Check for
updates

R DIGITAL Assaciaionfoe
acvyel® 155 Ry T @m open)
£ Latest updates: https://dl.acm.org/doi/10.1145/3764860.3768331

RESEARCH-ARTICLE
Compositional Model-Driven Verification of Weakly Consistent
Distributed Systems

BRYANT J CURTO, Northeastern University, Boston, MA, United States

JEONGHYEON KIM, Korea Advanced Institute of Science and Technology, Daejeon, South
Korea

ALAN WANG, Northeastern University, Boston, MA, United States
GIJUNG IM, Yonsei University, Seoul, South Korea

JIEUNG KIM, Yonsei University, Seoul, South Korea

JEEHOON KANG

View all

Open Access Support provided by:
Yonsei University
Northeastern University

Korea Advanced Institute of Science and Technology

: PDF Download
j;b 3764860.3768331.pdf
< 28 December 2025
Total Citations: 0
Total Downloads: 193

Published: 13 October 2025

Citation in BibTeX format

SOSP '25: ACM SIGOPS 31st Symposium
on Operating Systems Principles
October 13 - 16, 2025

Seoul, Republic of Korea

Conference Sponsors:
SIGOPS

PLOS '25: Proceedings of the 13th Workshop on Programming Languages and Operating Systems (October 2025)

https://doi.org/10.1145/3764860.3768331
ISBN: 9798400722257

https://dl.acm.org
https://www.acm.org
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/3764860.3768331
https://dl.acm.org/doi/10.1145/3764860.3768331
https://dl.acm.org/doi/10.1145/contrib-99661714452
https://dl.acm.org/doi/10.1145/institution-60028628
https://dl.acm.org/doi/10.1145/contrib-99660915330
https://dl.acm.org/doi/10.1145/institution-60032144
https://dl.acm.org/doi/10.1145/institution-60032144
https://dl.acm.org/doi/10.1145/contrib-99661715689
https://dl.acm.org/doi/10.1145/institution-60028628
https://dl.acm.org/doi/10.1145/contrib-99661713908
https://dl.acm.org/doi/10.1145/institution-60016912
https://dl.acm.org/doi/10.1145/contrib-99661759325
https://dl.acm.org/doi/10.1145/institution-60016912
https://dl.acm.org/doi/10.1145/contrib-99658639833
https://dl.acm.org/doi/10.1145/3764860.3768331
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/institution-60016912
https://dl.acm.org/doi/10.1145/institution-60028628
https://dl.acm.org/doi/10.1145/institution-60032144
https://dl.acm.org/action/exportCiteProcCitation?dois=10.1145%2F3764860.3768331&targetFile=custom-bibtex&format=bibtex
https://dl.acm.org/conference/sosp
https://dl.acm.org/conference/sosp
https://dl.acm.org/sig/sigops
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3764860.3768331&domain=pdf&date_stamp=2025-10-13

Compositional Model-Driven Verification of
Weakly Consistent Distributed Systems

Bryant J. Curto Jeonghyeon Kim Alan Wang
curto.b@northeastern.edu jeonghyeon.kim@kaist.ac.kr wang.alan@northeastern.edu
Northeastern University KAIST Northeastern University

Boston, USA Daejeon, Republic of Korea Boston, USA
Gijung Im Jieung Kim Jeehoon Kang
kijeonglim@yonsei.ac.kr jieungkim@yonsei.ac.kr jeehoon.kang@furiosa.ai
Yonsei University Yonsei University FuriosaAl

Seoul, Republic of Korea

Seoul, Republic of Korea

Seoul, Republic of Korea

Ji-Yong Shin
j.shin@northeastern.edu
Northeastern University
Boston, USA

Abstract

Despite abundant distributed system verification work,
weakly consistent distributed systems have been overlooked
as formal verification targets. Verification methodologies
starting from the code level face scalability challenges when
verifying weakly consistent distributed systems as these sys-
tems employ a wide variety of similar semantics and designs,
potentially leading to redundant verification work.

This paper presents our ongoing work to develop MOVER],
a top-down verification framework for weakly consistent dis-
tributed systems. It aims to reduce the effort needed to verify
this commonly overlooked class of safety-critical systems.
MovER!I is based on novel compositional and operational
models of sixteen different consistency semantics including
eventual consistency, four session guarantees, and causal
consistency. The implementation-agnostic semantic models
connect to templated distributed protocol models and further
to different verified implementations through refinement.

Verification of the safety of weakly consistent distributed
system protocols and implementations is made more prac-
tical by the flexibility of our templated distributed proto-
col models. Further, the compositionality of these semantic
models and templating of these protocol models enable the
framework to efficiently scale to support a range of weak
consistency semantics. These claims are evaluated through

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

PLOS °25, October 13-16, 2025, Seoul, Republic of Korea

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2225-7/25/10
https://doi.org/10.1145/3764860.3768331

42

verification of primary-replica and gossip style protocol im-
plementations configurable to any of six different consis-
tency semantics.

CCS Concepts: « Software and its engineering — Dis-
tributed programming languages; Software verifica-
tion; « Theory of computation — Distributed comput-
ing models; Object oriented constructs.

Keywords: consistency semantics, formal verification, re-
finement, bisimulation, Rocq, Coq

1 Introduction

Ensuring the correctness of safety-critical systems is bur-
densome, and this challenge is exacerbated in distributed
systems due to their inherent complexity. As alternatives to
debugging and testing, formal verification approaches [20,
22, 30, 33, 35, 37, 47] have been proposed to mathematically
guarantee the correctness of distributed systems [29]. The
proposed approaches leverage modularity for proofs, sepa-
rate functional correctness and protocol safety proofs, gradu-
ally relax network assumptions, and extend logic for concur-
rency reasoning for distributed systems. As a demonstration
of these methodologies, strongly consistent distributed sys-
tems implementing linearizability [11, 16, 28, 32, 44, 49] are
used as common targets.

