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Abstract—The increasing integration of distributed energy re-
sources (DERs) brings complicated dynamics in networked mi-
crogrids (NMs), calling for high-fidelity dynamic state estimation
(DSE) of NMs. Traditional DSE, which requires accurate physical
models of the entire NMs, is becoming increasingly unattainable.
This paper devises neuro-dynamic state estimation (Neuro-DSE),
a learning-based DSE algorithm to track the dynamics of inverter-
interfaced NMs with unknown subsystems. The process and
contributions include: 1) a data-driven Neuro-DSE algorithm is
established for NMs with partially unidentified dynamic models by
incorporating the neural-ordinary-differential-equations (ODE-
Net) into Kalman filters; 2) a self-refined Neuro-DSE

+ method
is devised to tackle limited and noisy measurements. Specifically,
Kalman filters are embedded into ODE-Net training for auto-
matic filtering, augmenting, and correcting effects; 3) a Neuro-

KalmanNet-DSE algorithm is derived to relieve the model mismatch
scenarios by integrating KalmanNet with Neuro-DSE. Numerical
simulations carried out on typical four-microgrid NMs reveal that
Neuro-DSE can track the dynamics under various control modes
(e.g., droop/secondary controls) and components. Its variants in-
crease the accuracy of Neuro-DSE under limited measurement and
model mismatch scenarios.

Index Terms—Networked microgrids, neuro-dynamic state
estimation, Kalman filter, neural ordinary differential equations,
KalmanNet.

I. INTRODUCTION

I
N SUPPORT of power sector’s decarbonization and en-

ergy resiliency, networked microgrids (NMs) are being in-

creasingly developed as they can collaboratively serve critical

communities and host distributed energy resources (DERs) [1].

Today’s NMs are undergoing an increasing integration of

inverter-interfaced renewable resources. The ubiquitous uncer-

tainties [2], deteriorated inertia [3], frequent plug-and-play [4],

[5], as well as unforeseen failures [6], [7], may jointly trigger
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complicated dynamic processes in NMs operations, creating the

high need for accurate evaluations of the dynamic states of NMs.

Dynamic state estimation (DSE) is an indispensable founda-

tion for power system operation as it provides the most-likely

dynamic states of the system to perform online monitoring and

control [8], [9]. However, the accurate physics models of each

inverter-based DER and the entire NMs may not always be

attainable to support existing DSE methods to precisely track the

fast dynamics of NMs, especially the internal states of inverter

controllers.

Physics-based DSE algorithms, represented by Kalman filter

and its variants [10], [11], [12], [13], strongly rely on accurate

dynamic models of the whole system to estimate the system

states [14], [15]. Ref. [16] used a model-based equivalence

method to reduce the parameters of the detailed model. Then,

it integrates the equivalent physics model into the Kalman filter

to estimate the required dynamic states for the modified con-

troller. However, the complete physical models in NMs are often

unattainable due to unavailable parameters of distributed inverter

controllers, frequently changing control modes and plug-and-

play of DERs, data privacy needs, etc. The complications of

physical models may lead to subsystems with unidentified dy-

namic models in NMs, which unavoidably make the classical,

physics-based DSE algorithms impractical [17], [18].

Recent progress in learning dynamic models from data shed

light on developing data-driven DSE without requiring explicit

physics of the entire system. Ref. [19] employs a long short-term

memory (LSTM) networks to realize the DC microgrid state

estimation. An improved residual network (ResNet) is applied

for the state estimation of the distribution system by collecting

historical data [20]. Meanwhile, a deep neural network (DNN)

based hybrid DSE is established for multi-machine power

systems [21]. Recently, neural-ordinary-differential-equations

(ODE-Net) [22] emerges to become an efficacious paradigm

for learning underlying dynamic models of power systems [23],

which also ignites new hopes for data-driven DSE because it can

best preserve the continuous-time dynamic characteristics. Nev-

ertheless, two fundamental obstacles still hinder the application

of existing data-driven approaches to DSE for real-world NMs:

I) Data-driven dynamic models learned from limited and noisy

measurements may not satisfy the accuracy needs of DSE; and

II) Mismatches between data-driven models and real dynamic

measurements unavoidably bias the state estimator.

