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Neural Sequenced Active Fault Management for
Resilient Microgrids

Lizhi Wang, Member, IEEE, Priyanka Mishra, Member, IEEE, Ella Chou and Peng Zhang, Senior Member, IEEE

Abstract—Neural sequenced active fault management
(NSAFM) is devised to maintain the microgrids’ reliable
operation and also to properly control microgrids’ and
renewable energy’s sequence current under balanced or
unbalanced faults. The main contributions include 1) a neural
sequenced control framework for microgrids with fault ride-
through capability; 2) an optimization-based sequenced AFM
formulated to regulate the sequence current of renewable
energy under unbalanced faults; 3) a learning-based sequenced
AFM control algorithm, which transfers computation from
online optimization to offline training. The deployable neural
sequenced AFM scheme is thoroughly verified on a microgrid
with a single-phase-to-ground fault using hardware-in-the-loop
(HIL) in a Real-Time Digital Simulator (RTDS) environment,
and the experimental results show that the proposed method
can significantly improve system resilience regarding the fault
current contribution.

Index Terms—Microgrid control, fault management, learning-
based control, HIL, optimization.

I. INTRODUCTION

THE imperatives of fault ride-through for distributed en-

ergy resources (DERs), which mandate that renewable

generators maintain grid connection and power output during

fault conditions, are paramount in ensuring grid stability [1].

Active Fault Management (AFM) is instrumental in enhanc-

ing microgrids’ ability to ride through such disturbances.

Specifically, AFM can 1) enable microgrids’ ride-through

capabilities, which is to keep connected to the main grid during

faults to prevent instability caused by loss of large generation,

2) regulate the total fault contributions by coordinating hetero-

geneous microgrids and DERs, which is to protect equipment

from overcurrents damage and to minimize updating for the

relay, and 3) reduce voltage ripples during fault occurrence and

fault clearance [2]. Existing fault managements for microgrids

mostly focus on controlling one variable, such as fault currents,

while other critical variables, such as power balance and power

ripples, are not controlled [3], [4]. Our previous work [5] allow

only positive sequence current during an unbalanced fault,

which is not a desirable condition for a system with negative

sequence overcurrent relays. Therefore, efficacious microgrid
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fault control that can assure the sequence of current regulation

and massive DER coordination is needed.

The problem of AFM can be formulated as a constrained

nonlinear optimization problem [5], [6]. Compared with feed-

back control, which focuses on certain variables while ignoring

other variables [7], [8], [9], optimization can consider multiple

variables, putting them as objectives and constraints. Our

previous work [10] pioneered the investigation into AFM

using centralized optimization for a single microgrid, and a

distributed and asynchronous surrogate Lagrangian relaxation

(DA-SLR) algorithm for networked microgrids(NMs).

Negative sequence components pose a significant threat to

electrical machinery, potentially causing overheating in gen-

erators and motors which can lead to equipment degradation,

reduced operational efficiency, and elevated safety hazards. To

mitigate these issues, microgrids are equipped with negative

sequence current protection systems designed to rapidly detect

and rectify such imbalances. Nonetheless, two predominant

challenges persist in current methodologies [11]: (I) the ab-

sence of an AFM approach capable of generating both positive

and negative sequence currents in the event of an unbalanced

fault, and (II) a deficiency in effective strategies that guarantee

real-time performance in microgrid fault management.

To bridge the gap, this paper establishes a neural-sequenced

active fault management (NSAFM) for resilient microgrids.

We first construct a neural sequenced current control frame-

work for microgrid, and then we construct sequenced AFM

as an optimization-based current control problem to generate

positive as well as negative sequence currents during an

unbalanced fault. Finally, a machine learning method [12] is

leveraged to replace the optimization-based AFM and achieve

the control goal in milliseconds. The trained neural networks

are verified in controller HIL real-time simulation.

The remainder of this paper is organized as follows. Sec-

tion II presents the sequenced active fault management with

sequenced current control. Section III formulates optimization-

based sequenced active fault management problem. Section IV

introduces the implementation of NSAFM. Section V presents

case studies. Section VI provides the conclusion of the paper.