In this paper, we focus on verifying weakly consistent dis-
tributed systems that are more widely deployed than strongly
consistent distributed systems but are rarely studied for for-
mal verification. There is a wide spectrum of weakly con-
sistent distributed systems, which employ different seman-
tics suited to their application needs. While these systems
provide relaxed guarantees, ensuring their correctness is
nonetheless crucial.

https://orcid.org/0009-0007-1096-9893
https://orcid.org/0009-0000-7070-3578
https://orcid.org/0009-0001-7774-023X
https://orcid.org/0009-0002-0280-4451
https://orcid.org/0000-0001-7581-041X
https://orcid.org/0000-0002-2115-0871
https://orcid.org/0000-0002-1595-4849
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.1145/3764860.3768331

(Each S-model contains safety proofs:

i.e., all S-model operations comply with the model’s

consistency semantics. srenl:)lglelltsic
(safety proof reuse/transfer paths malp) (S-models):
| Causal consistency (CC) || composable

object-like
models that

Monotonic | Read-my- | Monotonic |Write follows hide 1
reads (MR) [writes (RMW) writes (MW) | reads (WFR) levlele dgt‘;’i_ls
4 4 4 4

J Eventual consistency (EC) L

|
-C Refinement proofs: glue S- and P- models
Protocol
- : : models
Primary-replica (P-R) Gossip (G) (P-models):
CC CC templated
MR RMW MW [WFR]| ([MR RMW MW [WFR de/ K
EC EC nlo elnet\lemi
7 oy -level models
- C]nstantiation and simple invariant proofs) -------------
| Instantlated || Instantlated || Instantlated Instances of
P-R w1th MR P-R w1th CcC G w1th WER P-models
'(Blslmulatlon proofsA glue P-models and code) S—
Implementation || Implementation || Implementation
PR with MR || PR with CC || G with WER |--- Code

Figure 1. Overview of MOVERI.

Applying formal verification to this diverse domain can
lead to a significant amount of redundant work. The prob-
lem arises because most existing approaches focus on the
code-level details; this is natural as the ultimate goal of verifi-
cation is to guarantee the correctness of the implementation.
This bottom-up approach, however, leads to a proof structure
that closely mirrors the code, and despite modular designs,
the proof becomes difficult to port and reuse even for differ-
ent systems with similar semantics and properties [21, 26].
Consequently, when verifying different systems that exhibit
similar or the same characteristics, users must thoroughly
understand the theory and reasoning behind how each sys-
tem works, write a huge amount of verification code to model
each system, and prove desired properties for each system.

A top-down verification approach, starting from an
implementation-agnostic model capturing the distributed
system semantics (e.g., Figure 2), can make the verifica-
tion more scalable [23, 30]. However, weakly consistent dis-
tributed semantics are diverse and their models have not
been extensively studied. Further, operational models are fa-
vorable for formal verification because they capture code-like
transitions, but most distributed system semantics are de-
fined using axiomatic definitions [5, 40, 45]. These axiomatic
definitions can be used as correctness properties which a
system must satisfy, but they may not clearly define how
a system satisfies these properties. The operational models
of the semantics can simplify verifying the properties that
are not apparent in the code because finding the matching
behavior in the code and the operational model (e.g., through
refinement) can lead to verifying the properties [22].

43

To fill in these gaps, we propose MOVERI, a composi-
tional model-driven weakly consistent distributed system
verification framework (Figure 1). Semantic models (S-model)
of distributed systems are at the core of our verification. S-
models are operational models that capture the safety prop-
erties of weakly consistent distributed systems. S-models
capture the semantics, or safety-preserving behaviors, and
minimal states of distributed systems, while abstracting away
low-level implementation details such as network messages.
The S-models are proven to enforce the axiomatic definitions
and can be used to verify different system designs implement-
ing the same semantics. Although a model-based verification
was explored for linearizable semantics [23, 33] and causal
consistency [30] for the safety of a single semantics or pro-
tocol, the novelty of our S-models comes from their ability
to capture a wide variety of distributed weak consistency
semantics via composition and templating. These factors
play a critical role in modular verification and proof reuse.

Each S-model independently models a distributed system
and semantics and carries correctness proofs, and the S-
models compose to model a system with stronger semantics.
In this paper, we focus on six popular semantics: eventual
consistency (EC) [46], the four session guarantees (SG) [40]—
monotonic reads (MR), read-my-writes (RMW), monotonic
writes (MW), and write-follows-reads (WFR)—and causal
consistency (CC) [5]. The SG S-models are built on top of EC
S-model, and CC S-model is designed as a composition of the
four SG S-models. Properties verified for each S-model are
passed along to the composed model for free and S-models
can expand to different combinations of SGs, at no cost.

To verify the distributed system code, we connect the S-
model to more concrete protocol-level models (P-models)
through refinements. P-models include node and network-
level details. Similar to the composable S-model design, the
P-model employs a templated design: depending on the se-
mantics it observes, P-models are assembled to match the
S-model and the code-level implementation. We instantiate
the P-models to primary-replica-style [38, 41] and gossip-
style protocols [15]. Safety properties of P-models are proved
by reusing the proofs of S-models through refinement.

We use Rocq (formerly Coq) [43] to implement MOVERL.
Distributed system implementations in Go connect to
MovER! using Goose [4, 12], and we verify the primary-
replica and gossip style implementations that can be config-
ured to follow different consistency semantics.

We make the following contributions:

(1) novel, verified, compositional, operational models for
distributed weak consistency semantics with which top-
down verification is performed,;

(2) safety proof reuse techniques exploiting the composi-
tionality of S-models;

(3) an implementation of Movert which, through templat-
ing and composition, aims to support the formal verifi-
cation of a variety of distributed systems each enforcing
any of a variety of weak consistency semantics;

(4) verified distributed system code implementing EC, four
SGs, and CC using MOVERI.

