Commun. Math. Phys. (2024) 405:254 Communications in
Digital Object Identifier (DOI) https://doi.org/10.1007/s00220-024-05105-4 M ath emat i c al

Physics
®

Check for
updates

Reducibility Without KAM

F. Argentieri' ©®, B. Fayad?

1 University of Zurich, Zurich, Switzerland. E-mail: fernando.argentieri @math.uzh.ch
2 University of Maryland, College Park, USA. E-mail: bassam@umd.edu

Received: 31 May 2023 / Accepted: 24 July 2024
Published online: 12 October 2024 — © The Author(s) 2024

Abstract: We prove rotations-reducibility for close to constant quasi-periodic SL(2, R)
cocycles in one frequency in the finite regularity and smooth cases, and derive some
applications to quasi-periodic Schrodinger operators.

Introduction

In this paper we will study smooth quasi-periodic SL(2, R) cocycles in one frequency.
These are skew products of the form

(@, A): T x R*> > T x R?
(x,y) > (x+a, A(x)y),

A € C®(T, SL(2,R)).

We will be interested in the case A is close to a constant matrix. A classical problem is
to see if («, A) is reducible, that is, conjugated to a constant matrix cocycle. We say that
(a, A) is C*®°-reducible if there exists B € C*°(R/2Z, SL(2,R)) and A, € SL(2,R)
such that

BO+a)AB)B®O) ' = A,, V0 eR/2Z.

Reducibility is an important question in the study of quasi-periodic cocycles and its
applications to the spectral theory of Schrodinger operators.

When « satisfies a Diophantine condition, many reducibility results were obtained by
the KAM (Kolmogorov-Arnold-Moser) technique since the seminal paper by Dinaburg
and Sinai [6]. Most of the results were obtained for real analytic cocycles, but KAM
methods also yield reducibility results in the smooth category, see [10, Section 2.4] for
example.
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If o is justirrational, reducibility does not hold in general. Indeed, the rotations-valued
cocycle (o, A), A(-) = Ry(.), with ¢ € C*°(T, R) and

R . [cosrp(x)) —sinQrp(x))
@ = \sin2r ¢ (x)) cosQRrp(x)) )’

is smoothly reducible if and only if the cohomological equation

¢(x) — /Tdi(@)d@ =h(x+a) —h(x) ©

has a smooth solution. It is known that the cohomological equation does not have smooth
solutions in general when « is not Diophantine.

However, one can still ask about reducibility to a rotation-valued cocycle, that is, the
existence of a smooth conjugacy B such that B(x + a)A(X)B~1(x) € SO, R). We
then say that the cocycle is rotations-reducible. Rotations-reducibility is important in
the global theory of 1 dimensional quasi-periodic cocycles, and has many applications
for quasi-periodic Schrodinger operators, some of which will be mentioned below.

Rotations-reducibility for close to constant cocycles, irrespective of any arithmetic
condition on the irrational base frequency o € T, was obtained in [2] in the real analytic
category. The aim of this paper is to extend the results of [2] to the finite regularity and
smooth case. Rotations-reducibility was obtained in some ultradifferentiable classes
(for example Gevrey) by Cheng, Ge, You, Zhou in [7], while our rotations-reducibility
result holds in finite regularity (see also [11] for questions about reducibility with low
regularity).

Before stating our main theorem, we recall the definition of the fibered rotation
number p = p(a, A). If A is homotopic to the identity, G is the projective cocycle
associated with («, A), that is:

G:TxS!'->TxS!
A
(x,y) = <x+a, ﬂ),
Ay
and G (9, V)=0@+a,y+ f(6,y))isaliftof Gin T x R, then:
n—1

1 -
lim ~ 3 f(G'©. )
i=0

n—00

exists and it is independent of (6, y). The class of this number in T is the fibered rotation
number.
We will prove the following

Theorem 1. Let € > 0, rg > 200. There exists €y > 0 such that, for « € R — Q there
exists a set Q(a) C T with m(Q(«x)) < € such that the following holds:
if Ag € C*(T, SL(2,R)), R € SO(2,R), p(a, Ag) € Q(x) and:

Ao — Rls0ry < €0,
then, there exist B € C*°(T, SL(2, R)), ¢ € C°°(T, R) such that,
B(x +a)Ag(x)B~!(x) = Ry,
with:

I¢ = oy, I1B = Id.lry < /o
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Finite regularity. Observe that in the proof of Theorem 1, in order to show the con-
vergence of the scheme in norm C’® we will use only derivatives of A up to order
50r¢. In particular, the same statement holds in class C’ if A is only assumed to be in
C50r0 (T, SL(2, R)). Our assumption that ry > 200 is not optimal, neither is the close-
ness condition in class C30. In fact, we will explain later why the more « is Liouville,
the more ro can be taken small.

Reducibility in the Diophantine case. When the base frequency « is Diophantine, our
result implies smooth reducibility since the cohomological equation (£) has a smooth
solution 4. Finite regularity reducibility results, depending on the Diophantine exponent
of «, can also be obtained from the proof of Theorem 1 and the study of (&) in finite
regularity.

Full measure rotations-reducibility. Eliasson’s theory. Eliasson developed a non-
standard KAM scheme which enabled him to prove a much stronger version of Dinaburg-
Sinai theorem. He showed that for every Diophantine «, there exists a full Lebesgue
measure set O («) such that if the cocycle is sufficiently close to constant (depending on
o) and if p(a, A) € Q(w) then («, A) is reducible [8].

Note that for arbitrary irrational frequency o, unconditional almost reducibility and
therefore full measure rotations-reducibility, for analytic close to constant cocycles,
should follows from Avila’s global theory [1].

In [12], Hou and You proved a continuous time version of [2] with a different method.
They also proved that almost reducibility always holds in the close to constants regime
in the analytic case, which gives rotations-reducibility for a full measure set of fibered
rotation numbers.

In the smooth category, full measure rotations-reducibility does not hold, since
counter-examples were found in Gevrey class by Avila and Krikorian [5]. In this re-
spect, the result of Theorem 1 is optimal.

