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Neuro-Dynamic State Estimation for
Networked Microgrids

Fei Feng

Abstract—The increasing integration of distributed energy re-
sources (DERs) brings complicated dynamics in networked mi-
crogrids (NMs), calling for high-fidelity dynamic state estimation
(DSE) of NMs. Traditional DSE, which requires accurate physical
models of the entire NMs, is becoming increasingly unattainable.
This paper devises neuro-dynamic state estimation (Neuro-DSE),
a learning-based DSE algorithm to track the dynamics of inverter-
interfaced NMs with unknown subsystems. The process and
contributions include: 1) a data-driven Neuro-DSE algorithm is
established for NMs with partially unidentified dynamic models by
incorporating the neural-ordinary-differential-equations (ODE-
Net) into Kalman filters; 2) a self-refined Neuro-DSE+ method
is devised to tackle limited and noisy measurements. Specifically,
Kalman filters are embedded into ODE-Net training for auto-
matic filtering, augmenting, and correcting effects; 3) a Neuro-
KalmanNet-DSE algorithm is derived to relieve the model mismatch
scenarios by integrating KalmanNet with Neuro-DSE. Numerical
simulations carried out on typical four-microgrid NMs reveal that
Neuro-DSE can track the dynamics under various control modes
(e.g., droop/secondary controls) and components. Its variants in-
crease the accuracy of Neuro-DSE under limited measurement and
model mismatch scenarios.

Index Terms—Networked microgrids, neuro-dynamic state
estimation, Kalman filter, neural ordinary differential equations,
KalmanNet.

1. INTRODUCTION

N SUPPORT of power sector’s decarbonization and en-
I ergy resiliency, networked microgrids (NMs) are being in-
creasingly developed as they can collaboratively serve critical
communities and host distributed energy resources (DERs) [1].
Today’s NMs are undergoing an increasing integration of
inverter-interfaced renewable resources. The ubiquitous uncer-
tainties [2], deteriorated inertia [3], frequent plug-and-play [4],
[5], as well as unforeseen failures [6], [7], may jointly trigger
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complicated dynamic processes in NMs operations, creating the
high need for accurate evaluations of the dynamic states of NMs.

Dynamic state estimation (DSE) is an indispensable founda-
tion for power system operation as it provides the most-likely
dynamic states of the system to perform online monitoring and
control [8], [9]. However, the accurate physics models of each
inverter-based DER and the entire NMs may not always be
attainable to support existing DSE methods to precisely track the
fast dynamics of NMs, especially the internal states of inverter
controllers.

Physics-based DSE algorithms, represented by Kalman filter
and its variants [10], [11], [12], [13], strongly rely on accurate
dynamic models of the whole system to estimate the system
states [14], [15]. Ref. [16] used a model-based equivalence
method to reduce the parameters of the detailed model. Then,
it integrates the equivalent physics model into the Kalman filter
to estimate the required dynamic states for the modified con-
troller. However, the complete physical models in NMs are often
unattainable due to unavailable parameters of distributed inverter
controllers, frequently changing control modes and plug-and-
play of DERs, data privacy needs, etc. The complications of
physical models may lead to subsystems with unidentified dy-
namic models in NMs, which unavoidably make the classical,
physics-based DSE algorithms impractical [17], [18].

Recent progress in learning dynamic models from data shed
light on developing data-driven DSE without requiring explicit
physics of the entire system. Ref. [19] employs a long short-term
memory (LSTM) networks to realize the DC microgrid state
estimation. An improved residual network (ResNet) is applied
for the state estimation of the distribution system by collecting
historical data [20]. Meanwhile, a deep neural network (DNN)
based hybrid DSE is established for multi-machine power
systems [21]. Recently, neural-ordinary-differential-equations
(ODE-Net) [22] emerges to become an efficacious paradigm
for learning underlying dynamic models of power systems [23],
which also ignites new hopes for data-driven DSE because it can
best preserve the continuous-time dynamic characteristics. Nev-
ertheless, two fundamental obstacles still hinder the application
of existing data-driven approaches to DSE for real-world NMs:
I) Data-driven dynamic models learned from limited and noisy
measurements may not satisfy the accuracy needs of DSE; and
1) Mismatches between data-driven models and real dynamic
measurements unavoidably bias the state estimator.

To bridge the gap, this paper devises neuro-dynamic state
estimation (Neuro-DSE), which integrates ODE-Net with both
physics-based and neural-network-based Kalman filter theories
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to allow for learning-based DSE of NMs under unidentified
subsystems, limited measurements, and potential model mis-
matches. Our contributions are threefold:

®* An ODE-Net-enabled dynamic state estimation (Neuro-
DSE) method is established to address DSE in NMs
with unidentified subsystem models. Neuro-DSE inte-
grates hybrid physics/ODE-Net-based dynamic models
with Kalman filters for NMs’ awareness, in which ODE-
Net well preserves the continuous-time dynamics char-
acteristics of the unknown subsystems. In addition, this
feature enables ODE-Net more resilient to the noise in the
measurement values.

o A self-refined Neuro-DSE (Neuro-DSE™) algorithm is then
devised to enable efficacious data-driven DSE under noisy
and limited measurement scenarios. The self-refined train-
ing framework embeds the Kalman filters into ODE-Net
training which enables full states of identified subsystems
for ODE-Net training. Thus, the accuracy and expressibil-
ity of ODE-Net are enhanced.

e A KalmanNet-enhanced Neuro-DSE (Neuro-KalmanNet-
DSE) is established to address possible model mismatch
scenarios induced by data-driven dynamic models. In this
variant, KalmanNet which integrates a dedicated recurrent
neural network (RNN) into Kalman filters to adaptively
track NMs’ states under imprecise knowledge of dynamic
models.