2 Background and Motivation
2.1 Weakly Consistent Distributed Semantics

Distributed weak consistency semantics define how updates
propagate and become visible in a distributed system. They
allow the system to trade off consistency by returning old
data for better performance [14, 17, 31, 41]. Our target weak
consistency semantics are eventual consistency, four session
guarantees, and causal consistency, which are widely used
in industry and academia [1, 3, 13, 36, 41, 42, 45, 48].

Most such systems assume eventual consistency, which
guarantees minimal safety properties [7, 39, 46].

e Eventual consistency (EC): A user’s read returns any
version of the data written by prior writes.

Session guarantees (SGs) can be layered on top of EC and
they order reads and writes differently per user depending on
the individual user’s interactions with the system [40-42].

e Monotonic reads (MR): A read returns the same or a
later version of data than the user last read.

e Read-my-writes (RMW): A read returns the same or a
later version of data than the user last wrote.

e Monotonic writes (MW): A write by a user applies to a
node in the system after all prior writes by the same user
are applied to the node.

e Write-follows-reads (WFR): A write by a user applies
to a node in the system after all prior writes read by the
same user are applied to the node.

Finally, causal consistency, one of the strongest among
weak consistency semantics, enforces causality-preserving
ordering [5, 27, 30] of operations across the entire system.

e Causal consistency (CC): All users observe causally
related operations in a single, common order. That is, if a
user observes an operation, then it must also observe all
causally dependent operations.

Interestingly, the composition of MR, RMW, MW, and WEFR is
known to be CC [9]. Leveraging this theory and the practice
that EC is the base assumption for most systems, we design
S-models that are compositional, by which we achieve reuse.

2.2 Motivation and Related Work

Table 1 summarizes efforts to verify executable distributed
system code. Chapar [30] and ADO [23] propose abstract
models similar to MOVERI to verify the safety of causally
consistent distributed systems and strongly consistent
distributed systems, respectively, in a top-down manner.

44

Project H Code Safety ‘ Model ‘ g[;i;l‘ ;]:rlliz:tiics ‘
MOVERI 16 weak (EC,
(this work) Go v v v SG, CC, egncA)
Chapar [30] OCaml v v X CcC

ADO [23] C v v X Strong

LiDO [33] OCaml v v X Byz/Strong
Verdi [47] OCaml v X N/A Strong
IronFleet [22] C# v X N/A Strong

Grove [35] Go v X N/A Strong
WormSpace [37] || C v X N/A Strong

Table 1. Comparison of MovERI and other works. MOVERI is
the only framework that uses model composition and verifies
multiple weak consistency semantics.

LiDO [33] extends ADO to verify the safety and liveness
of Byzantine consensus protocols. Each work targets differ-
ent semantics but their commonality is being able to use their
models in verifying a few different implementations satisfy-
ing the semantics. However, their models are limited to only
one semantics and the scope of applications is limited.

Verdi [47] does not employ models of distributed seman-
tics but uses different network models to simplify the verifi-
cation. IronFleet [22], Grove [35], and WormSpace [37] in-
troduce methodologies to modularize proofs and reasoning
which Movert also pursues. They verify distributed consen-
sus protocols to demonstrate their generality and applicabil-
ity. However, when it comes to verifying a wide spectrum of
distributed systems, they do not provide concrete reusable
proofs like the ones available in model-driven approaches.

Moverr uses model-driven verification for proof reuse
(Sections 4.2 and 5.3) and realizes wide applicability at the
same time by designing a model composition for a variety
of distributed semantics (Section 4.1).

Other than the work summarized in Table 1, EC is widely
studied and verified in the context of Conflict-free Replicated
Data Types (CRDT) [34]. Bouajjani et al. [8] proposed formal
specifications for model checking an optimistic replication
system under EC for CRDT. Gomes et al. [18] developed a
verification framework to check CRDT algorithms maintain
strong eventual consistency. While they analyze and specify
EC as a phenomenon under CRDTs, we propose S-models
for EC itself and beyond that connect to implementations.

3 Overview

As described in Section 1 and Figure 1, MOVERI consists of
multiple layers. The key difference from other layer-based
approaches [20, 22, 23, 37] is that we fill in the layers with
composable and templated models reusable for verification.

Layered Design Each S-model represents a distributed
consistency semantics. S-models encapsulate the distributed
system state as an object and the transitions as mutations to
the object. Individual S-models carry the safety properties
and proofs which can be reused to prove properties of com-
posed S-models and verify the P-models and the code. We
assume that all of our target semantics are built on top of

EC. The SG S-models are realized on top of the EC S-model,
and the CC S-model is composed of four SG S-models.

P-models reflect how distributed protocols implement the
distributed consistency semantics by concretizing how data
gets propagated on an asynchronous network. P-models are
modularly templatized such that they can be instantiated to
a protocol that follows any semantics in the S-model layer
and that is close to the implementation. The safety prop-
erties of the P-models are verified through refinement of
corresponding S-models.

Users are responsible for implementing and connecting
the code with the target P-model. We verify Go implementa-
tions of primary-replica style [38, 41] and gossip style [15]
protocols with our target semantics. The code is verified
through refinement of P-models and, transitively, S-models,
thereby reusing the safety proofs of the S-models.

Assumptions The network is assumed unreliable: it can
reorder, drop, and duplicate messages. We assume a client can
interact with any server in the system, unlike the common
CC implementations and verifications which pin the client
to a dedicated server [19, 30, 31]. We use this more generic
assumption, because the semantics do not restrict client-to-
server mappings and clients often talk to multiple servers in
the same replicated system in practice [24]. To extend the
semantics across different servers, we assume nodes reliably
store their state despite a crash and eventually come back
up with the same state.

4 S-model Layer

An S-model abstractly captures minimum distributed sys-
tem states and actions — common to all such distributed
systems — for replicating a generic object and enforcing a
consistency semantics. Details, like an asynchronous net-
work, are abstracted away. It is represented as an object with
simple atomic read and write APIs where non-determinism
is abstracted and captured within API calls.

