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SMOOTH ZERO ENTROPY FLOWS SATISFYING
THE CLASSICAL CENTRAL LIMIT THEOREM

BY Dwmirry DoLcopryar, Bassam Favap & Abpam Kanicowski

AssTrACT. — We construct conservative smooth flows of zero metric entropy which satisfy the
classical central limit theorem.
Résumic (Flots conservatifs lisses d’entropie métrique nulle satisfaisant le théoréme central
limite)

On construit des flots conservatifs lisses d’entropie métrique nulle qui satisfont le théoréme
central limite.
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1. INnTRODUCTION

Let (M, ¢) denote a smooth orientable manifold M with a smooth volume ¢, and Fr
be a C" flow on M preserving (.

In this paper we work exclusively with flows and so the definitions below will
be stated for flows. The definitions are analogous for diffeomorphisms with obvious
modifications. Following [4], we define the class of flows satisfying the Central Limit
Theorem as follows:
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2 D. Dovcorvar, B. Favap & A. Kantcowskr

Derintrion 1. Let 7 € (0,00]. We say that a flow (Fr) € C™(M,() satisfies the
Central Limit Theorem (CLT) on C™ if there is a function a : Ry — Ry such that for
each A € C"(M),

J Ao Fy(-)ds — T - ((A)

ar

converges in law as T — oo to normal random variable with zero mean and
variance 02(A) (such normal random variable will be denoted N(0,02(A))) and,
moreover, o2(-) is not identically equal to zero on C"(M). We say that F satisfies the
classical CLT if one can take ar = VT.

In this definition we used for an integrable function A on M, the notation ((A) :=
Jys Al2)dC ().

In [4] the authors constructed for every r € N, examples of conservative C" dif-
feomorphisms and flows of zero entropy satisfying the classical CLT. However, the
dimension of the manifold supporting such flows is a linear function of r and so it
goes to 0o as r — oo. In particular the class of zero entropy systems proposed in [4]
does not yield C* examples (see the end of the introduction below for more on this).
In the current paper we address, in the context of flows, the C°° case.

Turorem A. — There exists a smooth compact manifold M with a smooth volume
measure ¢ and a flow (Fr) € C(M, () that has zero metric entropy and satisfies the
classical CLT.

We point out that in the examples we will construct to prove the above theorem,
the flows will be smooth but the CLT will hold for all sufficiently regular observables
(of class C?).

It is still an open problem to find C'°°, zero entropy diffeomorphism which satisfies
the classical CLT. In Section 2 we will explain the reason why our construction does
not extend simply to Z actions.

Similarly to [4], the examples we will construct to prove Theorem A belong to the
class of generalized (T, T~!)-transformations which we now define. We will do so in
terms of flows, the definitions for diffeomorphisms being analogous.

DEeriNtrion 2. Let (K7)rer be a C"-flow, r € N* U {oo,w}, on a manifold X
preserving a smooth measure y and let 7 = (7q,...,74) : X — R? be a C” function

(called a cocycle in what follows). Let (G¢);cpe be an R? action of class C” on a
manifold Y preserving a smooth measure v. Set

T
(1.1) Fr(z,y) = (Kr(2),Grp()y), where 7r(x) = / T(Ksx)ds.

0
Then (Fr)is a C" flow on M = X X Y preserving the smooth measure ¢ = p X v.

JIEP. — M., 2095, tome 12



SMOOTH ZERO ENTROPY FLOWS SATISFYING THE CLASSICAL CLT 3

Note that by [4, Lem. 2.1] if the metric entropy of (Kr, ) vanishes and p(7;) =0
for every i € [1,d], then the metric entropy of (Fr,() is zero.(!)

On the other hand, the topological entropy of Fr in our example is positive. In con-
trast, in [4] an example is given of a finitely smooth (T,7!) diffeomorphism which
satisfies the classical CLT and has zero topological entropy. In fact, the example in [4]
has a rotation in the base and so the base is uniquely ergodic. In our construction the
base map has N + 1 ergodic invariant measures: the Lebesgue measure and measures
supported at the fixed points. The measures which project to the Dirac measure on
the base but are smooth in the fiber have positive entropy, so the topological entropy
of Frp is positive. It is an open problem to construct a smooth flow which satisfies the
classical CLT and has zero topological entropy.

Following [4], the examples we will give to prove Theorem A are of the form (1.1).
To be more specific, we need to explicit our choices for the flow (Kr)rcr, the fiber
dynamics (Gt)sera, and the cocycle 7.

On the base we will use area preserving smooth flows on T? with degenerate saddles.
These belong to the class of conservative surface flows called Kochergin flows. They
are the simplest mixing examples of conservative surface flows and were introduced
by Kochergin in the 1970s [9]. Kochergin flows are time changes of linear flows on
the 2-torus with an irrational slope and with finitely many rest points (see Figure 1
and Section 3.1 for a precise definition of Kochergin flows). Equivalently, these flows
can be viewed as special flows over a circular irrational rotation and under a ceiling,
or roof, function with at least one power singularity.(®)

A\

Figure 1. Torus flow with one degenerate saddle acting as a stopping point.

The Kochergin flows that we will consider have ceiling functions with power singu-
larities of exponent vy € (0,1/2), and have a rotation number on the base that satisfies
a full measure Diophantine type condition.

(1)[4, Lem. 2.1] follows from Ruelle inequality and the fact that the Lyapunov exponents of Fr
are zero.

) The special flows are defined in Section 3, see equation (3.3) and Figure 2.

JE.P. — M., 2095, tome 12



4 D. Dorcopyar, B. Favap & A. Kanicowski

For the fiber dynamics, following [4], we only need the property of exponential
mixing of all orders. A classical example of an analytic R? action which is exponentially
mixing of all orders is the Weyl chamber flow: Let d > 1 and let I" be a co-compact
lattice in SL(d + 1,R). Let D4 be the group of diagonal matrices in SL(d 4+ 1,R)
with positive elements on the diagonal acting on SL(d + 1,R)/I" by left translation.
Then D, is an R? action that preserves the Haar measure v on SL(d + 1,R)/T" and
that is exponentially mixing of all orders see e.g. [1]. Hence, we can take G; to be D .

We are ready now to give a more explicit statement of Theorem A that will be made
more precise in Section 3 after Kochergin flows are precisely defined. We denote p the
Lebesgue measure on T? and by A the Lebesgue measure on T.

