
Dmitry Dolgopyat, Bassam Fayad, & Adam Kanigowski
Smooth zero entropy flows satisfying the classical central limit theorem
Tome 12 (2025), p. 1-22.

https://doi.org/10.5802/jep.283

© Les auteurs, 2025.

Cet article est mis à disposition selon les termes de la licence
LICENCE INTERNATIONALE D’ATTRIBUTION CREATIVE COMMONS BY 4.0.
https://creativecommons.org/licenses/by/4.0/

Publié avec le soutien
du Centre National de la Recherche Scientifique

Publication membre du
Centre Mersenne pour l’édition scientifique ouverte

www.centre-mersenne.org
e-ISSN : 2270-518X

https://doi.org/10.5802/jep.283
https://creativecommons.org/licenses/by/4.0/
http://www.centre-mersenne.org/
http://www.centre-mersenne.org


Tome 12, 2025, p. 1–22 DOI: 10.5802/jep.283

SMOOTH ZERO ENTROPY FLOWS SATISFYING

THE CLASSICAL CENTRAL LIMIT THEOREM

by Dmitry Dolgopyat, Bassam Fayad & Adam Kanigowski

Abstract. — We construct conservative smooth flows of zero metric entropy which satisfy the
classical central limit theorem.
Résumé (Flots conservatifs lisses d’entropie métrique nulle satisfaisant le théorème central
limite)

On construit des flots conservatifs lisses d’entropie métrique nulle qui satisfont le théorème
central limite.
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1. Introduction

Let (M, ζ) denote a smooth orientable manifold M with a smooth volume ζ, and FT

be a Cr flow on M preserving ζ.
In this paper we work exclusively with flows and so the definitions below will

be stated for flows. The definitions are analogous for diffeomorphisms with obvious
modifications. Following [4], we define the class of flows satisfying the Central Limit
Theorem as follows:
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2 D. Dolgopyat, B. Fayad & A. Kanigowski

Definition 1. — Let r ∈ (0,∞]. We say that a flow (FT ) ∈ Cr(M, ζ) satisfies the
Central Limit Theorem (CLT) on Cr if there is a function a : R+ → R+ such that for
each A ∈ Cr(M), ∫ T

0
A ◦ Fs(·)ds− T · ζ(A)

aT

converges in law as T → ∞ to normal random variable with zero mean and
variance σ2(A) (such normal random variable will be denoted N(0, σ2(A))) and,
moreover, σ2(·) is not identically equal to zero on Cr(M). We say that F satisfies the
classical CLT if one can take aT =

√
T .

In this definition we used for an integrable function A on M , the notation ζ(A) :=∫
M

A(x)dζ(x).
In [4] the authors constructed for every r ∈ N, examples of conservative Cr dif-

feomorphisms and flows of zero entropy satisfying the classical CLT. However, the
dimension of the manifold supporting such flows is a linear function of r and so it
goes to ∞ as r → ∞. In particular the class of zero entropy systems proposed in [4]
does not yield C∞ examples (see the end of the introduction below for more on this).
In the current paper we address, in the context of flows, the C∞ case.

Theorem A. — There exists a smooth compact manifold M with a smooth volume
measure ζ and a flow (FT ) ∈ C∞(M, ζ) that has zero metric entropy and satisfies the
classical CLT.

We point out that in the examples we will construct to prove the above theorem,
the flows will be smooth but the CLT will hold for all sufficiently regular observables
(of class C3).

It is still an open problem to find C∞, zero entropy diffeomorphism which satisfies
the classical CLT. In Section 2 we will explain the reason why our construction does
not extend simply to Z actions.

Similarly to [4], the examples we will construct to prove Theorem A belong to the
class of generalized (T, T−1)-transformations which we now define. We will do so in
terms of flows, the definitions for diffeomorphisms being analogous.

Definition 2. — Let (KT )T∈R be a Cr-flow, r ∈ N∗ ∪ {∞, ω}, on a manifold X

preserving a smooth measure µ and let τ = (τ1, . . . , τd) : X → Rd be a Cr function
(called a cocycle in what follows). Let (Gt)t∈Rd be an Rd action of class Cr on a
manifold Y preserving a smooth measure ν. Set

(1.1) FT (x, y) = (KT (x), GτT (x)y), where τT (x) =

∫ T

0

τ(Ksx)ds.

Then (FT ) is a Cr flow on M = X × Y preserving the smooth measure ζ = µ× ν.

J.É.P. — M., 2025, tome 12



Smooth zero entropy flows satisfying the classical CLT 3

Note that by [4, Lem. 2.1] if the metric entropy of (KT , µ) vanishes and µ(τi) = 0

for every i ∈ [1, d], then the metric entropy of (FT , ζ) is zero.(1)

On the other hand, the topological entropy of FT in our example is positive. In con-
trast, in [4] an example is given of a finitely smooth (T, T−1) diffeomorphism which
satisfies the classical CLT and has zero topological entropy. In fact, the example in [4]
has a rotation in the base and so the base is uniquely ergodic. In our construction the
base map has N +1 ergodic invariant measures: the Lebesgue measure and measures
supported at the fixed points. The measures which project to the Dirac measure on
the base but are smooth in the fiber have positive entropy, so the topological entropy
of FT is positive. It is an open problem to construct a smooth flow which satisfies the
classical CLT and has zero topological entropy.

Following [4], the examples we will give to prove Theorem A are of the form (1.1).
To be more specific, we need to explicit our choices for the flow (KT )T∈R, the fiber
dynamics (Gt)t∈Rd , and the cocycle τ .

On the base we will use area preserving smooth flows on T2 with degenerate saddles.
These belong to the class of conservative surface flows called Kochergin flows. They
are the simplest mixing examples of conservative surface flows and were introduced
by Kochergin in the 1970s [9]. Kochergin flows are time changes of linear flows on
the 2-torus with an irrational slope and with finitely many rest points (see Figure 1
and Section 3.1 for a precise definition of Kochergin flows). Equivalently, these flows
can be viewed as special flows over a circular irrational rotation and under a ceiling,
or roof, function with at least one power singularity.(2)

Figure 1. Torus flow with one degenerate saddle acting as a stopping point.

The Kochergin flows that we will consider have ceiling functions with power singu-
larities of exponent γ ∈ (0, 1/2), and have a rotation number on the base that satisfies
a full measure Diophantine type condition.

(1)[4, Lem. 2.1] follows from Ruelle inequality and the fact that the Lyapunov exponents of FT

are zero.
(2)The special flows are defined in Section 3, see equation (3.3) and Figure 2.
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4 D. Dolgopyat, B. Fayad & A. Kanigowski

For the fiber dynamics, following [4], we only need the property of exponential
mixing of all orders. A classical example of an analytic Rd action which is exponentially
mixing of all orders is the Weyl chamber flow: Let d ⩾ 1 and let Γ be a co-compact
lattice in SL(d + 1,R). Let D+ be the group of diagonal matrices in SL(d + 1,R)
with positive elements on the diagonal acting on SL(d + 1,R)/Γ by left translation.
Then D+ is an Rd action that preserves the Haar measure ν on SL(d + 1,R)/Γ and
that is exponentially mixing of all orders see e.g. [1]. Hence, we can take Gt to be D+.

We are ready now to give a more explicit statement of Theorem A that will be made
more precise in Section 3 after Kochergin flows are precisely defined. We denote µ the
Lebesgue measure on T2 and by λ the Lebesgue measure on T.

