

Multi-Dimensional Optical Sensing and Imaging in Degraded Environment (Keynote Address)

Bahram Javidi

*Electrical and Computer Engineering Department, University of Connecticut, Storrs, Connecticut 06269-4157, USA
Email: Bahram.Javidi@UConn.edu*

Abstract: This keynote presents an overview of multidimensional imaging approaches for sensing, visualization, detection, and classification in degraded-environments. © 2025 Bahram Javidi

1. Introduction

Sensing, imaging, detection, and classification in degraded environment is pivotal for many applications of interest in different media including air, ground, and under water. Photons provide many degrees of freedom to record, reconstruct, and process the captured scene to obtain valuable information. The photon degrees of freedom include spatial, polarimetric, temporal, and multispectral bands.

While optics offers large bandwidth and high spatial resolution, optical transmission suffers in scattering media such as fog, turbid water, smoke, etc. In this keynote address, we present an overview of recently published work on a variety of multidimensional optical imaging approaches to investigate their performance in tasks such as detection, classification, ranging, and visualization in degraded environments [1-27]. Recently, progress in this domain has been made using physics informed Bayesian neural networks for image restoration in low illumination [1].

Polarimetric 3D imaging profilometry in degraded environmental conditions such as occlusion and low light and occlusion has been reported [2]. The impact of noise on the longitudinal resolution of 3D integral imaging in the presence of noise has been evaluated [3]. Passive 3D ranging and depth estimation of partially occluded objects using mutual information and Bayesian optimization have been investigated [12]. 3D object tracking with mutual information and Bayesian optimization have shown to be effective [8]. Information theoretic analysis have been shown to be effective to assess 3D imaging information loss in degraded environments [7]. 3D object detection through fog and occlusion using passive 3D imaging have been compared to active (LiDAR) sensing in a Lab setting [15]. Progress has been made in improving the computational efficiency and performance by investigating an end-to-end integrated pipeline for underwater optical signal detection using 1D integral imaging capture with a convolutional neural network [13]. In turbid under water circumstances, high-speed 3D imaging for sensing and visualization of dynamic underwater events has been reported [6].

Both lens based and lensless sensors in visible and long-wave IR domains [4] have been reported in degraded environments. Lensless systems use a thin pseudorandom phase encoding mask instead of a lens. Robustness of single random phase encoded lensless imaging systems in presence of camera noise [9], and its lateral resolution [14] have been discussed. Lensless object classification in long wave infrared using double random phase encoding has been reported [4]. High-speed temporal optical signal detection in turbid media using lensless single random phase encoding has been demonstrated [27]. This keynote-address presents an overview of multidimensional imaging approaches for sensing, visualization, detection, and classification in degraded-environments. Applications such as high-speed optical signal detection in turbidity, polarimetric 3D profilometry, low-light conditions, and obscurations are discussed.

B. Javidi acknowledges support from the Air-Force Office of Scientific Research (AFOSR) (FA9550-21-1-0333; FA9550-24-1-0128), Office of Naval Research (ONR) (N000142212375; N000142212349); and National Science Foundation grant # 2141473.

2. References

1. G. Krishnan, J. Lee, S. Goswami, and B. Javidi, "Physics informed image restoration under low illumination with simultaneous parameter estimation using 3D integral imaging and Bayesian neural networks," *Opt. Express* 33, 6121-6134 (2025).
2. J. Lee, K. Usmani, and B. Javidi, "Polarimetric 3D integral imaging profilometry under degraded environmental conditions," *Opt. Express* 32, 43172-43183 (2024).
3. K. Usmani and B. Javidi, "Longitudinal resolution of three-dimensional integral imaging in the presence of noise," *Opt. Express* 32, 40605-

40619 (2024).