Weak consistency semantics can be partially ordered by
their strength [45]. This fact is leveraged to enable S-models
to be designed compositionally. Composition enables code
and proof reuse; this is vital for any framework that aims to
scalably verify a variety of correctness conditions.

4.1 From Eventual to Causal S-models and Beyond

Eventual Consistency (EC) S-model The EC S-model is
the base model for all S-models. All S-models maintain an
object with some read and write interface. The EC S-model
captures how read and write operations are performed while
updates are replicated across nodes in the system.

Figure 2a illustrates an EC S-model instantiated with an
object that contains a register and counter, and allowing sets
and gets to the prior and increments and reads of the latter.
It consists of op-set, the set of all update operations added to
the system, and vis-sets, visible subsets of op-set. Vis-sets are

45

(a) EC S-model (b) Write (Cy (cf Read(R) or Read(C)
* Vs vis-set . Grow vs'es . Grow vs’es (e.g., vs2).
-.: set to (eg., wl). 2. Retum most relevant set
register (R) or 2. Add operation from one vs
inc. counter (C) to one vs (e.g., {R3} of vs, or
with timestamp 7. (e.g., {Cg4} tovs)). {C;5,Cy, Cst of vs)).

Figure 2. S-model for eventual consistency.

analogous to individual nodes in the system such that, if all
updates in the vis-set are applied, the result is the data state
of a node (i.e., a register value and counter value).

Write adds a new operation with a new timestamp to
op-set and at least one vis-set (Figure 2b). Updates are or-
dered using timestamps and a timestamp ordering relation.
The ordering relation is a strict partial order, allowing for
commutative writes (i.e., register set and counter increment)
to be unordered while non-commutative writes (i.e., regis-
ter sets) are ordered. EC permits updates to be applied at
a replica node regardless of timestamp. However, if non-
commutative updates are applied, their in-order evaluation
is enforced to ensure convergence. To reflect asynchronous
update propagation within a distributed system, vis-sets non-
deterministically grow by adding more operations from the
op-set when processing each write and read.

Read chooses one of the vis-sets and returns the most
relevant set [40] of operations for the read in the vis-set (Fig-
ure 2c). The most relevant set consists of minimal operations
responsible for the read. For example, the most relevant set
for a read of the register is the latest register set R; in the
vis-sets but no counter increments C;. The most relevant set
for a read of a counter is all the counter increments C; in
the vis-set but no register sets R;. The most relevant set al-
lows S-models to model the semantics independent of the
replicated object.

Session Guarantees (SG) S-models Session guarantees
(SGs)—Monotonic reads (MR), read-my-writes (RMW), mono-
tonic writes (MW), and writes-follow-reads (WFR)—are de-
fined based on individual user sessions; a user interacts with
the system and thereby creates dependencies for that user’s
future interactions. Specifically, for each SG, the dependen-
cies are either the user’s previously read or written updates,
which restrict either the user’s future read or write calls.
Each SG is independently and widely used in industry and
academia [1, 3, 13, 36, 41, 42, 48].

All SG S-models are built on the EC S-model which has
been augmented to become the dependent EC module that
selectively enforces given dependencies to the API calls and
with a client that keeps track of its own dependencies (Fig-
ure 3). Each SG S-model uses this augmented EC S-model to
restrict what dependencies a client should track and which

CC S-model (combination of all four SG S-models)
Individual SG (MR/RMW/MW/WEFR) S-models
Dependent EC module Client

deps
&)

EC S-model

Figure 3. Composed S-models for session guarantees and
causal consistency.

API calls should enforce the dependencies: e.g., MR S-model
restricts the client to track reads and enforces these depen-
dencies only for read, whereas MW S-model restricts the
client to track writes and enforces them only for write.

The client model represents the user session and remem-
bers the dependencies in a dependency set (deps). The client
interacts with the dependent EC module by calling the read
and write with dependencies. Asynchrony between the client
and the system is modeled in SG S-models through non-
deterministic failures of the API calls. The failure represents
timeouts due to message drops or extended delays. The failed
operations may or may not be processed by the dependent
EC module and any results are ignored by clients.

The dependent EC module sits atop the EC S-model and ex-
pands the read and write APIs to take user dependencies and
ensures that they are satisfied. Read and Write are serviced
using a vis-set of the EC S-model that satisfies all dependen-
cies. This also applies during the growing of vis-sets.

All of our SG S-models are designed with generality and
modularity in mind. The dependent EC module and the client
model are reused across the four different S-models.

Causal Consistency (CC) S-model The definition of
causal consistency (CC) commonly relies on Lamport’s hap-
pens before relations, but enforcing the four SG at the same
time also leads to CC [9]. That is, CC can be defined based
on SGs: a client sees the same or later version of data than
what it last read and wrote, and the client’s write applies
after all of its prior writes and the writes that it has seen.

We leverage this definition by composing the four SG S-
models to create the CC S-model (Figure 3). While each SG
S-model keeps track of either read or write dependencies and
enforces the dependencies during either read or write, the
CC S-model collects both read and write dependencies in the
client and passes them to both read and write. Our modular
and compositional CC S-model simplifies reasoning about
CC and differs from prior work that only models CC [19, 30].

Other Semantics Similar to how CC S-model is achieved,
MOoVERI can trivially model any semantics that combines
SGs (i.e., powerset of {MR, RMW, MW, WFR}; 2% = 16 cases);
PRAM consistency is one of them (i.e., {MR, RMW, MW}) [10].

46

4.2 S-model Safety Proofs

To ensure that our operational S-models comply with
existing axiomatic definitions [45], we prove them safe
against these definitions. Existing definitions restrictively
define reads and writes as directly reading or writing an
object/memory-address and not on a set of updates (i.e., vis-
sets in our S-models). Thus, we expand the definitions to
account for this change.

Our modular and compositional S-models allow for proof
reuse (Figure 1). The proofs for the SG S-models reuse those
on the dependent EC module, client model, and the EC S-
model. Further, the proofs for the CC S-model also reuse the
proofs of individual SG S-models and the EC S-model. Such
reuse allowed us to reduce the proof efforts especially for CC
compared to prior work that directly verifies CC [19, 30].