Theorem B. — There exists N ∈ N and a Kochergin flow (KT ,T2, µ), with N singu-
larities and a function τ = (τ1, . . . , τN ) ∈ Cω(T2,RN ) such that µ(τi) = 0, for every
i ∈ [1, N ], and such that the flow (FT ) ∈ Cω(T2 × (SL(N + 1,R)/Γ), µ × ν) defined
by FT (x, y) = (KT (x), GτT (x)y) satisfies the classical CLT.

The dimension of the manifold on which our examples are constructed depends
thus on the number of singularities N that we require for the Kochergin flow. We did
not try to optimize this number, but the one we currently have is of order 100.

In the next section we will define the class of parabolic systems with small deviations
and recall the criterion given in [4] that establishes the classical CLT for skew products
above a parabolic system with small deviations, provided the fiber dynamics are
exponentially mixing of all orders. This part is essentially the same as in [4]. In a
nutshell, parabolic flows with small deviations are conservative flows for which the
deviations of Birkhoff averages are o(

√
T ), but for which there exists d ∈ N∗, and

d-dimensional observables whose Birkhoff averages deviate, for every T , by more than
(lnT )2 outside exceptional sets of measure less o(T−5).

We will show that Kochergin flows on the two-torus, with exponent γ ∈ (0, 1/2) for
the singularities of their ceiling function, and with N(γ) singularities, are parabolic
with small deviations for typical positions of the singularities and the slope of the
flow.

The exponent of a singularity of the ceiling function is related to the order of
degeneracy of the corresponding saddle point on T2. Limiting the order of degeneracy
of the saddles thus limits the exponents to be strictly less than 1/2. This is important
to guarantee that the deviations of the Birkhoff averages above the Kochergin flow to
be o(

√
T ).

The trickiest part of the construction will be to show that if the number of saddles
is sufficiently large then we can construct a smooth observable τ ∈ Cω(T2,RN ) whose
Birkhoff averages above the Kochergin flow deviate by more than (lnT )2 outside
exceptional sets of measure less o(T−5).

The Diophantine property imposed on rotation angle a plays a crucial role in
insuring refined estimates on Birkhoff sums of functions with singularities above the
circular rotation of angle a, which in turn can be used to control the Birkhoff sums
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Smooth zero entropy flows satisfying the classical CLT 5

of observables above the Kochergin flow. Here again, we did not seek to optimize the
Diophantine condition but just made sure it is of full measure.

It turns out that in finite smoothness Cr, certain ergodic rotations on high dimen-
sional tori (the dimension of the torus goes to ∞ with r) are examples of diffeo-
morphisms that satisfy the two conditions on the deviations of the Birkhoff aver-
ages, in fact they are parabolic with small deviations. For this reason, they could be
used in [4] to construct examples of CLT diffeomorphisms with zero entropy in finite
smoothness.

Acknowledgements. — The authors would like to thank to anonymous referees for
comments regarding the paper.

2. CLT for skew-products above parabolic systems with small deviations

In this section, we describe general conditions on the flow (KT , X, µ) which will
allow us to construct a generalized (T, T−1) flow (FT ) as in Definition 2 that satisfies
the assumptions of Theorem A.

Definition 3. — Let (KT )T∈R be a Cr-flow on a manifold X preserving a smooth
measure µ. We say that (KT ) is Cr-parabolic with small deviations if the following
conditions are satisfied:

(S1) for every H ∈ Cr(X) with µ(H) = 0, 1√
T

∫ T

0
H(Kt·)dt ⇒ 0, in distribution as

T → ∞.
(S2) there exist C, d ∈ N and a Cr function τ = (τ1, . . . , τd) : X → Rd, µ(τ ) = 0

such that

µ
(
{x ∈ X :

∣∣∣ ∫ T

0

τ (Ktx)dt
∣∣∣ < C ln2 T}

)
= o(T−5).

(S3) there exist C > 0,m < 1.1 and x0 ∈ X such that for every δ > 0 sufficiently
small, we have KtB(x0, δ) ∩B(x0, δ) = ∅ for every |t| ∈ (Cδ, (Cδ)−1/m).

Conditions (S1) and (S2) are used to show that the associated (T, T−1)-flow sat-
isfies the classical CLT (with the possibility that the variance is identically zero).
Condition (S3) insures that there exists a function with non-zero variance.

The following result based on [4, Th. 3.2] reduces the proof of Theorems A and B
to that of finding smooth parabolic flows with small deviations.

Proposition 4. — Assume that (KT , X, ζ) is a C∞- parabolic flow with small devia-
tions and of zero metric entropy. Let (Gt, Y, ν) be a smooth Rd action which is expo-
nentially mixing of all orders. Let

FT (x, y) = (KTx,GτT (x)(y)),

where τ is as in (S2). Then (FT , X × Y, µ× ν) has zero metric entropy and satisfies
the classical CLT. Moreover, there exists H ∈ C∞(X × Y ) with σ2(H) ̸= 0.

J.É.P. — M., 2025, tome 12



6 D. Dolgopyat, B. Fayad & A. Kanigowski

Proof. — FT has zero entropy due to [4, Lem. 2.1]. (S1) and (S2) imply that FT sat-
isfies the classical CLT due to [4, Th. 3.2]. The fact that the variance is not identically
zero follows from (S3) similarly to the proof of [4, Lem. 8.2]. □

Let us comment on how conditions (S1) and (S2) are used in the proof of [4,
Th. 3.2]. We split an arbitrary H ∈ Cr(X × Y ) as H(x, y) = H(x) + H̃(x, y), where∫
H(x, y)dν(y) = 0 for each x ∈ X. The ergodic integrals of H are negligible due to

assumption (S1). To handle the integrals of H̃ we apply the Central Limit Theorem
for arrays over exponentially mixing actions proved in [2]. This theorem establishes
asymptotic normality of ST (y) :=

∫
Rd At(Gty)dmT (t), where the norms of At are

uniformly bounded and the measures mL satisfy the following free conditions:
(a) limT→∞ mT (Rd) = ∞.
(b) For each r ∈ N, r ⩾ 3, and each K > 0,

lim
T→∞

∫
mr−1

T

(
B(t,K lnmT (Rd))

)
dmT (t) = 0,

where B(t, v) denotes a ball in Rd of radius v > 0 centered at t.
(c) There exists σ2 = σ2(At) ⩾ 0 so that limT→∞ VT = σ2, where

VT :=

∫
S2T (y)dν(y) =

∫∫∫
At1(Gt1y)At2(Gt2y)dmT (t1)dmT (t2)dν(y).

To prove [4, Th. 3.2], we apply this result with mT being the normalized occupation
measure mT (Ω) = mes(t ⩽ T : τt(x) ∈ Ω)/

√
T . Then (a) holds since mT (Rd) =

√
T ,

(c) holds due to the ergodic theorem (see [4, §5.1.2] for details), and (S2) is used
to verify (b) since it implies that τt1(x) and τt2(x) are unlikely to be close unless t1
and t2 are close (see [4, §5.1.2] for details).

As explained in the introduction a classical example of an analytic Rd action which
is exponentially mixing of all orders is the Weyl chamber flow. It remains to find
examples of smooth flows with small deviations. In light of Proposition 4, Theorem A
becomes an immediate consequence of the following result:

Theorem C. — There exists a smooth conservative flow (KT , X, µ) with zero metric
entropy that is a parabolic flow with small deviations.