II. SEQUENCED ACTIVE FAULT MANAGEMENT

A. Motivation of sequenced AFM

AFM aims at decreasing microgrid’s contributions in the

main grid’s fault currents (Fig. 1(a)). Fault current contri-

butions mean how large fault currents’ amplitudes, |ITf |,
have been increased because of the integration of microgrid.

Because total fault currents are vector additions of the main
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grid‘s fault currents and microgrid’ fault currents as shown

in Fig. 1(b). Total fault currents and the main grid‘s fault

currents can have the same amplitude even when microgrid’

fault currents are not zero, which suggests that the integration

of micorgrid has a minimal impact on the main grid. Achieving

this balance involves precise adjustments to the amplitude

and phase angles of the currents of microgrids. However, it

is important to note that microgrids commonly incorporate

negative overcurrent relays, necessitating careful control over

both the positive and negative components of the current in

AFM.
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Fig. 1: Motivation of active fault management

B. Sequence current control scheme
The sequenced current control scheme, designed to regulate

the sequence current upon receiving a control signal from the

AFM, is introduced.
With the three-phase unbalanced input voltage (Eabc

i ) and

fault currents (Iabci ) without zero sequences, the apparent

power can be expressed as the orthogonal sum of positive

and negative sequences, such that

Si = (ejθE+
dq + e−jθE−

dq)(e
jθI+dq + e−jθI−dq) (1)

where + and − denote the positive and negative components

separately. Separating the real power and the reactive power

of the three phases, we obtain, [13]:{
P (t) = P0 + Pc2cos(2θ) + Ps2sin(2θ)

Q(t) = Q0 +Qc2cos(2θ) +Qs2sin(2θ)
(2)

where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P0 = 1.5(E+
d I+d + E+

q I+q + E−
d I−d + E−

q I−q )

Pc2 = 1.5(E+
d I−d + E+

q I−q + E−
d I+d + E−

q I+q )

Ps2 = 1.5(E−
d I+d − E−

q I+q − E+
q I−d + E+

d I−q )

Q0 = 1.5(E+
q I+d − E+

d I+q + E−
q I−d − E−

d I−q )

Qc2 = 1.5(E+
q I−d − E+

d I−q + E−
q I+d − E−

d I+q )

Qs2 = 1.5(E+
d I−d + E+

q I−q − E−
d I+d − E−

q I+q )

Here, superscripts + and − refer to positive and negative

sequences. Subscripts d and q refer to direct and quadrature

axis components. The double-line frequency power coeffi-

cients Pc2, Ps2 Qc2, and Qs2 are caused by the voltage

unbalance, which causes fluctuations in the DC-link voltage,

i.e. second-order harmonic ripple will appear. Therefore, to

keep a constant DC-link voltage, the power coefficients Pc2

and Ps2 have to be nullified.

Expressing the power coefficients in the matrix form, we

obtain

2

3

⎡
⎢⎢⎣
P0

Q0

Ps2

Pc2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
E+

d E+
q E−

d E−
q

E+
q −E+

d E−
q −E−

q

E−
q −E−

d −E+
q E+

d

E−
d E−

q E+
d E+

q

⎤
⎥⎥⎦
⎡
⎢⎢⎣
I+d
I+q
I−d
I−q

⎤
⎥⎥⎦ (3)

Removing dc-link voltage ripple, necessitates making
2
3 [P0Q0Ps2Pc2] = [ 23P0Q000]

T . Therefore, the control ob-

jectives I∗ can be satisfied by choosing currents such that⎡
⎢⎢⎣
I+d
I+q
I−d
I−q

⎤
⎥⎥⎦
∗

=
2

3

⎡
⎢⎢⎣
E+

d E+
q E−

d E−
q

E+
q −E+

d E−
q −E−

q

E−
q −E−

d −E+
q E+

d

E−
d E−

q E+
d E+

q

⎤
⎥⎥⎦
⎡
⎢⎢⎣
P0

Q0

0
0

⎤
⎥⎥⎦ (4)

For unbalanced input voltage, the control objectives are

achieved by flowing negative-sequence currents. In the con-

text of this control scheme, the current reference is derived

using a PQ control strategy during standard operation. In the

subsequent section, we will delve into the methodology for

formulating current references via a sequenced AFM approach

when addressing fault conditions.