The remainder of this paper is organized as follows: Section I1
devises the ODE-Net-enabled Neuro-DSE algorithm. Section I11
develops the self-refined Neuro-DSE™. Section IV establishes
Neuro-KalmanNet-DSE. Section V presents case studies on a
typical NMs system to verify the effectiveness of our methods,
followed by the Conclusion in Section VI.

II. NEURO-DYNAMIC STATE ESTIMATION

This section devises neuro-dynamic state estimation (Neuro-
DSE), a data-driven DSE algorithm for estimating the dynamic
states of NMs with partially known physics models.

A. Preliminaries of Physics-Based DSE

DSE targets tracking the dynamic states of a discrete-time
nonlinear system [24], which can be described as:

{xk = f(xr—1) +ws

(1)
yr = h(xy) + 7

where, x5, and y; denote the state variables and measurement
variables at time step k, respectively; f(-) and h(-) denote the
discrete-time process and measurement functions, respectively;
wy, and 7, are process and measurement noises, respectively.
Kalman filter is a mainstream algorithm for DSE [10],
[11], [12]. This subsection takes the extended Kalman filter
(EKF) [10], i.e., a prominent Kalman filter variant, as a rep-
resentative to introduce the basis of physics-based DSE. EKF
consists of two kernel steps, i.e., prediction and correction:
® Prediction: The current predicted states Zy;_ are calcu-
lated via the estimated states £, at the previous step:
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Architecture of the Neuro-DSE algorithm.

T = F(@e-1p-1) (2)

e (Correction: The predicted states are corrected based on the
noisy measurements g, and the estimated states Z |, at the
current step are generated:

Tk = Tpp—1 + Ki - (Y — h(Trp-1)) (3)

Here, K}, denotes the Kalman gain, which is derived from

f(-) and h(-), i.e., the entire physics model of the system.

Obviously, conventional DSE relies on physics models to

estimate the system states, which hinders its application in NMs

with unknown subsystem models. Thus, we devise Neuro-DSE,

which integrates a learning-based ODE-Net dynamic model into
Kalman filter to enable data-driven DSE.

B. Neuro-DSE Algorithm of NMs

Fig. 1 demonstrates the outline of the Neuro-DSE algorithm.
The core idea of Neuro-DSE is to establish a data-driven dynamic
model of the unidentified subsystems so that the dynamic states
of the rest of the NMs can still be estimated via the Kalman filter.
As illustrated on the top of Fig. 1, without loss of generality,
the NMs system is divided into an external subsystem (ExSys),
whose dynamic model is unidentified, and an internal subsystem
(InSys), whose dynamic model is well defined by its physics
natures.! Our target is to construct a data-driven dynamic model
of ExSys, thereby performing a neural-network-incorporated
DSE of InSys.

In the following, we successively establish the ODE-Net-
enabled, data-based formulation for ExSys, the physics-based
formulation for InSys, and finally the Neuro-DSE algorithm
based on the physics-neural-integrated NMs formulation.

I'The “well-defined” InSys means the physics model of InSys is attainable.
However, measurements of InSys can be partial (i.e., not fully observable).
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1) ODE-Net-Enabled ExSys Modeling: ODE-Net is capable
of learning continuous-time dynamic models from discrete-time
measurements, which exhibits superior noise-resilience over
conventional deep neural networks (DNNs) [22], [23].

In this subsection, ODE-Net is employed to formulate ExSys
based on available measurements:

dxeib
dt

In (4), " denotes the states measured from ExSys, which
can consist of both physics quantities and control signals.?
u'™ represents the measurable state variables of InSys, which
reflects the interactions between InSys and ExSys. Function F'
denotes the state-space model of ExSys governed by the forward
propagation of ODE-Net:

F=Ff(fiii( fr@,u™,00)--,0,.1),0) (5

where f;(-) and 0; respectively denote the function and the
trainable parameters of the /th layer of ODE-Net.

To make ODE-Net best match ExSys’ dynamics, the loss
function is set as the error between the numerical integration
results of (4) and the time-series measurements of ExSys:

_ F(xew7,uli’n) (4)

. L0 — ex _ ~ex\2 . 02 6
mm @9) ;(-’Ek zy°)" + (62)
tr .
st @ =5+ [ F@,a",0)dt  (6b)

t

where, § = {6} U--- U {0} denotes all the trainable param-
eters of ODE-Net; v denotes the regularization coefficient; n is
the total number of time slides; 27" denotes the measurements
of ExSys (e.g., current injections to InSys, global control signals
sent to InSys) at time point k.

