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ABSTRACT This paper presents an experimental analysis of information loss in degraded environments for
traditional 2D imaging and 3D integral imaging.We consider mutual information to quantify this information
loss. Our experimental analysis shows that 3D integral imaging preserves more scene information in
degraded environments considered here than traditional 2D imaging. Additionally, as an example of the
effects of information loss, we experimentally analyze the performance of integral imaging-based object
depth localization in foggy environments. We compare the performance of three commonly used integral
imaging based depth localization methods, that is, mutual information, minimum variance, and maximum
voting strategy in foggy environments. For this purpose, we use illustrative laboratory scenes recorded
in varying fog levels with and without partial occlusions. We assume the availability of bounding boxes
corresponding to each object. An increase in fog severity results in increased information loss as measured by
mutual information. Our analysis shows that all three algorithms perform comparably in clear environments
and can localize an object’s depth with good accuracy. The depth localization accuracy decreases in light
to moderate foggy environments. However, mutual information provides more accurate depth information
for light to moderate foggy environments compared to the other two methods. All three algorithms fail to
provide reliable depth information for severe foggy environments.

INDEX TERMS Depth estimation, fog, integral imaging, low light illumination, maximum voting strategy,
minimum variance, mutual information, partial occlusion.

I. INTRODUCTION
Integral imaging is a prominent multi-camera imaging tech-
nique that records angular information about the incoming
light field [1], [2], [3], [4], [5]. Traditional integral imaging
used a lenslet array in front of a single imaging sensor.
However, this technique has a limited parallax. The parallax
can be further increased by using a synthetic aperture integral
imaging setup [6], [7], [8], [9], [10], [11], [12], [13],
[14], [15], [16]. It captures multiple 2D elemental images
of a scene from different perspectives. We use a single
camera mounted on a translation stage to record multiple
2D elemental images. However, the same can be achieved
by using a camera array. One of the several applications of
InIm is in passive depth localization [17], [18], [19], [20],
[21] which has been further advanced to account for partial
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occlusions [22], [23], [24], [25], [26]. InIm has proven useful
for imaging in several adverse environmental conditions such
as low illumination and fog [27], [28].

Mutual information (MI) is a statistical measure of the
non-linear similarity between two data sources. Shannon’s
research is largely credited for the development of mutual
information [29]. Since then, mutual information has been
used in several fields, including communication theory,
statistics, and complexity analysis [30]. Registration of
multi-modal medical images like MR and CAT images is
an application of mutual information [31], [32] in image
analysis. Here mutual information was used as a measure
of pixel correspondence between two different images of
the same body part. Several studies subsequently showed
that mutual information performed at a similar level com-
pared to manual-assisted registration [33]. Recently, mutual
information has been used for a wide range of applications
such as a stereo correspondence measure [34], image
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registration [35], [36], and as an image similarity metric [37],
[38]. Mutual information has also been utilized for image
fusion [39], and multi-plane tracking [40]. We utilize mutual
information as a metric to quantify the information present
in a scene in the presence of degraded environments like fog,
partial occlusion, and low illumination conditions.

This manuscript presents mutual information-based infor-
mation loss analysis between 3D integral imaging and
2D imaging under varying degradations. Our experimen-
tal analysis shows that 3D integral imaging can better
preserve the scene information in degraded environments
than traditional 2D imaging. Additionally, as an illustrative
example of the effects of information loss in degraded
environments, we experimentally analyze integral imag-
ing based object depth localization performance in foggy
environments. We compare three integral imaging-based
depth localization methods for two illustrative laboratory
scenes recorded in varying levels of fog. These methods are
minimum variance [41], maximum voting [18], and mutual
information [42], [43]. The information regarding spatial
location (bounding box) is assumed to be available for each
object. We can use approaches such as deep learning-based
object detection for such information characterization. Our
analysis shows that all three object depth localization
algorithms perform comparably in clear environments.
However, for light to moderate foggy environments, the
mutual information-based approach provides much more
accurate object depth information compared to the other
two methods. For severe foggy environments, all three
algorithms fail to provide reliable depth information. Still, for
severely foggy environments, the mutual information based
approach provides comparatively more accurate object-depth
information than other methods.