5 P-model Layer

The P-model layer concretely captures distributed system
states and actions for replicating a generic object and enforc-
ing a consistency semantics. While capturing more detail
than the implementation-agnostic S-models, P-models tem-
plate states and functions which can be flexibly instantiated
to a range of protocols. The node states and functionality,
network message contents, and network assumptions are
all templated to allow for a wide variety of instantiations.
Still, for any instantiation that preserves the template proper-
ties, safety is verified through refinement. We exercise their
flexibility by instantiating the P-models to two widely used
replication protocol styles: primary-replica and gossip.

5.1 P-model Components

The P-model includes individual server and client nodes
which interact over the network following a templated pro-
tocol and semantics.

Server Nodes Each server node implementing a replica-
tion protocol has three main roles: maintaining the node’s
copy of the replicated object, propagating updates to other
nodes, and communicating with clients. Servers are divided
into three corresponding templated pieces: object manager
(OM), propagation manager (PM), and client manager (CM).

The OM is in charge of maintaining the node’s own copy
of the replicated object. This entails judging when and how
requests should be performed on the state to enforce the
consistency semantics (e.g., deferring reads to enforce MR or
writes to enforce MW) and actually executing the requests.
The PM ensures that server nodes in the system learn of
writes to achieve convergence. It propagates new writes that
are accepted by the OM, and depending on the protocol
it may also forward the writes from other server nodes to
others. Finally, the CM interacts with clients.

Figure 4 presents simplified pseudo-code capturing how
the server node executes using the managers. On the server
node receiving input, the managers are informed of this

function repl_node_step(Managers mgs, Message in)

1

2 mgs := inform(mgs, in)
3 outs := []

4 cont := true

5 while cont

6 mgs, outs', cont := act(mgs)

7 outs := append(outs, outs')

8 return mgs, outs
Figure 4. Simplified pseudo-code defining the behavior of
the templated server node model in the P-model layer.

input (line 2). The OM is then allowed to iteratively perform
actions (lines 5-7). An action is performing a read or write
request, or applying propagated updates to the replicated
state. For some input, zero or more actions can be performed;
the OM defers acting on input in order to enforce consistency
semantics (e.g., waiting for dependencies to arrive before
performing a read under MR). During each call to act(),
the PM and CM can generate messages to send based on the
action performed.

Types and functions Managers, Message, inform(), and
act() are templated such that they can be instantiated to
achieve a range of protocols. To model primary-replica, the
servers are instantiated such that only the OM of the primary
server receives clients’ write requests, and the propagation
managers of replica servers do not propagate data. Our gossip
model lifts these restrictions and treats all nodes equally: all
nodes can receive client requests and propagate data.

Client Node The client includes a session manager which
is the only templated piece in the client. The session man-
ager decides communication patterns (e.g., whether to retry
after timeout), keeps track of session state (e.g., dependen-
cies), and adds any additional metadata (e.g., request ids and
dependencies) to the API calls.

5.2 P-model Template Properties

The P-models templated design lowers the proof burden
required to verify a new protocol, so long as there exists
corresponding template arguments such that the instanti-
ated P-models express the protocol. Verification of the unin-
stantiated templated models is performed only once. Thus,
users verifying a new protocol need only verify that their
instantiated P-models satisfy a small set of properties. These
template properties are defined for each consistency and
relative to each node’s manager(s).

For example, to ensure that the safety property of EC is
enforced, the result of a read request produced by the OM
must be the expected value. Formally:

Lemma 5.1 (EC - Read Expected Value). Assume that there
exists a set of operations (each a write and timestamp pair) rep-
resenting all of the unique writes applied to the replica node’s
copy of the replicated object. If the OM produces a value to

47

fulfill a read request, then this value must be the result of eval-
uating the read request on the object produced by evaluating
the set of operations (recursively on some initial object value
in timestamp order).

5.3 Connecting P-models to S-models

Assuming the set of template properties associated with a
given consistency, the templated models in the P-model layer
are verified by proving that each refines the corresponding
model of that consistency in the S-model layer. For example,
assuming the template properties of EC, we prove that the
distributed system model in the P-model layer, formed from a
collection of replica nodes, refines the EC S-model. Similarly,
assuming the template properties of MR, we prove that the
corresponding P-model refines the dependent EC module.

In the same way that some models of the S-model are
formed from a composition of others, so too are the proofs
of refinement from the P-models to the S-models. For exam-
ple, the previously described proof of refinement with the
dependent EC module reuses the proof of refinement with
the EC S-model. This is possible since the dependent EC
module is a composition containing the EC S-model. Further,
the template properties of the prior imply those of the latter.
Therefore, completing this proof requires only proving re-
finement with the other components of the dependent EC
module (e.g., client).

The key novelty compared to other work using refinement
proofs is that we reuse multiple pre-built components in a
compositional way to maximize the proof reuse. The top-
down approach from the S-model simplifies P-model proofs.

6 Code layer

Using MovER1, we verify distributed systems that implement
EC, four SGs, and CC under primary-replica style and gossip
style protocols. We implement them in Go and use Goose [4,
12] to connect the code to MovERI which is based on Rocq.

6.1 Go Implementation

The primary-replica and gossip style implementations follow
a design that combines Bayou [42] and COPS [31]. It uses
lists of committed and tentative updates like Bayou, and
inserts updates that propagate late into the lists. Ordering of
operations and dependency tracking are simplified by using
the COPS approach of using vector timestamps and ensuring
ordered delivery of updates from the same source node.
For the primary-replica style protocol, all write requests go
to one primary node and read requests can be serviced by any
node. The primary is in charge of propagating all updates.
Note that this implementation is not strongly consistent:
clients can see different versions of outdated data by reading
from replica nodes. For the gossip style protocol, all nodes
service reads and writes and propagate updates. The client
session state is maintained at the client program and clients

can communicate with any node unlike COPS. Due to the
dependency tracking using vector timestamps, clients only
need to maintain 8n bytes for dependencies where n is the
number of server nodes.