To bridge the gap, this paper devises neuro-dynamic state

estimation (Neuro-DSE), which integrates ODE-Net with both

physics-based and neural-network-based Kalman filter theories
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to allow for learning-based DSE of NMs under unidentified

subsystems, limited measurements, and potential model mis-

matches. Our contributions are threefold:
� An ODE-Net-enabled dynamic state estimation (Neuro-

DSE) method is established to address DSE in NMs

with unidentified subsystem models. Neuro-DSE inte-

grates hybrid physics/ODE-Net-based dynamic models

with Kalman filters for NMs’ awareness, in which ODE-

Net well preserves the continuous-time dynamics char-

acteristics of the unknown subsystems. In addition, this

feature enables ODE-Net more resilient to the noise in the

measurement values.
� A self-refined Neuro-DSE (Neuro-DSE+) algorithm is then

devised to enable efficacious data-driven DSE under noisy

and limited measurement scenarios. The self-refined train-

ing framework embeds the Kalman filters into ODE-Net

training which enables full states of identified subsystems

for ODE-Net training. Thus, the accuracy and expressibil-

ity of ODE-Net are enhanced.
� A KalmanNet-enhanced Neuro-DSE (Neuro-KalmanNet-

DSE) is established to address possible model mismatch

scenarios induced by data-driven dynamic models. In this

variant, KalmanNet which integrates a dedicated recurrent

neural network (RNN) into Kalman filters to adaptively

track NMs’ states under imprecise knowledge of dynamic

models.

The remainder of this paper is organized as follows: Section II

devises the ODE-Net-enabled Neuro-DSE algorithm. Section III

develops the self-refined Neuro-DSE+. Section IV establishes

Neuro-KalmanNet-DSE. Section V presents case studies on a

typical NMs system to verify the effectiveness of our methods,

followed by the Conclusion in Section VI.

II. NEURO-DYNAMIC STATE ESTIMATION

This section devises neuro-dynamic state estimation (Neuro-

DSE), a data-driven DSE algorithm for estimating the dynamic

states of NMs with partially known physics models.

A. Preliminaries of Physics-Based DSE

DSE targets tracking the dynamic states of a discrete-time

nonlinear system [24], which can be described as:

{

xxxk = fff(xxxk−1) +wwwk

yyyk = hhh(xxxk) + rrrk
(1)

where, xxxk and yyyk denote the state variables and measurement

variables at time step k, respectively; fff(·) and hhh(·) denote the

discrete-time process and measurement functions, respectively;

wwwk and rrrk are process and measurement noises, respectively.

Kalman filter is a mainstream algorithm for DSE [10],

[11], [12]. This subsection takes the extended Kalman filter

(EKF) [10], i.e., a prominent Kalman filter variant, as a rep-

resentative to introduce the basis of physics-based DSE. EKF

consists of two kernel steps, i.e., prediction and correction:
� Prediction: The current predicted states xxxk|k−1 are calcu-

lated via the estimated statesxxxk−1|k−1 at the previous step:

Fig. 1. Architecture of the Neuro-DSE algorithm.

xxxk|k−1 = fff(xxxk−1|k−1) (2)

� Correction: The predicted states are corrected based on the

noisy measurements ỹyyk and the estimated statesxxxk|k at the

current step are generated:

xxxk|k = xxxk|k−1 +KKKk · (ỹyyk − hhh(xxxk|k−1)) (3)

Here,KKKk denotes the Kalman gain, which is derived from

fff(·) and hhh(·), i.e., the entire physics model of the system.

Obviously, conventional DSE relies on physics models to

estimate the system states, which hinders its application in NMs

with unknown subsystem models. Thus, we devise Neuro-DSE,

which integrates a learning-based ODE-Net dynamic model into

Kalman filter to enable data-driven DSE.

B. Neuro-DSE Algorithm of NMs

Fig. 1 demonstrates the outline of the Neuro-DSE algorithm.

The core idea of Neuro-DSE is to establish a data-driven dynamic

model of the unidentified subsystems so that the dynamic states

of the rest of the NMs can still be estimated via the Kalman filter.

As illustrated on the top of Fig. 1, without loss of generality,

the NMs system is divided into an external subsystem (ExSys),

whose dynamic model is unidentified, and an internal subsystem

(InSys), whose dynamic model is well defined by its physics

natures.1 Our target is to construct a data-driven dynamic model

of ExSys, thereby performing a neural-network-incorporated

DSE of InSys.

In the following, we successively establish the ODE-Net-

enabled, data-based formulation for ExSys, the physics-based

formulation for InSys, and finally the Neuro-DSE algorithm

based on the physics-neural-integrated NMs formulation.

1The “well-defined” InSys means the physics model of InSys is attainable.
However, measurements of InSys can be partial (i.e., not fully observable).
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1) ODE-Net-Enabled ExSys Modeling: ODE-Net is capable

of learning continuous-time dynamic models from discrete-time

measurements, which exhibits superior noise-resilience over

conventional deep neural networks (DNNs) [22], [23].

In this subsection, ODE-Net is employed to formulate ExSys

based on available measurements:

dxxxex

dt
= FFF (xxxex,uuuin) (4)

In (4), xxxex denotes the states measured from ExSys, which

can consist of both physics quantities and control signals.2

uuuin represents the measurable state variables of InSys, which

reflects the interactions between InSys and ExSys. Function FFF

denotes the state-space model of ExSys governed by the forward

propagation of ODE-Net:

FFF = fff l(fff l−1(· · ·fff 1(xxx
ex,uuuin, θθθ1) · · · , θθθl−1), θθθl) (5)

where fff l(·) and θθθl respectively denote the function and the

trainable parameters of the lth layer of ODE-Net.