II. 3D INTEGRAL IMAGING
Integral imaging uses diverse perspectives of incoming light
fields to achieve passive 3D imaging of the scene. We use
a single camera mounted on a translation stage to capture
elemental images. However, the same can be achieved with
either a lenslet array in front of a single imaging sensor or by
using a camera array [6], [7], [8], [9], [10], [11], [12], [13],
[14], [15], [16]. Captured 2D elemental images can be back-
propagated through a virtual pinhole to obtain a faithful 3D
reconstruction of the original scene. This technique is optimal
in the maximal likelihood sense for images dominated by
Gaussian noise, which usually happens in low illumination
conditions where read noise dominates the image capture
process [2], [3], [4], [5]. This results in the 3D reconstructed
scene having a better signal-to-noise ratio compared with
any individual 2D elemental images in low illumination
conditions. More information and a review of integral
imaging and its applications can be found in [44] and [45].
In our experiments, we use a synthetic aperture integral

imaging setup which has a higher parallax compared to the
traditional integral imaging setup which uses a lenslet array
in front of a single imaging sensor [46]. Figure 1(a) shows

FIGURE 1. (a) Synthetic aperture integral imaging (InIm) setup using a
camera array for the image pickup process. (b) The reconstruction process
of the Integral imaging setup of (a). (c) Integral imaging setup using a
lenslet array and a single imaging sensor. (d) The reconstruction process
of the integral imaging setup of (c).

the pickup stage of the synthetic aperture InIm. Figure 1(b)
shows the 3D reconstruction of the scene by backpropagation
of the captured 2D elemental images through a virtual
pinhole. Fig. 1(c) and (d) show the traditional InIm camera
pickup and reconstruction process using a single image
sensor and a lenslet array. The 2D elemental images can
be backpropagated through a virtual pinhole to achieve
3D reconstruction. Reconstructed 3D scene intensity Iz(x, y)
is computed as [44], [45]:

Iz(x, y) =
1

O(x, y)

M−1∑
m=0

N−1∑
n=0

[
Imn

(
x −

m× Lx × px
z/f

, y

−
n× Ly × py

z/f

)
+ ϵ

]
(1)

Here (x, y) is the pixel indices, and O(x, y) is the number
of overlapping pixels in (x, y). Additionally, Imn is a 2D
elemental image, with (m, n) representing its indices, and
(M ,N ) representing the total number of elemental images.
Additionally,

(
cx , cy

)
,
(
px , py

)
, and

(
Lx ,Ly

)
represent the

sensor size, the pitch size between cameras, and the resolution
of the camera sensor, respectively. z is the reconstruction
distance of the 3D object from the InIm system and f is
the focal length of the camera lens. ε is the additive camera
noise. Assuming the object to be made up of a Lambertian
surface with uniform illumination 3D reconstruction at the
true depth will minimize the variation of the incoming
rays [41].

III. MUTUAL INFORMATION
Recently, spatial mutual information was utilized for integral
imaging parameter optimization and integral imaging-based
object depth localization [42], [43], and [47]. It uses mutual
information to evaluate the fidelity of the 3D integral
imaging reconstruction. This can then be used either for
passive depth localization of an object present within a 2D
bounding box or integral imaging parameter estimation to
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optimize some desired quantity like longitudinal resolution.
Pixel correspondence-based mutual information (I ( X;Y ) )
between two sub-images X and Y is defined as:

I (X,Y ) =
∑
g1∈Ip

∑
g2∈Ip

fx,y (g1, g2) log
fx,y (g1, g2)
fx (g1) fy (g2)

(2)