Theorem C is the main novelty of this work. Existence of C∞ parabolic diffeomor-
phisms with small deviations is an open question. In fact, to the best of our knowledge,
the following easier problem is open:

Problem 5. — Construct a C∞ diffeomorphism f on a smooth compact manifold X

preserving a smooth measure µ such that:
(T1) for every H ∈ C∞(X) with µ(H) = 0 we have

1√
N

∑
n⩽N

H(fn·)dt =⇒ 0,

in distribution as T → ∞;
(T2) there exists x ∈ X and ϕ ∈ C∞(X) such that {ϕn(x)} :=

{∑
n⩽N ϕ(fnx)

}
is unbounded.

J.É.P. — M., 2025, tome 12



Smooth zero entropy flows satisfying the classical CLT 7

In other words, in all the known smooth examples, whenever there exists a zero
average function which is not a coboundary (equivalently (T2) holds) then there is
a rapid jump in asymptotics of ergodic averages, i.e., they become of order

√
N or

larger. Hence, in light of Katok’s conjecture on cohomologically rigid diffeomorphisms,
one can ask the following:

Does there exist a C∞ diffeomorphism f on a smooth compact manifold X preserv-
ing a smooth measure µ, not conjugated to a Diophantine torus translation, so that
(T1) holds?

It is interesting to point out that the classical parabolic flows,including horocycle
flows and their reparametrizations, nilflows and their reparametrizations, are not par-
abolic with small deviations. Indeed, it follows from the work of Flaminio-Forni, [5]
and [6], that the deviations of ergodic averages in these examples are, for observables
that are not coboundaries, of order at least

√
T for a positive measure set of points.

Thus property (T1) does not hold for those flows. Moreover, these flows are known
not to have a CLT and it is therefore not possible to use them to construct skew
products above them that satisfy the classical CLT.

Finally, let us mention that another way for constructing smooth conservative flows
or diffeomorphisms with zero entropy and a classical CLT would be to look for zero
entropy systems having a polynomial speed of mixing faster than T−a, a > 1. To the
best of our knowledge, such systems are not yet proved to exist.

The rest of the paper is devoted to the proof of Theorem C. Our examples belong
to the class of smooth flows on surfaces with degenerate saddles (so called Kochergin
flows).

For the class of Kochergin flows that we consider all the singularities will be
“weakly” degenerate, i.e., the strength of the singularity will be o(x−1/2). This
assumption will relatively easily give us the condition (S1) for any number of sin-
gularities. Condition (S3) will also be easy to achieve by assuming that the base
rotation (the first return map) is Diophantine. The most interesting and also most
difficult part is to show existence of τ satisfying the assumptions of (S2).

3. Construction of parabolic Kochergin flows in the smooth case

3.1. Overview of the construction. — We start by defining C∞ Kochergin flows
on T2. They were introduced by Kochergin in [9]. Namely, [9] takes a linear flow
on T2 in direction (α, 1) and cuts out finitely many disjoint disc from the phase space.
Inside each such disc one then glues in a Hamiltonian flow on R2 with a degenerated
singularity at c ∈ T2 (corresponding to (0, 0) ∈ R2). Finally one smoothly glues the
trajectories of the linear flow with the trajectories of the Hamiltonian flow. It follows
that each such flow preserves a smooth area measure on T2. Moreover, as shown by
Kochergin, such flows are mixing for all irrational α ∈ T. For more details on the
construction we refer the reader to [9]. In our case we will cut out finitely many discs
centered at {ci}Ni=1 and glue a Hamiltonian flow with a degenerated singularity at 0

in the discs centered at points {ci}Ni=1. From the construction it follows that the set

J.É.P. — M., 2025, tome 12



8 D. Dolgopyat, B. Fayad & A. Kanigowski

T = T× {0} is a global transversal for the flow (we can WLOG assume that no discs
intersects T) and moreover the first return map is the rotation by α ∈ T. The roof
function f : T → R+ (first return time) is smooth except at the points {ci}Ni=1 which
are the projections (to T) along the flow lines of the points {ci}Ni=1and at which the
roof function has a power-like singularity with exponent γ ∈ (0, 1).

In what follows, when we write {ci}Ni=1 ⊂ T, we allow singularities of the smooth
flow (Kt) to be anywhere on the unit flow lines of the linear flow in direction α, i.e.,
ci = Lα

ti(ci, 0) with 0 < ti < 1 and where (Lα
t ) denotes the linear flow on T2 in

direction (α, 1). In fact we will construct good tuples of points (c1, . . . , cN ) and then
we lift them along the flow as described above.

In particular, every point in x ∈ M which is not a fixed point can be written as
x = Kwθ, where θ ∈ T and 0 ⩽ w < f(θ). By the construction it follows that

(3.1) f(·) =
N∑
i=1

f(· − ci),

where ci ∈ T denote the projections of ci ∈ T2 along the flow lines, where, as shown
in [9], f : T → R+ is C3 on T ∖ {0}, satisfies

∫
fdλ = 1 and

(3.2) lim
θ→0+

f ′′(θ)

θ−2−γ
= A = lim

θ→1−

f ′′(θ)

(1− θ)−2−γ
,

where A > 0 and γ ∈ (0, 1). In this context Kochergin showed that γ = 1/3 is a possi-
ble exponent. For simplicity we will always assume that (3.2) holds with A = 1. Let us
denote K(α, γ, {ci}) the set of smooth area preserving flows (Kt) on T2 for which Rα

is the first return map and the corresponding first return time f satisfies (3.1) where f

satisfies (3.2). In what follows we will always assume that γ < 1/2.
Thus Kochergin flows are isomorphic to special flows defined as follows. The orbit

of a point (θ, u), θ ∈ T, u ∈ [0, f(θ)) under the flow (KT ) for positive time t is given by

(3.3) Kt(θ, u) = (θ + nα, u+ t− Sn(f)(θ)),

where Sn(f) is the ergodic sum of f and n((θ, u), t) is the unique integer such that
0 ⩽ u+ t−Sn(f)(θ) < f(θ+ nα). The orbits for negative times are defined similarly.
Let C = (infT f)

−1. Notice that n((θ, u), t) ⩽ C|t|.

Figure 2. Representation of a 2-torus flow with one degenerate saddle
as a special flow under a ceiling function with a power-like singularity.

J.É.P. — M., 2025, tome 12



Smooth zero entropy flows satisfying the classical CLT 9

Let (an) denote the continued fraction expansion of α and (qn) denote the sequence
of its denominators, i.e., q0 = q1 = 1 and

qn+1 = an+1qn + qn−1.

Let

(3.4) D := {α ∈ T : ∃C > 0 such that qn+1 < Cqn ln
2 qn for every n ∈ N}.

The set D has full measure by Khintchine’s theorem, [8, §13]. The following statement
gives explicit examples of flows that satisfy Theorem C.

Theorem D. — For every α ∈ D and every γ < 1/2, there exists s ∈ N and a
full measure set C ⊂ [0, 1]s such that for every (c1, . . . , cs) ∈ C, every Cr flow in
K(α, γ, {ci}) with r ⩾ 3 is Cr- parabolic with small deviations.

In the above theorem r may be equal to ∞ or ω. We also point out that the
following stronger result holds: when r = ω, condition (S1) will still be satisfied for
all C3 functions. Theorem D is a direct consequence of the following two results.