The case of general matrix cocycles. Reducibility results for quasi-periodic cocycles
valuedin G L(d, C) above a one-dimensional Liouvillean rotations, extending the results
of [2,12], were obtained in [15] in the real analytic setting. The scheme developed in the
proof of Theorem 1 should be useful to address similar extensions in the smooth setting.

Applications to one-dimensional quasi-periodic Schrodinger operators. The main
source of examples of cocycles that we are considering are the Schrodinger cocycles

Avp() = (E - _01) ,

where v € C*°(T, R) and E € R are related to the spectral study of one-dimensional
quasi-periodic Schrodinger operators:

(Hu),, = upg1 + 1 +v(0 + no)uy,. (1)

An application of our main result is the following.

Theorem 2. I[f v € C*°(T, R) is close to a constant, @ € R, then there is a positive
measure set of E such that (o, Ay g) is rotations-reducible. In particular, for v close
to a constant there exists some absolutely continuous part in the spectrum of the corre-
sponding Schrodinger operator in (1).
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Another application concerns Schrodinger’s conjecture stating that for general dis-
crete Schrodinger operators over uniquely ergodic base dynamics, all generalized eigen-
functions are bounded for almost every energy in the support of the absolutely continuous
part of the spectral measure. This conjecture was disproved by Avila (see [3]). In [13],
Marx and Jitomirskaya pointed out that the Schrodinger’s conjecture in the quasiperiodic
setting is still an open problem in the smooth category. The following result, implies
that the Schrodinger conjecture is true for the one-dimensional smooth quasi-periodic
Schrodinger operators over irrational circle rotations.

Theorem 3. Let v € C*(T, R). Then, for almost every E in the spectrum, (o, Ay E) is
either non uniformly hyperbolic or smoothly rotations-reducible.

The proof of Theorem 3, starts from Kotani theory, and then uses the work of Avila and
Krikorian in [4] where they prove the convergence to constants of the renormalizations
of cocycles that are L2-conjugated to rotations, in order pass from global to local. The
implication of Theorems 2 and 3 from Theorem 1 can be obtained in exactly the same
way as Theorem 1.1 is obtained from Theorem 1.3 in [2], with.

Main novelties and outline of the proof. The proof follows an inductive conjugation
scheme based on the so-called cheap trick introduced in [10] and further developed in
[2].

One main novelty in our approach is that in finite regularity it is possible to fully use

the strength of the cheap trick in which no loss of derivatives is incurred in finding the
conjugacy (see (2) below), since no cohomological equation is solved. As a consequence,
the convergence of our conjugation scheme is quite different from that of KAM smooth
schemes, and is much simpler. In particular, it does not require any approximation of
smooth functions by analytic ones.
The main other novelty is in the new choice of the subsequence of the sequence (g,,) of
denominators of the best rational approximations along which the cheap trick is applied.
Given the sequence (g,) of denominators of the best rational approximations of an
irrational number, the notion of Diophantine bridges, a sufficiently long succession of
qn where g, is bounded by a fixed power of ¢,, was explicitly introduced in [9] to
settle the global smooth conjugacy problem of commuting circle diffeomorphisms.

In [2], a pattern of Diophantine bridges that alternate with big power jumps in the
sequence (g,) was proved to exist for every irrational o. A subsequence (g,,) (called
(Qp) in [2]) of (g,) is then chosen using the endpoints of the Diophantine bridges and
the g, with a big jump from g, to gn+1. This subsequence is used to apply the cheap
trick and prove rotations-reducibility in the real analytic context.

The choice of the sequence (g, ) is important to have a nice control on the Birkhoff
sums and make sure that they are close to their mean (which allows to use the hypothesis
on the fibered rotation number), and also to get sufficient gain from applying the cheap
trick in terms of decreasing the magnitude of the non-abelian part of the cocycle.

The choice of the sequence (gy,,) in [2] was adapted to the real analytic category, and
in the current work it is crucial to choose quite differently the sequence (g,, ) to adapt to
the smooth setting, that is needed not only to have a nice control on the Birkhoff sums,
but also to have a good control of high norms of the error term.

Finally, to prove the convergence of the scheme it is crucial also to have improved
estimates on the derivatives of the iterated cocycle that are adapted to the smooth setting
(see Proposition 3), compared to the previously used bounds such as the ones in [10].
We now recall the idea behind the cheap trick and give an outline of the iterative conju-
gation scheme that is used to prove Theorem 1.
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Let g, be a denominator of a best rational approximation of «. If the cocycle ma-
trix A(-) = Rg() + F() is very close to the SO (2, R) cocycle Ry (.), then Al (x) =
Rs, ¢(x)+&(x)iselliptic forevery x € T.Inthiscase, wecanfind By € C*°(T, SL(2, R)),

qn

¢1 € C°°(T, R) such that
Bi(x)A“ (x) BT (x) = Ry, ),
and fort e N
|By = Id.Ii. ¢1 — ¢l < CO|(Ras,, ¢ — 1d)"ER_s, ¢l )

If in addition the Birkhoff sum S, ¢ is uniformly close to its average, then this average
is close to g, p(a, A), where p(«, A) is the fibered rotation number of («, A). Hence,
if [|2gnp0 (e, A)|| (|| - || being the distance to the closest integer) is not too small, then
B is close to the Identity matrix. Finally, the essential point in the cheap trick is to see
that the conjugated cocycle A(x) := Bj(x + q,,oz)A(q")(x)Bl_1 (x) is of the order of
Ngneell ~ q}% closer to a rotation valued cocycle then A" was. One can conjugate A

now and gain another factor qlﬁ. Repeating the procedure ry + 1 times one obtains a
n

conjugacy B = Byy+1 ... By such that
B(x +qua) A9 (x) B~ (x) = F(x) + Ry, (x)
such that, if we suppose [|2¢, 0 (e, A)|| > f itholdsforO < h <rg+ 1:

- C(t+h)n2r0(t+l) _ g B _ -
Fl|l; < ——— max |F F . 3
1Fl: < i ﬁe{oﬁ}ll lren (LF 111D 0e4n) 3)

One then derives from (3) similar estimates on how close B conjugates the original
cocycle («, A) to a rotation valued cocycle.