Because (6) incorporates numerical integration as constraints,
gradient descent based on a continuous backpropagation tech-
nique is applied to train the ODE-Net until the loss function

converges:
oL b OF
b—n5g =0 aa'tl—/tnA % @

where, 1 denotes the learning rate; A denotes the Lagrangian
multiplier corresponding to constraints (6b).

2) Physics-Based InSys Modeling: InSys is formulated by
its physics natures. Considering the fast dynamics of all the
DERs (i.e., droop/secondary controls), branch lines and power
loads, it can be proved that the differential algebraic equation-
based InSys model can be rigorously converted into a system of
ordinary differential equations [25]. Hence, InSys is functionally
formulated as:

0L

dxin

W — G(zln7xew) (8)

2Specifically, in this work, we assume that, for ExSys, only the boundary
dynamic behaviours (i.e., current injections to InSys) and control signals sent to
InSys (i.e., secondary control signals of grid-forming inverters in ExSys) can be
measured, which represents very limited measurements. However, the method
is adaptive to arbitrary measurements from ExSys.
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where, ¢ denotes ExSys states (see (4)); '™ denotes InSys
states (e.g., state variables of each DER, load, branch).

3) Neuro-DSE Algorithm: By integrating and discretizing
the ODE-Net-enabled ExSys and the physics-enabled InSys, (9)
constructs the model basis of Neuro-DSE, which is a discrete-
time, physics-neural-integrated NMs model:

zi® = DF(z" |, uj" ) +w§” (9a)
2" = DG(a}" |, 2" ) + wi" (9b)
Y = M (x5, 2)") + 1 (9¢)

where, D denotes a discretization operator, which discretizes the
neural/physics dynamics F'(-) and G(-) presented in (4) and (8);
M () denotes the measurement function of NMs; y,. denotes
the measurement variables; w{* and wi" denote the Gaussian
processing noises which follow Gaussian noise sequences N (0,
W); 7}, is the Gaussian measurement noise following N (0, R),
where W and R are the corresponding covariance matrices.
Without loss of generality, we derive the Neuro-DSE algo-
rithm based on the EKF method. Yet, the algorithm is readily
compatible with arbitrary Kalman-type filters. Neuro-DSE is
also composed of a predictor and a corrector (see Fig. 1). How-
ever, because of the incorporation of ODE-Net-based modeling,
both the prediction and the correction will be involved with
neural network operations:
® Neuro-incorporated prediction: The prediction step pre-
dicts the InSys and ExSys states based on the estimation
at the previous step. While the prediction of 2" is trivial,
the prediction of z°* involves the forward propagation of
ODE-Net according to (9a) and (5):

zif = DfL(fra (- Fr@f® w1, 01)

<o ,011),01)
(10)
where, k denotes the current time step.
® Neuro-incorporated correction: The correction step gen-
erates the estimated states by correcting the predictions:
xem x&l) .
kl|k klk—1 ~
17‘1 = “‘1 +Kk : (yk _M(xz‘zkfhx;g‘lkfl))
T T
k|k Elk—1
(1D
where, y;, denotes the noisy measurements of NMs. Specif-

ically, the Kalman gain K, is given by (12), which requires
the backward gradients of ODE-Net w.r.t. % and u'":

Ky = (JkZJi + W) - ()T
IR (IS I + W) - ()T + R (12)

(DF)

e M
5(ha) 5’(%5] and 7" = [2%  2M] re-
oxcT axin
spectively denote the Jacobian matrices; W and R re-
spectively denote the noise and measurement covariance
matrix; Xy, denotes the covariance matrices iteratively cal-
T
culated by By, = (Jp g1 J), + W) — (JM)T . KT).
Consequently, by integrating ODE-Net with the process func-
tions and covariance evolution of Kalman filters, Neuro-DSE

enables state estimation of the accessible subsystem of the NMs

where J;, =
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(i.e., InSys) even without the physics model of the inaccessible
subsystems (i.e., ExSys).

1. NEURO-DSE™: SELF-REFINED NEURO-DYNAMIC STATE
ESTIMATION

Neuro-DSE relies on measurements to learn dynamic models
of unidentified subsystems and perform data-driven DSE. Its
efficacy might be jeopardized when the excessively limited and
noisy measurements fail to generate a qualified ODE-Net. This
section enhances Neuro-DSE by devising a self-refined neuro-
dynamic state estimation (Neuro-DSE"). Neuro-DSE™ is able to
proactively augment and filter the measurements, and therefore
it provides a more efficacious data-driven DSE especially under
limited measurements.

A. Self-Refined Training of ODE-Net

ODE-Net plays an important role in Neuro-DSE, as it learns
the dynamic model of unidentified subsystems. The core idea of
Neuro-DSET is to enhance the quality and quantity of the data
used for ODE-Net training, therefore obtaining a sufficiently
accurate data-driven model even under noisy and limited mea-
surements.

We reformulate the ODE-Net-enabled dynamic model of
ExSys with an augmented input:

dmem
dt
Comparing (13) with (4), an obvious distinction is that (13)
incorporates the complete set of the InSys states ™ (rather than
merely the measurable states u‘™) to enrich the input information
into ODE-Net.