Turorem B, There exists N € N and a Kochergin flow (K7, T?, 1), with N singu-
larities and a function T = (11,...,75) € C¥(T2,RY) such that u(r;) = 0, for every
i € [1,N], and such that the flow (Fr) € C*(T? x (SL(N + 1,R)/T), u x v) defined
by Fr(z,y) = (Kr(x), Gr(0)y) satisfies the classical CLT.

The dimension of the manifold on which our examples are constructed depends
thus on the number of singularities IV that we require for the Kochergin flow. We did
not try to optimize this number, but the one we currently have is of order 100.

In the next section we will define the class of parabolic systems with small deviations
and recall the criterion given in [4] that establishes the classical CLT for skew products
above a parabolic system with small deviations, provided the fiber dynamics are
exponentially mixing of all orders. This part is essentially the same as in [4]. In a
nutshell, parabolic flows with small deviations are conservative flows for which the
deviations of Birkhoff averages are o(v/T), but for which there exists d € N*, and
d-dimensional observables whose Birkhoff averages deviate, for every T, by more than
(InT)? outside exceptional sets of measure less o(T~%).

We will show that Kochergin flows on the two-torus, with exponent v € (0,1/2) for
the singularities of their ceiling function, and with N () singularities, are parabolic
with small deviations for typical positions of the singularities and the slope of the
flow.

The exponent of a singularity of the ceiling function is related to the order of
degeneracy of the corresponding saddle point on T?. Limiting the order of degeneracy
of the saddles thus limits the exponents to be strictly less than 1/2. This is important
to guarantee that the deviations of the Birkhoff averages above the Kochergin flow to
be o(V/T).

The trickiest part of the construction will be to show that if the number of saddles
is sufficiently large then we can construct a smooth observable 7 € C* (T2, R™) whose
Birkhoff averages above the Kochergin flow deviate by more than (In7)? outside
exceptional sets of measure less o(79).

The Diophantine property imposed on rotation angle a plays a crucial role in
insuring refined estimates on Birkhoff sums of functions with singularities above the
circular rotation of angle a, which in turn can be used to control the Birkhoff sums

JEP. — M., 2095, tome 12



SMOOTH ZERO ENTROPY FLOWS SATISFYING THE CLASSICAL CLT 5

of observables above the Kochergin flow. Here again, we did not seek to optimize the
Diophantine condition but just made sure it is of full measure.

It turns out that in finite smoothness C", certain ergodic rotations on high dimen-
sional tori (the dimension of the torus goes to oo with r) are examples of diffeo-
morphisms that satisfy the two conditions on the deviations of the Birkhoff aver-
ages, in fact they are parabolic with small deviations. For this reason, they could be
used in [4] to construct examples of CLT diffeomorphisms with zero entropy in finite
smoothness.

Acknowledgements. — The authors would like to thank to anonymous referees for
comments regarding the paper.

2. (::IJT FOR SKEW-PRODUCTS ABOVE PARABOLIC SYSTEMS WITH SMALL DEVIATIONS

In this section, we describe general conditions on the flow (Kp, X, ) which will
allow us to construct a generalized (T, T~!) flow (Fr) as in Definition 2 that satisfies
the assumptions of Theorem A.

Derinition 3. — Let (K7)rer be a C"-flow on a manifold X preserving a smooth
measure p. We say that (Kr) is C"-parabolic with small deviations if the following
conditions are satisfied:

(S1) for every H € C"(X) with u(H) =0, % fOT H(K;-)dt = 0, in distribution as
T — oo.

(S2) there exist C,d € N and a C" function T = (71,...,74) : X — R p(1) =0
such that

u({x €eX : ’/OTT(Kt:c)dt’ < Cln? T}) =o(T7°).

(S3) there exist C' > 0,m < 1.1 and xg € X such that for every ¢ > 0 sufficiently
small, we have K;B(z¢,8) N B(zg,d) = @ for every |t| € (C6, (CH)~1/™).

Conditions (S1) and (S2) are used to show that the associated (T,T~!)-flow sat-
isfies the classical CLT (with the possibility that the variance is identically zero).
Condition (S3) insures that there exists a function with non-zero variance.

The following result based on [4, Th. 3.2] reduces the proof of Theorems A and B
to that of finding smooth parabolic flows with small deviations.

Prorosition 4. Assume that (K1, X, () is a C*°- parabolic flow with small devia-
tions and of zero metric entropy. Let (Gy,Y,v) be a smooth R? action which is expo-
nentially mixing of all orders. Let

FT(ZE,y) = (KT‘T’ GTT(w)(y))’

where T is as in (S2). Then (Fr,X x Y, x v) has zero metric entropy and satisfies
the classical CLT. Moreover, there exists H € C°°(X x Y) with o%(H) # 0.

JE.P. — M., 2095, tome 12



6 D. Dovcorvar, B. Favap & A. Kantcowskr

Proof. — Fr has zero entropy due to [4, Lem. 2.1]. (S1) and (S2) imply that Fp sat-
isfies the classical CLT due to [4, Th. 3.2]. The fact that the variance is not identically
zero follows from (S3) similarly to the proof of [4, Lem. 8.2]. O

Let us comment on how conditions (S1) and (S2) are used in the proof of [4,
Th. 3.2]. We split an arbitrary H € C"(X x Y) as H(z,y) = H(x) + H(z,y), where
[ H(z,y)dv(y) = 0 for each x € X. The ergodic integrals of H are negligible due to
assumption (S1). To handle the integrals of H we apply the Central Limit Theorem
for arrays over exponentially mixing actions proved in [2]. This theorem establishes
asymptotic normality of Sr(y) := f]Rd A (Gry)dmyp(t), where the norms of A, are
uniformly bounded and the measures my, satisfy the following free conditions:

(a) hmT—>oo mT(Rd) = Q.

(b) For each r € N, r > 3, and each K > 0,

Jim /mr 1 B(t Klan(Rd)))me(t) -0,

Where B(t v) denotes a ball in R? of radius v > 0 centered at t.
) There exists 02 = 02(A;) > 0 so that limr_,o Vo = 02, where

Vi im / S2(y)dv(y / / Ay, (Gory) Ar, (Go,y)dmr (t1)dimg (1) dv ().