Here Ip is the set of pixel intensity values available
in the image, and g1 and g2 are pixel intensity values in
images X and Y respectively and they take values from the
set Ip. Additionally, fx(g1) and fy(g2) represent the probability
distribution functions over the pixel intensity values (g1
and g2) in X and Y respectively. Additionally, fx,y(g1, g2)
represents the joint probability distribution function over the
pixel intensity values (g1 and g2) in X and Y . However,
this formulation fails to capture the spatial information of
an object which can result in poor performance in degraded
environments [37]. To remedy this, [43] uses a one-adjacent
pixel neighborhood. Some other published methods solve
this problem by incorporating gradient information [48]
or by using higher-order mutual information [49]. The
consequent increase in computational and data requirements
can be handled by several methods like principal component
analysis or independent component analysis [37]. Volden et
al. introduce a graphical approach using the Ising model [50].
It states that the conditional probabilities of a site’s gray
level corresponding to its neighborhood are proportional
to the exponential sum of the potentials of its associated
cliques. Thus, different neighborhood configurations that
produce the same potential U(x) can be grouped as a single
state α. Mutual information between two images is then given
as [50]:

I (X,Y ) =
∑
g1∈IP

∑
g2∈IP

∑
αx

∑
αy

fx,y
(
g1, αx , g2, αy

)
× log

fx,y
(
g1, αx , g2, αy

)
fx (αx) fy

(
αy

)
fx,y

(
αx , αy

)
fx (αx , g1) fy

(
αy, g2

) (3)

Here Ip is the set of pixel intensities, and g1 and g2
are the intensity values of pixels. Also, αx and αy are
the unique states corresponding to different neighborhood
configurations that produce the same potential. Additionally,
fx and fy represent the probability distribution functions over
the pixel intensity values and energy states in X and Y
respectively. Additionally, fx,y represents the joint probability
distribution over pixel intensity values and energy states in
X and Y . Henceforth we use this spatial mutual information
formulation to quantify the information contained within
an image with respect to a corresponding reference image.
We evaluate the efficacy of the 3D InImmethod bymeasuring
the mutual information between the 3D reconstructed scene
and its ground truth in adverse environmental conditions.
We compare this with the mutual information between
the 2D central perspective and its ground truth in adverse
environmental conditions. In both these computations, the
ground truth is assumed to be a 2D clear image without any
degradations.

IV. INTEGRAL IMAGING-BASED OBJECT DEPTH
LOCALIZATION
We analyze the performance of integral imaging-based
object depth localization methods in foggy environments.
We experimentally compare three commonly used integral
imaging-based object depth localization methods, that is,
minimum variance [41], maximum voting [18], and mutual
information [42], [43] in foggy environments. In this section,
we briefly describe all three object depth localization
methods.

A. MINIMUM VARIANCE
Theminimumvariance (min. var.) [41]method uses a spectral
radiance pattern (L(·)) to infer the depth of Lambertian
surfaces. It computes the statistical variance of the spectral
radiance pattern on each voxel for each camera. The lower the
variance, the more likely it is that the information comes from
a Lambertian surface point. This is because a Lambertian
surface has a uniform radiance pattern. Thus, this method
minimizes the variance to estimate the depth. In discrete case
the predicted depth is given by [41]:

ẑ(x, y) = argmin
z∈Z

3∑
j=1

N∑
i=1

[
L

(
θi, φi, λj

)
− I

(
λj

)]2
(x,y,z) (4)

Eq. 4 uses N intensity images and three image color bands.
Here θ and φ are the zenith and azimuthal parameters that
determine the ray angle, and λ denotes wavelength. Also,
L(·) is the spectral radiance pattern to capture the radiation
intensity at a certain wavelength and direction and I(·) is
the average spectral radiance at a certain wavelength over
all directions. The main drawbacks of this strategy are that
i) the accuracy of depth localization is sensitive to the types
of object surfaces with Lambertian surfaces giving the highest
accuracy, and ii) it is especially noisy at the boundary of
the surfaces. Assuming bounding box size of n × m pixels
and patch size for computing depth for each pixel as a × b
pixels, the time complexity of this method is O(l(nm× ab)).
Here, O is the order of complexity, and l is the number of 3D
reconstructions performed to compute the depth.