However, because of the limited measurement, 2" may not
be fully accessible, meaning that it can not be directly used for
training as Section II-B. Therefore, we establish a self-refined
training procedure for ODE-Net:

_ F<xew’min)

13)

n

. L+0: er _ er \2 _02 14
i ) ;(xk Ti)" (14a)
e '
s.toxl” =27 + F(z, zj;,0)dt (14b)

t

+ Ky, - (gk_M(xZTIv—lvmﬁk—l)) (14c)

lwza] _ [wm
Ty Ty
where, xsz denotes the estimated states of ExSys at time point
k; a:flf denotes the estimated states of InSys at time point ¢ (i.e.,
corresponding to time ¢;); other notations are the same as defined
in (11).

Asillustrated in Fig. 2, a salient feature of (14) is that it embeds
the Kalman filter process (14¢) into ODE-Net training, which
enables: (i) constructing a loss function between ODE-Net’s
predictions and the filtered ExSys states and therefore mitigating
the impact of noisy measurements; (ii) constructing ExSys dy-
namics (14b) using the full states of InSys and therefore greatly
enriching the expressibility of ODE-Net.
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Algorithm 1: Neuro-DSE *.
Initialize: 6, 2;°, u;", F(-), G(-), M (), k ;

if Pre-training then
~1in

Input: 6, 7", u;", F(-), G(-), M(-);

()i
Execute 7" FOI, z;" Eq.(4);

Execute mingeg Y, L(z§*, Z7") Eq.(6,7);

Estimate and output mZTk, "’"ZTk Eq.(5-12);

else

repeat
Input: 6, &7, a5, o, F(), G(), M();

P SO -1

Execute 7" ——— z{" Eq.(13);
Execute mingeg Y ;_; L(zi®, z7f,) Eq.(14.7);
Output neural function F(-) Eq.(13);
Estimate :I:ngk .’L'lek Eq.(5-12);

until x}gf}c remain unchanged,

end

Result: 27, ""Z\lk’ F(.);

Again, continuous backpropagation is applied for optimizing
(14). Once the training converges, the corresponding ODE-Net
can be integrated into (9) for dynamic state estimation.

B. Procedure of Neuro-DSE™ Algorithm

Algorithm 1 summarizes the Neuro-DSE™ algorithm. Three

kernel steps are incorporated:

o Step I: (Pre-training of ODE-Net) Neuro-DSE™ initializes
an augmented ODE-Net following (13). Neuro-DSE pre-
trains an ODE-Net based on (4) directly using the mea-
surement data and estimates the InSys states accordingly.

o Step 2: (Self-refined training of ODE-Net) Neuro-DSE™
performs training based on (14) using the estimated InSys
states. Once the ODE-Net converges, go to Step 3.

e Step 3: (InSys states updating) InSys states are re-estimated
using the up-to-date augmented ODE-Net following the
neural-incorporated prediction/correction presented in (5)
and (11). If InSys states remain unchanged, the algorithm
terminates, outputting the ODE-Net and the corresponding
state estimation results; otherwise, go to Step 2.
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Fig. 3. Neuro-KalmanNet-DSE architecture.

Neuro-DSE™ filters the noise-contained measurements and
augments the unmeasured states to construct the training data for
the ODE-Net model. Such a process is particularly beneficial for
data-driven DSE under limited and very noisy observations, as
it proactively employs the DSE physics of the NMs to refine the
measurements and adjust the neural network, rather than merely
relying on the observable data.

IV. NEURO-KALMANNET-DSE: KALMANNET-ENHANCED
NEURO-DYNAMIC STATE ESTIMATION

Generally, Neuro-DSE and Neuro-DSE™ are both integrated
with classical Kalman filters. However, possible model mis-
matches may happen when imperfect neural networks are trained
from finite samples or inaccurate system parameters exist. The
efficacy of traditional Kalman filters, which depend on pre-
cise understanding and modeling of underlying dynamics, may
be significantly influenced by the accuracy of domain knowledge
and model assumptions [26]. Therefore, in such scenarios, the
performance of conventional Kalman filter-integrated Neuro-
DSE may be affected. To this end, this section further develops
Neuro-KalmanNet-DSE, which empowers the Neuro-DSE phi-
losophy with KalmanNet to achieve an adaptive state estimation
under inaccurate NMs models.

A. KalmanNet Architecture for Neuro-DSE

The Kalman gain matrix K plays an important role in classical
Kalman filters (see (3)), which uses system models to compute
the impact of the noisy measurements on the estimated states.
The keystone of KalmanNet is to replace the traditional model-
based Kalman gain with a data-driven Kalman gain to relieve
the impact of inaccurate models.

Inspired by (12), KalmanNet takes three input features to de-
scribe the mapping between the elements of Kalman gain matrix
and system states/measurements: (i) the observation difference
Ay, =Y, — Yj_;; (ii) the correction difference Ay, =y, —
M (xZTk_],xz,’fk_l) and (iii) the prediction difference Az =
Tyl — Tp—1, Where z consists of z°” and 2'". Meanwhile,
as shown in (12), the computation of Kalman gain follows a
recursive nature, which motivates designing KalmanNet as an
internal memory element (e.g., RNN) to describe the Kalman
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gain (See Fig. 3). As a consequence, the KalmanNet for Neuro-
DSE is formulated as:

’Ck = ICRNN(Aka Agkv A$k7 (p)

where ICrn n represents the function of RNN; ¢ is the trainable
parameters in the KalmanNet. A noticeable feature of (15) is that
the learning-based Kalman gain is adjusted based on the latent
information of the measurement and estimation data to relieve
model mismatches during its training process.

