the demand for workers because portions
of construction tasks can be taken over by robots. The fear of
job loss was mentioned to be one influential factor that may under-
mine the interaction between workers and robots (Kopp et al. 2021).
Therefore, providing adequate motivation for workers to embrace
and trust the robot in the construction sector needs to be prioritized.

The consideration of disability in human–robot trust has been an
understudied research area. A survey found approximately 26% of
US adults reported any disability (e.g., mobility, cognition, hearing,
or vision) (Okoro et al. 2018), which was a statistic that should
draw the attention of any human-related research. With automated
technologies becoming increasingly prevalent in daily lives and
workplaces, the discussion of how individuals with different mental
and physical disabilities may build trust in their robot teammates in
the future workplace becomes vital and urgent. Although no studies
proposed a specific ratio of construction workers with disability, it
is estimated that the portion should be nonnegligible based on the
aforementioned percentage. In parallel, the construction industry
could conceivably become more inclusive with the incorporation
of robots because these technologies may offset workers’ physical
or cognitive constraints. Teaming with robots provides an opportu-
nity for workers with disabilities to use their strengths when robots
can compensate for their limitations. In this case, these workers
could comprise a part of the future workforce on future construction
sites.
Jobsite-Related Factors. This category of factors is highly related
to the characteristics of construction sites as identified in the pre-
vious literature: time pressure, task safety, mental workload, and
physical fatigue (Ahmad et al. 2019; Robinette et al. 2016; Sanders
et al. 2019). Future researchers may wish to expand this category
by examining additional construction-related factors.

Time pressure has been proposed as an influential factor for in-
creasing human trust, and even overtrust, in robots (Robinette et al.
2016). Construction projects are time-critical, and workers are
responsible for completing construction tasks on schedule to meet

delivery requirements and avoid financial penalties regulated in
contracts. Time pressure inflicts invisible stress on humans, causing
workers to abandon or diminish situation awareness of surround-
ing dynamic objects and accelerate decision-making (Chang et al.
2023a). In this case, workers may inevitably make a trade-off be-
tween (1) manifesting overtrust in robots to accomplish tasks on
time; and (2) manifesting appropriate trust in robots to carefully
finish tasks despite potential delays. On future jobsites, workers
may place disproportionate trust in robots to relieve time pressure
stress. Accordingly, time pressure should be further explored by
future researchers.

Construction is one of the most hazardous industries worldwide
because of its dynamic and uncertain working environment (Wanberg
et al. 2013). Construction workers are frequently exposed to varying
hazards throughout their construction tasks (Chua and Goh 2004).
Task safety has been recognized as a factor to impact workers’ trust
in robots, and previous studies discerned a preference for assigning
dangerous tasks to robots (Sanders et al. 2019). Even though this
task transfer might enhance workers’ safety, workers may misuse a
robot that is not developed for executing dangerous tasks, or work-
ers assign robots tasks that are more suitable for humans. Hence, it
is crucial that the capabilities of the robots are fully understood by
workers to put them into appropriate use.

Mental workload has been presented as an environmental factor
by human–robot trust literature (e.g., Akash et al. 2020; Gupta et al.
2020; Wright et al. 2020; Yamani et al. 2020) because excessive
mental workload may cause misplaced trust due to human limited
attentional and cognitive resources (Yamani et al. 2020). Construc-
tion workers already endure a copious amount of mental workload
due to their multitasking across assigned tasks and safety tasks.
Additional imposed load involved in using robots also consumes
attentional and working memory resources. This overload might
further lead to inappropriate trust-building and trust miscalibration.
Research will need to explore to what extent human–robot trust
causes workers to pay insufficient attention to their interaction with
robots and/or have an inclination to overtrust them.

Physical fatigue caused by physically demanding construction
tasks is another peculiar factor to be considered. Physical fatigue
could provoke decreased productivity, poor judgment, inattention,
accidents, and injuries (Abdelhamid and Everett 2002; Aryal et al.
2017). Workers experiencing severe physical fatigue might build
inappropriate trust in robots due to their impaired judgment, which
needs to be studied further.

Fig. 9. Three-step framework for studying worker–robot trust in the construction industry: (a) static; (b) dynamic; and (c) adaptive.

© ASCE 03124001-13 J. Comput. Civ. Eng.

 J. Comput. Civ. Eng., 2024, 38(3): 03124001 

 D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

So
ga

nd
 H

as
an

za
de

h 
on

 1
2/

27
/2

5.
 C

op
yr

ig
ht

 A
SC

E.
 F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

rig
ht

s r
es

er
ve

d.
 