To make ODE-Net best match ExSys’ dynamics, the loss

function is set as the error between the numerical integration

results of (4) and the time-series measurements of ExSys:

min
θθθ∈R

L(θθθ) =

n
∑

k=1

(xxxex
k − x̃xxex

k )2 + γ · θθθ2 (6a)

s.t. xxxex
k = x̃xxex

1 +

∫ tk

t1

FFF (xxxex, ũuuin, θθθ)dt (6b)

where, θθθ = {θθθ1} ∪ · · · ∪ {θθθL} denotes all the trainable param-

eters of ODE-Net; γ denotes the regularization coefficient; n is

the total number of time slides; x̃xxex
k denotes the measurements

of ExSys (e.g., current injections to InSys, global control signals

sent to InSys) at time point k.

Because (6) incorporates numerical integration as constraints,

gradient descent based on a continuous backpropagation tech-

nique is applied to train the ODE-Net until the loss function

converges:

θθθ − η
∂L

∂θθθ
→ θθθ ,

∂L

∂θθθ
|t1

=

∫ t1

tn

λλλ
T ∂F

∂θθθ
(7)

where, η denotes the learning rate; λ denotes the Lagrangian

multiplier corresponding to constraints (6b).

2) Physics-Based InSys Modeling: InSys is formulated by

its physics natures. Considering the fast dynamics of all the

DERs (i.e., droop/secondary controls), branch lines and power

loads, it can be proved that the differential algebraic equation-

based InSys model can be rigorously converted into a system of

ordinary differential equations [25]. Hence, InSys is functionally

formulated as:

dxxxin

dt
=GGG(xxxin,xxxex) (8)

2Specifically, in this work, we assume that, for ExSys, only the boundary
dynamic behaviours (i.e., current injections to InSys) and control signals sent to
InSys (i.e., secondary control signals of grid-forming inverters in ExSys) can be
measured, which represents very limited measurements. However, the method
is adaptive to arbitrary measurements from ExSys.

where, xxxex denotes ExSys states (see (4)); xxxin denotes InSys

states (e.g., state variables of each DER, load, branch).

3) Neuro-DSE Algorithm: By integrating and discretizing

the ODE-Net-enabled ExSys and the physics-enabled InSys, (9)

constructs the model basis of Neuro-DSE, which is a discrete-

time, physics-neural-integrated NMs model:
⎧

⎨

⎩

xxxex
k = DFFF (xxxex

k−1,uuu
in
k−1) +wwwex

k (9a)

xxxin
k = DGGG(xxxin

k−1,xxx
ex
k−1) +wwwin

k (9b)

yyyk =MMM(xxxex
k ,xxxin

k ) + rrrk (9c)

where,D denotes a discretization operator, which discretizes the

neural/physics dynamicsFFF (·) andGGG(·) presented in (4) and (8);

MMM(·) denotes the measurement function of NMs; yyyk denotes

the measurement variables; wwwex
k and wwwin

k denote the Gaussian

processing noises which follow Gaussian noise sequences N (0,

W); rrrk is the Gaussian measurement noise following N (0, R),

where W and R are the corresponding covariance matrices.

Without loss of generality, we derive the Neuro-DSE algo-

rithm based on the EKF method. Yet, the algorithm is readily

compatible with arbitrary Kalman-type filters. Neuro-DSE is

also composed of a predictor and a corrector (see Fig. 1). How-

ever, because of the incorporation of ODE-Net-based modeling,

both the prediction and the correction will be involved with

neural network operations:
� Neuro-incorporated prediction: The prediction step pre-

dicts the InSys and ExSys states based on the estimation

at the previous step. While the prediction of xxxin is trivial,

the prediction of xxxex involves the forward propagation of

ODE-Net according to (9a) and (5):

xxxex
k|k−1 = DfffL(fffL−1(· · ·fff 1(xxx

ex
k−1|k−1,uuu

in
k−1|k−1, θθθ1)

· · · , θθθL−1), θθθL)
(10)

where, k denotes the current time step.
� Neuro-incorporated correction: The correction step gen-

erates the estimated states by correcting the predictions:

[

xxxex
k|k

xxxin
k|k

]

=

[

xxxex
k|k−1

xxxin
k|k−1

]

+KKKk · (ỹyyk −MMM(xxxex
k|k−1,xxx

in
k|k−1))

(11)

where, ỹyyk denotes the noisy measurements of NMs. Specif-

ically, the Kalman gainKKKk is given by (12), which requires

the backward gradients of ODE-Net w.r.t. xxxex and uuuin:

KKKk = (JJJkΣΣΣk−1JJJ
T
k +WWW ) · (JJJM

k )T ·

(JJJM
k · (JJJkΣΣΣk−1JJJ

T
k +WWW ) · (JJJM

k )T +RRR)−1 (12)

where JJJk =

[

∂(DFFF )
∂xxxex

∂(DFFF )

∂xxxin

∂(DGGG)
∂xxxex

∂(DGGG)

∂xxxin

]

and JJJ
M
k = [ ∂MMM

∂xxxex
∂MMM

∂xxxin ] re-

spectively denote the Jacobian matrices; WWW and RRR re-

spectively denote the noise and measurement covariance

matrix;ΣΣΣk denotes the covariance matrices iteratively cal-

culated by ΣΣΣk = (JJJkΣΣΣk−1JJJ
T
k +WWW )(III − (JJJM

k )T ·KKKT
k ).