Accordingly, Neuro-DSE can be performed by replacing the
model-driven K ;, with the data-driven Kj:

(15)

Tpk = Trp—1 + Kk - Ayy, (16)

B. KalmanNet Training Algorithm

KalmanNet is trained in a supervised fashion [26]. To best
correct the dynamic state behavior with the adaptive learning-
based Kalman gain, the loss function is set as the minimization
error between the train samples & and the estimated state x K|k
produced by the KalmanNet:

min L(p) = (@ — zp) 4@

peR

M=
S

b
Il

1

St Tpp =Tpp—1 + Ky - Ay, (17)

where y presents the regularization coefficient.
The loss gradient with respect to Kalman gain can be devised
from the output of KalmanNet as:
OL(p) _ OllKxAyr — Azl
oKy, 0K

= 2K, Ayy, - (AYy, + Tpjp—1 — Zi)

(18)

Algorithm 2 provides the overall procedure of Neuro-
KalmanNet-DSE.

V. NUMERICAL TESTS

This section validates the Neuro-DSE method and its variants
in a typical islanded networked microgrids system. All codes
are implemented in MATLAB 2020a and Python 3.7 on a
2.50 GHz PC.

A. Test System and Algorithm Settings

The test system is a phasor-model-based, 4-microgrid NMs
in islanded mode (see Fig. 4). Five inverters are connected to
the NMs [3] in Fig. 4(a). System parameters are presented in
Appendix Part A, including the parameters of DERs, power
loads, and composition information of the microgrid system.
Each controller (see Fig. 4(b)?) comprises three different parts.
The first part is a power controller that adopts droop control or
secondary control for power regulation effects. The second and
third components of the control system encompass the voltage
and current controllers, respectively. These controllers are used

31n the controller block, v and i denote voltage and current outputs; P and
@ denote active and reactive power generations; superscript * denotes reference
value; subscripts ; and ,, denote before and after filters.
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Algorithm 2: Neuro-KalmanNet-DSE.

Initialize: 0, z.*, @.", F(-), G(-), M(-), Krnn(:), k;
if Pre-training then
> ODE-Net pre-training:

~ F(),aim
Execute Z5* & z;” Eq.(4);

Execute minger > p—, L(z{") Eq.(6,7);
Estimate 1, Zrx Eq.(5-12);

> KalmanNet pre-training:

Execute Ay, Ay, Axy, M) Ki Eq.(15);

Execute minger >_p_; L(2x) Eq.(16,17);
Estimate x;, Eq.(16);
else

> Alternating training of ODE-Net and
KalmanNet :
repeat

—ex FOLE,
Execute 277 ——— z7* Eq.(13);
Execute mingeg Y, L(z¢*) Eq.(14,7);
Estimate xy5_1, Trx Eq.(5-12);

Execute Ay, Ay, Azy, M K Eq.(15);

Execute minger > L(Tkx) Eq.(16,17);
Output )1, F(-).Krnn(-) Eq.(13);

until zy;, remain unchanged,

end

to effectively mitigate high-frequency disturbances and ensure
adequate damping for the output filter [27], [28], [29]. The
majority of dynamic models of the test system are presented
in Appendix Part B, including the power controller, power
loads, and branches. The detailed control diagrams and dynamic
models for the microgrid system in Fig. 4 can be found in [25],
[27]. In addition, bus 13 can be connected to different types of
power sources, including droop/secondary-control-based DER,
virtual synchronous generator (VSG) [30] and synchronous
generator (SG) [23], to study the performance of Neuro-DSE
under different power mixes.

We assume microgrid 4 is the ExSys without explicit physics
knowledge and will be formulated via a learning-based fashion.
The corresponding ODE-Net adopts a two-layer perceptron ar-
chitecture, with 40 neurons in each layer. The regularization co-
efficient is set as 0.5. Training data for ODE-Net is generated by
time-domain simulations under 20% uncertainties of the renew-
able energy inputs. In this work, branch current measurements
are used for Neuro-DSE, while the internal signals of inverter
controllers are assumed inaccessible. However, the method is
compatible with other types of measurements. Specifically, for
secondary control, the communication signals between DERs
(i.e., the frequency/voltage secondary control signals © and e)
are also attainable as they are explicitly measured by each DER
for the control purpose.

The default case is that all the DERs adopt droop controls
(including bus 13) and all the branch currents in InSys are
measurable. It is assumed that both process and measurement
noises of the NMs follow Gaussian distributions N (y, 02) [10].
In the following, various cases are studied, including different
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Fig. 4. Test system: 4-microgrid networked microgrids with 5 grid-forming
DERs. (a) Topology of the test system; (b) Controller of DERs.

DER control strategies, power source mixes, noise levels, and
measurement availability, to thoroughly verify the efficacy of
Neuro-DSE and its variants.