Proposition 6. — For every s ∈ N, every (c1, . . . , cs) ∈ [0, 1]s, every α ∈ D and every
γ < 1/2 every smooth flow in K(α, γ, {ci}) satisfies properties (S1) and (S3).

Proposition 7. — For every α ∈ D and every γ < 1/2 there exists s ∈ N and a
full measure set C ⊂ [0, 1]s such that for every (c1, . . . , cs) ∈ C, every smooth flow in
K(α, γ, {ci}) satisfies (S2).

We will now prove Proposition 6.

Proof of Proposition 6. — We first show (S3). we consider the representation of Kt as
a special flow over a rotation as in (3.3). We have

Kt(θ, u) = (θ + nα, u+ t− Sn(f)(θ))

for some |n| ⩽ C|t| where Sn(f) is the ergodic sum of f . Let x0 = (θ, u) be any point
which is not a fixed point of the flow. If n = 0, then (S3) holds since the second
coordinates differ by at least Cδ, (as the vector field is positive since x0 is not a fixed
point). If n ̸= 0 then the first coordinates differ by at least ∥nα∥. Since α ∈ D it
follows that there is a constant Cα > 0 such that ∥nα∥ ⩾ Cα/n log4 n. In particular,
the first coordinates of Kt(θ, u) and (θ, u) differ by at least C ′/t log4 t (as |n| ⩽ C|t|).
It is enough to take m = 1/2 (or in fact any fixed m < 1) to get (S3).

Property (S1) was proved in [4] in case there is just one singularity (i.e., N = 1).
However the proof works with minor changes for multiple singularities. Alternatively,
one can also use [7, Th. 1.1] in the context of surfaces of genus 1. In this case the
asymptotic growth in L1 is given in [7, Eq. (1.5)] (Note that b(σ, |α|) appearing in
right-hand side of that formula equals to γ < 1/2 for the case considered in our
paper). □

The proof of Proposition 7 is the most important part of the paper. The rest of
Section 3 as well as Section 4 is devoted to its proof.

J.É.P. — M., 2025, tome 12



10 D. Dolgopyat, B. Fayad & A. Kanigowski

– In Section 3.2, we give useful estimates on ergodic sums of functions with singu-
larities above circular rotations of frequency α ∈ D.

– In Section 3.3, we give the criteria along which the singularities should be se-
lected. We state Proposition 13 that says that, under the condition α ∈ D, the typical
choice of the singularities satisfies the criteria.

– In Section 3.4, we explain how the cocycle τ must be chosen. We state the main
part of the proof, Proposition 14 that says that the chosen cocycle satisfies (S2).

– In Section 4.1, we prove Proposition 13 and in Section 4.2 we prove Proposi-
tion 14.

3.2. Preliminary estimates on ergodic sums of functions with singularities

Lemma 8. — Let f be as in (3.2). Then for every N ∈ N and every x ∈ T∣∣∣∣SN (f)(x)−N

∫
T
fdλ− f(xmin,N )

∣∣∣∣ = O(Nγ ln5 N),

where xmin,N = min0⩽j<N ∥x+ jα∥.

Proof. — This follows from the assumptions on α and from [3, Prop. 5.2]. In fact,
[3, Prop. 5.2] is proved for monotone observables, but by our assumptions (3.2) we
can write f = g + h where g is monotone and satisfies (3.2) and h is of bounded
variation. The ergodic sums of g are O(Nγ ln5 N) by [3] while the ergodic sums of h
are O(ln4 N) by Lemma 25 from the appendix. □

We want to describe the set where ergodic sums of the function f satisfying (3.2)
are small. For small enough ε > 0 let

(3.5) AN := {x ∈ T : |SN (f0)(x)| ⩽ Nγ2+ε},

where f0 = f −
∫
T fdλ.

The rest of this section is devoted to the proof of the following:

Proposition 9. — Let δN = 1/N1+γ/5. There are a1, . . . a3N ∈ T such that

(3.6) AN ⊂
3N⋃
i=1

(−δN + ai, ai + δN )

holds for every sufficiently large N ∈ N.

Proof. — Let f be as in (3.2). First we state the following lemma giving lower bounds
on the size of f ′′:

Lemma 10. — For sufficiently large N ∈ N and for every x ∈ T∖ {−iα}N−1
i=0 we have

SN (f ′′)(x) ⩾ N2+γ ln−10 N.

Proof. — Notice that by the fact that A > 0 in (3.2) it follows that there is a κ0 > 0

such that f ′′ is positive on [0, κ0) ∪ (1− κ0, 1). In particular there exists C > 0 such
that for any 0 ⩽ j < N and any x ∈ T, SN (f ′′)(x) ⩾ f ′′(x + jα) − CN . We use it
for j which minimizes the ∥x+sα∥ over 0 ⩽ s < N , i.e., x+jα = xN

min. It follows that
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Smooth zero entropy flows satisfying the classical CLT 11

if n is such that N ∈ [qn, qn+1), then 0 < xN
min < 1/qn. Then the statement follows

from (3.2) and the Diophantine assumption on α as

q2+γ
n ⩾ q2+γ

n+1 ln
−8(qn+1) ⩾ N2+γ ln−8 N. □

Consider the interval partition PN of T by points {−iα}N−1
i=0 . Then by (3.2) it fol-

lows that SN (f0)(·) is a C3 function on Int(Ij) for every interval Ij ∈ PN . Let Ij =

[aj , bj). By Lemma 10 it follows that SN (f ′)(·) is monotone on Ij . By de l’Hôpital’s
rule SN (f ′

0)(·) satisfies limx→a+
j
SN (f ′

0)(x) = −∞ and limx→b−j
SN (f ′

0)(x) = ∞.
So let aj,1 = yj ∈ Ij be the unique point such that SN (f ′

0)(aj,1) = 0. Note that

SN (f ′
0)(x)− SN (f ′

0)(aj,1) = SN (f ′′
0)(θx)(x− aj,1).

In particular, if Jj,0 is an interval of size 2/N1+γ/5 centered at aj,1, by Lemma 10 it
follows that for x ∈ Ij ∖ Jj,0

(3.7) |SN (f ′
0)(x)| ⩾ N2+γ ln−10 N · 1

N1+γ/5
= N1+4γ/5 ln−10 N.

Consider the two disjoint intervals Kj,1 and Kj,2 in Ij so that Kj,1 ∪Kj,2 = Ij ∖ Jj,0.
Then for w = 1, 2, let xj,w ∈ Kj,w be the point minimizing SN (f0)(·) on Kj,w.
If SN (f0)(xj,w) ⩾ Nγ2+ε, then AN ∩ Ij ⊂ Ji,0. If not, let Jj,w be an interval of size
2/N1+γ/5 centered at xj,w. Then for every x ∈ Kj,w, we get

|SN (f0)(x)− SN (f0)(xj,w)| = |SN (f ′
0)(θx||x− xj,w|

for some θx ∈ Kj,w. So if x ∈ Kj,w ∖ Jj,w, then by (3.7) we get

|SN (f0)(x)| ⩾ N1+4γ/5 ln−10 N · 1

N1+γ/5
− SN (f0)(xj,w)

⩾ N3γ/5 ln−10 N −Nγ2+ε > Nγ2+ε,

if ε > 0 is small enough (remember that γ < 1/2). It then follows that

AN ∩ Ij ⊂ Jj,1 ∪ Jj,2 ∪ Jj,0.

and the Jj,w are intervals of size 2/N1+γ/5 centered at aj,w. Then

AN ⊂
N⋃
j=1

[Jj,1 ∪ Jj,2 ∪ Jj,0].