An important point of the cheap trick is that we get inverse powers g,,, +h1 in the control
of the new nonlinearity when we compare to || F||;+;,. However as we see in (2), there is
no loss of derivatives in the scheme because we never solve a cohomological equation.

Plan of the paper. The main inductive conjugation step is stated in Proposition 1 and
the proof of Theorem 1, based on Propositon 1, are given in Sect. 2.

The outcome of the cheap trick is the content of Propositon 2 of Sect. 3, which is the
main step of the proof. The proof of Proposition 1 is given in Sect. 5. It goes through the
application of the cheap trick to the iterated cocycle AW, explained in Sect. 5.1, and
through the estimates for going back to the original cocycle, explained in Sect.5.2.

The estimates on the iterated cocycle (g, , AW are included in Sect. 4. In Sect. 4.1
we state and prove the estimates on the upper bounds on the non-abelian part of the
iterated cocycle, and in Sect. 4.2 we include the crucial estimates on the Birkhoff sums
along the selected subsequence of (g, («)).

Finally, the Appendix A contains the statements and proofs of some basic analysis
lemmas that are used throughout the paper.
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1. Notations and Definitions

In all the sequel o will be a fixed irrational number. If f € C*°(T, R) we denote the
Birkhoff sums of f above the circle rotation of angle « forn € N

n—1
Suf(x) =" flx+ha).

h=0

For A € C°°(T, SL(2,R)), n € N, we denote
0
A (x) = ]—[ A(x + ja).
j=n—1

For f € C®(T, R), k € N, we denote by D f the k-th derivative of f and

k
|flo=sup|f(x), 1Fl:=Y_ID"flo.
xeT h=0

‘We use the notation
llxll = inf |x — p.
pEZ

We define (g;,) to be the sequence of denominators of the best rational approximations
of . Recall that ¢, satisfies go = 1 and
Vi<k<gn  lkall = llgn-1cll. “)

Recall also that

< [lgrell <
dk+1 t gk Gk+1

&)

2. Main Inductive Conjugation Step

In this section we state the main Proposition 1 containing one step of the reducibility
scheme and we show how Theorem 1 follows directly from it.

Definition 1. Let « be irrational. We define a subsequence of convergents (g, )ren in the
following way. We let ng = 0. Now, suppose that we have defined the subsequence up to
qn, - I there exists k such that q,%hﬂ < qr < qfth, we define nj.; := k. Otherwise, we

take np41 ;= max{k € N: g < q,fhﬂ}. Note that in the first case g,,,,, > q,fh” > Gnj+l
so thatk > nj, + 1 > ny, and in the second case, for k = nj, + 1 we have g < q,%hﬂ SO
that max{k € N : ¢qx < q,fhﬂ} > np + 1 > ny. In particular, the sequence (np)peN 1S
strictly increasing. For & € N, we use the notation s, := ]_[LO qn;-

12

Lemma 1. For h € N, g, < qfl'hﬂ. Moreover, for h € N: s,? =< 4n,,,-

Proof. It follows by the definition of (g, )nen- O
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Proposition 1. Let € > 0. There exists €9 > 0 such that the following holds. Let o
be irrational, (qn)nen be the convergents of o, ro > 200 and Ag = Ry, + Fy €
C®(T,SL2,R)), ¢o € T, Ry, € SO(2, R) such that

I Follsor, < €o-

and p = p(a, Ag) satisfies [|2qn, p|l > n% where (ny,) is as in Definition 1.

h
Then, there exist By, Fj, € C*°(T, SL(2, R)), ¢, € C*°(T, SL(2, R)) such that for
h e N:

B (x + a)(Ry, x) + F (x))B;fl (x) = Ry () + Fra1 (%), (6)
€0

1 Fnerlt < —5—- 1 Fnstllsores Instllsory < s5 @)
q”é;wl

where s, = 1—[;1:0 qn, and, fort € N:

4 _
1By = 1l 19 = @nles DEnerll = COm"05, max 1Ew 17 Falam, Ionl)' .
®)
Now we show how Theorem 1 follows directly from Proposition 1.

Proof of Theorem 1. We want to show that the following limits exist in the C*° category
and that they satisfy all the requirements of Theorem 1

B(x):= Lm By...Bo(x), ¢x):= lm ¢p(x).

We first address the convergence in class C'. Proposition 1 implies by convexity that

-2 & J€o
1 Enllrg < ClERlly " IFnll5g,, < o €)
np

where in the last inequality we have used the estimate in (7) for | F |1, | F1 |50, and the
fact that o > 200. Next, by (8), (9):

o

4r _

|B = Idls. ¢ — plry < [J(A+Cro)n, a3, sup 1EWlE (1 Fnlogun, Ignln)' ~F) — 1

_ Bel0,1]
h=0

o
51—[ 1+
h=0

if €g is small enough. So, we have proved the convergence in norm C’® as well as the
bounds (1). The conjugacy equation then follows from (6).
Now we use interpolation and the bounds in (8) to prove the smooth convergence.

By (7). (8):
I#n+ile < Npne1 — @nlls + lPrl: < C(t)nirotqsh(lth Iro + Gny | Frllolipnlle) + Inlls

1
< COny" gn | Fulry + (1 + —) bl

np

452
C(ro)n;, o

qny,

—-1=< e
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So, iterating we get:

h
Iénetle < COm a3, S 1 E L. (10)
=0

Letr € N, > ro. By (8) and (10), there exists N € N such that for h > N:

h h
4rot 5 6
| Fnstlloor < n,) gy, E 120200 < gy, E I F71120¢ »
1=0 =0

where in the last inequality we have used Lemma 1. In particular there exists N; > N
such that, for 4 > Nj:

h—N N N

4 6 6 12

| Fhaetloor < n (]‘[ q) D 1Filaor < g8, Y I Filaor < C0)sfy < Ct)g,7,.
1=0 1=0 =0

with the last inequality that follows by Lemma 1. So, by convexity and the estimates of
I Fnstllr, in (9) we get:

_ 1—rg 1—=rp 1
201 —r 201 —ry
1Fhstlle < ClFnaillg = WFhetllyg < i
3
npi

In particular, for any ¢ € N there exists N € N such that for 7 > N:

C(yny"™
1By — Id.ll, It — dnlly < ——2—,
3
qny
finishing the proof of smooth convergence of the scheme. O

3. The Cheap Trick

The aim of this section is to prove the following.