C. Resilience metric for sequenced AFM

AFM is devised to improve microgrid resilience against

large disturbances,e.g. balanced and unbalanced faults. A

resilience metric [14] is utilized to quantify the system re-

silience:

ξ = 0.5(ξ1 + ξ2)

ξ1 =
d1
d0

ξ2 =

∫ t2
t1

dtdt

d0(t2 − t1)

(5)

(6)

(7)

where ξ is the resilience. ξ1 is the invulnerability and ξ2 is

the recovery. d1 is the value of the variable of interest during

disturbance and d0 is the variable’s values before disturbance.

t1 and t2 are the disturbance happening time and clearing time,

respectively. ξ, ξ1 and ξ2 are all in the range of 0 to 1. Larger

ξ means the system is more resilient.

III. OPTIMIZATION-BASED SEQUENCED ACTIVE FAULT

MANAGEMENT

AFM is formulated as a nonlinear constrained optimization

problem given in equations (8):

min α1F1 + α2F2 + α3F3 + α4F4, α ∈ [0, 1] (8)

where α = {α1, α2, α3, α4} are weighting factors between

different parts in the objective function.

The objective function has four parts:
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1) F1 are fault current contributions, the magnitude differ-

ence between fault currents from the main grid and total

fault currents.

F1 ≡
∣∣∣∣ [Re(IMdq0+Imdq)]

2+[Im(IMdq0+Imdq)]
2

[Re(IMdq0)]
2+[Im(IMdq0)]

2 − 1

∣∣∣∣ (9)

Superscripts M,m indicate variables related to the main

grid and all microgrids, respectively. IMdq0, I
m
dq are fault

currents from the main grid and from the microgrid,

respectively. IMdq0 + Imdq are total fault currents.

2) F2 is microgrid negative sequence current magnitude.

F2 ≡ −
N∑
i=1

([Re(Ii
−
dq )]

2 + [Im(Ii
−
dq )]

2) (10)

Subscript i indicates variables related to DER i ∈
{1, 2, ..., N}. AFM aims to increase negative sequence

current, which is desired for microgrids with negative

sequence current relays.

3) F3 is microgrid reactive power output:

F3 ≡ −
N∑
i=1

Qi (11)

4) F4 is power ripples:

F4 ≡
N∑
i=1

Ri

P 2
i

(12)

Power ripples are to be minimized.

where Pi ≡ 1.5(Ei+
d Ii+d + Ei+

q Ii+q + Ei−
d Ii−d + Ei−

q Ii−q ),

Qi ≡ 1.5(Ei+
q Ii+d −Ei+

d Ii+q +Ei−
q Ii−d −Ei−

d Ii−q ) and Ri ≡
2.25[(Pi)

2 + (Qi)
2]. Pi and Qi are active and reactive power

outputs from microgrid i.
AFM has two types of constraints: system-wide coupling

constraints and local constraints. System-wide coupling con-

straints contain decision variables of more than one DER, and

local constraints only involve decision variables of one DER.

1) Coupling constraints: tie line safety rating constraint. This

means the microgrid’s output currents should be less than

a safety threshold, ImRated:

[Re(Imdq)]
2 + [Im(Imdq)]

2 ≤ (ImRated)
2. (13)

2) Local constraint 1: DER-wise safety rating constraint.

Each DER’s output currents during fault should be less

than its own safety rating, IiRated:

[Re(Iidq)]
2 + [Im(Idq)

i]2 ≤ (IiRated)
2. (14)

3) Local constraint 2: zero sequence components elimination

constraint. This constraint means the sum of each DER’s

three-phase currents is zero. This constraint is required

if a microgrid’s interface converter or nearby transformer

does not allow zero-sequence currents:∑
fρ I

i
fρ = 0. ∀ρ ∈ {a, b, c} (15)

fρ denotes the faulty phase ρ.