This gives (3.6) and finishes the proof. □

3.3. Choosing the singularities. — We will consider a Kochergin flow (Kt) with
γ < 1/2, α ∈ D, and a roof function f given by

f(·) =
s+3∑
i=1

f(· − ci),

where s := ⌊50/γ⌋. In this subsection we describe the choice of the ci ∈ T. In the pro-
cess, we will explain why it is preferable for the presentation to index the singularities
from 1 to s+ 3 instead of from 1 to s with a larger s.

For c ∈ T2 let Vκ(c) be the ball of radius κ > 0 centered at c. Recall that AN is
defined in (3.5) as AN := {x ∈ T : |SN (f0)(x)| ⩽ Nγ2+ε}.
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12 D. Dolgopyat, B. Fayad & A. Kanigowski

For n ∈ N and c ∈ T let

(3.8) G(c, n) =
2qn+1⋃

Z∋k=−2qn+1

Rk
α

[
c− 1

qn ln
5 qn

, c+
1

qn ln
5 qn

]
.

Let S(T, (iv)
s
v=1) be the set of points x = (x,w) such that

(3.9) {x,KT (x)} ∩
⋃

j∈{i1,...,is}
Vκ(cj)= ∅

and

(3.10) {x+N(x,w, T )α+ uα}|u|⩽2Tγ ,u∈Z

∩
⋃

j∈{i1,...,is}

[
− 1

2T γ ln7 T
+ cj , cj +

1

2T γ ln7 T

]
= ∅.

Definition 11. — We say that the set of singularities {c1, . . . , cs+3} is good if
(G1) for every i, j ∈ {1, . . . , s+ 3}, for any n sufficiently large

G(ci, n) ∩G(cj , n) = ∅,

(G2) for any choice of pairwise different elements i1, . . . , is from {1, . . . , s+3} and
for N sufficiently large

λ
( s⋂

w=1
AN + ciw

)
⩽ N−6,

(G3) for sufficiently large T >0, for every x∈T2 there is (i1, . . . , is)⊂{1, . . . , s+ 3}
such that x ∈ S(T, (iv)

s
v=1).

The set of good tuples will be denoted by C.

Let us shortly explain how the above properties are used. Property (G1) implies
that the orbit of any point x and any time T can visit at most one of the neighborhoods
of the {cj}, i.e., if the orbit goes very close to ci then it stays at a controlled distance
away from all the other cj with j ̸= i. Property (G2) implies that if we define the
roof function f to have singularities at the {cj}, then for most points (except a set of
measure N−6) the ergodic sums up to time N of f will be polynomially large. Here
is where we use that we have more singularities – each of them produces a bad set
of measure ⩽ N−δ0 and we roughly show that the bad sets are independent for our
choice of singularities. Property (G3) implies that for a short orbit (of size T γ) of
every point x does not enter the ball of radius T−γ ln−7 T centered at ci for at least s
indices i.

Remark 12. — Notice that by property (G1) and the Diophantine assumptions on α

it follows that for any i, j ∈ {1, . . . , s+ 3}, and any 0 < |u| ⩽ M (with M sufficiently
large)

∥ci − cj + uα∥ ⩾
1

M log20 M
.
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Indeed, if n is the largest for which M ⩽ qn+1, then by (G1) it follows that

∥ci − cj + uα∥ ⩾
1

2qn log
5 qn

⩾
1

M log20 M
,

the last inequality by the Diophantine assumption on α.

The reason why we preferred to index the singularities from 1 to s + 3 is that we
need, for each x and every T , that there exist at least s singularities such that (G3)
holds. In Lemma 17, we will see why considering s + 3 singularities instead of s is
sufficient for insuring (G3).

The choice of the singularities c1, . . . , cs+3 is based on the following result that we
will prove in Section 4.1.

Proposition 13. — For the set C of Definition 11, we have Lebs+3(C) = 1.

3.4. Choosing the cocycle τ . — Define a C∞ function

τ = (τ1, . . . , τs+3) : T2 −→ Rs+3

as follows: For i ∈ {1, . . . , s + 3} let τi : T2 → R be a C∞ mean zero function such
that τi = 1 on Vκ(ci) and τi = 0 on Vκ(cj) with j ̸= i, for some small κ such that
0 < κ < 1

2 mini̸=j ∥ci − cj∥.

Proposition 14. — Assume (c1, . . . , cs+3) ∈ [0, 1]s+3 are good as in Definition 11.
Then, the flow (Kt) defined as in (3.1) satisfies (S2). More precisely, the function τ

satisfies
ν
(
{x ∈ T2 :

∥∥ ∫ T

0
τ (Ktx)dt

∥∥ < C ln2 T}
)
= o(T−5),

where ν is the Haar measure on T2.

4. The proofs of technical propositions.

4.1. Proof of Proposition 13. — We will always fix s = ⌊50/γ⌋. We start with (G1).

Lemma 15. — There is a set F ∈ [0, 1]s+3 of full Lebesgue measure such that for any
(c1, . . . , cs+3) ∈ F, for every i, j ∈ {1, . . . , s+ 3}, for any n sufficiently large

G(ci, n) ∩G(cj , n) = ∅,

where the sets G(c, n) are as in (3.8).

Proof. — Define

(4.1) Fn :=
{
(c1, . . . , cs+3) ∈ [0, 1]s+3 : G(ci, n) ∩G(cj , n) = ∅, for any i ̸= j

}
.

We have the following:

Claim. — For n sufficiently large, we have

Lebs+3(Fn) ⩾ 1− 1

ln2 qn
.
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14 D. Dolgopyat, B. Fayad & A. Kanigowski

Proof of the claim. — We say that d ∈ T is n-far from c ∈ T if G(c, n) ∩G(d, n) = ∅.
We have

λ({d : d is n far from c} ⩾ 1− 8qn+1

qn ln
5 qn

⩾ 1− 8C

ln3 qn
,

the last inequality since α ∈ D. Notice that Fn contains vectors (c1, . . . , cs+3) ∈
[0, 1]s+3 such that c1 is any number in [0, 1], c2 is n-far from c1, c3 is n-far from c2
and n-far from c1, and so on until cs is n-far from cj for every j < s. Therefore,

Lebs+3(Fn) ⩾
s+3∏
ℓ=1

(
1− 8Cℓ

ln3 qn

)
⩾ 1− ln−2 qn,

if n is sufficiently large. □

Thus the set
F :=

+∞⋃
m=1

⋂
n⩾m

Fn

satisfies Lebs+3(F) = 1 and the condition of Lemma 15. □

We proceed to (G2).

Lemma 16. — There is a set D ∈ [0, 1]s of full Lebesgue measure such that for any
(c1, . . . , cs) ∈ D, for N sufficiently large

λ
( s⋂

i=1

AN + ci

)
⩽ N−6,

where AN is as in (3.5).

Proof. — We have the following, where addition is mod 1.

Claim. — Let N ∈ N, δ > 0, b1, . . . bN ∈ T and let A ⊂ T be such that

A ⊂
N⋃
i=1

(−δ + bi, bi + δ).

Then for any s ∈ N

(4.2)
∫
[0,1]s

λ
( s⋂

i=1

(A+ ti)
)
dt1 . . . dts⩽(2Nδ)s.