B. MAXIMUM VOTING
The maximum voting method (max. vote) generates a depth
map by using a voting strategy [18]. The voting is performed
using local information for each pixel. Thus, compared to
the minimum variance method, this method can obtain better
results for different types of object surfaces and objects with
sharp boundaries. Consider a camera array with each camera
denoted as Ck , with ||C|| being the total number of cameras,
and R denoting the central camera. Each camera Ck gives
rise to an elemental image Ek . Let Ek (x, y,Ck ) denote the
intensity of the pixel (x, y) in the elemental image Ek due to
cameraCk , and E(i, j,R) denote the intensity of the pixel (i, j)
in the central elemental image E due to central camera R.
Euclidean distance between the pixel (i, j) from the central
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camera R, and pixels (x, y) from each camera Ck is [39]:

di,j(x, y) =

√√√√∥C∥∑
k

(
Ek

(
x, y,Ck

)
− E(i, j,R)

)2 (5)

Now, consider a small window Wi,j surrounding the
pixel (i, j). Distance di,j is computed for the pixel (i, j) at
each position inside the window Wi,j and accumulated in
V as follows [39]:

V(i, j, z) =

∑Wi,j
x,y e−

(di,j(x,y))
2

THR

CoKi,j
(6)

Here CoKi,j is the weight factor to account for only those
cameras that see the pixel (i, j), i.e. some positions of the
scene in the reference image R are only seen by certain
cameras. Depth is now estimated based on the maximum
number of votes ẑ(x, y) = argmaxV(i, j, z). Assuming
bounding box size of n × m pixels and patch size for
computing depth for each pixel as a × b pixels, the time
complexity of this method is O(l(nm × ab)). Here, O is the
order of complexity, and l is the number of 3D reconstructions
performed to compute the depth.

C. MUTUAL INFORMATION
The mutual information-based object depth localization
method [42], [43] uses spatial mutual information (see Eq. 3)
to compute the fidelity of the 3D InIm reconstructed scene
which can then be used for passive depth localization of
an object present within a 2D bounding box. The mutual
information is computed between the object’s 2D bounding
box in the 3D reconstructed scene and the corresponding
bounding box in the 2D elemental image. This method
generates a mutual information curve as a function of recon-
struction depth. The object depth is estimated by locating
the curve’s maximum. This method performs computation
on the entire 2D bounding box of an object as opposed
to a patch-based analysis used in both minimum variance
and maximum voting methods. It, thus, is more robust to
environmental degradation. However, this method is limited
to one depth localization per 2D bounding box as opposed
to a detailed depth map generated by minimum variance
and maximum voting methods. The computation of mutual
information curve can be broken down into three parts: InIm
3D reconstruction, mutual information computation, and
mutual information curve generation. Assuming bounding
box size of n × m pixels, the combined time complexity
of these three steps is O

(
l
(
nm+ b21b

2
2

))
[42], [43]. Here,

b1 and b2 are the bin sizes for possible pixel values,
and possible clique potentials (see section III) and l is
the number of 3D reconstructions used to generate the
average MI curve. Detailed descriptions of various depth
localization approaches discussed in previous sub-sections
are provided in references [18], [41], [42], [43] which provide
full details on mathematical development of the algorithms
and experimental examples.

V. INTEGRAL IMAGING-BASED OBJECT DEPTH
LOCALIZATION
A large database of 3D images could be helpful to generalize
our results. However, to the best of our knowledge 3D
integral imaging databases in degraded environments are not
publicly available. As such, we use a laboratory experimental
setup to capture a scene in various degraded environments.
The laboratory scene contains three objects of interest - a
mannequin, a thermal mannequin, and an iron. The scene
is captured using 25 (5 vertical × 5 horizontal) elemental
images. The horizontal and vertical camera pitches are both
set to 50 mm. The focal length of each camera lens used in
integral imaging set up is 50 mm and the exposure time of
each camera is 50 ms. The scene is recorded using a visible
range sCMOS sensor (Hamamatsu C11440-42U). The image
sensor contains 2048 × 2048 pixels, with 6.5 µm×6.5 µm
pixel size. The object scene is placed approximately 6 meters
in front of the integral imaging setup. Partial occlusion is
created by placing artificial leaves in front of the camera. Low
illumination condition is created by reducing the light levels
and is quantified by photons per pixel. A foggy environment
is created by placing a fog chamber in front of the camera and
by using a fog-generating device to fill the chamber. The fog
chamber is placed in front of the integral imaging system and
is approximately of size 110× 70× 60 cm3. The visibility of
the scene is controlled by modifying the fog concentration
inside the chamber. We quantify the severity of fog with
a scattering coefficient computed using the Koschmieder
atmospheric scatteringmodel [51]. Koschmieder atmospheric
scattering model is used to describe image formation in hazy
environments [51]:

I (x, y) = J (x, y)t(x, y)+ A(1− t(x, y)) (7)

t(x, y) = e−βd(x,y) (8)

Here, I (x, y) is the observed hazy image with (x, y)
representing the traditionally used x and y directions of the
rectilinear coordinate systems, J (x, y) is the haze-free image
(ideal image), A is the atmospheric light, and t(x, y) is the
transmission of the medium that quantifies the fraction of
light reaching the sensor. Also, β is the scattering coefficient
of the atmosphere that defines the thickness or severity of fog.
We use it to quantify our experimental foggy scenes. Here,
d(x, y) is the distance between the objects and the imaging
sensor. Figure 2(a) shows the scene in a clear environment
with all three objects circumscribed by their corresponding
2D bounding boxes. Figure 2(b) shows the same scene in
the presence of partial occlusion. Figure 2(c) shows the same
scene as Fig. 2(a) in low-illumination of approx. 20 photons
per pixel with partial occlusion. Figure 2(d) shows the same
scene as Fig. 2(a) with fog (scattering coefficient β = 4.6)
and with partial occlusion. In addition to analyzing the
information loss in degraded environments, we also compare
three commonly used integral imaging-based object depth
localization methods in foggy environments. We capture
two laboratory scenes, each in four different fog levels
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FIGURE 2. (a) Experimental scene in clear condition. The scene contains
three objects of interest with each object being circumscribed by its
corresponding 2D bounding box - mannequin is shown in a
magenta-colored box, thermal mannequin is shown in a black box, and
iron is shown in a red box. (b) The same scene as (a) in the presence of
partial occlusion, (c) The same scene as (a) in the presence of low
illumination (approximately 20 photons per pixel) and partial occlusion,
(d) The same scene as (a) in fog (scattering coefficient β = 4.6) and
partial occlusion.

from mild to severe with scattering coefficient β = 0.5,
3.2, 7.8, and 9.4 respectively. Figures 3(a)–(d) show the
first scene with fog density increasing from (a) to (d) with
scattering coefficient β = 0.5, 3.2, 7.8, and 9.4 respectively.
Figures 4(a)–(d) show the second scene with fog density
increasing from (a) to (d) with scattering coefficient β =

0.5, 3.2, 7.8, and 9.4 respectively. The first scene contains
four objects of interest - a mannequin, a thermal mannequin,
a plastic jar, and a metallic jar. The second scene contains
three objects of interest - a thermal mannequin, a plastic jar,
and an iron.

VI. RESULTS
A. INFORMATION ANALYSIS IN DEGRADED
ENVIRONMENTS
We use the experimental scene shown in Fig. 2 for our
analysis. We use spatial mutual information (see Eq. 3)
to quantify the information loss in degraded environments.
We compute mutual information between an object’s 2D
bounding box in the target scene and the corresponding
bounding box in the reference scene. We use the noiseless
scene in an ideal condition (shown in Fig. 2(a)) as the
reference scene. Figures 2(a)–(d) are used as target scenes
for the 2D case and their corresponding 3D integral imaging
reconstructions are used as target scenes for the 3D case. The
scenes are 3D reconstructed using integral imaging at each of
the object’s depths. Figures 5(a)–(c) show 3D reconstructions
of the clear scene in Fig. 2(a) at each of the object’s depth.
Figures 5(d)–(f) show 3D reconstructions of the partially
occluded scene in Fig. 2(b) at each of the object’s depths.
Table 1 shows the average mutual information values for
both 2D and 3D cases in clear scene, scene with low light

FIGURE 3. First experimental scene in a foggy environment for object
depth localization comparison. (a) Scene in mild fog level (scattering
coefficient β = 0.5 ). Four objects of interest are circumscribed by their
corresponding 2D bounding boxes. The four objects are - a mannequin
shown in a magenta box, a thermal mannequin shown in a cyan box,
a plastic jar shown in a black box, and a metallic jar shown in the red box.
(b)–(d) the same scene as (a) with increasing fog severity levels
(scattering coefficient β = 3.2, 7.8, and 9.4 respectively).