4) Local constraint 3: battery power buffer constraint. For

DER to have a battery as a buffer, the power output

difference between before faults and after faults should be

smaller than the power rating of the battery. Otherwise, it

is beyond the battery’s capability to keep a power balance:

(Pi − P bf
i )2 ≥ (P bty

i )2. (16)

P bf
i denotes the power output before fault and P bty

i is

the power rating of the battery.

5) Local constraint 4: Reactive power constraint. We derive

that the reactive power of the microgrid should be larger

than zero to supply the leading current during unbalanced

fault:

Qi ≥ 0. (17)

IV. NEURAL SEQUENCED AFM

Optimization-based AFM would lead to extensive compu-

tation time if a larger scale system with complex objectives

and constraints is considered. The optimization-based fault

management algorithm needs more than 100 ms to output

reference values, and the fault management is expected to have

compromised performance or even fail. In this section, we use

a general regression neural network (GRNN) to replace the

optimization-based AFM. First, the training data are achieved

by the optimization. Regression means estimating relationships

between outputs and inputs. In the case of AFM, inputs are

system status, such as microgrid voltages, fault voltages, fault

currents, power, etc. Outputs are reference values for the

DER’s output currents. Previously, outputs were decided by

optimizations used in AFM. Here, neural works are used

to approximate the optimization function. The used neural

network is feed-forward with a multi-layer perceptron without

feedback between layers as shown in Fig. 2.

input layer

hidden layer

output layer

DERs dq positive 
sequence current 

dq positive sequence 
terminal voltage 

dq positive sequence   
fault current

dq negative sequence   
fault current

DERs dq negative 
sequence current 

dq negative sequence 
terminal voltage 

  

 

input layer

hidden layer

output layer

DERs dq positive 
sequence current 

dq positive sequence 
terminal voltage 

dq positive sequence   
fault current

dq negative sequence   
fault current

DERs dq negative 
sequence current 

dq negative sequence 
terminal voltage 

Fig. 2: GRNN Learning scheme.

Fig. 3 presents the architecture of the NSAFM which can

regulate positive sequence and negative sequence currents

reference separately. In this control architecture, the inverter

works as a regular grid following the controller, which gen-

erates as much power as is regulated without faults. When

faults happen, the AFM will switch in, and sequence current

references will be generated to regulate the positive and

negative sequence current and satisfy the objective of AFM.

The inverter will follow the current reference i∗n in the normal

operation condition. The learning-based control signals of all

the N DERs, i.e., u = [i+∗
d , i+∗

q , i+∗
d , i−∗

q ]T , are functionally

formulated as a neural network u = πϕ(x), where π denotes

the neural network describing the control policy; u, x and ϕ
respectively denote the output, input, and weights of the neural

network.
V. CASE STUDY

The neural sequence active fault management is tested using

a typical microgrid (Fig.4) in a controller hardware-in-the-loop
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Fig. 3: Structure of the neural hierarchical control of microgrids.

(HIL) test environment [15]. DER 1 and microgrid 3 have DC-

link batteries; DER 2 does not have batteries; Those DERs

connect to the main grid by power converters.

For the setup of controller hardware-in-the-loop (HIL) real-

time simulation, the learning-based controller algorithms run

on a personal computer or server, and power grids are run in

RTDS simulators.

main 
grid

load

fault

impedance110 kV 27 kV

0.69 kV

Microgrids

DER1

DER3

DER2

DER

DER2

DER

Fig. 4: Diagram of studied system.

A. Single-phase-to-ground faults

This subsection validates the efficacy of the NSAFM

method under a typical single-phase-to-ground fault. A single-

phase-to-ground fault happens at phase a on the 110 kV grid,

as shown in Fig. 4. The fault happens at 0.1s. To investigate

system performance under an unbalanced fault, the fault is

simulated until 0.5s.

1) Without AFM: The system performance without AFM is

shown in this subsection. DERs in microgrids are in power

control mode during faults, outputting the same active power

and reactive power while maintaining currents within safety

ratings. Fig. 5 shows results without AFM, including currents

at fault locations, and current contributions. The total to-

ground fault currents IMa +Ima and fault currents from the main

grid IMa have magnitudes of 200.2 A and 162.4 A, respectively.