B. Validity of Neuro-DSE

This subsection validates the effectiveness of the devised
Neuro-DSE under various circumstances.

1) Neuro-DSE Under Different Noise Levels: We study the
performance of Neuro-DSE under different noise levels. Two
scenarios are considered: (a) measurement noise as N (0, e‘é)
and process noise as N(0,e~%); (b) measurement noise in-
creased to N (0, e~*) and process noise as N (0, e ¢)[10]. Fig. 5
presents the simulation results. The following insights can be
obtained:

® Neuro-DSE can track both measurable states (e.g., currents
in Fig. 5(a-1) and (b-1)) and unmearsurable states (e.g.,
internal control signals of inverters in Fig. 5(a-2) and (b-2))
of NMs.

e Under both large noises (Fig. 5(b)) and small noises
(Fig. 5(a)), the dynamic states estimated from Neuro-DSE
are close to the true values.

® Neuro-DSE exhibits powerful compatibility to different
Kalman filters. The estimation results from both EKF-
based and UKF-based Neuro-DSE are close to the true
states under different noise levels as shown in Fig. 5.
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Fig.5. Selected states at D-axis of Neuro-DSE under different noise levels. (a-
1) Current under N (0, 6_6), (a-2) Voltage control signal under N (0, 6_6); (b-1)
Current under N (0, e~*), and (b-2) Voltage control signal under N (0, e™*).
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Fig. 6.  State trajectories of DER 1 under different neural networks. (a) Reac-

tive power generation; (b) Current output at D-axis.

¢ Although the results are generally satisfactory, we still ob-
serve a small bias in the estimated states under large noises
(for example, Fig. 5(b-2)). This is exactly the motivation
for developing Neuro-DSE™, which will be discussed in
Part C.

2) Comparison With Conventional DNN-Based DSE: We
then compare Neuro-DSE with conventional DNN-based DSE
to illustrate the superiority of the devised method. Two represen-
tative DNNs are studied: (a) a residual neural network (ResNet)
comprised of 8 hidden layers with double-layer skips and 100
hidden units in each layer; (b) along short-term memory (LSTM)
network with 100 hidden units.

Fig. 6 clearly illustrates that the devised ODE-Net-based
Neuro-DSE outperforms the conventional DNN-based DSE
methods. As shown in the figure, ResNet-based DSE shows large
differences at the starting stage; LSTM-based DSE tends to have
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TABLE I
MSE ofF DSE WITH DIFFERENT NEURAL NETWORKS
Noise | Type P Q ip iQ 1% [
ODENet| 2.70e=5 2.67e~5 7.44¢=6 6.75¢ =6 1.13e~% 1.83e°
1le=6| ResNet | 1.78¢~% 4.10e=® 2.34e° 7.19¢ 6 3.32e~* 8.68¢~°
LSTM | 6.71e® 4.53e7° 1.24e7° 7.19¢7% 1.63e~* 1.01e=°
ODENet| 4.23e=° 1.46e~% 8.72e=° 7.92¢ % 1.52¢—% 1.25¢~ %
le 4| ResNet | 3.78¢ % 1.17e 3 8.12e° 1.68e % 1.15e~ 3 2.78¢ 3
LSTM | 3.67e~* 2.39e~% 5.58¢ 5 2.90e~5 1.10e™3 4.78¢~*

* NDSE:Neuro-DSE
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Fig. 7. State trajectories of DER 1 under droop/secondary controls. (a) Fre-

quency; (b) Frequency control signal.

slight biases for the steady-state; and only Neuro-DSE provides
accurate estimation during the whole time period.

Table I further presents the maximum square errors (MSE)
of different methods under different noise levels. It is again ob-
served that Neuro-DSE presents the best performance compared
with other DNN-based DSE methods. More importantly, with
the increase of the noise level, the MSE of Neuro-DSE does
not increase much while the performance of ResNet and LSTM
sharply deteriorates.

3) Neuro-DSE Under Different DER Control Modes: Fig. 7
further validates the effectiveness of Neuro-DSE under different
control modes of inverters. Both droop control and secondary
control are studied. Fig. 7(a) shows that compared with droop
control, secondary control can recover the system frequency to
the nominal value, and Neuro-DSE is capable of tracking the
system dynamics under different control modes. Furthermore,
the devised Neuro-DSE method also shows the satisfactory abil-
ity for tracking communication signals, such as the frequency
control signal 2 among DERs presented in Fig. 7(b).

4) Neuro-DSE Under Different NMs Compositions: Finally,
we present Neuro-DSE’s powerful universality under differ-
ent NMs compositions. Besides the droop/secondary-controlled
DERs, two additional power sources are studied, i.e., VSG, and
SG. Fig. 8 presents the simulation results. It can be observed that
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Fig. 8.  Selected states of SG and VSG under Neuro-DSE. (a-1) Speed of SG,

(a-2) Rotor angle of SG; (b-1) Active power of VSG, (b-2) Reactive power of
VSG, (b-3) Voltage controller signals at D axis, (b-4) Voltage controller signals
at Q axis.

Neuro-DSE maintains high accuracy for both traditional syn-
chronous generators and inverter-interfaced virtual synchronous
generators, and again exhibits satisfactory estimation perfor-
mance for tracking the internal controller signals of VSG (see
Fig. 8(b-3) and (b-4)).