FIGURE 4. Second experimental scene in a foggy environment for object
depth localization comparison. (a) Scene in mild fog level (scattering
coefficient β = 0.5). Three objects of interest are circumscribed by their
corresponding 2D bounding boxes. The three objects are - a thermal
mannequin shown in a cyan box, a plastic jar shown in a red box, and an
iron shown in a black box. (b)–(d) the same scene as (a) with increasing
fog severity levels (scattering coefficient β = 3.2, 7.8, and
9.4 respectively).

and occlusion, and scene with for and occlusion (see Fig. 2).
The average is computed for the three objects (see Fig. 2) -
a mannequin, a thermal mannequin, and an iron. Table 1
shows that in clear high illumination environments, only a
single 2D image is sufficient to retain most of the information
of the scene. For such situations, 3D InIm introduces
several imaging artifacts, such as interpolation errors while
combining 2D elemental images, that reduce the available
information. However, in degraded environments such as
partial occlusion, low illumination, fog, or a combination
of various degradations. Integral imaging (3D InIm) can
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FIGURE 5. (a)–(c) 3D integral imaging reconstruction of the clear scene
shown in Fig. 2(a) at each of the object’s depths - the iron, the
mannequin, and the thermal mannequin respectively. (d)–(f) 3D integral
imaging reconstruction of the partially occluded scene shown in Fig. 2(b)
at each of the object’s depths - the iron, the mannequin, and the thermal
mannequin respectively. In each 3D reconstruction, the object in focus is
circumscribed with a black colored box.

TABLE 1. 2D vs. 3D average mutual information (MI) comparison for the
scene in Fig. 2.

recover more information about an object than conventional
2D imaging.

B. INFORMATION ANALYSIS IN DEGRADED
ENVIRONMENTS
Information loss in degraded environments affects the
performance of various imaging applications. As an illus-
trative example, we experimentally investigate the effect
of fog on integral imaging-based object depth localization.
We compare three integral imaging-based object depth local-
ization methods - minimum variance (min. var.), maximum
voting (max. vote), and mutual information (MI). We use
foggy scenes shown in Fig. 3 and Fig. 4. The mutual
information-based object depth localization method gives a
mutual information curve as a function of reconstruction
depth. The object’s depth is estimated by searching the
location of the mutual information maximum. The other two
methods (min. var. and max. vote) generate depth maps.
Object depth is estimated by first plotting a pixel depth
distribution curve, that is, a histogram of the depths of every
pixel present within the object’s 2D bounding box, and
then locating its maximum. Mutual information curves and
pixel depth distribution curves for all the objects in Fig. 3
and Fig. 4 are shown in Appendix. Table 2 compares the
accuracy of three integral imaging object depth localization
methods. In our experiments, we classify an object’s depth
localization as correct if it is within 15 cm of the true value.
We allow this tolerance to counter two sources of error in

TABLE 2. 2D vs. 3D average mutual information (MI) comparison for the
scene in Fig. 2.

TABLE 3. Modified accuracy of InIm-based object depth localization
methods in fog for seven objects shown in Fig. 3 and Fig. 4.

the measurement of the true depth - first, the objects are
not planar but have a 3D profile, and second, true depth
measurement techniques (e.g. laser meter) themselves give
measurement and alignment errors. A potential source of
error in the minimum variance and maximum voting results
shown in Table 2 arises from the accumulation of pixel depth
values lower than the minimum value considered and higher
than the maximum value considered in the first and last
buckets of the histogram. This introduces errors as minimum
variance and maximum voting methods estimate an object’s
depth by finding the location of the histogram bucket with
the most pixels (or the location of the maximum of the pixel
distribution curve). One solution to mitigate this is to remove
the first and last buckets from consideration. Table 3 shows
the same results as that of Table 2 but with the first and last
histogram buckets removed from consideration.

