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Abstract—Neural sequenced active fault management
(NSAFM) is devised to maintain the microgrids’ reliable
operation and also to properly control microgrids’ and
renewable energy’s sequence current under balanced or
unbalanced faults. The main contributions include 1) a neural
sequenced control framework for microgrids with fault ride-
through capability; 2) an optimization-based sequenced AFM
formulated to regulate the sequence current of renewable
energy under unbalanced faults; 3) a learning-based sequenced
AFM control algorithm, which transfers computation from
online optimization to offline training. The deployable neural
sequenced AFM scheme is thoroughly verified on a microgrid
with a single-phase-to-ground fault using hardware-in-the-loop
(HIL) in a Real-Time Digital Simulator (RTDS) environment,
and the experimental results show that the proposed method
can significantly improve system resilience regarding the fault
current contribution.

Index Terms—Microgrid control, fault management, learning-
based control, HIL, optimization.

I. INTRODUCTION

HE imperatives of fault ride-through for distributed en-

ergy resources (DERs), which mandate that renewable
generators maintain grid connection and power output during
fault conditions, are paramount in ensuring grid stability [1].
Active Fault Management (AFM) is instrumental in enhanc-
ing microgrids’ ability to ride through such disturbances.
Specifically, AFM can 1) enable microgrids’ ride-through
capabilities, which is to keep connected to the main grid during
faults to prevent instability caused by loss of large generation,
2) regulate the total fault contributions by coordinating hetero-
geneous microgrids and DERs, which is to protect equipment
from overcurrents damage and to minimize updating for the
relay, and 3) reduce voltage ripples during fault occurrence and
fault clearance [2]. Existing fault managements for microgrids
mostly focus on controlling one variable, such as fault currents,
while other critical variables, such as power balance and power
ripples, are not controlled [3], [4]. Our previous work [5] allow
only positive sequence current during an unbalanced fault,
which is not a desirable condition for a system with negative
sequence overcurrent relays. Therefore, efficacious microgrid
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fault control that can assure the sequence of current regulation
and massive DER coordination is needed.

The problem of AFM can be formulated as a constrained
nonlinear optimization problem [5], [6]. Compared with feed-
back control, which focuses on certain variables while ignoring
other variables [7], [8], [9], optimization can consider multiple
variables, putting them as objectives and constraints. Our
previous work [10] pioneered the investigation into AFM
using centralized optimization for a single microgrid, and a
distributed and asynchronous surrogate Lagrangian relaxation
(DA-SLR) algorithm for networked microgrids(NMs).

Negative sequence components pose a significant threat to
electrical machinery, potentially causing overheating in gen-
erators and motors which can lead to equipment degradation,
reduced operational efficiency, and elevated safety hazards. To
mitigate these issues, microgrids are equipped with negative
sequence current protection systems designed to rapidly detect
and rectify such imbalances. Nonetheless, two predominant
challenges persist in current methodologies [11]: (I) the ab-
sence of an AFM approach capable of generating both positive
and negative sequence currents in the event of an unbalanced
fault, and (II) a deficiency in effective strategies that guarantee
real-time performance in microgrid fault management.

To bridge the gap, this paper establishes a neural-sequenced
active fault management (NSAFM) for resilient microgrids.
We first construct a neural sequenced current control frame-
work for microgrid, and then we construct sequenced AFM
as an optimization-based current control problem to generate
positive as well as negative sequence currents during an
unbalanced fault. Finally, a machine learning method [12] is
leveraged to replace the optimization-based AFM and achieve
the control goal in milliseconds. The trained neural networks
are verified in controller HIL real-time simulation.

The remainder of this paper is organized as follows. Sec-
tion II presents the sequenced active fault management with
sequenced current control. Section III formulates optimization-
based sequenced active fault management problem. Section IV
introduces the implementation of NSAFM. Section V presents
case studies. Section VI provides the conclusion of the paper.

II. SEQUENCED ACTIVE FAULT MANAGEMENT
A. Motivation of sequenced AFM

AFM aims at decreasing microgrid’s contributions in the
main grid’s fault currents (Fig. 1(a)). Fault current contri-
butions mean how large fault currents’ amplitudes, |IfT-|,
have been increased because of the integration of microgrid.
Because total fault currents are vector additions of the main
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grid‘s fault currents and microgrid’ fault currents as shown
in Fig. 1(b). Total fault currents and the main grid‘s fault
currents can have the same amplitude even when microgrid’
fault currents are not zero, which suggests that the integration
of micorgrid has a minimal impact on the main grid. Achieving
this balance involves precise adjustments to the amplitude
and phase angles of the currents of microgrids. However, it
is important to note that microgrids commonly incorporate
negative overcurrent relays, necessitating careful control over
both the positive and negative components of the current in
AFM.