To prove [4, Th. 3.2], we apply this result with my being the normalized occupation
measure my(Q) = mes(t < T : 7¢(x) € Q)/v/T. Then (a) holds since my(R?) = /T,
(c) holds due to the ergodic theorem (see [4, §5.1.2] for details), and (S2) is used
to verify (b) since it implies that 7, (x) and 7, (z) are unlikely to be close unless t;
and ty are close (see [4, §5.1.2] for details).

As explained in the introduction a classical example of an analytic R? action which
is exponentially mixing of all orders is the Weyl chamber flow. It remains to find
examples of smooth flows with small deviations. In light of Proposition 4, Theorem A
becomes an immediate consequence of the following result:

Taeorem C. There exists a smooth conservative flow (K, X, pu) with zero metric
entropy that is a parabolic flow with small deviations.

Theorem C is the main novelty of this work. Existence of C*° parabolic diffeomor-
phisms with small deviations is an open question. In fact, to the best of our knowledge,
the following easier problem is open:

ProsLem 5. — Construct a C*° diffeomorphism f on a smooth compact manifold X
preserving a smooth measure p such that:

(T1) for every H € C*(X) With u(H) =0 we have

> H(f™)dt = 0,
\/>n<N

in distribution as T" — oo;
(T2) there exists © € X and ¢ € C*°(X) such that {¢,(z)} := {anN o(frz)}
is unbounded.

JEP. — M., 2095, tome 12



SMOOTH ZERO ENTROPY FLOWS SATISFYING THE CLASSICAL CLT 7

In other words, in all the known smooth examples, whenever there exists a zero
average function which is not a coboundary (equivalently (T2) holds) then there is
a rapid jump in asymptotics of ergodic averages, i.e., they become of order v N or
larger. Hence, in light of Katok’s conjecture on cohomologically rigid diffeomorphisms,
one can ask the following:

Does there exist a C*° diffeomorphism f on a smooth compact manifold X preserv-
ing a smooth measure u, not conjugated to a Diophantine torus translation, so that
(T1) holds?

It is interesting to point out that the classical parabolic flows,including horocycle
flows and their reparametrizations, nilflows and their reparametrizations, are not par-
abolic with small deviations. Indeed, it follows from the work of Flaminio-Forni, [5]
and [6], that the deviations of ergodic averages in these examples are, for observables
that are not coboundaries, of order at least v/T for a positive measure set of points.
Thus property (T1) does not hold for those flows. Moreover, these flows are known
not to have a CLT and it is therefore not possible to use them to construct skew
products above them that satisfy the classical CLT.

Finally, let us mention that another way for constructing smooth conservative flows
or diffeomorphisms with zero entropy and a classical CLT would be to look for zero
entropy systems having a polynomial speed of mixing faster than T7¢,a > 1. To the
best of our knowledge, such systems are not yet proved to exist.

The rest of the paper is devoted to the proof of Theorem C. Our examples belong
to the class of smooth flows on surfaces with degenerate saddles (so called Kochergin
flows).

For the class of Kochergin flows that we consider all the singularities will be
“weakly” degenerate, i.e., the strength of the singularity will be o(z~'/2). This
assumption will relatively easily give us the condition (S1) for any number of sin-
gularities. Condition (S3) will also be easy to achieve by assuming that the base
rotation (the first return map) is Diophantine. The most interesting and also most
difficult part is to show existence of 7 satisfying the assumptions of (S2).

3. CONSTRUCTION OF PARABOLIC KOCHERGIN FLOWS IN THE SMOOTH CASE

3.1. OVERVIEW OF THE CONSTRUCTION. We start by defining C'*° Kochergin flows
on T2. They were introduced by Kochergin in [9]. Namely, [9] takes a linear flow
on T? in direction (a, 1) and cuts out finitely many disjoint disc from the phase space.
Inside each such disc one then glues in a Hamiltonian flow on R? with a degenerated
singularity at ¢ € T? (corresponding to (0,0) € R?). Finally one smoothly glues the
trajectories of the linear flow with the trajectories of the Hamiltonian flow. It follows
that each such flow preserves a smooth area measure on T2. Moreover, as shown by
Kochergin, such flows are mixing for all irrational o« € T. For more details on the
construction we refer the reader to [9]. In our case we will cut out finitely many discs
centered at {¢;}Y, and glue a Hamiltonian flow with a degenerated singularity at 0
in the discs centered at points {¢;} ;. From the construction it follows that the set

JE.P. — M., 2095, tome 12



8 D. Dovcorvar, B. Favap & A. Kantcowskr

T =T x {0} is a global transversal for the flow (we can WLOG assume that no discs
intersects T) and moreover the first return map is the rotation by « € T. The roof
function f : T — R, (first return time) is smooth except at the points {c;}¥ ; which
are the projections (to T) along the flow lines of the points {¢;} ;and at which the
roof function has a power-like singularity with exponent v € (0, 1).

In what follows, when we write {¢;}Y; C T, we allow singularities of the smooth
flow (K;) to be anywhere on the unit flow lines of the linear flow in direction «;, i.e.,
¢ = L{(¢;,0) with 0 < ¢; < 1 and where (L{) denotes the linear flow on T? in
direction («, 1). In fact we will construct good tuples of points (c1,...,cy) and then
we lift them along the flow as described above.

In particular, every point in x € M which is not a fixed point can be written as
x = K,,0, where § € T and 0 < w < f(#). By the construction it follows that

(3.1) FO = F—a),
i=1
where ¢; € T denote the projections of ¢; € T? along the flow lines, where, as shown
in (9], f: T — Ry is C3 on T \ {0}, satisfies [ fd\ =1 and
) 7//(9) ) 7//(9)

2 lim ——~ =A= lim ————~%—
(52 Jim Gy = A= Jim e
where A > 0 and v € (0, 1). In this context Kochergin showed that v = 1/3 is a possi-
ble exponent. For simplicity we will always assume that (3.2) holds with A = 1. Let us
denote K (v, v, {c;}) the set of smooth area preserving flows (K;) on T? for which R,
is the first return map and the corresponding first return time f satisfies (3.1) where f
satisfies (3.2). In what follows we will always assume that v < 1/2.

Thus Kochergin flows are isomorphic to special flows defined as follows. The orbit
of a point (0,u), 8 € T, u € [0, f(6)) under the flow (Kr) for positive time ¢ is given by

(3.3) Ki(0,u) = (0 + na,u+t—S,(f)(0)),

where S,,(f) is the ergodic sum of f and n((6,u),t) is the unique integer such that
0<u+t—5,(f)(0) < f(0+na). The orbits for negative times are defined similarly.
Let C = (infy f)~!. Notice that n((0,u),t) < C[t|.