Table 2 and Table 3 show that all three methods (minimum
variance, maximum voting, and mutual information) can
localize object depth with good accuracy in case of no or
very little fog. However, for moderate to severe fog levels,
minimum variance and maximum voting algorithms fail to
provide a reasonably accurate estimate. Meanwhile, mutual
information can provide a reasonably accurate depth estimate
because it uses statistics of the entire object contained within
the bounding box instead of local patch-based analysis.
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In these fog levels, the maximum voting algorithm provides
better accuracy than the minimum variance method. For
dense fog all three methods become unreliable. Still, even in
dense fog, the estimates provided by the mutual information
algorithm are much more accurate than those provided by the
other two methods.

VII. CONCLUSION
In this manuscript, we evaluated the performance of 3D
InIm by comparing the mutual information between 1) 3D
reconstructed degraded scene and 2D clear non-degraded
ground truth, and 2) 2D image of the degraded scene
and 2D clear non-degraded ground truth. The degradations
considered are fog, partial occlusion, and low light. It is
observed that for clear non-degraded environments, the
3D integral imaging introduces artifacts that reduce the
amount of available information. However, in degraded
environments, such as partial occlusion, low light with partial
occlusion, and fogwith partial occlusion, 3D integral imaging
can recover more information about an object compared to
2D imaging. To demonstrate one of the effects of information
loss in degraded environments, we experimentally analyzed
the performance of integral imaging-based object depth local-
ization in fogy environments. We compared the performance
of three integral imaging-based object depth localization
techniques on laboratory scenes in foggy environments.
In clear or low fog environments, all three algorithms
(minimum variance, maximum voting, and mutual informa-
tion) perform reasonably well. However, minimum variance
and maximum voting algorithms perform more poorly than
mutual information in moderate to severe fog levels. For
dense fog, all three algorithms fail to provide accurate depth
localization of objects. However, even in dense fog, mutual
information can provide more accurate estimates compared
to minimum variance and maximum voting methods. This
manuscript provided preliminary results on experimental
scenes. However, a rigorous analysis was not considered
here as it is outside of the scope of this manuscript. In the
future, more experimental evaluation is needed to get a better
understanding of the performance of integral imaging and
integral imaging-based object depth localization methods.
Additional real-world degradations also need to be tested.
One example of such a degradation is brownout conditions
which may occur in sandy environments.

Our study shows the potential usefulness of integral
imaging in computer vision tasks such as object depth
localization under degraded environments. For the degraded
scenes we used, experiments illustrate that 3D Integral
imaging experiments performs better than 2D imaging in
terms of mutual information to preserve object information,
which can be beneficial in object detection, depth estimation,
or object tracking. Additionally, we analyzed three integral
imaging based depth localization methods to show their
advantages and limitations in degraded environments. This
entire study relies on accurate information about object
bounding box. We assume the availability of this bounding

box using several deep learning or machine learningmethods.
However, inaccuracies in obtaining bounding boxes may lead
to poor object depth localization performance.

APPENDIX
We plot the mutual information curves and pixel depth
distribution curves, this is, a histogram of the depths of
every pixel present within the object’s 2D bounding box,
for all objects in Fig. 3 and Fig. 4 using minimum variance
(min. var.) andmaximumvotingmethod (max. vote). It can be
seen from these figures that minimum variance andmaximum
voting algorithms perform worse than mutual information
in moderate to severe fog levels. For dense fog, all three
algorithms fail to provide accurate depth localization of
objects.

FIGURE 6. (a) Pixel depth distribution, that is, a histogram of the depths
of every pixel present within the object’s 2D bounding box, of the
metallic jar in Fig. 3 using minimum variance (min. var.) method. (b) Pixel
depth distribution using maximum voting method (max. vote). (c) Mutual
information (MI) curves as a function of reconstruction depth. Four
different fog levels are considered here (see Fig. 3(a)–(d)). Fog levels
#1–#4 correspond to Fig. 3(a)–(d) respectively with corresponding
scattering coefficients β of 0.5, 3.2, 7.8, and 9.4. The true depth of the
object is approximately 2540 mm.