Robot-Related Factors. An abundance of these factors has been
studied in other research domains, as detailed in Table 2, as well as
in a few published papers within the construction domain. Their
findings provide valuable insights into how this category of factors
would impact workers’ trust in the construction industry. Due to the
distinctiveness of the construction industry, construction research
in this vein would particularly need to accentuate the explorations
of communication and proximity for construction worker–robot
trust.

Communication has been identified as a crucial component of
teaming, and studies have also emphasized its influence on trust
(Ezer et al. 2019; Hamacher et al. 2016). Communication between
entities refers to the exchange of information through explicit or
implicit modalities that enable behaviors, thoughts, and emotions
(Lackey et al. 2011), all of which facilitate transparency and trust-
building. Therefore, selecting an efficient and proper communica-
tive modality is integral to information exchange. However, a few
challenges complicate communication on construction sites. For
example, the high level of noise generated by construction activities
on the jobsites (Suter 2002) inevitably creates a barrier to verbal
communication between robots and workers. Alternatively, nonver-
bal communication (e.g., gesture) could be a satisfactory approach
for noisy worksites and its effectiveness in the construction domain
could be further researched. Thus, investigating proper communi-
cation modality for the construction industry is essential to enhance
worker–robot trust.

Proximity, representing the physical distance between entities,
would also affect workers’ trust-building on jobsites. Previous stud-
ies revealed a bidirectional relationship between proximity and
trust. Specifically, individuals with sufficient trust level are more
willing to approach a robot, and, appropriate proximity to robots
would encourage them to build trust (Charalambous et al. 2016;
Simon et al. 2020). However, unlike other sectors (e.g., manufactur-
ing), construction sites are a dynamic and uncontrollable environ-
ment, so maintaining a fixed distance between workers and robots is
arduous. Although it was discussed in the literature that separating a
robot by a fence may increase workers’ perceived safety and trust
(You et al. 2018), the ultimate expectation for worker–robot teaming
on future construction sites is a shared workplace. To fulfill this
expectation, it is necessary to further investigate the strategies to
maintain comfortable proximity between workers and robots to
garner appropriate trust-building.

In summary, the first phase of the roadmap delves into worker–
robot trust as built by the static relationships among workers, robots,
and construction-site factors. These static relationships refer to the
causal factors contributing to increased or decreased trust levels.
Although such an exploration is beneficial to reshaping the develop-
ment of robots for the construction industry, the dynamic nature of
trust-building (i.e., trust calibration) is ignored here. Exploring the
evolving trust levels between workers and robots is especially nec-
essary within the dynamics of construction because worker–robot
trust is not steady during an entire interaction and must be expected
to fluctuate as the teaming advances.

Phase II: Dynamic Worker–Robot Trust
Dynamic worker–robot trust represents the changes in workers’
trust levels toward the robot in the construction context. The liter-
ature showed that humans continuously update and calibrate their
trust based on their perceptions of their present situations (Lee and
See 2004; de Visser et al. 2020). Workers need to efficiently and
safely complete tasks, and their inappropriate levels of trust in
robots might compromise productivity and safety performance.
Accordingly, a real-time understanding of workers’ trust is essential
in future construction to facilitate worker–robot interaction. This

understanding helps predict trust in advance and, in the case of in-
appropriate trust, provide real-time feedback and interventions for
workers. Thus, adding to the causal static relationships discussed in
the first phase, the second phase of the framework strives to address
this ongoing calibration process. In particular, three arenas for in-
terrogation were highlighted: trust measurement, dynamic model
development, and trust-condition interpretation.

Trust Measurement. An understanding of dynamic trust neces-
sitates a suitable measure to gauge workers’ trust levels during
teaming. Although prior studies have broadly applied self-report,
behavioral, and psychophysiological methods in other domains,
their applicability to the construction domain should be reexamined
by construction researchers. Specifically, a self-report would not
be a suitable option because it cannot provide real-time trust data
without interrupting the teaming (Khavas 2021); in the context of
a dynamic setting, such interruptions would obscure real-time mea-
surements. The first step toward a more reliable measurement is to
establish a well-accepted definition of trust, mitigating the possibil-
ity that workers view the questions of trust differently.

Although the objective methods—behavioral and
psychophysiological—can be used for real-time understanding of
trust, a few difficulties that might weaken the effectiveness of meth-
ods should be tackled in advance. As mentioned in the previous
section, the challenges of the behavioral method lie in predefining
which behaviors reveal human trust level and in generalizing these
definitions across individuals (Khavas 2021). These challenges
might be amplified by the excessive behaviors exhibited by workers
and the diversity of workers on jobsites. For the psychophysiologi-
cal methods, previous literature indicated that a one-to-one correla-
tion between psychophysiological signals and trust had not been
corroborated (Ajenaghughrure et al. 2020).