Proposition 2. Let¢ € C*(T,R)and A = Rg+F € C*(T, SL2,R)),ro € N,n € N
be such that

I(Ryg — 1d) "' < Cn®, |Flo < qi 1Flrgs 1y < 1. (11)
Then, there exist B, F € C®(T, SL(2,R)), ¢ € C°(T, R) with foranyt € N
|B —Id.|;. | — ¢l < C(t)n***D max 11 (1F 1l 7 (12)
and
B(x + gua)A(x)B~ ' (x) = R43+I7", (13)

and, forO < h <rg+1:
C(t +h)n2r()(l‘+1)
qr p

n+l

~ - = - 1—
11 < max VFILy (1FI1e) ™" (14)
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In order to prove Proposition 2 we prove at first some simple lemmas.

Lemma 2. Let D > 0. There exists € > 0 such that, if A = R¢;+F e C®(T, SL(2,R))
with |Alo < D, |Flo < emin{l,infier Ry, — Id.|}, then there exists B, €
C(T, SL(2,R)), $1 € C(T, R) with:

1B1 = 1d.11. 16 = 1l = CO(Inf IRy = 1aIDT D AFIIBlo + 1 Floldl) — (15)
such that:

Bi(x)AX) B (x) = R (16)

Pr1(x)"

Proof. We will sketch the proof following [2]. Let Y := FR_Q;, G :=log(1+Y),01 =
(1_5, so that A = ¢C1 Ry, . Let:

G — X1 v —2mz)
P= \n+2rz —xy ’
G =TT N
r=Ay 2 )
X1 —1 (X1
- ) = (Ryg, — Id. ,
()’1> (Rao, ) (yl)

X1 )i
v =1 ~ ~ s 6, =61 + s
1 <y1 —X1) 2 1+21

and C := (infyer | R2¢;(x) — Id)|)~L. Then, we want to show that:
eUIEGIRgle_Ul — €GZR02»
with:

le* —Id.l; < |(Rag, — Id) "' G1R_g,li, 162 — 61l < 1Gils, A7)
1G2ll: < Cvily + 1G1vil + i Gl + G (18)

Note that (17) follows directly from the definition of vy, 6;. So, we just prove (18):
e"'e“1 Ry e = (Id. +v))(Id. + G1)Ry,(Id. — v1) + O(v?).
Then, since by definition of v; we have
viRg, — Rg,v1 + G| Ry, =0, (19)
we get

(Id.+vy)(Id. + G|)Rg,(Id. — v1) = (Id. + G| — G1)Rg, + v Ry,
— Rg,v1 + G Ry, + O(v})
= (Id.+ G| — G1)Rg, + O(v?)
= Ry, + 02(G1, v1),
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where the last inequality follows from

Id.+ G| — G| — Rg,_g, = O(G?). (20)

and by Lemma 13 of the Appendix. Note that for all # € N, by (18) and convexity:

1G2lle = C@OWUvililvillo + 1Gilolvil + 1Gilelvilo + 1G1lolG1lle)
< C(0)e|vrl; < Ct)e max{|G1;16110C, I1G1lol61 1, C>*+'}.

Next, (18) follows by the first inequality ([le’! — Id.|; < [(R2p, — Id.)_lGlR_gl )

1)

In particular, for € small enough the C° norm of the new error term gets smaller, and
1G2llo < C6||G1 lo. Finally, the Lemma follows by iterating the scheme, with B =
lime¥ ...e", ¢; = lim#@,. We prove at first the estimates of the Lemma in norm C°
and then for hlgher norms. Note that if fori =1, .

IGilo < C(Ce)'MIGilo. Ivi-1lo < CIGi-zlo.
then:
lvallo < CCIGa—1llo. (22)
Moreover, as in (17) we have for all n € N:
16n — On—1l0 < 1Gn-1llo (23)
and:
1Gnetllo < CUvall + 1Gn=tlolva=tllo + IG1I5) < C(Ce)"[G1lo. (24)
In particular:
16— 1lo < > 16s — bu—rllo < CIG1lo »_(Ce)"™" < CIGilo.
neN neN
and:
IBi —Id.lo <) Jvallo < CClGilo Y _(Ce)"™" < CC|Gillo.
neN neN

In particular, the estimates of the lemma hold for t = 0. Now let # > 0. Then:

lvall < 1(Rag, — Id) ™ G R_g, s

< COUGu:10nl0C +1Gullol0nll: C**) (25)
< CO(IGul:C + C**(Ce)"IG1lol6ull)-
Moreover, as in (17):
16n — On—1le < 1Gn-1l:. (26)
Finally, as in (21), by (22) and (24) we have:

1Galle < C@OUvn—tlelva—1lo + 1Gu—1lolva—1ll:
+1G 1l lvn—1llo + 1Gn—1l01Gn1l) 27
< CHCC"  IGu-1l: + C*(Ce)" *0u—11),
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So, combining (27), (26) and (25) we get:

|Bi — Id.J; < C®) Y lvals

neN

< COC* G 11:10110 + 1G1lol611) Y _(Cey"™!
neN

< COHC* UGB o + 1G 10161 1,)-

In the same way, by (25), (26) and (27) we have:

16 = @il <D N6nst — 6l < D 1Gul: < COCH (UG11:16110 + 1G1lol61 1)
neN neN

Lemma 3. Let ¢ € C*(T, R) such that inf et |Rag(r) — Id.| = G. Fort € N:

|D'(Rap — 1d.) o < C()n* V)],

Proof. 1t follows by Lemma 15 of the Appendix by applying Hadamard’s inequality to
each term of the homogeneous polynomials. O

Proof of Proposition 2. By (11), we have that Ao < D, IF| < emin{l, ||R2¢; —

Id.|o}. Hence, Lemma 2 gives B1, ¢1 such that (15) and (16) hold. Then, by (15) of
Lemma 2, and Lemma 3 and Leibnitz formula, we get for h € N

|D"(B) — Id)lo. < C(yn* ™D 3" | D" Flolln, |lns-
hi+ho+h3=h

Hence, by interpolation inequalities (see Lemma 16 in the Appendix), we get forr € N:
~ - - - 1—
D (By — 1d)lo < COn* ™ max 1FIf (1FTolgl) " (28)
In the same way, (15) implies
. < C(H)n2+D EI8 (1E1a1a1) 7
¢ = o1l = C(t)n smax, IF17 (IFToll:)

Now, let
Fi(x) = Bi(x + gua) A(x) By ' (x) — Ry, () = (B1(x + gnat) — B1(x)A(x) By (x).