Proof of the claim. — The left-hand side of (4.2) equals to∫
Ts+1

s∏
i=1

χ−A(tj − x)dt1 . . . dtsdx = λ(A)s,

where the equality uses the change of variables uj = tj − x and where χW denotes
the characteristic function of a set W . □

We now apply the claim to the sets AN defined by (3.5), δN = 1/N1+γ/5 and
s = ⌊50/γ⌋. Then, using Proposition 9,∫

[0,1]s
λ
( s⋂

i=1

(AN + ti)
)
dt1 . . . dts ⩽ N−9.
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Smooth zero entropy flows satisfying the classical CLT 15

So by Markov’s inequality the set

BN :=
{
(t1, . . . , ts) ∈ [0, 1]s : Lebs

(⋂s
i=1(AN + ti)

)
⩽ N−6

}
satisfies Lebs(BN ) ⩾ 1− 1/N2. We now define the set D as

D :=
+∞⋃
m=1

⋂
N⩾m

BN .

Then D is a full measure subset of [0, 1]s that satisfies the condition of Lemma 16. □

We finally define the set C that satisfies the requirements of Proposition 13

C :=
{
(c1, . . . , cs+3) ∈ [0, 1]s+3 :

(ci1 , . . . , cis) ∈ D ∩ F for every i1, . . . , is ∈ {1, . . . , s+ 3}
}
.

It follows from Lemmas 15 and 16 that λ(C) = 1 and that it satisfies (G1) and (G2).
We still have to prove (G3). For any point x ∈ T2 and any time t there are at most
two indices ix, jx ⩽ s + 3 for which x ∈ Vκ(cix) and Ktx ∈ Vκ(cjx) in particular for
any point x and any time t we can choose at least s+1 indices j1 . . . , js+1 for which x

and Ktx are not κ close to the points cℓ with ℓ = ji. This is the main reason why we
work with s+ 3-tuples instead of s-tuples.

For the following statement, recall the definition of the sets S(T, (iv)
s
v=1) in (3.9).

Lemma 17. — For sufficiently large T > 0, for every x ∈ T2 there exists (i1, . . . , is) ⊂
{1, . . . , s+ 3} such that x ∈ S(T, (iv)

s
v=1)

Proof. — Notice that there is at most one cj such that x ∈ Vκ(cj) and at most one cj′

such that KTx ∈ Vκ(cj′). It is thus enough to show that there is at most one cj′′ such
that

{x+N(x,w, T )α+ uα}u∈[−Tγ ,Tγ ] ∩
[
− 1

2T γ ln10 T
+ cj′′ , cj′′ +

1

2T γ ln10 T

]
̸= ∅.

Indeed, if there were two different cj1 and cj2 , then for some |k| ⩽ 2T γ ,

∥cj1 − cj2 + kα∥ ⩽
1

4T γ ln10 T
.

Let n ∈ N be unique such that T γ ∈ [qn, qn+1]. The above condition would, by the fact
that α ∈ D imply that (see (3.8)) G(cj1 , n)∩G(cj2 , n) ̸= ∅. This however contradicts
the fact that any s- tuple of coordinates of the vector (c1, . . . , cs+3) belongs to F and
in particular to Fn if n is sufficiently large (see (4.1)). □

Proposition 13 follows from Lemmas 15, 16 and 17. □
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16 D. Dolgopyat, B. Fayad & A. Kanigowski

4.2. Proof of Proposition 14. — From now on we assume that (Kt) is as in (3.1)
with (c1, . . . , cs+3) good.

For T > 0 and x = (x,w) ∈ T2 recall that N(x,w, T ) denotes the number of
returns of {Kt(x,w)}t⩽T to T× {0}. Then N(x,w, T ) ⩽ CT , where C = (infT f)

−1.
The following lemma allows us to relate the ergodic sums of τj to those of f0(·−cj).

It relies on the fact that τj equals 1 on a small ball centered at cj and equals 0 on
a small ball centered at ci, for i ̸= j. The control of the error is due to the fact that
α ∈ D.

Lemma 18. — Let τ = τj with j ∈ {1, . . . , s+ 3}. Then for T sufficiently large∣∣∣∣N(x,w,T )−1∑
u=0

∫ f(x+uα)

0

τ(Kt(x+ uα, 0))dt−
N(x,w,T )−1∑

u=0

f0(x+ uα− cj)

∣∣∣∣ ⩽ ln4 T.

where f0 = f −
∫
T fdλ and f is as in (3.2).

Proof. — Denote

φτ (x) =

∫ f(x)

0

τ(Kt(x, 0))dt, and fj = f(x− cj).

To alleviate the notation in this proof, we assume that cj = 0. For a function
g : T → R define

gκ = χ[−κ,κ]g, gκ = (1− χ[−κ,κ])g.

Since τ = 1 on Vκ(cj), we have the following identity

φτ (x) = (φτ )κ(x)+ (φτ )
κ(x) = (fj)κ(x)+

∫ f(x)

0

(τ − 1)(Ktx)χ−[κ,κ](x)dt+(φτ )
κ(x).

Notice that the functions hκ(x) =
∫ f(x)

0
(τ − 1)(Ktx)χ−[κ,κ](x)dt and (φτ )

κ belong
to the class BV(T). With this notation, denoting also N = N(x,w, T ), we need to
bound

SNφτ − SNfj +N

∫
T
fjdλ

= SN (hκ) + SNφκ
τ − SNfκ

j −N

(∫
T
hκdλ+

∫
T
φκ
τdλ−

∫
T
fκ
j dλ

)
,

where in the left-hand side we used that
∫
T φτdλ = 0 because

∫
T2 τdλ = 0. Since

hκ, φκ
τ and fκ

j are all of bounded variation, the bound of the lemma follows from
Lemma 25. □

We will often use the following decomposition of the orbital integral: for x=(x,w)∈T2

(4.3)
∫ T

0

τ(Kt(x))dt =

N(x,w,T )−1∑
i=0

∫ f(x+iα)

0

τ(Kt(x+ iα, 0))dt

−
∫ w

0

τ(Kt(x, 0))dt+

∫ T+w−SN(x,w,T )(f)(x)

0

τ(Kt(x+N(x,w, t)α, 0))dt.
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Corollary 19. — Let τ = τj with j ∈ {1, . . . , s+ 3}. Then, with N = N(x,w, T ),∣∣∣∣∫ T

0

τ(Kt(x))dt−
N−1∑
i=0

f0(x+uα− cj)

∣∣∣∣ ⩽ C ·
(
|f(x− cj)|+ |f(x+Nα− cj)|+ln4 T

)
.

Proof. — We use (4.3). By Lemma 18, we can replace the first term of the left-hand
side by

∑N−1
i=0 f0(x+uα− cj). For the last two terms in (4.3) we use that τj vanishes

on Vκ(ci) for i ̸= j, that w ∈ [0, f(x)) and T + w − SNf(x) ∈ [0, f(x+Nα)). □

We will split the proof of Proposition 14 into two cases: Case 1 in which we will
consider points (x,w) with very close visits to the set of singularities, and Case 2 which
covers the complimentary points. Fix ε ≪ 1. Recall again that recall that N(x,w, T )

denotes the number of returns of {Kt(x,w)}t⩽T to T× {0}.

Case 1. N(x,w, T ) < T 1−ε

Proposition 20. — If (x,w) is such that N(x,w, T ) < T 1−ε then

max
j∈{1,...,s+3}

∫ T

0

τj(Ktx)dt ⩾ ε2T.