Main Grid

Microgrids

(a) Protection for microgrids integrated system

Without AFM (dash lines)
With AFM (solid lines)

(b) Relationship of fault currents without and with AFM

Fig. 1: Motivation of active fault management

B. Sequence current control scheme

The sequenced current control scheme, designed to regulate
the sequence current upon receiving a control signal from the
AFM, is introduced.

With the three-phase unbalanced input voltage (E2*¢) and
fault currents (I;lbc) without zero sequences, the apparent
power can be expressed as the orthogonal sum of positive
and negative sequences, such that

Si = ("Ef + eV E ) (1] +e7I,) (1)
where 4+ and — denote the positive and negative components

separately. Separating the real power and the reactive power
of the three phases, we obtain, [13]:

{P(t) = Py + P.yc0s(20) + Paysin(26) o

Q(t) = Qo + Qe2c05(20) + Qg28in(20)
where
Py=15(EfIf +EfIF +E;I; +E 1))
Po=15(Ef1; + EfI; + E;I] + E; I*)
Py =15(E;I] —E;IF —EfI; +Ej] )
Qo =15(Ef I} — E+I+ +E;I; —E;1I))
Q2 = 1L5(ES I — Ej] +E; I — E 1*)
Qe =15(EjI; + Ef I, —E 1] — E;I)

Here, superscripts + and — refer to positive and negative
sequences. Subscripts d and ¢ refer to direct and quadrature
axis components. The double-line frequency power coeffi-
cients P, Pso Q.2, and Q4 are caused by the voltage
unbalance, which causes fluctuations in the DC-link voltage,
i.e. second-order harmonic ripple will appear. Therefore, to
keep a constant DC-link voltage, the power coefficients P.o
and P, have to be nullified.

Expressing the power coefficients in the matrix form, we
obtain

Py Ef Ef E; E; 1[I
21 Qo - E;— _E; E,  —Ef I;' (3)
3 | P E; -E; -Ef Ej||I;

Peo E; E; E; Ef] |l

Removing dc-link voltage ripple, necessitates making
2[PyQoPs2P.2] = [2PyQo00]". Therefore, the control ob-
jectives I* can be satisfied by choosing currents such that

*

Iy E; Ef E; E;][PR
+ — —
I 2 E+ —By  E; —Eg Qo)
Iyl 3 E— -E; —-E;f E;||0
- - - +
I, E E; E;j Ef|[O

For unbalanced input voltage, the control objectives are
achieved by flowing negative-sequence currents. In the con-
text of this control scheme, the current reference is derived
using a PQ control strategy during standard operation. In the
subsequent section, we will delve into the methodology for
formulating current references via a sequenced AFM approach
when addressing fault conditions.

C. Resilience metric for sequenced AFM

AFM is devised to improve microgrid resilience against
large disturbances,e.g. balanced and unbalanced faults. A
resilience metric [14] is utilized to quantify the system re-
silience:

§=0.5(6 + &) (5)
— dl

& = & (6)
) duat

© = Golta —t0) @

where ¢ is the resilience. &; is the invulnerability and &5 is
the recovery. d; is the value of the variable of interest during
disturbance and d is the variable’s values before disturbance.
t1 and ¢4 are the disturbance happening time and clearing time,
respectively. &, &1 and &5 are all in the range of O to 1. Larger
¢ means the system is more resilient.

III. OPTIMIZATION-BASED SEQUENCED ACTIVE FAULT
MANAGEMENT

AFM is formulated as a nonlinear constrained optimization
problem given in equations (8):

min oy Fy + aoFy + agF5 + ayFy, «a €10,1] ®)

where o = {1, g, a3, a4} are weighting factors between
different parts in the objective function.
The objective function has four parts:
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1) Fy are fault current contributions, the magnitude differ-
ence between fault currents from the main grid and total
fault currents.