C. Efficacy of Neuro-DSE™

This subsection verifies the effectiveness of Neuro-DSE™ un-
der poor measurements. As we introduced, excessively noisy and
limited measurements may cause biases of Neuro-DSE, which
motivates us to devise a self-refined Neuro-DSE™ to improve
the estimation performance.

1) Neuro-DSE™ Under Different Noise Levels: First, we
demonstrate the efficacy of Neuro-DSE™ under different noise
levels. Figs. 9 and 10 compare the performance of Neuro-DSE
and Neuro-DSE™ under two measurement noises N(0,e¢) and
N(0,e*) to illustrate the superiority of Neuro-DSE™. It can be
observed that:

e As shown in Fig. 9, Neuro-DSE™ obtains more accurate
state estimation results than Neuro-DSE under noisy mea-
surement, evidenced by the fact that the estimated states of
Neuro-DSE™ under different noise levels are always closer
to the real states than that of Neuro-DSE. For example, in
Fig. 9(b), when the noise has a distribution of N(0,e™*),
the estimated P from Neuro-DSE has larger deviations
to the true value, whereas the result from Neuro-DSE*
remains accurate. This verifies the powerful tracking ability
of Neuro-DSE™ under high noise level.

e Fig. 10 further quantitatively studies the performance of
Neuro-DSE™. Box-plots of the estimation error under 40
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Fig. 10. Differences of power states of DER 1 under different noise levels.
(a) States under N (0, e‘é); (b) States under N (0, e ).

random noisy scenarios are provided. It is obvious that
Neuro-DSE™ outperforms Neuro-DSE in terms of robust-
ness against noises, as the interquartile range of the esti-
mation error of Neuro-DSE™ is significantly smaller that
that of Neuro-DSE.

2) Neuro-DSE™ Under Different Measurement Availabil-
ity: Second, we demonstrate the performance of Neuro-DSE™
under different availability levels of the measurement data.
Fig. 11 presents the DSE results when 100%, 80% and 70%
of branch currents are respectively measured. Numerical exper-
iments show that Neuro-DSE™ is capable of providing more
accurate estimation results than Neuro-DSE especially under
limited measurements. For example, under 70% measurements,
the estimated reactive power state @ of Neuro-DSE has obvious
deviations after 0.25 s while Neuro-DSE™ consistently tracks
the true values of the NMs. This is because Neuro-DSE™ auto-
matically supplements the unmeasurable states and uses them
as inputs to the ODE-Net model, which significantly enrich the
training information.

Table II presents the MSE performance of Neuro-DSE and
Neuro-DSE™ under 40 random noisy scenarios. It can be seen
that Neuro-DSE™ exhibits satisfatory performance in estimating
the internal controller signals. For example, the MSE of voltage
controller signal ¢¢, of Neuro-DSE™ under 70% measurement
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Fig. 11. State trajectories of DER 2 under different measurement levels.

(a) Active power generation; (b) Reactive power generation.

TABLE I
MSE oF NEURO-DSES WITH DIFFERENT MEASUREMENT LEVELS

meas Type P Q dp b0 iD iQ
NDSE | 4.13e=% 1.42e=% 2.24e=9 9.0le—195.53e~? 1.80e~°
70% | NDSE1| 2.04e~% 5.55e75 1.86e~? 4.29¢102.36e5 5.83¢ 6
NDSE | 3.38¢ % 6.89¢ ° 2.09¢ ? 4.21e 1U3.93¢ ° 1.06e °
80% | NDSEt| 1.18¢~% 2.13e75 3.90e102.35¢7104.22¢=6 1.98¢6
NDSE | 3.0le % 6.35¢ ° 2.02¢ ? 4.0le V2.45¢ ° 8.62¢ °
100%| NDSET| 5.56e=° 2.03e~° 3.06e102.65¢103.56e6 3.33¢~6

* Note: NDSE: Neuro-DSE; NDSE™ :Neuro-DSE™.

level is 4.29¢~19 which is 52.4% lower than that of Neuro-DSE
which is 9.01¢ 10,

D. Efficacy of Neuro-KalmanNet-DSE Addressing Model
Mismatch

This subsection validates the effectiveness of Neuro-
KalmanNet-DSE to relieve the impacts of model mismatches.
Neural models can induce potential model mismatches as it is
learned from a finite set of training samples. The physics models
may also be inaccurate, because of the inexact system parame-
ters, etc. To examine such effect, we generate measurement data
by increasing the branch resistance of the test system by 50%, but
using the original parameters for DSE algorithms. Specifically,
the KalmanNet is constructed as an RNN with a fully connected
input layer, a single GRU layer [26], and a fully connected output
layer, to learn the Kalman gain.

Fig. 12 compares the errors of Neuro-DSE and Neuro-
KalmanNet-DSE by examining 40 scenarios under randomly-
generated noisy measurements. The results illustrate that
Neuro-KalmanNet-DSE is more immune to model mismatches,
as compared to Neuro-DSE. As shown in Fig. 12(a), the active
power errors of Neuro-KalmanNet-DSE at 0.3 s are much smaller
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Fig. 12.  State differences of DER1 with different Neuro-DSE. (a) Differences

of active power at different time slots; (b) Differences of reactive power at
different time slots.

than those of Neuro-DSE. By examine the errors in reactive
power estimates in Fig. 12(b), one can lead to the same conclu-
sion.