4. G. Aschenbrenner, K. Usmani, S. Goswami, B. Javidi, "Lensless object classification in long wave infrared using double random phase encoding", *Optical Engineering* 63(11), 111809 (2024).
5. G. Aschenbrenner, K. Usmani, S. Goswami, B. Javidi, "Advances in Lensless Random Phase Encoded Imaging for Automated Cell Identification," *Optical Engineering* 63, 111814 (2024).
6. R. Joshi, J. Lee, and B. Javidi, "High-speed 3D integral imaging for sensing and visualization of dynamic underwater events," *Optics Continuum* 3, 1498-1508 (2024).
7. P. Wani, K. Usmani, G. Krishnan and B. Javidi, "Assessment of 3D Integral Imaging Information Loss in Degraded Environments," *IEEE Access* 12, 166643-166651 (2024).
8. P. Wani, K. Usmani, G. Krishnan, and B. Javidi, "3D object tracking using integral imaging with mutual information and Bayesian optimization," *Opt. Express* 32, 7495-7512 (2024).
9. S. Goswami, G. Krishnan, and B. Javidi, "Robustness of lensless single random phase encoding imaging in presence of camera noise," *Optics Express* 32, 4916-4930 (2024).
10. G. Krishnan, S. Goswami, R. Joshi, and B. Javidi, "Three-dimensional integral imaging-based image descattering and recovery using physics informed unsupervised CycleGAN," *Opt. Express* 32, 1825-1835 (2024).
11. R. Joshi, K. Usmani, G. Krishnan, F. Blackmon, and B. Javidi, "Underwater object detection and temporal signal detection in turbid water using 3D-integral imaging and deep learning," *Opt. Express* 32, 1789-1801 (2024).
12. P. Wani, K. Usmani, and B. Javidi, "3D integral imaging depth estimation of partially occluded objects using mutual information and Bayesian optimization," *Opt. Express*, 31, (2023)
13. Y. Huang, G. Krishnan, T. O'Connor, R. Joshi, and B. Javidi, "End-to-end integrated pipeline for underwater optical signal detection using 1D integral imaging capture with a convolutional neural network," *Opt. Express* 31, 1367-1385 (2023).
14. S. Goswami, P. Wani, G. Gupta, and B. Javidi, "Assessment of lateral resolution of single random phase encoded lensless imaging systems," *Opt. Express* 31, 11213-11226 (2023).
15. K. Usmani, T. O'Connor, P. Wani, and B. Javidi, "3D object detection through fog and occlusion: passive integral imaging vs active (LiDAR) sensing," *Opt. Express*, 31, 479-491 (2023).
16. P. Wani, G. Krishnan, T. O'Connor, and B. Javidi, "Information theoretic performance evaluation of 3D integral imaging," *Opt. Express* 30, 43157-43171 (2022).
17. M. Perez, X. Shen, S. Bosch, B. Javidi, A. Carnicer, "Estimation of Degree of Polarization in low light using truncated Poisson distribution," *IEEE Photonic* 14, pp. 1-8, (2022).
18. P. Wani, K. Usmani, G. Krishnan, T. O'Connor, B. Javidi, "Lowlight object recognition by deep learning with passive three-dimensional integral imaging in visible and long wave infrared wavelengths," *Opt. Express* 30, 1205-1218 (2022).
19. G. Krishnan, R. Joshi, T. O'Connor, and B. Javidi, "Optical signal detection in turbid water using multidimensional integral imaging with deep learning," *Opt. Express* 29, 35691-35701 (2021).
20. K. Usmani, T. O'Connor, and B. Javidi, "Three-dimensional polarimetric image restoration in low light with deep residual learning and integral imaging," *Opt. Express* 29 (18), 29505-29517 (2021).
21. M. Martinez-Corral and B. Javidi, "Fundamentals of 3D imaging and displays: A tutorial on integral imaging, Lightfield, and plenoptic systems," *Adv. Opt. Photonics*, **10**, 512-566 (2018).
22. B. Javidi, X. Shen, A. Markman, P. Latorre-Carmona, A. Martínez-Uso, J. Martínez Sotoca, F. Pla, M. Martínez-Corral, G. Saavedra, Y. Huang, and A. Stern, "Multidimensional Optical Sensing and Imaging Systems (MOSIS): From Macro to Micro Scales," *Proc. IEEE Journal*, **105**, 850-875 (2017).
23. B. Javidi, A. Carnicer, J. Arai, T. Fujii, H. Hua, H. Liao, M. Martínez-corral, F. Pla, A. Stern, L. Waller, Q. H. Wang, G. Wetzstein, M. Yamaguchi, and H. Yamamoto, "Roadmap on 3D integral imaging: sensing, processing, and display," *Opt. Express*, 28(22), 32266-32293 (2020).
24. M. Cho, M. Daneshpanah, I. Moon, and B. Javidi, "Three-Dimensional Optical Sensing and Visualization Using Integral Imaging," *Proc. IEEE*, **99**, 556-575 (2011).
25. D. LeMaster, B. Karch, and B. Javidi, "Mid-Wave Infrared 3D Integral Imaging at Long Range," *J. Display Technol.* **9**, 545-551 (2013).
26. G. Lippmann, "Epreuves reversibles donnant la sensation du relief," *J. Phys.* **7**, 821-825 (1908).
27. G. Aschenbrenner, Y. Huang, R. Joshi, B. Javidi, "High-speed Temporal Optical Signal Detection in Turbid Media using Lensless Single Random Phase Encoding, *Optics and Lasers in Engineering* 188, (2025).