Consequently, by integrating ODE-Net with the process func-

tions and covariance evolution of Kalman filters, Neuro-DSE

enables state estimation of the accessible subsystem of the NMs
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(i.e., InSys) even without the physics model of the inaccessible

subsystems (i.e., ExSys).

III. NEURO-DSE+: SELF-REFINED NEURO-DYNAMIC STATE

ESTIMATION

Neuro-DSE relies on measurements to learn dynamic models

of unidentified subsystems and perform data-driven DSE. Its

efficacy might be jeopardized when the excessively limited and

noisy measurements fail to generate a qualified ODE-Net. This

section enhances Neuro-DSE by devising a self-refined neuro-

dynamic state estimation (Neuro-DSE+). Neuro-DSE+ is able to

proactively augment and filter the measurements, and therefore

it provides a more efficacious data-driven DSE especially under

limited measurements.

A. Self-Refined Training of ODE-Net

ODE-Net plays an important role in Neuro-DSE, as it learns

the dynamic model of unidentified subsystems. The core idea of

Neuro-DSE+ is to enhance the quality and quantity of the data

used for ODE-Net training, therefore obtaining a sufficiently

accurate data-driven model even under noisy and limited mea-

surements.

We reformulate the ODE-Net-enabled dynamic model of

ExSys with an augmented input:

dxxxex

dt
= FFF (xxxex,xxxin) (13)

Comparing (13) with (4), an obvious distinction is that (13)

incorporates the complete set of the InSys statesxxxin (rather than

merely the measurable statesuuuin) to enrich the input information

into ODE-Net.

However, because of the limited measurement, xxxin may not

be fully accessible, meaning that it can not be directly used for

training as Section II-B. Therefore, we establish a self-refined

training procedure for ODE-Net:

min
θθθ∈R

L+(θθθ) =
n
∑

k=1

(xxxex
k − xxxex

k|k)
2 + γ · θθθ2 (14a)

s.t. xxxex
k = x̃xxex

1 +

∫ tk

t1

FFF (xxxex,xxxin
i|i, θθθ)dt (14b)

[

xxxex
k|k

xxxin
k|k

]

=

[

xxxex
k|k−1

xxxin
k|k−1

]

+KKKk · (ỹyyk−MMM(xxxex
k|k−1,xxx

in
k|k−1)) (14c)

where, xxxex
k|k denotes the estimated states of ExSys at time point

k; xxxex
i|i denotes the estimated states of InSys at time point i (i.e.,

corresponding to time ti); other notations are the same as defined

in (11).

As illustrated in Fig. 2, a salient feature of (14) is that it embeds

the Kalman filter process (14c) into ODE-Net training, which

enables: (i) constructing a loss function between ODE-Net’s

predictions and the filtered ExSys states and therefore mitigating

the impact of noisy measurements; (ii) constructing ExSys dy-

namics (14b) using the full states of InSys and therefore greatly

enriching the expressibility of ODE-Net.

Fig. 2. Self-refined training of ODE-Net.

Algorithm 1: Neuro-DSE +.

Again, continuous backpropagation is applied for optimizing

(14). Once the training converges, the corresponding ODE-Net

can be integrated into (9) for dynamic state estimation.

B. Procedure of Neuro-DSE+ Algorithm

Algorithm 1 summarizes the Neuro-DSE+ algorithm. Three

kernel steps are incorporated:
� Step 1: (Pre-training of ODE-Net) Neuro-DSE+ initializes

an augmented ODE-Net following (13). Neuro-DSE pre-

trains an ODE-Net based on (4) directly using the mea-

surement data and estimates the InSys states accordingly.
� Step 2: (Self-refined training of ODE-Net) Neuro-DSE+

performs training based on (14) using the estimated InSys

states. Once the ODE-Net converges, go to Step 3.
� Step 3: (InSys states updating) InSys states are re-estimated

using the up-to-date augmented ODE-Net following the

neural-incorporated prediction/correction presented in (5)

and (11). If InSys states remain unchanged, the algorithm

terminates, outputting the ODE-Net and the corresponding

state estimation results; otherwise, go to Step 2.
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Fig. 3. Neuro-KalmanNet-DSE architecture.