Ficure 2. Representation of a 2-torus flow with one degenerate saddle
as a special flow under a ceiling function with a power-like singularity.

JIEP. — M., 2095, tome 12



SMOOTH ZERO ENTROPY FLOWS SATISFYING THE CLASSICAL CLT 9

Let (a,) denote the continued fraction expansion of « and (g,,) denote the sequence
of its denominators, i.e., gg = ¢1 = 1 and

Gn+1 = Gn+19n + Qn—1.-
Let

(3.4) D:={aeT : 3C >0 such that ¢,,; < Cg,In* ¢, for every n € N}.

The set D has full measure by Khintchine’s theorem, [8, §13]. The following statement
gives explicit examples of flows that satisfy Theorem C.

Tueorem D. — For every @ € D and every v < 1/2, there exists s € N and a
full measure set C C [0,1]° such that for every (ci,...,cs) € C, every C” flow in
K(a, 7y, {ci}) with r > 3 is C"- parabolic with small deviations.

In the above theorem r may be equal to co or w. We also point out that the
following stronger result holds: when r = w, condition (S1) will still be satisfied for
all C? functions. Theorem D is a direct consequence of the following two results.

Prorosition 6. For every s € N, every (c1,...,¢s) € [0,1]°, every a € D and every
v < 1/2 every smooth flow in K(«,~,{c;}) satisfies properties (S1) and (S3).

Prorosrtion 7. For every a € D and every v < 1/2 there exists s € N and a
full measure set C C [0,1])° such that for every (ci1,...,cs) € C, every smooth flow in
K(e,v,{ci}) satisfies (S2).

We will now prove Proposition 6.

Proof'of Proposition 6. — We first show (S3). we consider the representation of K, as
a special flow over a rotation as in (3.3). We have

Ki(0,u) = (6 +na,u+t— S,(f)(9))

for some |n| < C|t| where S, (f) is the ergodic sum of f. Let xo = (6, u) be any point
which is not a fixed point of the flow. If n = 0, then (S3) holds since the second
coordinates differ by at least C9, (as the vector field is positive since z is not a fixed
point). If n # 0 then the first coordinates differ by at least ||na||. Since a € D it
follows that there is a constant Cy, > 0 such that |[na| > Cs/nlog* n. In particular,
the first coordinates of K;(8,u) and (8, ) differ by at least C'/tlog*t (as |n| < C|t|).
It is enough to take m = 1/2 (or in fact any fixed m < 1) to get (S3).

Property (S1) was proved in [4] in case there is just one singularity (i.e., N = 1).
However the proof works with minor changes for multiple singularities. Alternatively,
one can also use [7, Th.1.1] in the context of surfaces of genus 1. In this case the
asymptotic growth in L' is given in [7, Eq.(1.5)] (Note that b(o,|a|) appearing in
right-hand side of that formula equals to v < 1/2 for the case considered in our
paper). O

The proof of Proposition 7 is the most important part of the paper. The rest of
Section 3 as well as Section 4 is devoted to its proof.

JE.P. — M., 2095, tome 12



10 D. Dovcorvar, B. Favap & A. Kantcowskr

— In Section 3.2, we give useful estimates on ergodic sums of functions with singu-
larities above circular rotations of frequency o € D.

— In Section 3.3, we give the criteria along which the singularities should be se-
lected. We state Proposition 13 that says that, under the condition o € D, the typical
choice of the singularities satisfies the criteria.

— In Section 3.4, we explain how the cocycle 7 must be chosen. We state the main
part of the proof, Proposition 14 that says that the chosen cocycle satisfies (S2).

— In Section 4.1, we prove Proposition 13 and in Section 4.2 we prove Proposi-
tion 14.

3.2. PRELIMINARY ESTIMATES ON ERGODIC SUMS OF FUNCTIONS WITH SINGULARITIES

Lemva 8. — Let f be as in (3.2). Then for every N € N and every x € T
’SN(f)(x) — N/?dA — f(Zmin,n)| = O(N? In® N),
T
where Tmin, v = Minggjon ||z + jo|.

Proof. — This follows from the assumptions on « and from [3, Prop.5.2]. In fact,
[3, Prop.5.2] is proved for monotone observables, but by our assumptions (3.2) we
can write f = g + h where g is monotone and satisfies (3.2) and h is of bounded
variation. The ergodic sums of g are O(N”In® N) by [3] while the ergodic sums of h
are O(In* N) by Lemma 25 from the appendix. a

We want to describe the set where ergodic sums of the function f satisfying (3.2)
are small. For small enough € > 0 let

(3.5) Ay ={z €T : |Sx(fo)(x)| < N *e,

where fo = f— [ fdA.
The rest of this section is devoted to the proof of the following:

Proposition 9. — Let iy = 1/N1+7/5. There are ay,...azn € T such that
3N

(36) An C U(—(SN—i—ai,a,-—&—éN)
i=1

holds for every sufficiently large N € N.

Proof. — Let f be as in (3.2). First we state the following lemma giving lower bounds

on the size of f”:

Lemva 10. — For sufficiently large N € N and for every x € T \ {—ia}ﬁigl we have
Sn(Ff")(xz) = N**YIn ° N,

Proof. — Notice that by the fact that A > 0 in (3.2) it follows that there is a kg > 0

such that f” is positive on [0, ko) U (1 — kg, 1). In particular there exists C' > 0 such

that for any 0 < j < N and any = € T, Sx(f")(z) > f"(z + ja) — CN. We use it
for j which minimizes the ||z +sa| over 0 < s < N, i.e., z+ja = 2, . It follows that

JIEP. — M., 2095, tome 12



SMOOTH ZERO ENTROPY FLOWS SATISFYING THE CLASSICAL CLT m

if n is such that N € [g,,@ny1), then 0 < 2. < 1/g,. Then the statement follows
from (3.2) and the Diophantine assumption on « as

0" > @ (gua) = NP I SN, 0

Consider the interval partition Py of T by points {—ia} ;'. Then by (3.2) it fol-
lows that Sn(fo)(-) is a C? function on Int([;) for every interval I; € Py. Let I; =
[aj,b;). By Lemma 10 it follows that Sy (f’)(-) is monotone on I;. By de I'Hépital’s
rule Sy (fp)(-) satisfies lim,, -+ Sn(fo)(z) = —oo and lim,, - Sn(fo)(z) = oo.