‘We want to show that, for [ = 0, 1:

C(t)nZ(t+l+l) _ 4 _ _ 1—p
Fi| < ———— max |F F 29
IE1l: < . Jmax 1 Fl7, (IFloll@l+1) (29)

We prove at first (29) for [ = 1.
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Note that: | D' (B (x + guer) — B1(x))|o < ——|D"™*'(B; — Id.)|o. Then:

— 4n+l
t D ) n A np—1
ID'Filos S D" (Bix +4u) — Bi(x)lo| D2 Alol D% By Vo
+n+i3=t

=
qn+1

Y DBy — 1d.)|o| D Alo| D" B o

1+ +3=t

C(t)nz(”'z) _ 4 . ) s
< ——— max |F F 7
S T pax 1l (IF ol @lr+1)

with the last inequality that follows from (28).
Now we prove (29) for [ = 0:

ID'Filo< Y. |ID"(Bi(x +gua) — Bi(x))|o| D" Alo| D" By o

H+h+t3=t,t; >0

+ Y |(Bi(x +gue) — Bi(x)|o| D" Alo| D" By o,

h+t3=t

Note that, from the fact that By is close to the identity, if Y} := B; — Id., we have:

IBy' = Id], < C(0)|By — Id.| + COIY}l
and:
1Yl < COIY1lol Yl
In particular:
1By = I1d.]; < C(0)| By — Id.|;.

Now, for the first term we get:

S D Bix +gu) — B ol D7 Alo D B o

t1+tr+13=t,t; >0

R A R—1 2(t+2 1B (n A\ P
<2 Y |D"Blo|D”Alo|D"B; o < C(t)n <’+>ﬂr€gg§}||F||l (IFlolgl:) "

W+ +3=t

For the second term we get:

D 1(Bi(x +guar) — Bi(x))lol D Alo| D" B o

n+t3=t
1 - - ~_
<— Y ID(Bi - 1d)]o| D7 Alo| D" B o
dn+1 h+13=t
<

C(Hn2t+2) Fﬂ Flldb l—ﬂ_
(t)n ﬁren{gfcl}ll 17 (IFlr)
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Now, suppose that we iterated the scheme m times, with m < ry. For k < m let:

ék = Bk S Bl,
R () = Be)A(0) B! (),
Fi(x) = (Bi(x + qnat) — Bi(0))A(x) B (x).

Then, in the same way as above, for/ = 0, 1 and k < m:

~ B ( ~ ~ ) 'B
F _ F — —_ )
ﬁgl{gfil}ll k=1 1y 1 F=1 01l @re—1lle+1

" » 5 C(t)n2(t+l+l)
Vil Nk — -1l < ——F——

n+l
(30)
In particular, from (30) applied with / = 0 and (11) we get:

1 Ecllrgs 1kl < Croyn*rorDk,

4rg

max | Fr_i|? ( Feotl1 16t )
qn+1 /36{0,1}” "ro I 1 1Pr—117

4(ro+1)(k+1)
_ Clron

1Fell1, Ik — d—1lh

IA

< 1.
qn+1

So, because I§m (x + q,,oe)A(x)I?m x)"'=R + I:“m (x) satisfies:

G (x)
IR; +Fulo <2< D, |Fulo < emin{l, [R,; — Id.lo},

we can iterate the scheme one more time. Finally, Proposition 2 follows with:

B:=Byys1... B, ¢ := dou1, F i= Frpur.
Indeed, in order to prove (12), we have:

r0+1
IB—1Id.|, <C@&) Y |Bx— Id.|;.
k=1

andfork =1,...,r9+ 1, by (30) with / = 0 we get:
- - ~ 1-8
1B = 1l = COm* ™D max |Falf (1t )
pel0,1}
< C(HOHN2*Dr0 max 1F1° (1F]1 10 =5
<C@) Jmax [ l; (IF1 1)
In particular, we get:
~ — — - 1,
IB — Id.|; < C(tyn>@*Dro max VEIE (1F180:) .

Finally, (14) follows for any 0 < & < ro + 1 by iterating (30) for & times with/ = 1 and
for ro + 1 — h times with [ = 0. O
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4. Estimates for the Iterated Cocycle

Now we start by giving some bounds for the derivatives of the iterates of the cocycle.
In the following proposition we will show thatif A = Ry + F is quite close to a rotation

valued cocycle (F small), then also A9 remains close to the rotation valued cocycle
Rs, ¢-InSect.4.2, we will see that S, ¢ is close to its average (that is close to g, p with
p = pla, A)).

4.1. Estimates of the derivatives of the iterated cocycle . The goal of this section is to
prove the following

Proposition 3. Let A = Ry + F € C*°(T, SL(2, R)) be such that:

1 X
1Flo < P g — o < 1. €29

n

Let & be defined such that AU = Rs, ¢ +§&. Then, fort € N:

1_
Il < C(H)g] (||F||t+||F||o max |F|f ¢l “>. (32)
Bef0,1}

Proof of Proposition 3. Write & 1= A4 — Rs,, ¢ as:

i1+1

dn
E) =) > [T Rewrior | Fx+ira)...

h=1q,—1=i1>ir>...>ip>0 \ j=¢g,—1

0
Fa+ina) | ] Rowsjo |-
j=in—1

Then:

n
§(x) = Z Z RS (—iy—nyp i+ Do) F (X + i)

h=1q,—1>i1>ir>...>i>0

RS\ —iy-nd Gttty F (X +1200) ... R 1) ()
So, let € N. For each 1 < h < g, we have the sum of (%") terms on the form:
Rs; peri+hye) F(x +i1a) ... F(x +ip@)Rs; 60

forsome 0 < j; < g, andfor1 <[ < h+1 (and with the same convention Rg,s := Id).
In particular, by Leibnitz formula, the ¢-h derivative of each of these terms is the sum of
at most (2h + 1)! terms of the form:

D" Rs; p(x+tir+1oy D? F(x +i100) ... D' F (x +ipa0) D' R, 4 (xa(iy—1)ar)s

with 1 + ... 1041 = t. If t; # 0, by the interpolation Lemma 16 of the Appendix, we
get

)] )]

11— 21
ID™Flo < CIFly " IFI," .