Neuro-DSE+ filters the noise-contained measurements and

augments the unmeasured states to construct the training data for

the ODE-Net model. Such a process is particularly beneficial for

data-driven DSE under limited and very noisy observations, as

it proactively employs the DSE physics of the NMs to refine the

measurements and adjust the neural network, rather than merely

relying on the observable data.

IV. NEURO-KALMANNET-DSE: KALMANNET-ENHANCED

NEURO-DYNAMIC STATE ESTIMATION

Generally, Neuro-DSE and Neuro-DSE+ are both integrated

with classical Kalman filters. However, possible model mis-

matches may happen when imperfect neural networks are trained

from finite samples or inaccurate system parameters exist. The

efficacy of traditional Kalman filters, which depend on pre-

cise understanding and modeling of underlying dynamics, may

be significantly influenced by the accuracy of domain knowledge

and model assumptions [26]. Therefore, in such scenarios, the

performance of conventional Kalman filter-integrated Neuro-

DSE may be affected. To this end, this section further develops

Neuro-KalmanNet-DSE, which empowers the Neuro-DSE phi-

losophy with KalmanNet to achieve an adaptive state estimation

under inaccurate NMs models.

A. KalmanNet Architecture for Neuro-DSE

The Kalman gain matrixKKK plays an important role in classical

Kalman filters (see (3)), which uses system models to compute

the impact of the noisy measurements on the estimated states.

The keystone of KalmanNet is to replace the traditional model-

based Kalman gain with a data-driven Kalman gain to relieve

the impact of inaccurate models.

Inspired by (12), KalmanNet takes three input features to de-

scribe the mapping between the elements of Kalman gain matrix

and system states/measurements: (i) the observation difference

Δyyyk = yyyk − yyyk−1; (ii) the correction difference Δỹyyk = ỹyyk −
MMM(xxxex

k|k−1
,xxxin

k|k−1
) and (iii) the prediction difference Δxxxk =

xxxk|k − xxxk|k−1, where xxx consists of xxxex and xxxin. Meanwhile,

as shown in (12), the computation of Kalman gain follows a

recursive nature, which motivates designing KalmanNet as an

internal memory element (e.g., RNN) to describe the Kalman

gain (See Fig. 3). As a consequence, the KalmanNet for Neuro-

DSE is formulated as:

Kk = KRNN (Δyyyk,Δỹyyk,Δxxxk,ϕϕϕ) (15)

where KRNN represents the function of RNN;ϕϕϕ is the trainable

parameters in the KalmanNet. A noticeable feature of (15) is that

the learning-based Kalman gain is adjusted based on the latent

information of the measurement and estimation data to relieve

model mismatches during its training process.

Accordingly, Neuro-DSE can be performed by replacing the

model-driven KKKk with the data-driven Kk:

xxxk|k = xxxk|k−1 +Kk ·Δỹyyk (16)

B. KalmanNet Training Algorithm

KalmanNet is trained in a supervised fashion [26]. To best

correct the dynamic state behavior with the adaptive learning-

based Kalman gain, the loss function is set as the minimization

error between the train samples x̃xxk and the estimated state xxxk|k

produced by the KalmanNet:

min
ϕϕϕ∈R

L(ϕϕϕ) =

n
∑

k=1

1

n
(xxxk|k − x̃xxk)

2 + γ ·ϕϕϕ2

s.t. xxxk|k = xxxk|k−1 +Kk ·Δỹyyk (17)

where γ presents the regularization coefficient.

The loss gradient with respect to Kalman gain can be devised

from the output of KalmanNet as:

∂L(ϕϕϕ)

∂Kk

=
∂||KkΔyyyk −Δxxxk||2

∂Kk

= 2KkΔỹyyk · (Δỹyyk + xxxk|k−1 − x̃xxk) (18)

Algorithm 2 provides the overall procedure of Neuro-

KalmanNet-DSE.

V. NUMERICAL TESTS

This section validates the Neuro-DSE method and its variants

in a typical islanded networked microgrids system. All codes

are implemented in MATLAB 2020a and Python 3.7 on a

2.50 GHz PC.

A. Test System and Algorithm Settings

The test system is a phasor-model-based, 4-microgrid NMs

in islanded mode (see Fig. 4). Five inverters are connected to

the NMs [3] in Fig. 4(a). System parameters are presented in

Appendix Part A, including the parameters of DERs, power

loads, and composition information of the microgrid system.

Each controller (see Fig. 4(b)3) comprises three different parts.