In all of this section we sometimes simply denote N(x,w, T ) by N . First observe
the following.

Lemma 21. — For any ε > 0, if T is sufficiently large and N(x,w, T ) < T 1−ε, there
exists j ∈ {1, . . . , s+ 3} and u ∈ [0, N(x,w, T )] such that ∥x+ uα− cj∥ ⩽ 1/εT 1/γ .

Proof. — Assume that for any j ∈ {1, . . . , s + 3} and any u ⩽ N , ∥x + uα − cj∥ ⩾
ε−1T−1/γ . This can be expressed as xmin,N+1 ⩾ ε−1T−1/γ .

Observe that by definition 0 ⩽ T+w−SNf(x) ⩽ f(x+Nα). By Lemma 8 (applied
to all the functions f(· − cj)) it follows that if ε is sufficiently small

T ⩽ SN+1(f)(x) ⩽ C(N + f(xmin,N+1)) ⩽ CT 1−ε + 2εγT ⩽ T/2,

a contradiction. □

Proof of Proposition 20. — We will split the proof in several cases.

Case I. There is j ∈ {1, . . . , s+3} and u ∈ [1, N−1] such that ∥x+uα−cj∥ ⩽ ε−1T−1/γ

Lemma 8 applied to the function fj := f0(· − cj) then implies that
(4.4) SNfj(x) ⩾ εγT/2.

Since α ∈ D (defined in (3.4)), we have that for u′ ∈ {0, N}, ∥x + u′α − cj∥ ⩾
N−1−ε ⩾ (CT )−1−ε. Corollary 19 and equation (4.4) then imply∫ T

0

τj(Ktx)dt ⩾ εγT/4.

Case II. For any j∈{1, . . . , s+3} and any u∈ [1, N−1] we have ∥x+uα−cj∥ >ε−1T−1/γ

We split this case in several sub-cases.
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Case II.1. There exists j∈{1, . . . , s+3} such that ∥x−cj∥ ⩽ ε−1T−1/γ and f(x)−w>εT

By the Diophantine assumption α∈D it follows that for any sufficiently large M ∈N
and for any j the set {x+uα− cj}0⩽u⩽M ∩ [−M−1−ε,M−1−ε] is at most a singleton.
Indeed, if n is the largest for which M < qn+1, then for any 0 ⩽ u < u′ ⩽ M ,

∥(x+uα−cj)−(x+u′α−cj)∥ ⩾ ∥(u−u′)α∥ ⩾ min
k<qn+1

∥kα∥ ⩾
Cα

qn log
5 qn

⩾
Cα

M log10 M
.

Since M log10 M ≪ M1+ε for M large enough, the statement follows.
In particular, since N < T 1−ε it follows that

(4.5) ∀u ∈ [1, N ] : ∥x+ uα− cj∥ ⩾ N−1−ε.

We have, since τj = 1 on all but a bounded part of the fiber above(3) x,

(4.6)
∫ f(x)−w

0

τj(Ktx)dt ⩾ εT/2,

while (4.5) and exactly the same argument as in Corollary 19 imply that∣∣∣∣∫ T

f(x)−w

τj(Ktx)dt

∣∣∣∣ ⩽ εT/4.

Hence (4.6) allows to conclude that
∫ T

0
τj(Ktx)dt ⩾ εT/4.

Case II.2. There exists j∈{1, . . . , s+3} such that ∥x−cj∥⩽ε−1T−1/γ and f(x)−w⩽εT

Notice that for any j′ ∈ {1, . . . , s + 3} and any u ∈ [1, N − 1], ∥x + uα − cj′∥ >

ε−1T−1/γ . Indeed, if not then 2ε−1T−1/γ ⩾ ∥x+uα− cj′ − (x− cj)∥ = ∥cj − cj′ +uα∥
which contradicts Remark 12, as |u| < N ⩽ T .

This however by Lemma 8 implies that SN−1(f)(x+α) ⩽
√
εT (as N ⩽ T 1−ϵ and

(x+ α)min,N−1 ⩾ ε−1T−1/γ).
By definition, SN+1(f)(x) ⩾ T + w ⩾ SN (f)(x). We have T + w − SN (f)(x) =

T + (w − f(x)) + SN−1(f)(x + α) ⩾ T − εT −
√
εT . This implies that for times

t ∈ [T0, T ], with T0 =
√
εT + εT , the orbit Kt(x,w) is in the last fiber above x+Nα.

In particular this means that f(x+Nα) ⩾ T − εT −
√
εT . By the definition of f this

is only possible if there exists j′ ⩽ s+3 such that ∥x+Nα− cj′∥ ⩽ ε−1T−1/γ . Since
SN−1(f)(x+ α) ⩽

√
εT , the decomposition in equation (4.3) used as in Corollary 19

implies that
∫ T

0
τj′(Ktx)dt ⩾ ε2T .

Case II.3. For all j ∈ {1, . . . , s+ 3}, ∥x− cj∥ > ε−1T−1/γ . — Since we are in Case II,
this implies the following bound: ∥x+ uα− cj∥ ⩾ ε−1T−1/γ for u ∈ [0, N − 1] and all
j ⩽ s + 3. Putting this together with Lemma 21 we get that there exists j′ ⩽ s + 3

such that ∥x+Nα− cj′∥ ⩽ ε−1T−1/γ . We then conclude as in Case II.2. □

(3)This means that there exists a c > 0 such that τj(x, u) = 1 for all u ∈ [c, f(x)].
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Case 2. N(x,w, T ) > T 1−ε. — We will now split the phase space T2 into finitely
many disjoint sets, and we will estimate the ergodic integrals separately on them.
Recall that Vκ(c) is the ball centered at c and of radius κ > 0. Let i1, . . . , is be
different elements from {1, . . . , s+ 3}.

Because (c1, . . . , cs+3) is good, it follows from (G3) that Proposition 14 is implied by

Proposition 22. — For every choice (i1, . . . , is) ⊂ {1, . . . , s+ 3},

LebT2

(
{x ∈ S(T, (iv)

s
v=1) : max

j∈{i1,...,is}

∣∣∣∣ ∫ T

0

τj(Ktx)dt

∣∣∣∣ ⩽ T γ2+ε/2}
)

= o(T−5).

We will now further partition the set S(T, {iv}sv=1) (defined in (3.9)) into level sets
according to the values of N(x,w, T ). For u ∈ [T 1−γ−ε, CT 1−γ ], u ∈ N let

(4.7) W (u, {iv}sv=1) := {x=(x,w)∈S(T, {iv}sv=1) : N(x,w, T )∈ [uT γ , (u+ 1)T γ)}.

Since u ⩽ CT 1−γ to establish Proposition 22 it is sufficient to prove

Proposition 23. — For T sufficiently large, for every s-tuple

(i1, . . . , is) ⊂ {1, . . . , s+ 3}s,

for every u ∈ [T 1−γ−ε, CT 1−γ ]

(4.8) LebT2

(
{x ∈ W (u, {iv}sv=1) : max

j∈{i1,...,is}

∣∣∣∣ ∫ T

0

τj(Ktx)dt

∣∣∣∣ ⩽ T γ2+ε/2}
)

⩽ T−6+6ε,

where W (u, {iv}sv=1) is as in (4.7).