VI. CONCLUSION

This paper devises Neuro-DSE, an innovative approach for
data-driven Dynamic State Estimation in Networked Microgrids
under undefined dynamic models of inverters and subsystems.
Two variants (i.e., Neuro-DSE™ and Neuro-KalmanNet-DSE)
are established to enhance the performance of Neuro-DSE under
noisy limited measurement and model mismatch scenarios. Case
studies on standard 4-microgrid NMs demonstrate the accuracy
and noise resilience of Neuro-DSE under varying noise levels.
Itillustrates Neuro-DSET achieves up to a 50% increase in state
estimation accuracy compared to the base Neuro-DSE under lim-
ited measurement conditions. Meanwhile, Neuro-KalmanNet-
DSE improves deviations of Neuro-DSE under the model mis-
match scenario. The devised method offers an inspiring tool for
energy management and real-time operation of NMs.

APPENDIX

A. Parameter Setting of the Test System

This appendix offers the parameters of the test system
as shown in Fig. 4, including the parameters of DERs (see
Table III), and the parameters of power loads (see Table IV).
The composition information of the test system can be found
in [25]. Without loss of generality, the impedance of each
branch is assumed homogeneous with 7, = 7.79 x 10’4p.u.,
Ly = 6.24 x 103p.u..
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TABLE III
PARAMETERS OF DERS

DER ID. 1 2 3 4 5
Bus No. 1 12 13 21 28
mp(pu.) ng(p-u.) ro(pu.) Lo(pu.) F
Control 41.22 1.5 0.2 32x1073 0.75
parameters kpv kiv kpe Kic
2 20 105 1600
Secondary « A Bia/Bsi Bia/Bp  H
/VSG control 50 5 1007400 0/1 28.15

* Note: 7: coupling resistance; L,: coupling inductance; kp.: voltage
proportional gain; k;,: voltage integral gain; kp.: current propor-
tional gain; k;.: current integral gain; F': current feedforward gain;
subscripts ;4 and g;: secondary control parameters for leader DER
and follower DERs [3].

TABLE IV
PARAMETERS OF POWER LOADS

Load | Bus Load | Bus
ID No. | 7 (pu) L; (pu) ID. No. | r; (pu) Lj (p.u)
1 2 3.32 2.33 15 33 3.68 2.57
2 3 3.67 2.57 16 6 3.69 2.58
3 4 2.75 1.92 17 7 3.66 2.56
4 5 5.49 3.84 18 8 3.66 2.56
5 22 1.64 1.15 19 9 3.65 2.55
6 23 1.64 1.15 20 10 3.66 2.56
7 24 5.50 3.85 21 11 0.78 0.54
8 25 5.52 3.86 22 14 5.48 3.83
9 26 7.38 5.16 23 15 547 3.82
10 27 5.54 3.88 24 16 5.42 3.79
11 29 2.74 1.91 25 17 2.70 1.89
12 30 4.89 4.08 26 18 0.24 0.72
13 31 5.55 3.89 27 19 2.17 1.51
14 32 5.53 3.87 28 20 1.55 1.08

B. Dynamic Model of the Test System

This appendix introduces the dynamic model of the test sys-
tem including DERs, loads and branches. Dynamic formulations
of voltage and current controllers of DERs are detailed in [25].
Specifically, different control strategies in the power controller
are considered in this paper:

1) Droop Control: This control is used to realize power-
sharing effects. The dynamic model is established as:

w=w"—m,(P — P")

19)
E=E -n(Q-Q)

where,w, E, P and @ represent the angular speeds, voltage mag-
nitudes, active and reactive power outputs of DERs, respectively;
w*, E*, P* and @Q* denote the corresponding nominal values;
m,, and n, denotes the active/reactive power droop coefficients.
2) Secondary Control: The target is to achieve voltage reg-
ulation and frequency recovery based on distributed averaging,

the dynamic model [3] is expressed as:

CZ—Q = —a(w—w") — AQ

dt 20)
e *
—=-B(E-E)-BQ
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where, 2 and e respectively denote the secondary control signals
of all DERs corresponding to frequency and voltage regulations;
a, B, A and B denote control parameters [25].

3) VSG Control: It aims to improve the inertia. The dynamic
model [30] is established as follows:

dw ! (P*—P+1T1(w*—w))

&~ 2Hw ) @

where, H denotes the inertia constant.
Dynamic models of power loads and branches are established
as [25]:

i

Lz% = —ri; +wsI Ly, + M,E (22)
diy , )

Lbidt = —Tupl + UJSISLbzb + ]M bE (23)

where, ¢; and ¢;, denote the currents of power loads and branches
at DQ-axis, respectively; r; and L; respectively denote the
resistance and inductance matrices of loads; M is the incidence
matrix between buses and loads; ry,, L, and M, respectively
present corresponding definitions for branches similarly. The
detailed system model can be found in [25].
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