The first part is a power controller that adopts droop control or

secondary control for power regulation effects. The second and

third components of the control system encompass the voltage

and current controllers, respectively. These controllers are used

3In the controller block, v and i denote voltage and current outputs; P and
Q denote active and reactive power generations; superscript ∗ denotes reference
value; subscripts l and o denote before and after filters.
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Algorithm 2: Neuro-KalmanNet-DSE.

to effectively mitigate high-frequency disturbances and ensure

adequate damping for the output filter [27], [28], [29]. The

majority of dynamic models of the test system are presented

in Appendix Part B, including the power controller, power

loads, and branches. The detailed control diagrams and dynamic

models for the microgrid system in Fig. 4 can be found in [25],

[27]. In addition, bus 13 can be connected to different types of

power sources, including droop/secondary-control-based DER,

virtual synchronous generator (VSG) [30] and synchronous

generator (SG) [23], to study the performance of Neuro-DSE

under different power mixes.

We assume microgrid 4 is the ExSys without explicit physics

knowledge and will be formulated via a learning-based fashion.

The corresponding ODE-Net adopts a two-layer perceptron ar-

chitecture, with 40 neurons in each layer. The regularization co-

efficient is set as 0.5. Training data for ODE-Net is generated by

time-domain simulations under 20% uncertainties of the renew-

able energy inputs. In this work, branch current measurements

are used for Neuro-DSE, while the internal signals of inverter

controllers are assumed inaccessible. However, the method is

compatible with other types of measurements. Specifically, for

secondary control, the communication signals between DERs

(i.e., the frequency/voltage secondary control signals ΩΩΩ and eee)

are also attainable as they are explicitly measured by each DER

for the control purpose.

The default case is that all the DERs adopt droop controls

(including bus 13) and all the branch currents in InSys are

measurable. It is assumed that both process and measurement

noises of the NMs follow Gaussian distributions N(μ, σ2) [10].

In the following, various cases are studied, including different

Fig. 4. Test system: 4-microgrid networked microgrids with 5 grid-forming
DERs. (a) Topology of the test system; (b) Controller of DERs.

DER control strategies, power source mixes, noise levels, and

measurement availability, to thoroughly verify the efficacy of

Neuro-DSE and its variants.

B. Validity of Neuro-DSE

This subsection validates the effectiveness of the devised

Neuro-DSE under various circumstances.

1) Neuro-DSE Under Different Noise Levels: We study the

performance of Neuro-DSE under different noise levels. Two

scenarios are considered: (a) measurement noise as N(0, e−6)
and process noise as N(0, e−6); (b) measurement noise in-

creased to N(0, e−4) and process noise as N(0, e−6)[10]. Fig. 5

presents the simulation results. The following insights can be

obtained:
� Neuro-DSE can track both measurable states (e.g., currents

in Fig. 5(a-1) and (b-1)) and unmearsurable states (e.g.,

internal control signals of inverters in Fig. 5(a-2) and (b-2))

of NMs.
� Under both large noises (Fig. 5(b)) and small noises

(Fig. 5(a)), the dynamic states estimated from Neuro-DSE

are close to the true values.
� Neuro-DSE exhibits powerful compatibility to different

Kalman filters. The estimation results from both EKF-

based and UKF-based Neuro-DSE are close to the true

states under different noise levels as shown in Fig. 5.
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Fig. 5. Selected states at D-axis of Neuro-DSE under different noise levels. (a-
1) Current underN(0, e−6), (a-2) Voltage control signal underN(0, e−6); (b-1)
Current under N(0, e−4), and (b-2) Voltage control signal under N(0, e−4).

Fig. 6. State trajectories of DER 1 under different neural networks. (a) Reac-
tive power generation; (b) Current output at D-axis.

� Although the results are generally satisfactory, we still ob-

serve a small bias in the estimated states under large noises

(for example, Fig. 5(b-2)). This is exactly the motivation

for developing Neuro-DSE+, which will be discussed in

Part C.

2) Comparison With Conventional DNN-Based DSE: We

then compare Neuro-DSE with conventional DNN-based DSE

to illustrate the superiority of the devised method. Two represen-

tative DNNs are studied: (a) a residual neural network (ResNet)

comprised of 8 hidden layers with double-layer skips and 100

hidden units in each layer; (b) a long short-term memory (LSTM)

network with 100 hidden units.

Fig. 6 clearly illustrates that the devised ODE-Net-based

Neuro-DSE outperforms the conventional DNN-based DSE

methods. As shown in the figure, ResNet-based DSE shows large

differences at the starting stage; LSTM-based DSE tends to have

TABLE I
MSE OF DSE WITH DIFFERENT NEURAL NETWORKS

Fig. 7. State trajectories of DER 1 under droop/secondary controls. (a) Fre-
quency; (b) Frequency control signal.

slight biases for the steady-state; and only Neuro-DSE provides

accurate estimation during the whole time period.

Table I further presents the maximum square errors (MSE)

of different methods under different noise levels. It is again ob-

served that Neuro-DSE presents the best performance compared

with other DNN-based DSE methods. More importantly, with

the increase of the noise level, the MSE of Neuro-DSE does

not increase much while the performance of ResNet and LSTM

sharply deteriorates.