Additionally, physically demanding construction tasks might
generate excessive artifacts to psychophysiological signals—for ex-
ample, EEG signals have been used as a metric to evaluate human
trust levels, but this metric is susceptible to physical movements
(Alomari et al. 2013), leading to massive artifacts and unreliable
data, especially for construction research. Due to the limitations of
each trust measurement method in the construction context, explor-
ing an adequate construction-specific measure (or combination of
methods) for an understanding of dynamic trust is still needed and
essential. Further, given the novelty of robots for the majority of the
construction community, it is critical to perform long-term studies to
examine the transient nature of trust measurement.
Dynamic Model Development. Rather than directly measure trust,
researchers have considered developing a dynamic model to esti-
mate and predict trust (e.g., Akash et al. 2017; Huang et al. 2021).
The formulation of such a model is founded on the concept of
inputting the influential factors of trust and outputting the result-
ing trust level, given a specific context. For example, based on the
experimental context, Akash et al. (2017) selected previous experi-
ences, cumulative trust, and expectation as inputs to evaluate partic-
ipants’ trust in an autonomous obstacle-detection system. Similarly,
depending on the various contexts of application space, researchers
could choose different factors as the inputs for their model to gen-
erate an output (Khavas 2021). Moreover, in the study conducted by
Li et al. (2023), the proposed trust dynamics model argues that users’
trust will be updated based on their capability, valence, arousal, and
system’s capability. Although such an approach could benefit an
understanding of human–robot trust, to date, dynamically estimating
worker trust in robots on construction sites is understudied.

One option for achieving trust estimation is to harness machine
learning and deep learning techniques with enormous potential to
discern patterns from an abundance of data and make accurate
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future predictions. Recently, machine learning models have been
applied to predict trust levels (e.g., Ajenaghughrure et al. 2019;
Akash et al. 2018; Hu et al. 2016). In particular, psychophysiologi-
cal data (e.g., EEG and GSR) were used to train models to estimate
the real-time trust level. Capturing such data into models and
applying machine/deep learning tools may provide a means for
pursuing dynamic models within a construction setting.
Trust-Condition Interpretation. Once the trust level has been
estimated, another challenging issue is how to interpret current
trust conditions—calibrated trust, overtrust, undertrust, untrust, or
distrust—based on quantitative trust levels. Although this research
area has been covered in other domains, until now, most of the
literature considered a binary classification (i.e., 1 = trust and
0 = distrust) for human–robot trust instead of a spectrum of trust
conditions. Moreover, previous studies mostly relied on the prede-
finition of specific behaviors to identify overtrust and undertrust,
without quantitative analyses. For example, Robinette et al. (2016)
recognized overtrust when participants followed the route provided
by a navigation robot that just erred. A research gap that should
be filled by future research is to quantitatively analyze the interpre-
tation of various trust conditions. This interpretation is important
for all domains because it expedites the real-time identification
of inappropriate trust conditions.

In summary, the second phase of the roadmap tackles the dynamic
nature of worker–robot trust by investigating trust measurement, dy-
namic model development, and trust-condition interpretation. It is
anticipated that the outcome of this phase would be a real-time under-
standing of workers’ trust conditions during teaming. Although this
understanding of trust condition could indicate increasing or decreas-
ing trust levels and quantify trust calibration, the ultimate goal of
stimulating workers’ appropriate trust-building remains unaddressed.
Accordingly, the next phase focuses on investigating strategies to
facilitate proper worker–robot trust.

Phase III: Adaptive Worker-Robot Trust
Adaptive worker–robot trust represents adjusting trust-building
procedures to facilitate workers’ appropriate trust during the team-
ing by leveraging workers’ real-time trust conditions. The published
studies in other domains have suggested the positive effect of adap-
tation on human trust (Ezer et al. 2019). This adjustment should be
accentuated in the construction context because their unexpected
trust conditions might provoke safety concerns to the construction
sites that have been remarkably hazardous. Effective strategies to
help workers appropriately calibrate their trust in robots deserve
investigation to ensure construction safety. To achieve this goal,
the present study proposes two innovations: an adaptive calibra-
tion strategy for robots, and adaptive training for workers.
Adaptive Calibration Strategy for Robots. The adaptive cali-
bration strategy refers to the specific actions executed by robots
to restore appropriate trust during or after unexpected conditions.
According to the systematic review, trust dampening and repair
strategies have been applied to address overtrust and undertrust,
respectively (Chancey and Politowicz 2020; de Visser et al. 2020).
Although the strategies can incentivize humans to adjust their trust,
the previous literature suggested that selecting a proper strategy is
context-dependent (Kim et al. 2004; Kohn et al. 2018). Moreover,
previous studies also emphasized that strategies may need to ad-
just to address the diversity among individuals (Naiseh et al.
2021; Wagner and Robinette 2021). As a result, to select adaptive
actions robots must comprehend the human users and perceive the
circumstances.