Microgrids’ current contributions are 37.8 A or 18.9%.

2) With NSAFM: The trained neural networks, act as fault

management algorithms for microgrid runs on a personal

C
ur

re
nt

 (A
)

-400

-200

0

200

400

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
t (s)

Ia
M

Ia
m

Ia
M +Ia

m

Ia
M

Ia
m

Ia
M +Ia

m

(a) phase a currents at the fault location. IMa +Ima , IMa and Ima are
total fault currents to the ground, fault currents from the main grid
and fault currents from microgrids, respectively.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5-20

-10

10

20

30

40

50

C
ur

re
nt

 
di

ffe
re

nc
e(

A)

t (s)

Fault happens00

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5-20

-10

10

20

30

40

50

C
ur

re
nt

 
di

ffe
re

nc
e(

A)

t (s)

Fault happens0

(b) The magnitude difference between IMa + Ima and IMa , i.e.,∣
∣
∣IMa + Ima

∣
∣
∣−

∣
∣
∣IMa

∣
∣
∣, which are also fault current contributions from

microgrids.

Fig. 5: Results for single-phase-to-ground faults without AFM.

laptop. Our previous work shows that the two-way commu-

nication time between the simulator and controller is about

1.8 ms [11], which is reasonable for fault management. Fig. 6

shows fault currents at fault locations, and the magnitude

difference between total fault currents and fault currents from

the main grid, i.e.,

∣∣∣∣ ∣∣IMa + Ima
∣∣- ∣∣IMa ∣∣ ∣∣∣∣. The total fault currents

and fault currents from the main grid are 183.6 A and 176.1 A,

respectively and thus microgrids’ current contributions are 7.5

A or 4.1%. The magnitude difference is minimized as close

to 0 as possible.

B. Sequence current analysis

Figure 7 illustrates the negative sequence currents in a

microgrid with and without the implementation of NSAFM.

Notably, the magnitude of the negative sequence current from

the microgrid with NSAFM is double that of the microgrid

lacking NSAFM. This observation underscores the capability

of NSAFM to generate a higher negative sequence current,

which can enhance the performance of microgrids equipped

with negative sequence current relays.

Table I lists comparisons of system performance with and

without NSAFM. Metrics for comparison include response

time, fault current contributions, DER reactive power output,

and negative sequence current. It can be seen that NSAFM

can achieve nearly real-time performance and generate more

reactive power and negative sequence current, which is crucial

for the accurate detection and compensation under unbalanced

conditions. Critically, the NSAFM-equipped systems manage

to suppress fault current contributions to lower levels, which

mitigates the risk of damage to electrical components and

improves system resilience.
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Fig. 7: Negative sequence current with and without NSAFM.

Table II shows resilience metrics for current contributions

(t1 = 0.1, t2 = 0.5), and the values are calculated based

on Fig.6(b) and Fig.5(b). The results show that the NSAFM

can significantly improve system resilience regarding the fault

current contribution.

VI. CONCLUSION

This paper presents a neural sequenced active fault man-

agement to achieve real-time safety assurance for microgrids

and the main grid during unbalanced faults. The approach

works reliably for grid fault currents comparable to microgrid

fault current contribution irrespective of the topology of the

system. Different from existing phase quantities based ac-

tive fault management method, microgrids with the proposed

sequenced approach provide positive as well as negative

sequence currents during unbalanced faults. The generated

negative sequence currents can be used for Siemens protection

relays on microgrid side. Future work will exploit the devised

TABLE I: System performance comparison with/without NSAFM

Metrics NSAFM Without AFM

Fault current contributions 4.7% 16.7%

Response time (ms) 5 ≤ 3.0

DER1 reactive power (MVAR) 0.2 0

|Im−|(A) 21.2 8.5

TABLE II: Resilience metrics for current contributions

Metric With NSAFM Without AFM

Invulnerability 82.5% 46.0%

Recovery 80.0% 43.0%

Resilience 81.25% 44.5%

method in networked microgrids under more complicated

system operations.
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