3) Neuro-DSE Under Different DER Control Modes: Fig. 7

further validates the effectiveness of Neuro-DSE under different

control modes of inverters. Both droop control and secondary

control are studied. Fig. 7(a) shows that compared with droop

control, secondary control can recover the system frequency to

the nominal value, and Neuro-DSE is capable of tracking the

system dynamics under different control modes. Furthermore,

the devised Neuro-DSE method also shows the satisfactory abil-

ity for tracking communication signals, such as the frequency

control signal Ω among DERs presented in Fig. 7(b).

4) Neuro-DSE Under Different NMs Compositions: Finally,

we present Neuro-DSE’s powerful universality under differ-

ent NMs compositions. Besides the droop/secondary-controlled

DERs, two additional power sources are studied, i.e., VSG, and

SG. Fig. 8 presents the simulation results. It can be observed that
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Fig. 8. Selected states of SG and VSG under Neuro-DSE. (a-1) Speed of SG,
(a-2) Rotor angle of SG; (b-1) Active power of VSG, (b-2) Reactive power of
VSG, (b-3) Voltage controller signals at D axis, (b-4) Voltage controller signals
at Q axis.

Neuro-DSE maintains high accuracy for both traditional syn-

chronous generators and inverter-interfaced virtual synchronous

generators, and again exhibits satisfactory estimation perfor-

mance for tracking the internal controller signals of VSG (see

Fig. 8(b-3) and (b-4)).

C. Efficacy of Neuro-DSE+

This subsection verifies the effectiveness of Neuro-DSE+ un-

der poor measurements. As we introduced, excessively noisy and

limited measurements may cause biases of Neuro-DSE, which

motivates us to devise a self-refined Neuro-DSE+ to improve

the estimation performance.

1) Neuro-DSE+ Under Different Noise Levels: First, we

demonstrate the efficacy of Neuro-DSE+ under different noise

levels. Figs. 9 and 10 compare the performance of Neuro-DSE

and Neuro-DSE+ under two measurement noises N(0,e−6) and

N(0,e−4) to illustrate the superiority of Neuro-DSE+. It can be

observed that:
� As shown in Fig. 9, Neuro-DSE+ obtains more accurate

state estimation results than Neuro-DSE under noisy mea-

surement, evidenced by the fact that the estimated states of

Neuro-DSE+ under different noise levels are always closer

to the real states than that of Neuro-DSE. For example, in

Fig. 9(b), when the noise has a distribution of N(0,e−4),

the estimated PPP from Neuro-DSE has larger deviations

to the true value, whereas the result from Neuro-DSE+

remains accurate. This verifies the powerful tracking ability

of Neuro-DSE+ under high noise level.
� Fig. 10 further quantitatively studies the performance of

Neuro-DSE+. Box-plots of the estimation error under 40

Fig. 9. Power states of DER 1 under different noise levels. (a-1) Active power
under N(0, e−6), (a-2) Reactive power under N(0, e−6); (b-1) Active power
under N(0, e−4), (b-2) Reactive power under N(0, e−4).

Fig. 10. Differences of power states of DER 1 under different noise levels.
(a) States under N(0, e−6); (b) States under N(0, e−4).

random noisy scenarios are provided. It is obvious that

Neuro-DSE+ outperforms Neuro-DSE in terms of robust-

ness against noises, as the interquartile range of the esti-

mation error of Neuro-DSE+ is significantly smaller that

that of Neuro-DSE.

2) Neuro-DSE+ Under Different Measurement Availabil-

ity: Second, we demonstrate the performance of Neuro-DSE+

under different availability levels of the measurement data.

Fig. 11 presents the DSE results when 100%, 80% and 70%

of branch currents are respectively measured. Numerical exper-

iments show that Neuro-DSE+ is capable of providing more

accurate estimation results than Neuro-DSE especially under

limited measurements. For example, under 70% measurements,

the estimated reactive power stateQQQ of Neuro-DSE has obvious

deviations after 0.25 s while Neuro-DSE+ consistently tracks

the true values of the NMs. This is because Neuro-DSE+ auto-

matically supplements the unmeasurable states and uses them

as inputs to the ODE-Net model, which significantly enrich the

training information.

Table II presents the MSE performance of Neuro-DSE and

Neuro-DSE+ under 40 random noisy scenarios. It can be seen

that Neuro-DSE+ exhibits satisfatory performance in estimating

the internal controller signals. For example, the MSE of voltage

controller signal φφφQ of Neuro-DSE+ under 70% measurement
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Fig. 11. State trajectories of DER 2 under different measurement levels.
(a) Active power generation; (b) Reactive power generation.

TABLE II
MSE OF NEURO-DSES WITH DIFFERENT MEASUREMENT LEVELS

level is 4.29e−10 which is 52.4% lower than that of Neuro-DSE

which is 9.01e−10.

D. Efficacy of Neuro-KalmanNet-DSE Addressing Model

Mismatch

This subsection validates the effectiveness of Neuro-

KalmanNet-DSE to relieve the impacts of model mismatches.