FIGURE 7. (a) Pixel depth distribution, that is, a histogram of the depths
of every pixel present within the object’s 2D bounding box, of the thermal
mannequin in Fig. 3 using minimum variance (min. var.) method. (b) Pixel
depth distribution using maximum voting method (max. vote). (c) Mutual
information (MI) curves as a function of reconstruction depth. Four
different fog levels are considered here (see Fig. 3(a)–(d)). Fog levels
#1–#4 correspond to Fig. 3(a)–(d) respectively with corresponding
scattering coefficients β of 0.5, 3.2, 7.8, and 9.4 ). The true depth of the
object is approximately 4200 mm.

FIGURE 8. (a) Pixel depth distribution, that is, a histogram of the depths
of every pixel present within the object’s 2D bounding box, of the plastic
jar in Fig. 3 using minimum variance (min. var.) method. (b) Pixel depth
distribution using maximum voting method (max. vote). (c) Mutual
information (MI) curves as a function of reconstruction depth. Four
different fog levels are considered here (see Fig. 3(a)–(d)). Fog levels
#1–#4 correspond to Fig. 3(a)–(d) respectively with corresponding
scattering coefficients β of 0.5, 3.2, 7.8, and 9.4 ). The true depth of the
object is approximately 2500 mm.
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FIGURE 9. (a) Pixel depth distribution, that is, a histogram of the depths
of every pixel present within the object’s 2D bounding box, of the
mannequin in Fig. 3 using minimum variance (min. var.) method. (b) Pixel
depth distribution using maximum voting method (max. vote). (c) Mutual
information (MI) curves as a function of reconstruction depth. Four
different fog levels are considered here (see Fig. 3(a)–(d)). Fog levels
#1–#4 correspond to Fig. 3(a)–(d) respectively with corresponding
scattering coefficients β of 0.5, 3.2, 7.8, and 9.4). The true depth of the
object is approximately 4000 mm.

FIGURE 10. Pixel depth distribution, that is, a histogram of the depths of
every pixel present within the object’s 2D bounding box, of the plastic jar
in Fig. 4 using minimum variance (min. var.) method. (b) Pixel depth
distribution using maximum voting method (max. vote). (c) Mutual
information (MI) curves as a function of reconstruction depth. Four
different fog levels are considered here (see Fig. 4(a)–(d)). Fog levels
#1–#4 correspond to Fig. 4(a)–(d) respectively with corresponding
scattering coefficients β of 0.5, 3.2, 7.8, and 9.4). The true depth of the
object is approximately 2500 mm.

FIGURE 11. (a) Pixel depth distribution, that is, a histogram of the depths
of every pixel present within the object’s 2D bounding box, of the thermal
mannequin in Fig. 4 using minimum variance (min. var.) method. (b) Pixel
depth distribution using maximum voting method (max. vote). (c) Mutual
information (MI) curves as a function of reconstruction depth. Four
different fog levels are considered here (see Fig. 4(a)–(d)). Fog levels
#1–#4 correspond to Fig. 4(a)–(d) respectively with corresponding
scattering coefficients β of 0.5, 3.2, 7.8, and 9.4). The true depth of the
object is approximately 4200 mm.

FIGURE 12. (a) Pixel depth distribution, that is, a histogram of the depths
of every pixel present within the object’s 2D bounding box, of the iron in
Fig. 4 using the minimum variance (min. var.) method. (b) Pixel depth
distribution using maximum voting method (max. vote). (c) Mutual
information (MI) curves as a function of reconstruction depth. Four
different fog levels are considered here (see Fig. 4(a)–(d)). Fog levels
#1–#4 correspond to Fig. 4(a)–(d) respectively with corresponding
scattering coefficients β of 0.5, 3.2, 7.8, and 9.4 ). The true depth of the
object is approximately 2500 mm.
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