However, the diversity of workers and the dynamic nature of
jobsites complicate these two procedures, and robots need to have
a comprehensive understanding of workers, construction sites, and

even themselves to determine the most suitable adaptive calibration
strategy for the present context. Accordingly, researchers should
investigate the effectiveness of various strategies under different
teaming contexts on construction sites and should consider how
robots can comprehend contexts to select the proper adaptive cal-
ibration strategy to enable workers to maintain the appropriate
trust during teaming.
Adaptive Training for Workers. Providing training has been pro-
posed to help users familiarize themselves with robots to build ap-
propriate trust (Adami et al. 2022). However, individuals’differences
can impact their learning and overall experience. Effective training
needs to be customized to accommodate the broad variability be-
tween humans. Previous education studies have suggested a two-
step adaptive training approach (Landsberg et al. 2012; Tennyson
and Christensen 1988). Herein, the trainees are initially placed in a
proper level of training based on their inherent differences (intel-
lectual ability, cognitive style, and so on), followed by a second
step wherein the training is tailored to trainees’ needs by assessing
their real-time performances during the training (Shute and Towle
2003). This hybrid approach is based on the concept that real-time
performance (i.e., the second step) plays a dominating role in pre-
dicting future performance compared to inherent differences
(i.e., the first step) (Park and Tennyson 1980). This two-step train-
ing approach ideally includes the elements proposed in Phases I
and II; hence, it is suitable for workers to learn how to build ap-
propriate trust in robots.

Future studies must consider developing adaptive training for
construction workers: First, researchers should examine the critical
variables that could be used as a reference to determine the initial
training. Second, researchers should investigate how a real-time
understanding of trust can help tailor the training to workers’ needs.
Such multistep training will better prepare workers for appropriate
trust-building and provide foundational data points for robots to
adapt their calibration over time.

The present study introduces a three-step framework for inves-
tigating worker–robot trust in the construction industry (Fig. 9).
Furthermore, as the number of robots increases in the construction
field and operation and hardware costs decrease, workers will in-
teract with a larger number of robots to accomplish complex con-
struction tasks. This three-step framework can be extended from a
single loop (i.e., one worker, one robot, and one construction site)
to multiple loops (i.e., multiworkers, multirobots, and multisites)
(Fig. 10). Therefore, multiworker–robot-teaming is anticipated to
be the dominant working mode on future construction sites. How-
ever, no comprehensive work in the construction domain has inves-
tigated how multiple workers working with multiple robots affect
each other’s trust levels. It is hoped that this framework provides
an insightful guideline for scholars to explore this understudied
research area.

Conclusion

The pervasive incorporation of robots into construction sites is im-
minent, necessitating rapid preparation for construction workers to
embrace, team up with, and build the appropriate trust in the robots
that will become their teammates. Consequently, the contributions
of the present study lie in (1) systematically reviewing and catego-
rizing the up-to-date trust-related literature about human–robot
teaming, and (2) presenting a framework for researching worker–
robot trust in the construction domain. The findings of this system-
atic review present not only the convergence and divergence of
research domains outside construction with those topics relevant
to construction workers, but also a systematic pathway for exploring
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static, dynamic, and adaptive trust-building between workers and
their robotic partners.

Although the construction industry is still nascent in robotic
technology adoption compared to other sectors, it is anticipated that
workers will need to work alongside robots, communicate with
drones, and build a team with robots on future jobsites. Trust is
an integral component of establishing successful human–robot
teaming, but the explorations of worker–robot trust in construction
are just emerging. Therefore, this review paper proposed a roadmap
for exploring construction worker–robot trust by systematically re-
viewing relevant literature across domains. This review categorized
the antecedents of trust, trust measurement, and trust calibration,
revealing opportunities for a three-phase research roadmap that
explores static, dynamic, and adaptive worker–robot trust. This
roadmap sheds light on a progressive procedure to uncover the
appropriate trust-building between workers and robots in the
construction industry. As such, the research presented here will
facilitate technological emergence and adoption for researchers
and practitioners in the near and long term.

Although the breadth of topics handled here reveals rich
outcomes for construction worker–robot trust studies, given the
criteria used to develop this paper, the presented review has a
few limitations. First, this proposed roadmap was designed
especially for the construction industry by incorporating several
contexts within authentic construction sites. Although the workflow
of the three phases could also be applied to other domains, the
details of each phase should be reexamined by researchers. Second,
this study concentrated on the trust-building in human–robot
teaming under the premise that humans (or workers) should still
be in the loop to team up with robots, instead of being out of
the loop to merely supervise robots. The interaction between humans
and fully autonomous agents was not the primary focus of this
review paper.
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