Neural models can induce potential model mismatches as it is

learned from a finite set of training samples. The physics models

may also be inaccurate, because of the inexact system parame-

ters, etc. To examine such effect, we generate measurement data

by increasing the branch resistance of the test system by 50%, but

using the original parameters for DSE algorithms. Specifically,

the KalmanNet is constructed as an RNN with a fully connected

input layer, a single GRU layer [26], and a fully connected output

layer, to learn the Kalman gain.

Fig. 12 compares the errors of Neuro-DSE and Neuro-

KalmanNet-DSE by examining 40 scenarios under randomly-

generated noisy measurements. The results illustrate that

Neuro-KalmanNet-DSE is more immune to model mismatches,

as compared to Neuro-DSE. As shown in Fig. 12(a), the active

power errors of Neuro-KalmanNet-DSE at 0.3 s are much smaller

Fig. 12. State differences of DER1 with different Neuro-DSE. (a) Differences
of active power at different time slots; (b) Differences of reactive power at
different time slots.

than those of Neuro-DSE. By examine the errors in reactive

power estimates in Fig. 12(b), one can lead to the same conclu-

sion.

VI. CONCLUSION

This paper devises Neuro-DSE, an innovative approach for

data-driven Dynamic State Estimation in Networked Microgrids

under undefined dynamic models of inverters and subsystems.

Two variants (i.e., Neuro-DSE+ and Neuro-KalmanNet-DSE)

are established to enhance the performance of Neuro-DSE under

noisy limited measurement and model mismatch scenarios. Case

studies on standard 4-microgrid NMs demonstrate the accuracy

and noise resilience of Neuro-DSE under varying noise levels.

It illustrates Neuro-DSE+ achieves up to a 50% increase in state

estimation accuracy compared to the base Neuro-DSE under lim-

ited measurement conditions. Meanwhile, Neuro-KalmanNet-

DSE improves deviations of Neuro-DSE under the model mis-

match scenario. The devised method offers an inspiring tool for

energy management and real-time operation of NMs.

APPENDIX

A. Parameter Setting of the Test System

This appendix offers the parameters of the test system

as shown in Fig. 4, including the parameters of DERs (see

Table III), and the parameters of power loads (see Table IV).

The composition information of the test system can be found

in [25]. Without loss of generality, the impedance of each

branch is assumed homogeneous with rb = 7.79 × 10−4p.u.,

Lb = 6.24 × 10−3p.u..
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TABLE III
PARAMETERS OF DERS

TABLE IV
PARAMETERS OF POWER LOADS

B. Dynamic Model of the Test System

This appendix introduces the dynamic model of the test sys-

tem including DERs, loads and branches. Dynamic formulations

of voltage and current controllers of DERs are detailed in [25].

Specifically, different control strategies in the power controller

are considered in this paper:

1) Droop Control: This control is used to realize power-

sharing effects. The dynamic model is established as:

{

ωωω = ω∗ −mmmp(PPP −PPP ∗)

EEE = EEE∗ −nnnq(QQQ−QQQ∗)
(19)

where,ωωω,EEE,PPP andQQQ represent the angular speeds, voltage mag-

nitudes, active and reactive power outputs of DERs, respectively;

ω∗, EEE∗, PPP ∗ and QQQ∗ denote the corresponding nominal values;

mmmp andnnnq denotes the active/reactive power droop coefficients.

2) Secondary Control: The target is to achieve voltage reg-

ulation and frequency recovery based on distributed averaging,

the dynamic model [3] is expressed as:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

dΩΩΩ

dt
= −ααα(ωωω − ω∗)−AAAΩΩΩ

deee

dt
= −βββ(EEE −EEE∗)−BBBQQQ

(20)

where,ΩΩΩ andeee respectively denote the secondary control signals

of all DERs corresponding to frequency and voltage regulations;

ααα, βββ, AAA and BBB denote control parameters [25].

3) VSG Control: It aims to improve the inertia. The dynamic

model [30] is established as follows:

dωωω

dt
=

1

2HHHωωω

(

PPP ∗ −PPP +
1

mmmp

(ω∗ −ωωω)

)

(21)

where, HHH denotes the inertia constant.

Dynamic models of power loads and branches are established

as [25]:

LLLl

diiil

dt
= −rrrliiil + ωsIIIsLLLliiil +MMM lEEE (22)

LLLb

diiib

dt
= −rrrbiiib + ωsIIIsLLLbiiib +MMM bEEE (23)

where, iiil and iiib denote the currents of power loads and branches

at DQ-axis, respectively; rrrl and LLLl respectively denote the

resistance and inductance matrices of loads;MMM l is the incidence

matrix between buses and loads; rrrb, LLLb and MMM b respectively

present corresponding definitions for branches similarly. The

detailed system model can be found in [25].
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