So let a;1 = y; € I; be the unique point such that Sy (ff)(a;1) = 0. Note that
Sn(fo)(@) = Sn(fo)(az1) = Sn(fo)(0a) (@ — aja).

In particular, if J; o is an interval of size 2/N1+7/5 centered at a;1, by Lemma 10 it
follows that for z € I; \ Jj o
1

NI+v/5
Consider the two disjoint intervals K1 and Kj 2 in I so that K;1 UKo = I; N\ Jj0.
Then for w = 1,2, let x;, € Kj, be the point minimizing Sy (f,)(-) on Kj.,.
If SN(fo)(xj,w) > N72+5, then Ay NI; C Jip. If not, let J;,, be an interval of size
2/N*7/5 centered at x;,,. Then for every z € K ,,, we get

1S (fo) (@) = Sn (fo) ()| = IS8 (o) (Oall2 — ;.0
for some 0, € K, .,. So if x € K, \ Jj 4, then by (3.7) we get

_ _ 1 —
|SN(f0)(x)| > N1+47/5 In 10N . W — SN(fO)(xj,w)

2 2
> N3P IO N - N e S N

(3.7) ISy(Fo)(z)| = N>V In" ' N . = N+ /570N,

if € > 0 is small enough (remember that v < 1/2). It then follows that
Axy N Ij C Jj71 @] Jjﬁg U Jj,o.

and the J;,, are intervals of size 2/ N'*7/5 centered at a;,,. Then
N
Ay € U[JjaUJj2U Jj0l-
j=1

This gives (3.6) and finishes the proof. O

3.3. CuoosinG THE sINGULARITIES. — We will consider a Kochergin flow (K;) with
v <1/2, o € D, and a roof function f given by
s+3

f() = Z?(- — i),

where s := |50/+]. In this subsection we describe the choice of the ¢; € 7. In the pro-
cess, we will explain why it is preferable for the presentation to index the singularities
from 1 to s + 3 instead of from 1 to s with a larger s.

For ¢ € T? let V,,(¢) be the ball of radius £ > 0 centered at ¢. Recall that Ay is
defined in (3.5) as Ay :={z €T : |Sn(fo)(x)| < N7 *e}.
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Forne Nand ce T let

2qn+1 1
(3.8) G(e,n) = U R [c— =, Cc+ =
Z3k=—2qn+1 dn In dn dn In Adn
Let S(T, (iy)5—;) be the set of points = (z,w) such that
(3.9) {e,Kr(x)jn U  Vil(g)=2
j€{i1,...,is}
and
(310) {1’ + N(xa w, T)a + ua}\u|§2T’Y,u€Z
1 1
n U —77+Cjacj+77]:@
GE€{i1,ris} 277 In" T 2T In" T
Derinirion 11. — We say that the set of singularities {c1, ..., cs+3} is good if
(G1) for every i,5 € {1,...,s+ 3}, for any n sufficiently large
G(ci,n) NG(cj,n) =2,
(G2) for any choice of pairwise different elements 41, ...,4s from {1,...,s+ 3} and

for N sufficiently large
AN Ay +e,) <N
w=1

(93) for sufficiently large T >0, for every & € T? there is (iy,...,4is) C{1,...,s + 3}
such that € S(T, (iy)5—)-

The set of good tuples will be denoted by €.

Let us shortly explain how the above properties are used. Property (G1) implies
that the orbit of any point & and any time 7" can visit at most one of the neighborhoods
of the {¢;}, i.e., if the orbit goes very close to ¢; then it stays at a controlled distance
away from all the other ¢; with j # . Property (92) implies that if we define the
roof function f to have singularities at the {c;}, then for most points (except a set of
measure N %) the ergodic sums up to time N of f will be polynomially large. Here
is where we use that we have more singularities — each of them produces a bad set
of measure < N~% and we roughly show that the bad sets are independent for our
choice of singularities. Property (G3) implies that for a short orbit (of size T7) of
every point & does not enter the ball of radius 7-7 In"" T centered at ¢; for at least s
indices 1.

Remark 12. — Notice that by property (51) and the Diophantine assumptions on «
it follows that for any 4,j € {1,...,s+ 3}, and any 0 < |u| < M (with M sufliciently
large)

1
Mlog?® M’

lei = ¢ + ual| =
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SMOOTH ZERO ENTROPY FLOWS SATISFYING THE CLASSICAL CLT 13

Indeed, if n is the largest for which M < ¢,,+1, then by (G1) it follows that
1 1
5 2 20
2q,log” q,  Mlog™ M

the last inequality by the Diophantine assumption on a.

llei = ¢j +uall >

i

The reason why we preferred to index the singularities from 1 to s + 3 is that we
need, for each & and every T, that there exist at least s singularities such that (G3)
holds. In Lemma 17, we will see why considering s + 3 singularities instead of s is
sufficient for insuring (§3).

The choice of the singularities ¢y, ..., cs+3 is based on the following result that we
will prove in Section 4.1.

Prorosirion 13. — For the set C of Definition 11, we have Lebs15(C) = 1.

3.4. CHOOSING THE COCYCLE 7. — Define a C'*° function
T=(71,...,Tsqs) : T2 — R*+3
as follows: For i € {1,...,s+ 3} let 7, : T — R be a C*° mean zero function such

that 7, = 1 on V. (¢;) and 7, = 0 on V,(¢;) with j # 4, for some small x such that
0 < Kk < $min;z; [|&; — &l

Prorosrrion 14. Assume (c1,...,cs43) € [0,1]°T3 are good as in Definition 11.
Then, the flow (K;) defined as in (3.1) satisfies (S2). More precisely, the function T
satisfies

V({ac eT? : | fOT 7(Kz)dt| < Cln? T}) =o(T7?),

where v is the Haar measure on T2.

4. THE PROOFS OF TECHNICAL PROPOSITIONS.

4.1. Proor or Prorosition 13. — We will always fix s = |50/~]. We start with (91).

Lemvia 15. — There is a set F € [0,1]°T3 of full Lebesgue measure such that for any
(c1y...yCs43) €T, for every i,5 € {1,...,s+ 3}, for any n sufficiently large

G(ci,n) NG(ej,n) = 2,
where the sets G(c,n) are as in (3.8).
Proof. — Define
(4.1)  Fy:={(c1,...,cs43) € [0,1°® : G(c;,n) N G(cj,n) = @, for any i # j}.
We have the following;:

Cramm. — For n sufficiently large, we have
1

n?g,

Lebs+3(Fn) 2 1
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14 D. Dorcopyar, B. Favap & A. Kanicowski

Proofof the clarm. — We say that d € T is n-far from ¢ € T if G(¢,n) N G(d,n) = @.