Proof of Proposition 23. — Since the indexing set {iv}sv=1 is fixed, we will drop it from
the notation of W (u).

In this proof, we will suppose that x = (x,w) ∈ W (u) for some fixed choice of
u ∈ [T 1−γ−ε, CT 1−γ ] and i1, . . . , is. In the proof, we may use τ to denote any of the
functions {τi} for i ∈ {i1, . . . , is}. From the decomposition (4.3) and (3.9), we have
for any j ∈ {i1, . . . , is}∣∣∣∣∫ T

0

τj(Kt(x))dt−
N(x,w,T )−1∑

u=0

f0(x+ uα− cj)

∣∣∣∣ ⩽ (lnT )5.

We have

(4.9)
N(x,w,T )−1∑

u=0

f0(x+ uα− cj) = S[uTγ ](f0)(x+ cj) +

N(x,w,T )∑
ℓ=[uTγ ]

f0(x+ ℓα− cj).

In the following lemma we use (G3) to see that the contribution of the second
summand is of lower order, so that we can in the sequel focus only on the first one.
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Lemma 24. — For every x ∈ T so that (x, 0) ∈ W (u) and for every j ∈ {i1, . . . , is},∣∣∣∣N(x,w,T )∑
ℓ=[uTγ ]

f0(x+ ℓα− cj)

∣∣∣∣ < T γ2+ε2 ,

for sufficiently large T > 0.

Proof. — We have
N(x,w,T )∑
ℓ=[uTγ ]

f0(x+ ℓα− cj) = SN(x,w,T )−[uTγ ](f0(· − cj)(x+ [uT γ ]α).

By (3.10) and since
∣∣[uT γ ]−N(x,w, T )

∣∣ ⩽ T γ it follows that

{x+ [uT γ ]α+ uα}N(x,w,T )−[uTγ ]
u=0 ∩

[
− 1

2T γ ln7 T
+ cj , cj +

1

2T γ ln7 T

]
= ∅.

This and Lemma 8 give |SN(x,w,T )−[uTγ ](f0(·−cj)(x+[uT γ ])α)| = O(T γ2

ln200 T ). □

Since uT γ ⩾ T 1−ε implies that [uT γ ]γ
2+ε ⩾ T γ2+ε/2, it follows from (4.9) and

Lemma 24, that (4.8) holds if we show that

(4.10) λ
(
{x ∈ T : max

j∈{i1,...,is}
|S[uTγ ](f0)(x− cj)| ⩽ [uT γ ]γ

2+ε}
)
⩽ T−6+6ε.

By (G2) in the definition of (c1, . . . , cs+3) being good, we have that the left-hand side
of (4.10) is less than (uT γ)−6 ⩽ T−6+6ε. This gives (4.8). The proof of Proposition 23
is now finished. □

Proposition 14 follows from Propositions 20 and 22. □

With Propositions 13 and 14 proved, Theorem D, and therefore Theorems A, B, C,
are established. □

Conclusion and a remark on the real analytic case. — We have constructed con-
servative smooth flows of zero metric entropy which satisfy the classical central limit
theorem. The starting point of the paper is the following finding of [4]: to a flow that
is Cr-parabolic with small deviations as in Definition 3 (r ∈ N ∪ {∞}) it is possible
to associate a Cr (T, T−1)-flow that satisfies the classical CLT (with the possibility
that the variance is identically zero). The conditions (S1) and (S2) imply that FT

satisfies the classical CLT due to [4, Th. 3.2], and the condition (S3) in Definition 3
insures that there exists a function with non-zero variance so that the CLT is not a
trivial one.

The novelty of this note is to prove the existence of smooth conservative flows that
are parabolic with small deviations. We actually showed that Kochergin flows on the
two-torus, with sufficiently many singularities, and with exponent γ ∈ (0, 1/2) for the
singularities of their ceiling function, are parabolic with small deviations for typical
positions of the singularities and the slope of the flow.

To give examples of real analytic flows of zero metric entropy which satisfy the
classical central limit theorem using the same approach one needs to first show that
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Kochergin flows as the ones used in this paper can be constructed in the real analytic
category.

Then one has to show that there exists an analytic τ satisfying (S2), and that
due to (S3) there exists an analytic function H with σ2(H) ̸= 0. The construction of
analytic τ and H can be made following the same lines as in the smooth case using
approximation arguments.

However, since the construction of Kochergin flows uses surgeries, it is more in-
tricate to carry it to the real analytic category. In fact the existence of real analytic
Kochergin flows is not straightforward from Kochergin’s original construction and
requires some care. Including this extension in the current paper would encumber it
with technicalities that are out of the scope of the paper and we preferred to leave it
for a separate work on surface flows. Modulo this extension, it is easy to modify the
rest of the construction included in this paper to get real analytic flows of zero metric
entropy which satisfy a non trivial classical central limit theorem.

Appendix. Ostrovski estimate

Several proofs in our paper rely on the following standard estimate.

Lemma 25. — If α ∈ D where D is given by (3.4) and h ∈ BV(T) then for all x ∈ T
|SN (h)(x)| ⩽ O(ln4 N).

Proof. — Recall the classical Denjoy-Koksma inequality: if h ∈ BV(T) then for every
x ∈ T and every n ∈ N

(A.1) |Sqn(h)(x)− qn

∫
T
h(x)dx| ⩽ 2Var(h).

To bound SN (h)(x) for general N ∈ N we use the Ostrovski expansion to write

N =

m∑
k=1

bkqk,

where qm ⩽ N < qm+1 and bk ⩽ ak. We then use cocycle identity, (A.1) and the
fact that m = O(lnN) while our assumption (3.4) implies that for k ⩽ m we have
ak = O(log2 N). □
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[7] K. Frączek & M. Kim – “New phenomena in deviation of Birkhoff integrals for locally Hamiltonian
flows”, J. reine angew. Math. 807 (2024), p. 81–149.

[8] A. Y. Khinchin – Continued fractions, Dover Publications, Inc., Mineola, NY, 1997, Reprint of
the 1964 translation.

[9] A. V. Kochergin – “On mixing in special flows over a shifting of segments and in smooth flows on
surfaces”, Math. USSR-Sb. 25 (1975), no. 3, p. 441–469.

Manuscript received 14th November 2022
accepted 14th October 2024

Dmitry Dolgopyat, Department of Mathematics, University of Maryland,
College Park MD 20814, USA
E-mail : dolgop@umd.edu
Url : https://www.math.umd.edu/~dolgop/

Bassam Fayad, Department of Mathematics, University of Maryland,
College Park MD 20814, USA
E-mail : bassam@umd.edu
Url : https://bassam.math.umd.edu/

Adam Kanigowski, Department of Mathematics, University of Maryland,
College Park MD 20814, USA
& Faculty of Mathematics and Computer Science, Jagiellonian University,
Łojasiewicza 6, Kraków, Poland
E-mail : adkanigowski@gmail.com
Url : https://akanigow.math.umd.edu/

J.É.P. — M., 2025, tome 12

mailto:dolgop@umd.edu
https://www.math.umd.edu/~dolgop/
mailto:bassam@umd.edu
https://bassam.math.umd.edu/
mailto:adkanigowski@gmail.com
https://akanigow.math.umd.edu/

	1. Introduction
	2. CLT for skew-products above parabolic systems with small deviations
	3. Construction of parabolic Kochergin flows in the smooth case
	4. The proofs of technical propositions.
	Appendix. Ostrovski estimate
	References