Reducibility Without KAM Page 15 of 25 254

In the same way, if #5741 7# 0, then by Lemma 17:

2l+1 2l+1

1—
D1 Rs, plo < COqulldliy, = COGulply 16l

Moreover, by the assumptions we have |¢ — QE(O) lo < 1. So, it follows that:

4n

qr _ _

ID'Elo < C()g, Ilol Fll + ) j( ’)(2h+1>’q,i’“ca>2”“||F||3 ' sup | FIE gl
h=2

h ael0.1]
4qn qh
< COGIFL+Flo sup [FIFIGN™ Y 5 Ch+ D'gy* COX | Flg—
ael0,1] h=p '
3 1 u ‘Ih h+l 2h+1 h—2
< COGIFl+IFlo sup [FIFIgN™ Y 25 @h+ Dgy* CO*FIg
ael0,1] h= '
Now, because of | F|o < qiﬁ, for h > 2 we get:
7 5
— q q
g FIpTr s = (33)
qn qn
So, by (33):
qn h 4qn h
q _ q _
D ChaD'grCO IR < Y R Ch+ Dgpt CoX Pl
h= = Con 1 (34)
t
< gl Z( ) 1 = Cg;-
h=0 n )
O

4.2. Estimates of the Birkhoff sums. The goal of this section is to prove the following

Proposition 4. Let & := A4) — R Sy. ¢ € as in the statement of Theorem 1, and suppose
that ||2qnp|l = ;—2, loll7 < 1, 1&lo0 < qln' If gny1 > q,% or there exists k such that

q,f <qgp < qg then, fort > 0:
D' (Ras,,¢ — 1d) "o < C(On* VS, 1.

We first show in Lemmas 4 and 5 that, under certain conditions on g, the Birkhoff
sum S, ¢ is close to its average. In the proofs, we will need Fourier truncation and rest
operators that we now define.

Definition 2. Let f € C*°(T,R),a > 0.

T,(f) := Z f(l)eb'rilx’ Ra(f) = Z f(l)e%tilx.

[ll<a |l|>a
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Lemma 4. Suppose that there exists q such tha q,% <qn < q,‘:. Then, fort € N:

~ N 1 N
D' (Sg, ¢ — gadp(O)|o < C(t) min{g,p — GO, — I — (O) 147}
an
Proof. Lett € N. The inequality
ID'(Sg, ¢ — qnd o < g2 C (1) — $(O),

is trivial. Then, for the second inequality:

D' (Sg, & = an®O)lo < ID'T 1 (Sq,¢ — dudO)lo+ID'R 1 (84,6 — aud(O)]o
qn

qn
So:
, R , ezmqnla -1 R
ID'T 4(S4,6 = aub(ODlo < 3 ol | ‘ 1G]
1</l <q,t
qdk A
< > el
qn+1 |
1<ll1<q,
1 .
where in the last inequality we have used the fact that for |I| < g,F, |eZ*i4l® — 1| < %1:111 I

. 1
and |271® — 1| > L (that follows by |I| < ¢, < qi). Finally:

qk
%
qk A Cq A
> a0 < —1¢ — $O0)ls3,
qn+l1 1 qn+l1
1<ll<q,!

l ~ ~
with the last inequality that follows by gx < g,7 and |¢ ()| < %. Moreover:

A ~ q ~
ID'R 1(Sq,® — 429 0))lo = qn|D'R 19 =)o = <16 — ¢O)ls7,
4n 4n qr?
with the last inequality that follows by Lemma 18. Then:

D' (Sq,¢ — 4udO)o < ID'T 1 (S3,¢ — qudO)o + DR 1 (Sq,¢ — gud(0))lo
4dn qn
1
Cqn o c..
< —Lp = )i + Lol — GON7 = 16 — SOl

n+1 7 I
qn qdn

O

Lemma S. If g,41 > q,%, then fort € N:

. c .
D" (Sg,¢ — anp(O)lo < q—||¢> — @ 0)lls+4-
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Proof. Lett € N:

|D'(S4,0 — $(0)o < D' Ty,—1(Sg,& — gud )0 + D' Ry, —1(Sg, ¢ — and(O)lo

Then:
. R , e2niqnla — 1!
D' Ty, ~1(Sq, — gn9(0)]o < Z 271" | —5me— 1 ' lp(D)]
1=<|l|<qn ¢
C |ID"3¢ly  C .
<2 S A 20 < Z g — G0 s
et A2 |1 n

Now we estimate the second term:

ID' Ry, —1(S4, 6 — @ud(0)]o < gu| D' Ry,—1(p — $(O))lo

C .
< “p — $O)lra.
qn

with the last inequality that follows by Lemma 18. O

Proof of Proposition 4. Let& := Aln) — Rs, ¢- By the definition of the fibered rotation
number, we have that

~

lp(Rsy,¢ +8) = qnp(O)| < |Rs,, 6 — R, 5)l0+[Eo- (35)
Moreover, by Lemmas 4 and 5:

Clol

|RS,M¢ - an$(0)|0 = =<

PN

e O

n

Then, the proposition follows by Lemma 3, (35) and the assumptions [£]o < qin

12gnpll = 5. O

and

5. Proof of Proposition 1

5.1. Applying the cheap trick to the iterated cocycle. The estimates in (7) for h = 0 are
trivially satisfied by the hypothesis in Theorem 1.