We have o
SQnJrl >1 8

= - )
dn In® dn In® dn

A{d:disn far from ¢} > 1 —

the last inequality since a@ € D. Notice that F,, contains vectors (c1,...,Cs43) €
[0,1]*%3 such that c¢; is any number in [0,1], co is n-far from ¢y, c3 is n-far from cy
and n-far from c;, and so on until ¢, is n-far from ¢; for every j < s. Therefore,

s+3

Lebs+3(Fn) Z H (1 -

(=1

8CY

2 1- 1n_2 "
In® g, ) !
if n is sufficiently large. O

Thus the set

+oo

F=U N Fn
m=1ln>m
satisfies Lebgy3(F) = 1 and the condition of Lemma 15. O
We proceed to (52).

Levma 16. — There is a set D € [0,1]° of full Lebesgue measure such that for any
(c1,...,¢5) €D, for N sufficiently large

)\( N AN+Ci) < NS,

i=1

where Ay is as in (3.5).

Proof. — We have the following, where addition is mod 1.

CrAmM. Let NeN, § >0, by,...by €T and let A C T be such that

N
AC U (=0 +bi,b; +9).

=1
Then for any s € N

(4.2) / )\( N (A—s—ti))dtl .t <(2N)*.
[0,1]s i=1
Proof of the claim. — The left-hand side of (4.2) equals to
/ [T x-alt; —a)dty ... dtdz = X(A)*,
Ts+1 i=1

where the equality uses the change of variables u; = t; — 2 and where xu denotes
the characteristic function of a set W. |

We now apply the claim to the sets Ay defined by (3.5), éy = 1/N'*7/5 and
s = |50/7]. Then, using Proposition 9,

/ /\( h (AN+ti)>dt1...dt5 < N9,
[0,1]° i=1
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So by Markov’s inequality the set
By = {(tl,...,ts) e [0,1)° - Lebs(ﬂle(AN +ti)) < N*6}

satisfies Lebs(By) = 1 — 1/N2. We now define the set D as

+oo
D:= U ﬂ BN.
m=1N>m

Then D is a full measure subset of [0, 1]° that satisfies the condition of Lemma 16. O
We finally define the set € that satisfies the requirements of Proposition 13

C:= {(017~--,Cs+3) €[0,1)°
(Ciys---»ci,) €DNT for every iy, ..., is € {1""’8+3}}'

It follows from Lemmas 15 and 16 that A(€) = 1 and that it satisfies (G1) and (52).
We still have to prove (G3). For any point & € T? and any time ¢ there are at most
two indices iz, j, < s+ 3 for which @ € Vi (¢;,) and K,z € V,(¢;,) in particular for
any point & and any time ¢ we can choose at least s+ 1 indices j; ..., js+1 for which x
and K;x are not k close to the points ¢, with ¢ = j;. This is the main reason why we
work with s 4+ 3-tuples instead of s-tuples.

For the following statement, recall the definition of the sets S(T’, (i,)5—;) in (3.9).

Lemva 17. For sufficiently large T > 0, for every & € T? there exists (iy,...,is) C
{1,...,8+ 3} such that x € S(T, (iy)5_1)

Proof. — Notice that there is at most one ¢; such that « € V,(¢;) and at most one c¢;/
such that Kpax € Vi (¢;r). It is thus enough to show that there is at most one ¢;» such
that

1 1

N T _—_— S11 S11 —_—
{z+ N(z,w,T)a + uo‘}ue[fTv,Tv] N T 0 T + ¢, ¢ + 9T 0 T

} £
Indeed, if there were two different ¢;, and c¢;,, then for some |k| < 277,

1
”le — Cj, + ka” < 10 °
4T In"" T

Let n € N be unique such that T7 € [¢,, gn+1]- The above condition would, by the fact
that oo € D imply that (see (3.8)) G(cj,,n) NG(cj,,n) # @. This however contradicts

the fact that any s- tuple of coordinates of the vector (c1,...,csy3) belongs to F and
in particular to F, if n is sufficiently large (see (4.1)). O
Proposition 13 follows from Lemmas 15, 16 and 17. (|
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16 D. Dovcorvar, B. Favap & A. Kantcowskr

4.2. Proor or Prorosition 14. From now on we assume that (K;) is as in (3.1)
with (c1,...,¢s13) good.

For T > 0 and * = (z,w) € T? recall that N(z,w,T) denotes the number of
returns of {K;(z,w)}t<r to T x {0}. Then N(z,w,T) < CT, where C = (infy f)~'.

The following lemma allows us to relate the ergodic sums of 7; to those of f(-—c;).
It relies on the fact that 7; equals 1 on a small ball centered at ¢; and equals 0 on
a small ball centered at ¢;, for i # j. The control of the error is due to the fact that
aeD.

Leyya 180 — Let 7 =7; with j € {1,...,5+3}. Then for T sufficiently large

N(z,w,T)—1 f(z+ua) N(w,w,T)—li
‘ / T(Ke(x + ua, 0))dt — Z folx+ua—c;)| <In*T.
u=0 0 u=0

where fo = f — [; fdX\ and f is as in (3.2).

Proof. — Denote

f(z)
or(x) :/0 T(K(z,0))dt, and f; = f(z—cj).