[Re(Th 0170+ Im(1}) o417 )]

B = | T Re@ O (T 2

-1 9)

Superscripts M, m indicate variables related to the main
grid and all microgrids, respectively. I%O, dq are fault
currents from the main grid and from the microgrid,
respectively. I%O + Ifj;, are total fault currents.
2) F5 is microgrid negative sequence current magnitude.
N
Fy=— Zl([Re(IZMQ + [Im(Tg,)]?)
i=
Subscript ¢ indicates variables related to DER i &
{1,2,...,N}. AFM aims to increase negative sequence
current, which is desired for microgrids with negative
sequence current relays.
3) F3 is microgrid reactive power output:

(10)

N
Fy=—3 Qi (11)
i=1
4) F} is power ripples:
N
Fi=Y & (12)
i=11

Power ripples are to be minimized.

where P, = L5(ESTI)N + BNV ISY + E I + EiC L),
Qi =15(EF I —EF I + BT —ESI7) and R; =
2.25[(P;)? + (Q;)?]. P; and Q; are active and reactive power
outputs from microgrid %.

AFM has two types of constraints: system-wide coupling
constraints and local constraints. System-wide coupling con-
straints contain decision variables of more than one DER, and
local constraints only involve decision variables of one DER.

1) Coupling constraints: tie line safety rating constraint. This
means the microgrid’s output currents should be less than
a safety threshold, I7 ,..:

[Re(I)]? + Im(IG)]° < (Igtea)” (13)

2) Local constraint 1: DER-wise safety rating constraint.
Each DER’s output currents during fault should be less
than its own safety rating, I ;.4

[Re(Ig,)]* + [Im(Laq) * < (Tiapea)”- (14)

3) Local constraint 2: zero sequence components elimination

constraint. This constraint means the sum of each DER’s

three-phase currents is zero. This constraint is required

if a microgrid’s interface converter or nearby transformer
does not allow zero-sequence currents:

15, =0. Vpe{ab,c}
fp denotes the faulty phase p.

4) Local constraint 3: battery power buffer constraint. For
DER to have a battery as a buffer, the power output
difference between before faults and after faults should be
smaller than the power rating of the battery. Otherwise, it
is beyond the battery’s capability to keep a power balance:

(P, — PPT)? > (PP)2, (16)

(15)

Pibf denotes the power output before fault and Pibty is
the power rating of the battery.

5) Local constraint 4: Reactive power constraint. We derive
that the reactive power of the microgrid should be larger
than zero to supply the leading current during unbalanced
fault:

Qi > 0.
IV. NEURAL SEQUENCED AFM

a7

Optimization-based AFM would lead to extensive compu-
tation time if a larger scale system with complex objectives
and constraints is considered. The optimization-based fault
management algorithm needs more than 100 ms to output
reference values, and the fault management is expected to have
compromised performance or even fail. In this section, we use
a general regression neural network (GRNN) to replace the
optimization-based AFM. First, the training data are achieved
by the optimization. Regression means estimating relationships
between outputs and inputs. In the case of AFM, inputs are
system status, such as microgrid voltages, fault voltages, fault
currents, power, etc. Outputs are reference values for the
DER'’s output currents. Previously, outputs were decided by
optimizations used in AFM. Here, neural works are used
to approximate the optimization function. The used neural
network is feed-forward with a multi-layer perceptron without
feedback between layers as shown in Fig. 2.

dq positive sequence
terminal voltage

dg negative sequence
terminal voltage

DERS dg positive

Pl > _’._> sequence current
A DERs dq negative
I/ z . sequence current

output layer

dgq positive seqhence
fault current

dq negative sequence
fault current

hidden layer

Fig. 2: GRNN Learning scheme.

Fig. 3 presents the architecture of the NSAFM which can
regulate positive sequence and negative sequence currents
reference separately. In this control architecture, the inverter
works as a regular grid following the controller, which gen-
erates as much power as is regulated without faults. When
faults happen, the AFM will switch in, and sequence current
references will be generated to regulate the positive and
negative sequence current and satisfy the objective of AFM.
The inverter will follow the current reference ), in the normal
operation condition. The learning-based control signals of all
the N DERs, i.e., w = [ij*,if*, i, i;*]7, are functionally
formulated as a neural network u = ﬂw(ac), where 7 denotes
the neural network describing the control policy; w, « and ¢
respectively denote the output, input, and weights of the neural

network.
V. CASE STUDY

The neural sequence active fault management is tested using
a typical microgrid (Fig.4) in a controller hardware-in-the-loop
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Fig. 3: Structure of the neural hierarchical control of microgrids.

(HIL) test environment [15]. DER 1 and microgrid 3 have DC-
link batteries; DER 2 does not have batteries; Those DERs
connect to the main grid by power converters.