Now, suppose that we are at the A-step so that we have the cocycle Ay = Ry, + Fj
such that the estimates in (7) hold, that is

1Frlt = =55 1 Frlsorgs |Pnlisor, < sy, (36)
Gnj

with s, = ]_[flzo qn,- We want to find By, Fp41 € C°(T, SL(2, R)), ¢ppt1 € C(T, R)
such that (6), (7), (8) hold. We have
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Proposition 5. There exist By, F € C®(T, SL(2,R)), ¢ € C®(T, R) with:

~ - - 1=
|By — Id.li, 1§ — ¢l < CHn*>0 Vg Jmax 1ELE (1F ) " 37)

such that:

By(x +gn, @) A (x) B, (x) = Ry + F, (38)

and, for0 <l <rg+1:

( )6] 5 2ro(t+2)

IF] < , max [ Ful2, (1Faligm énlia) ™" (39)
el peld.l)
In particular:
4r0 5 4rg
~ an h - _ Cay,ny,
1Fl < —2 max [ Fl? (1Fnl 1y I dnlrgs1 < — =, (40)
g peoy ! Mot ( 19hlro) av,
and
1Flls0rg 16 — Blsorg < Crolaiy, ny ° 00 e 1P o, 1Fnlign, lénlsor,) 7 (41)
Moreover,

1 Flls0rgs 16 — Bllsor, < Cro)gs, sony 000+, (42)
Proof. By Lemmas 4, 5 we get:
1
1Sg,, & — any 1 ()0 < —||¢h — )7 < - (43)
qJU, qnh

Then, by the arithmetic condition [|2¢,, ol > n%, (43), and Proposition 4 we get:
h

I(Ras,,, ¢ = 1d) "' lo < Cnj.

Gnpyy)

Moreover, if F = Ay RS‘”’h e by Proposition 3:

_ C
1Fllo < —.
qny,

In particular, we can apply Proposition 3 with A := Al) p = Sqnh¢ to get By, Fe

C®(T, SL(2,R)), ¢ € C®(T, R) so that (37)—(41) hold.
By (36) and (40):

VEnll1Gny 1 @nlls0r < 1.

Then (42) follows from the estimates of || F}, |50, in (36).
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5.2. Going backward from the renormalized cocycle to the starting one. Now let By, :=

Byy+1...B1, ¢ as in Proposition 5 (with A = ;lq"h) ¢ = Sgu, $n and with B, ..., By

that are defined applying ro + 1 times the cheap trick). We want to show that, because

(Gny,)

(o, Ap) commutes with (g, a, A ) ), if Bj(x + qnho{)A (x )Bh_l(x) is close to a

rotation valued cocycle, then also By(x +a)Ay (x)Bh (x) is close to a rotation valued
cocycle. Let also B:= B,0+1 B: B ..Bj, so that B, = BB.

Lemma 6.
B(x)B(x +¢,0)A(x)B~' () B~ (x) = Ry

Proof. 1t follows by definition of B, B‘, on. O

Definition 3. Let:
__(0-1
A\l 0

M+JIMJ
5 .

In the following Lemma we state some properties of Q (M) that are stated also in [2].

Lemma?7. For0 e R, M € SL(2,R), RgQ(M) = Q(RgM) = Q(MR_y). Moreover,
M — Q(M) is of the form:
a b
M — QM) = (_b a>.

In particular, M — Q (M) commutes with rotations.

For M € SL(2, R),

Definition 4. A(x) 1= Bj(x + @)Ap(x)B; ' (x), L(x) := Q(A), Li(x) := Q(A(x +
Gny @) — A(x)).

By Lemma 7:
QR s AC) = ARG () = (R = R LX),
Lemma 8.
Rj(cror AX) — ARy = J1(x) + Jo(x) + J3(x),
with:

Ji(x) = (E(x +a) — B(x + o +qnha))1§(x + g + ) Ap(x + gy, o)
By (x + gu, @) (Ry ) + F (X)),
Da(x) = (A(x +gn,@) — ARy, + F (X)),

J(x) 1= A BG) — Bx +guyo) B(x +quyo) AL (1) B, (x).
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Proof. By Lemma 6
Rjiesay A — ARy,

= B(x + ) B(x +quyor + )AL (x + @) Ay (x) By (x)

(qnh)(.x)Bh_l (x)

= B(x +a)B(x +qn, & + @) Ap(x +qn, @) B, (x + gy, 0)

—B(x+a)B(x +a)A,(x)B~'(x)B(x + q,,,lot)A

(gn _
By(x + quye) A (x) By (x)

B+ B(x+a) Ay () BT () B(x +quya) AL () By (x)
=Ji(x)+ Jrh(x) + J3(x).
O
Lemma9. Let t € N. Then:
_ 1
IR xray — R_gi)) " R le < COnZ Vbl
Proof. By Lemmas 4, 5 and (43):
. c
¢ —gnpllo = — (44)
1
CIn
In particular:
-1
I(RG(crey = Roy) Rgm e
—1
= 1R500 (Risarsg = 140 R_goli
< Y DM Ry 0D (R sy — 1)~ 0D Ry o
h1+hy+h3=t
By (44) and by the arithmetic condition on the fibered rotation number, for all t € N:
1
ID" Ry rarediey — 147 llo = C@my V111l (45)
So, by (45) we get:
-1
IRy (cra) = Rog) Rl
1 1
<c@o > cOn PNl dlnlIdlny < COn B,
h1+hy+h3=t
with the last inequality that follows by convexity. O

Lemma 10. Fort <rg—17:

T T S S O
1Bl 1Bl Iple, 1F ey 1AL, 14, 1 < C,
|B(x) = B(x +gn,@)l; < C|F ;.