To alleviate the notation in this proof, we assume that c¢; = 0. For a function
g: T — R define
9s = X[-rn)9s 97 = (1= X[=nn])9-

Since 7 =1 on V,.(c;), we have the following identity

f(z)
pr(x) = (pr)s(@) + (pr)"(z) = (fj)n(év)Jr/O (7 = D(Kex)X [, (2)dt + (07)" (2)-

Notice that the functions h,(z) = fof(m)(r — 1)(Kx)X— [, (z)dt and (¢)" belong
to the class BV(T). With this notation, denoting also N = N(z,w,T), we need to
bound

Swer = Snfy+ N [ 1
T

:SN(hH)—&-SN@';—Sfo—N(/ hNdM/gafdA—/ffdA),
T T T

where in the left-hand side we used that [, ¢prd\ = 0 because [, 7d\ = 0. Since
hy, ©F and fF are all of bounded variation, the bound of the lemma follows from
Lemma 25. ]

We will often use the following decomposition of the orbital integral: for = (z,w) € T?
T N(w»waT)71 f(:chza)
(4.3) / (K (2))dt = / H(Ku(z + ia, 0))dt
0 i—o 0

THw—SN(z,w,1)(f)(T)
/ T(Kt(gg+N(,fL"w7t)O[,O))dt

_ /w (K4 (x,0))dt +
0

0
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SMOOTH ZERO ENTROPY FLOWS SATISFYING THE CLASSICAL CLT 17

CoroLraRry 19. Let T =71; with j € {1,...,s+3}. Then, with N = N(z,w,T),
N-1

/0 T(Ke(z))dt — folz+ua—c;)| < C- (|f(x—cj)|+|?(x+Na—cj)\—|—1n4T).
i=0

Proof. — We use (4.3). By Lemma 18, we can replace the first term of the left-hand
side by SN Fo(x +ua — ¢j). For the last two terms in (4.3) we use that 7; vanishes
on V,(¢;) for i # j, that w € [0, f(z)) and T + w — Sy f(x) € [0, f(z + Na)). O

We will split the proof of Proposition 14 into two cases: Case 1 in which we will
consider points (z,w) with very close visits to the set of singularities, and Case 2 which
covers the complimentary points. Fix ¢ < 1. Recall again that recall that N(z,w,T)
denotes the number of returns of {K;(x,w)}i<cr to T x {0}.

Cast 1. N(z,w,T) < T'~¢
Prorosition 20. — If (x,w) is such that N(z,w,T) < T1~¢ then

T
max / i (Kyx)dt > e*T.
je{l 543} Jo

In all of this section we sometimes simply denote N(x,w,T) by N. First observe

the following.

Lemma 21. — For any e > 0, if T is sufficiently large and N(x,w,T) < T'~¢, there
evists j € {1,...,s+ 3} and u € [0, N(z,w,T)] such that ||z +ua — ¢;|| < 1/eT/.

Proof. — Assume that for any j € {1,...,s+ 3} and any u < N, ||z + ua — ¢;|| >
e~!T~1/7. This can be expressed as Tmin ny1 =& " T7/7.

Observe that by definition 0 < T+w— Sy f(z) < f(z+ Na). By Lemma 8 (applied
to all the functions f(- — ¢;)) it follows that if ¢ is sufficiently small

T g SN+1(f)(x) < C(N + f(xmin,N—‘rl)) < OTlis + 2e7T g T/27
a contradiction. O

Proof of Proposition 20. — We will split the proof in several cases.
Casel. Thereisj € {1,...,5s+3}and u € [L, N — 1] such that |z +ua —c;|| < e 1T~/
Lemma 8 applied to the function f; := f,(- — ¢;) then implies that
(4.4) Snfi(x) =e'T)2.
Since o € D (defined in (3.4)), we have that for v’ € {0,N}, ||z + v'a — ¢;|| =
N=17¢ > (CT)~'=. Corollary 19 and equation (4.4) then imply

T
/ 7 (Kx)dt > e7T/4.
0

Casell. lorany j€{1,...,s+3} and any u€ [1, N—1] we have |z+ua—c;|| >~ 1T~/

We split this case in several sub-cases.
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8 D. Dovcorvar, B. Favap & A. Kantcowskr

Case 11.1. There exists j€{1,. .., s+3} such that |z —c;|| < e T~ and f(x)—w>eT
By the Diophantine assumption a € D it follows that for any sufficiently large M € N

and for any j the set {x +ua — ¢; tocuscm N[—M 175, M~17¢] is at most a singleton.

Indeed, if n is the largest for which M < ¢n41, then for any 0 < u < v’ < M,

C C
z4ua—c;)—(z+u'a—c;)|| = [[(u—u )| > min ||ka| > e > . .
lle-+ua—e) (e la=c)l > fum)all > min o] > —5— > Co

Since M log'® M <« Mt for M large enough, the statement follows.
In particular, since N < T'~¢ it follows that

(4.5) Vu€[1,N]: |z +ua—cjl| = N"1°

We have, since 7; = 1 on all but a bounded part of the fiber above® z,
fz)—
(4.6) / 7 (Kx)dt > €T'/2,
0

while (4.5) and exactly the same argument as in Corollary 19 imply that

T
‘/ Tj(Ktl')dt‘ <eT/4.
f(@)—w

Hence (4.6) allows to conclude that fOT 7 (Kx)dt > eT'/4.

Case 11.2. There exists j€{1,...,s+3}such that |z —c;| <e T~V and f(x) —w<eT

Notice that for any j' € {1,...,s+ 3} and any u € [1,N — 1], ||z + ua — ¢;/| >
e~1T71/7 Indeed, if not then 261777 > ||z +ua—cjr — (x —¢;)|| = ||ej — ¢ +ual|
which contradicts Remark 12, as |u] < N < T.

This however by Lemma 8 implies that Sy_1(f)(z +«a) < /T (as N < T'~¢ and
(T4 Q)min,n—1 = €~ 1T7/7).

By definition, Sy11(f)(z) > T +w > Sy(f)(z). We have T + w — Sy (f)(x) =
T+ (w— f(x))+ Sv-1(f)(x + «) = T — T — \/eT. This implies that for times
t € [To,T), with Tp = /eT + €T, the orbit K;(z,w) is in the last fiber above = + Na.
In particular this means that f(z + Na) > T — T — /eT. By the definition of f this
is only possible if there exists j' < s+ 3 such that ||z + Na —c¢j/|| < e T/, Since
Sn_1(f)(z + a) < /€T, the decomposition in equation (4.3) used as in Corollary 19
implies that fOT Ty (K )dt > e*T.

Case I1.3. Forall j € {1,...,s+3}, ||z —¢;]| > e 1T~1/7. — Since we are in Case II,
this implies the following bound: ||z +ua — ¢;|| = e T~/ for u € [0, N — 1] and all
Jj < s+ 3. Putting this together with Lemma 21 we get that there exists j' < s+ 3
such that ||z + Na — ¢jr|| < e7*T~/7. We then conclude as in Case I1.2. O

(3)This means that there exists a ¢ > 0 such that Tj(z,u) =1 for all u € [¢, f(z)].
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Case 2. N(z,w,T) > T'7¢. — We will now split the phase space T? into finitely
many disjoint sets, and we will estimate the ergodic integrals separately on them.
Recall that Vi (¢) is the ball centered at ¢ and of radius x > 0. Let iy,...,is be
different elements from {1,...,s+ 3}.