The verified code consists of functions (and types) which,
given the current node state and a received message, return
the updated node state and messages to send. We glue this
code to a trusted shim networking layer, which manages
calling into these verified functions, serializes and deserial-
izes messages, and interacts with the OS. Our consolidated
implementation is configurable to use one of the communica-
tion patterns (i.e., primary-replica or gossip) and consistency
semantics (i.e., EC, SG, or CC). Besides the glue code, our
trusted computing base includes Rocq, Goose, Go runtime,
0OS, and hardware.

6.2 Connecting Code to P-models

Using Goose, our Go implementation translates to Peren-
nial [12] that extends Iris [2, 25] which is implemented in
Rocq. We write a functional specification of our Go imple-
mentation in Rocq and prove bisimulation with the translated
code. The specification is then connected to the instantiated
P-models using refinement. The template of the P-model
layer enables us to obtain an instantiation almost identical
to the functional specification.

Once connected to the P-models, the code is proven to
transitively connect to the S-models through refinement,
guaranteeing the safety of the code.

7 Discussion and Future Work

Correctness of a system decomposes into a conjunction of
a safety property (nothing "bad" happens) and a liveness
property (something "good" eventually happens) [6]. This
paper has spoken solely about safety properties. We are in the
process of enabling Mover1 with the ability to verify liveness
properties of code following a similar approach to that used
for safety properties. Besides LiDO [33] and IronFleet [22],
prior works in Table 1 have not demonstrated support for
the verification of liveness properties. Further, because of
their focus on strong consistency, prior works have not fully
explored the liveness properties specific to weakly consistent
distributed systems.

The focus of MovERI has been on verifying EC, SG, and
CC for good reason. Weak consistency semantics are par-
tially ordered [45]. Our compositional approach to building
S-models necessitates creating new S-models from weaker to
stronger. Having started from EC (a very weak consistency
semantics), future work can and will expand MoVERtI to sup-
port any of a wide variety of stronger consistency semantics
not addressed by prior works.

48

8 Summary

In this paper, we presented MOVERI, a compositional model-
driven verification framework for weakly consistent dis-
tributed systems. MOVERI employs a top-down verification
approach where operational models of distributed system
semantics embed safety proofs. The models capture 16 differ-
ent semantics including eventual consistency, session guar-
antees, and causal consistency. The semantic models are
designed to compose with each other to create stronger se-
mantics and reduce proof burdens. In addition to templating,
these characteristics of the framework enable it to scale to
support the verification of a variety of systems enforcing a
variety of consistency semantics. Distributed system proto-
cols and implementations can reuse the proofs to verify their
correctness through refinement. Using MovER1, we verify Go
implementations of primary-replica style and gossip style
systems exhibiting six different semantics.

Acknowledgments

We thank the anonymous reviewers for their helpful feed-
back. This work is supported by NSF awards #2019285 and
#2442888. Further, it is supported by the Institute for Informa-
tion & Communications Technology Planning & Evaluation
(II'TP) grant and the National Research Foundation of Ko-
rea (NRF) grant funded by the Korean government (MSIT)
(RS-2024-00459026 and RS-2025-00556905, respectively).

References

[1] 2024.
us/products/cosmos-db/.

[2] 2024. Iris Project. https://iris-project.org.

[3] 2024. Sequential consistency without borders: how D1 imple-
ments global read replication. https://blog.cloudflare.com/d1-read-
replication-beta/.

[4] 2025. Goose: a subset of Go with a semantics in Coq. https://github.
com/goose-lang/goose.

[5] Mustaque Ahamad, Gil Neiger, James E. Burns, Prince Kohli, and

Phillip W. Hutto. 1995. Causal memory: definitions, implementation,

and programming. Distrib. Comput. 9, 1 (March 1995), 37-49. https:

//doi.org/10.1007/BF01784241

Bowen Alpern and Fred B Schneider. 1985. Defining liveness. Infor-

mation processing letters 21, 4 (1985), 181-185.

Peter Bailis and Ali Ghodsi. 2013. Eventual consistency today: limita-

tions, extensions, and beyond. Commun. ACM 56, 5 (May 2013), 55-63.

https://doi.org/10.1145/2447976.2447992

Ahmed Bouajjani, Constantin Enea, and Jad Hamza. 2014. Verifying

eventual consistency of optimistic replication systems. In Proceed-

ings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages (San Diego, California, USA) (POPL ’14). As-

sociation for Computing Machinery, New York, NY, USA, 285-296.

https://doi.org/10.1145/2535838.2535877

J. Brzezinski, C. Sobaniec, and D. Wawrzyniak. 2004. From session

causality to causal consistency. In 12th Euromicro Conference on Parallel,

Distributed and Network-Based Processing, 2004. Proceedings. 152—158.

https://doi.org/10.1109/EMPDP.2004.1271440

[10] Jerzy Brzezinski, Cezary Sobaniec, and Dariusz Wawrzyniak. 2004.

Session Guarantees to Achieve PRAM Consistency of Replicated
Shared Objects. In Parallel Processing and Applied Mathematics, Roman

Azure Cosmos DB. https://azure.microsoft.com/en-

[6

—

[7

—

[8

—

(9]

https://iris-project.org
https://blog.cloudflare.com/d1-read-replication-beta/
https://blog.cloudflare.com/d1-read-replication-beta/
https://github.com/goose-lang/goose
https://github.com/goose-lang/goose
https://doi.org/10.1007/BF01784241
https://doi.org/10.1007/BF01784241
https://doi.org/10.1145/2447976.2447992
https://doi.org/10.1145/2535838.2535877
https://doi.org/10.1109/EMPDP.2004.1271440

(11]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

[20

—

[21]

Wyrzykowski, Jack Dongarra, Marcin Paprzycki, and Jerzy Wasniewski
(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 1-8.