In particular:

10D, 12U < CIFI 1) < CILi -
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Proof. Tt follows directly by Proposition 5. O
Let By, I:", d; defined as in Proposition 4, L, L, A as in Definition 4. Let:
Ape1(x) := Bp(x + ) Ay () B, ' (x), Ry,

Apt1 — L
= * 7 Fre1 = Apet — Ry
(det(Aps1 — L))2

The fact that Ry, is a rotation follows by Lemma 7. The estimates for By, in (8) follow
by Proposition 5. By Lemmas 8, 10 and 9, we get the following Lemma:

Lemma 11. Let t < ro — 7. Then:

2 1 2 1 ~,
ILl; < Cny DLy ), + Cnp V| ),

2(t+1)
Cn 2t =
L + VN

IA

qny+1
We also have

Lemma 12. For0 < j <rp—7:

IFl; <

ro—Jj "
np+1

Proof. 1t follows by:

v ]_L
= = 50 = 50
IF; < ClFlso I Flg

Org
the estimates of | F o, | F |50, in (40), Lemma 1 and (42). O
From Lemma 11, it follows that for ¢t + [ < rp:
2rol(ro+1) -1 Cn2r0j(}’0+l)
1Ll < I Llss + ) [ F s (46)
Dnp+1 =0 41
Moreover:
ILlry < 1Ay < Spyy- 47)

Then, by definition of Fj41, Lemma 12, (46), (47) it follows that:

1
I Fpetllo < —g—. I Fnstllsory < Shyy
2
qnh+1

Finally, by Proposition 5, the estimates for L and the definition of ¢4+ and Lemma 1,
the estimate (8) in Proposition 1 for Fj1, ¢p+1 follow. Indeed, note that by Proposition
5, the estimates for Bj, hold. Moreover:

L(x) = Q(By(x +@) (R, () + Fi(0)) By (1) = Q(Rg (6 + Fa(x))
+Q((By(x + o) — 1d) (R, ) + Fi (1)) By (1))
Q((Rg, () + Fi(0)) (B, ' (x) — 1d.)).
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Note that Q(Rg,x)) = 0. Then, by usual convexity estimates it follows that for all
teN:

QA+ DIl = Z 1By, — Id.||n, (max{|| Fnlln, + 1601, DI By, ny

hi+hy+h3=t

+HIFulli+ Y (1Fnllny + lénlln) 1By — 1d.[|n,

ho+h3=t

4, _
< C(n,"q;, max LEnl? L Fn TGy I ) 2,

with the last inequality that follows by convexity and the estimates on By, in Proposition
5. In the same way, from the fact that:

Apr1 (x) = Bp(x + @) (Rg, vy + Fr(x)) B} ' (x)
+(Bp(x + @) — 1d)(Rg, vy + Fr(x) By (1)) + (Rgy ) + Fi(x))
+(Rgy,x) + Fa () (B}, ' (x)) — 1d.),

we get the same estimates for Ap41 — Rg,, that is:

4, _
1A = Roylle = COm" g5, max IFI7 (Filign lgnl0' . @48)
Let also ¥, (x) := +} Then, from the fact that the C° norm of of L is

(det(Ap41 (x)—L(x))2
small and from the fact that det(A;41) = 1, for all z € N:

1Wn = 1l < CONARD ™ LIl < COny™g], max VERIY (L Fnllign, Il 2,
49)

with the last inequality that follows from the estimates for ||Ax+1]||, || L]|; and convexity.
So:

pner — dnlle < 1(Wn — D(Aps1 — Dlls + [[Ans1 — L + Ry, Il
<C®) Y NWn = Dlly (1Anst = Ry Il +1dnlly + [1L11,)

n+n=t

H[L|l: + [|An+1 — Ry |ls-

Then, by (48), (49), the estimates on L and convexity we get:

4 _
51 = dully < Comy g3, max LRI (L Fnllign, I ) =2,

and:
Fnetlle = 1Are1 — Y (Ansr — DIl = 11 — DApatlls + 1¥n LIl;
< C(my gy, max VRl (L Fn Gy I
with the last inequality that follows by the previous estimates and by convexity. O
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Appendix
Here we state and prove some basic Lemma that we have used in other sections.
Lemma 13. Let D > 0. There exists € > 0 such that, if p € C*°(T,R), F € C*(T,
SL2,R)) with ||¢lo < D and |Flo < € and Y := FRy, G :=log(1 +Y), then for all
teN:

1Gl; = COIY ;.
Proof. Lett e N, Y := Fqu;. Then:

ID'Glo< )

h>1

tyh

By Leibnitz formula, for A > 1 D'Y g equal to the sum of A4’ terms of the form:
Dy ...D"y,

with #{ +...1;, = t. For each j such that #; > 0, by Hadamard’s inequality:

' J)

. 1-4 A
ID'Y]o < COIYI, " 1YI,"
So, because there are at most ¢ terms such that 7; > 0, we get:
IDY ...D"Y o < CO YNV ;.
Then:
n\y ||
ID'Glo < C(t) Y ——2— ||Y||, <COIYI;
h>1

where in the last inequality we have used that:

- - C
1Yo < I1FllolRgllo = ClIFlollpllo = —-.

n
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Lemma 14. For A = R+ F € C®(T, SL(2, R)), let G be such that A = ¢“ R;. Then,
fort e N:

ID'Gllo < COIFR_
Lemma 15. Let t € N. There exist polynomials Py ; (X1, ...X;), ..., Pr;(X1, ..., X;) that

are homogenous of degree less or equal then t if the variable X; has weight i for
i =1,...,t, such that for g € C*°(T, R):

1 '\ P, ,(Dg,...,D'g)
t _ 1t ) )
D <_> - Z i+l :

8 i=1 8

Lemma 16. (See [14]) There exists C > 0 such that, for 0 <a <b <c e N, f €
C°(T, R):

b—a b—a

1D” flo < CIFla ““IFIE".
Lemma 17. Fort € N:
ID"Rgllo < C(@®)]pl:-
Proof. 1t follows by Faa Di Bruno’s formula and Hadamard’s inequality (Lemma 1). O
Lemma 18. Let f € C*°(T,R),a > 0,t,h € N. Then:

1D Ta(f)llo < C(t +h)a*"|Fls, 1D'Ra(f)lo < Ca™ | Flisnsa

Proof. Lett,h € N,a > 0. Then:

1D Tu(H)lo < Y 1@ F D] < D' flof2mal*?,

ll]<a
where in the last inequality we have used the fact that:

1D fllo

o=

with [ := max{|/|, 1}. Now we prove the second inequality:

A 1 ~ .
ID'Ra(H)llo = Y LfF ORI < = 3 1Dl

[l|>a [l|>a

ID"*h+2 £ 1 C . ine
</ Z|2,,,|zfa_h”D flo-

|l|>a
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