Because (cy, . . ., cs+3) is good, it follows from (G3) that Proposition 14 is implied by

Prorosition 22. — For every choice (i1,...,i5) C {1,...,s + 3},

Lebr2 <{:c € S(T, (iy)y—y) : max

je{ilamﬂ;s}

T
/ Tj(Ktw)dt‘ < T72+5/2}) = o(T79).
0

We will now further partition the set S(T', {i,}5_;) (defined in (3.9)) into level sets
according to the values of N(z,w,T). For u € [T*=7=¢,CT'"7], u € N let

(4.7) W(u,{iv}o—y) ={x=(z,0) ST, {iv}i—y) : Nz, w,T)euT”, (u+1)T7)}.
Since u < CT'™7 to establish Proposition 22 it is sufficient to prove
Prorosition 23. — For T sufficiently large, for every s-tuple
(i1,...,15) C{1,...,s4+3}°,

for every u € [T*=7=¢,CT 7]

T
/ Tj(Kt:B)dt‘ < T72+€/2}>
0

—6+6
< T70%0

(4.8) Lebre <{a} € W(u,{ip};—1) : max
je{ilv“"is}

where W (u,{iy}5_1) is as in (4.7).

Proof of Proposition 23. — Since the indexing set {i, }5_; is fixed, we will drop it from
the notation of W (u).

In this proof, we will suppose that = (x,w) € W(u) for some fixed choice of
u € [T'=7=5,CT* ] and iy,...,is. In the proof, we may use 7 to denote any of the
functions {7;} for i € {i1,...,is}. From the decomposition (4.3) and (3.9), we have
for any j € {i1,...,4s}

T N(w,w,T)—l
/ 7 (K¢ (x))dt — Z Folz +ua —¢;)| < (InT)5.
0 u=0
We have
N(z,w,T)—1 N(z,w,T)
(4.9) > Folwtua—c) =Surm(Fo)w+e)+ Y. Folz+la—c)).
u=0 L=[uT™]

In the following lemma we use (G3) to see that the contribution of the second
summand is of lower order, so that we can in the sequel focus only on the first one.
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Lemma 24. For every x € T so that (x,0) € W(u) and for every j € {i1,...,is},

N(z,w,T)

Y Fole+ta—ep)| < TTH,
(=[uT"]

for sufficiently large T' > 0.
Proof. — We have

N(z,w,T)

> Folw+La—¢;) = Sy~ (Fol- = ¢) (@ + [uT]a).
L=[uT"]

By (3.10) and since |[uT"] — N(x,w,T)| < T7 it follows that

1
{_ 277 I’ T 277 I’ T
This and Lemma 8 give [Sn (z,w,1)—[ur~] (fo (- —¢;) (@+[uI])a)| = O(T72 m*7). O

N(z,w,T)—[uT"]

{z + [uT7]a + ual, +cj, ¢+ } =g.

Since w7 > T ¢ implies that [uT?]"" < > TV /2 it follows from (4.9) and
Lemma 24, that (4.8) holds if we show that
(410)  A(fweT: max (S (Fo)o = )| < [T} ) < 77042,
JEL L, ls
By (5G2) in the definition of (c1, ..., ¢cst3) being good, we have that the left-hand side
of (4.10) is less than (uT7)~6 < T=5%% . This gives (4.8). The proof of Proposition 23

is now finished. O
Proposition 14 follows from Propositions 20 and 22. ]
With Propositions 13 and 14 proved, Theorem D, and therefore Theorems A, B, C,

are established. O

CONCLUSION AND A REMARK ON THE REAL ANALYTIC CASE. We have constructed con-

servative smooth flows of zero metric entropy which satisfy the classical central limit
theorem. The starting point of the paper is the following finding of [4]: to a flow that
is C"-parabolic with small deviations as in Definition 3 (r € NU {oo}) it is possible
to associate a C" (T, T~1)-flow that satisfies the classical CLT (with the possibility
that the variance is identically zero). The conditions (S1) and (S2) imply that Fr
satisfies the classical CLT due to [4, Th. 3.2], and the condition (S3) in Definition 3
insures that there exists a function with non-zero variance so that the CLT is not a
trivial one.

The novelty of this note is to prove the existence of smooth conservative flows that
are parabolic with small deviations. We actually showed that Kochergin flows on the
two-torus, with sufficiently many singularities, and with exponent v € (0,1/2) for the
singularities of their ceiling function, are parabolic with small deviations for typical
positions of the singularities and the slope of the flow.

To give examples of real analytic flows of zero metric entropy which satisfy the
classical central limit theorem using the same approach one needs to first show that
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Kochergin flows as the ones used in this paper can be constructed in the real analytic
category.

Then one has to show that there exists an analytic 7 satisfying (S2), and that
due to (S3) there exists an analytic function H with o?(H) # 0. The construction of
analytic 7 and H can be made following the same lines as in the smooth case using
approximation arguments.

However, since the construction of Kochergin flows uses surgeries, it is more in-
tricate to carry it to the real analytic category. In fact the existence of real analytic
Kochergin flows is not straightforward from Kochergin’s original construction and
requires some care. Including this extension in the current paper would encumber it
with technicalities that are out of the scope of the paper and we preferred to leave it
for a separate work on surface flows. Modulo this extension, it is easy to modify the
rest of the construction included in this paper to get real analytic flows of zero metric
entropy which satisfy a non trivial classical central limit theorem.

APPENDIX. OSTROVSKI ESTIMATE
Several proofs in our paper rely on the following standard estimate.

Levma 25. — If a € D where D is given by (3.4) and h € BV(T) then for all x € T
|Sn(h)(z)] < O(n* N).

Proof. — Recall the classical Denjoy-Koksma inequality: if o € BV(T) then for every
x € T and every n € N

(A1) 1S, ()(x) — gn /T h(z)dz| < 2Var(h).

To bound Sy (h)(x) for general N € N we use the Ostrovski expansion to write

k=1

where ¢, < N < @¢n41 and by < ax. We then use cocycle identity, (A.1) and the
fact that m = O(In N) while our assumption (3.4) implies that for k& < m we have
ar, = O(log”> N). O
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