For the setup of controller hardware-in-the-loop (HIL) real-
time simulation, the learning-based controller algorithms run
on a personal computer or server, and power grids are run in
RTDS simulators.

Microgrids

impedance
27 kV 7
4

Fig. 4: Diagram of studied system.

A. Single-phase-to-ground faults

This subsection validates the efficacy of the NSAFM
method under a typical single-phase-to-ground fault. A single-
phase-to-ground fault happens at phase a on the 110 kV grid,
as shown in Fig. 4. The fault happens at 0.1s. To investigate
system performance under an unbalanced fault, the fault is
simulated until 0.5s.

1) Without AFM: The system performance without AFM is
shown in this subsection. DERs in microgrids are in power
control mode during faults, outputting the same active power
and reactive power while maintaining currents within safety
ratings. Fig. 5 shows results without AFM, including currents
at fault locations, and current contributions. The total to-
ground fault currents I/ +-1™ and fault currents from the main
grid IM have magnitudes of 200.2 A and 162.4 A, respectively.
Microgrids’ current contributions are 37.8 A or 18.9%.

2) With NSAFM: The trained neural networks, act as fault
management algorithms for microgrid runs on a personal

400

= ™= AL
O Lt

-400 | | | | L | | | | )
0 005 01 015 02 025 03 035 04 045 05
t(s)

(a) phase a currents at the fault location. I 4+ 1™, T2 and I are
total fault currents to the ground, fault currents from the main grid
and fault currents from microgrids, respectively.
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, which are also fault current contributions from

Fig. 5: Results for single-phase-to-ground faults without AFM.

laptop. Our previous work shows that the two-way commu-
nication time between the simulator and controller is about
1.8 ms [11], which is reasonable for fault management. Fig. 6
shows fault currents at fault locations, and the magnitude
difference between total fault currents and fault currents from

the main grid, i.e., | [I? + I|- [T | |. The total fault currents

and fault currents from the main grid are 183.6 A and 176.1 A,
respectively and thus microgrids’ current contributions are 7.5
A or 4.1%. The magnitude difference is minimized as close
to 0 as possible.

B. Sequence current analysis

Figure 7 illustrates the negative sequence currents in a
microgrid with and without the implementation of NSAFM.
Notably, the magnitude of the negative sequence current from
the microgrid with NSAFM is double that of the microgrid
lacking NSAFM. This observation underscores the capability
of NSAFM to generate a higher negative sequence current,
which can enhance the performance of microgrids equipped
with negative sequence current relays.

Table I lists comparisons of system performance with and
without NSAFM. Metrics for comparison include response
time, fault current contributions, DER reactive power output,
and negative sequence current. It can be seen that NSAFM
can achieve nearly real-time performance and generate more
reactive power and negative sequence current, which is crucial
for the accurate detection and compensation under unbalanced
conditions. Critically, the NSAFM-equipped systems manage
to suppress fault current contributions to lower levels, which
mitigates the risk of damage to electrical components and
improves system resilience.
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Fig. 6: Results for single-phase-to-ground faults with learning-based AFM.
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Fig. 7: Negative sequence current with and without NSAFM.

Table IT shows resilience metrics for current contributions
(t1y = 0.1, t = 0.5), and the values are calculated based
on Fig.6(b) and Fig.5(b). The results show that the NSAFM
can significantly improve system resilience regarding the fault
current contribution.

VI. CONCLUSION

This paper presents a neural sequenced active fault man-
agement to achieve real-time safety assurance for microgrids
and the main grid during unbalanced faults. The approach
works reliably for grid fault currents comparable to microgrid
fault current contribution irrespective of the topology of the
system. Different from existing phase quantities based ac-
tive fault management method, microgrids with the proposed
sequenced approach provide positive as well as negative
sequence currents during unbalanced faults. The generated
negative sequence currents can be used for Siemens protection
relays on microgrid side. Future work will exploit the devised

TABLE I: System performance comparison with/without NSAFM

Metrics ‘ NSAFM ‘ Without AFM
Fault current contributions 4.7% 16.7%
Response time (ms) 5 < 3.0
DERI reactive power (MVAR) 0.2 0
[T |(A) 21.2 8.5

TABLE II: Resilience metrics for current contributions

Mewic | With NSAFM | Without ARM
Invulnerability 82.5% 46.0%
Recovery 80.0% 43.0%
Resilience 81.25% 44.5%

method in networked microgrids under more complicated
system operations.
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