Miguel Castro and Barbara Liskov. 1999. Practical Byzantine Fault
Tolerance. In Proceedings of the Third Symposium on Operating Systems
Design and Implementation (New Orleans, Louisiana, USA) (OSDI ’99).
USENIX Association, Berkeley, CA, USA, 173-186. http://dl.acm.org/
citation.cfm?id=296806.296824

Tej Chajed, Joseph Tassarotti, M. Frans Kaashoek, and Nickolai Zel-
dovich. 2019. Verifying concurrent, crash-safe systems with Peren-
nial. In Proceedings of the 27th ACM Symposium on Operating Sys-
tems Principles (Huntsville, Ontario, Canada) (SOSP ’19). Association
for Computing Machinery, New York, NY, USA, 243-258. https:
//doi.org/10.1145/3341301.3359632

Brian F. Cooper, Raghu Ramakrishnan, Utkarsh Srivastava, Adam
Silberstein, Philip Bohannon, Hans-Arno Jacobsen, Nick Puz, Daniel
Weaver, and Ramana Yerneni. 2008. PNUTS: Yahoo!’s hosted data
serving platform. Proc. VLDB Endow. 1, 2 (aug 2008), 1277-1288. https:
//doi.org/10.14778/1454159.1454167

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan
Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubra-
manian, Peter Vosshall, and Werner Vogels. 2007. Dynamo: Amazon’s
Highly Available Key-Value Store. SIGOPS Oper. Syst. Rev. 41, 6 (oct
2007), 205-220. https://doi.org/10.1145/1323293.1294281

Alan Demers, Dan Greene, Carl Hauser, Wes Irish, John Larson, Scott
Shenker, Howard Sturgis, Dan Swinehart, and Doug Terry. 1987.
Epidemic algorithms for replicated database maintenance. In Pro-
ceedings of the Sixth Annual ACM Symposium on Principles of Dis-
tributed Computing (Vancouver, British Columbia, Canada) (PODC
’87). Association for Computing Machinery, New York, NY, USA, 1-12.
https://doi.org/10.1145/41840.41841

Rati Gelashvili, Lefteris Kokoris-Kogias, Alberto Sonnino, Alexander
Spiegelman, and Zhuolun Xiang. 2022. Jolteon and Ditto: Network-
Adaptive Efficient Consensus with Asynchronous Fallback. In Financial
Cryptography and Data Security, Ittay Eyal and Juan Garay (Eds.).
Springer International Publishing, Cham, 296-315.

Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. 2003. The
Google File System. SIGOPS Oper. Syst. Rev. 37, 5 (oct 2003), 29-43.
https://doi.org/10.1145/1165389.945450

Victor B. F. Gomes, Martin Kleppmann, Dominic P. Mulligan, and
Alastair R. Beresford. 2017. Verifying strong eventual consistency in
distributed systems. Proc. ACM Program. Lang. 1, OOPSLA, Article
109 (oct 2017), 28 pages. https://doi.org/10.1145/3133933

Léon Gondelman, Simon Oddershede Gregersen, Abel Nieto, Amin
Timany, and Lars Birkedal. 2021. Distributed Causal Memory: Modular
Specification and Verification in Higher-Order Distributed Separation
Logic. Proc. ACM Program. Lang. 5, POPL, Article 42 (jan 2021), 29 pages.
https://doi.org/10.1145/3434323

Jeremiah Griffin, Mohsen Lesani, Narges Shadab, and Xizhe Yin. 2020.
TLC: temporal logic of distributed components. Proc. ACM Program.
Lang. 4, ICFP, Article 123 (aug 2020), 30 pages. https://doi.org/10.1145/
3409005

Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan (Newman) Wu, Jie-
ung Kim, Vilhelm Sjéberg, and David Costanzo. 2016. CertiKOS: An
Extensible Architecture for Building Certified Concurrent OS Kernels.
In Proc. 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI'16). 653-669.

Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch, Bryan
Parno, Michael L. Roberts, Srinath Setty, and Brian Zill. 2015. IronFleet:
Proving Practical Distributed Systems Correct. In Proceedings of the
25th Symposium on Operating Systems Principles (Monterey, California)
(SOSP ’15). ACM, New York, NY, USA, 1-17. https://doi.org/10.1145/
2815400.2815428

49

[23]

[24]

[25]

[26]

[27]

[28]
[29]

[30]

[31]

[32]

[33]

[34]

[35]

Wolf Honoré, Jieung Kim, Ji-Yong Shin, and Zhong Shao. 2021. Much
ADO about Failures: A Fault-Aware Model for Compositional Ver-
ification of Strongly Consistent Distributed Systems. Proc. ACM
Program. Lang. 5, OOPSLA, Article 97 (oct 2021), 31 pages. https:
//doi.org/10.1145/3485474

Qi Huang, Ken Birman, Robbert van Renesse, Wyatt Lloyd, Sanjeev
Kumar, and Harry C. Li. 2013. An analysis of Facebook photo caching.
In Proceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles (Farminton, Pennsylvania) (SOSP ’13). Association
for Computing Machinery, New York, NY, USA, 167-181. https://doi.
org/10.1145/2517349.2522722

Ralf Jung, David Swasey, Filip Sieczkowski, Ksper Svendsen, Aaron
Turon, Lars Birkedal, and Derek Dreyer. 2015. Iris: Monoids and Invari-
ants as an Orthogonal Basis for Concurrent Reasoning. In Proc. 42nd
ACM Symposium on Principles of Programming Languages (POPL’15).
637-650.

Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick,
David Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt,
Rafal Kolanski, Michael Norrish, Thomas Sewell, Harvey Tuch, and
Simon Winwood. 2009. SeL4: Formal Verification of an OS Ker-
nel. In Proceedings of the ACM SIGOPS 22nd Symposium on Oper-
ating Systems Principles (Big Sky, Montana, USA) (SOSP ’09). As-
sociation for Computing Machinery, New York, NY, USA, 207-220.
https://doi.org/10.1145/1629575.1629596

Leslie Lamport. 1978. Time, Clocks, and the Ordering of Events in a
Distributed System. Commun. ACM 21, 7 (July 1978), 558-565. https:
//doi.org/10.1145/359545.359563

Leslie Lamport. 1998. The Part-Time Parliament. ACM Trans. Comput.
Syst. 16, 2 (1998), 133-169. https://doi.org/10.1145/279227.279229
Butler Lampson. 2021. Hints and Principles for Computer System
Design. arXiv:2011.02455 [cs.DC]

Mohsen Lesani, Christian J. Bell, and Adam Chlipala. 2016. Chapar: cer-
tified causally consistent distributed key-value stores. In Proceedings
of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (St. Petersburg, FL, USA) (POPL ’16). As-
sociation for Computing Machinery, New York, NY, USA, 357-370.
https://doi.org/10.1145/2837614.2837622

Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G.
Andersen. 2011. Don’t Settle for Eventual: Scalable Causal Consistency
for Wide-Area Storage with COPS. In Proceedings of the Twenty-Third
ACM Symposium on Operating Systems Principles (Cascais, Portugal)
(SOSP °11). Association for Computing Machinery, New York, NY, USA,
401-416. https://doi.org/10.1145/2043556.2043593

Diego Ongaro and John K Ousterhout. 2014. In Search of an Under-
standable Consensus Algorithm.. In USENIX Annual Technical Confer-
ence. 305-319.

Longfei Qiu, Yoonseung Kim, Ji-Yong Shin, Jieung Kim, Wolf Hon-
oré, and Zhong Shao. 2024. LiDO: Linearizable Byzantine Distributed
Objects with Refinement-Based Liveness Proofs. In Proceedings of
the 45th ACM SIGPLAN International Conference on Programming
Language Design and Implementation (Copenhagen, Denmark) (PLDI
2024). Association for Computing Machinery, New York, NY, USA.
https://doi.org/10.1145/3519939.3523444

Marc Shapiro, Nuno Preguica, Carlos Baquero, and Marek Zawirski.
2011. Conflict-Free Replicated Data Types. In Stabilization, Safety,
and Security of Distributed Systems, Xavier Défago, Franck Petit, and
Vincent Villain (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
386-400.

Upamanyu Sharma, Ralf Jung, Joseph Tassarotti, Frans Kaashoek, and
Nickolai Zeldovich. 2023. Grove: a Separation-Logic Library for Veri-
fying Distributed Systems. In Proceedings of the 29th Symposium on
Operating Systems Principles (, Koblenz, Germany,) (SOSP 23). As-
sociation for Computing Machinery, New York, NY, USA, 113-129.
https://doi.org/10.1145/3600006.3613172

http://dl.acm.org/citation.cfm?id=296806.296824
http://dl.acm.org/citation.cfm?id=296806.296824
https://doi.org/10.1145/3341301.3359632
https://doi.org/10.1145/3341301.3359632
https://doi.org/10.14778/1454159.1454167
https://doi.org/10.14778/1454159.1454167
https://doi.org/10.1145/1323293.1294281
https://doi.org/10.1145/41840.41841
https://doi.org/10.1145/1165389.945450
https://doi.org/10.1145/3133933
https://doi.org/10.1145/3434323
https://doi.org/10.1145/3409005
https://doi.org/10.1145/3409005
https://doi.org/10.1145/2815400.2815428
https://doi.org/10.1145/2815400.2815428
https://doi.org/10.1145/3485474
https://doi.org/10.1145/3485474
https://doi.org/10.1145/2517349.2522722
https://doi.org/10.1145/2517349.2522722
https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/279227.279229
https://arxiv.org/abs/2011.02455
https://doi.org/10.1145/2837614.2837622
https://doi.org/10.1145/2043556.2043593
https://doi.org/10.1145/3519939.3523444
https://doi.org/10.1145/3600006.3613172

[36] Ji-Yong Shin, Mahesh Balakrishnan, Tudor Marian, Jakub Szefer, and

(37]

(38]

(39]

(40]

[41]

Hakim Weatherspoon. 2016. Towards Weakly Consistent Local Stor-
age Systems. In Proceedings of the Seventh ACM Symposium on Cloud
Computing (Santa Clara, CA, USA) (SoCC ’16). Association for Com-
puting Machinery, New York, NY, USA, 294-306. https://doi.org/10.
1145/2987550.2987579

Ji-Yong Shin, Jieung Kim, Wolf Honoré, Hernan Vanzetto, Srihari Rad-
hakrishnan, Mahesh Balakrishnan, and Zhong Shao. 2019. WormSpace:
A Modular Foundation for Simple, Verifiable Distributed Systems.
In Proceedings of the ACM Symposium on Cloud Computing (Santa
Cruz, CA, USA) (SoCC ’19). ACM, New York, NY, USA, 299-311.
https://doi.org/10.1145/3357223.3362739

Andrew S. Tanenbaum and Maarten van Steen. 2006. Distributed
Systems: Principles and Paradigms (2Nd Edition). Prentice-Hall, Inc.
Doug Terry. 2013. Replicated Data Consistency Explained through
Baseball. Commun. ACM 56, 12 (dec 2013), 82-89. https://doi.org/10.
1145/2500500

D.B. Terry, AJ. Demers, K. Petersen, M.J. Spreitzer, M.M. Theimer, and
B.B. Welch. 1994. Session guarantees for weakly consistent replicated
data. In Proceedings of 3rd International Conference on Parallel and
Distributed Information Systems. 140-149. https://doi.org/10.1109/
PDIS.1994.331722

Douglas B. Terry, Vijayan Prabhakaran, Ramakrishna Kotla, Ma-
hesh Balakrishnan, Marcos K. Aguilera, and Hussam Abu-Libdeh.
2013. Consistency-Based Service Level Agreements for Cloud Stor-
age. In Proceedings of the Twenty-Fourth ACM Symposium on Oper-
ating Systems Principles (Farminton, Pennsylvania) (SOSP ’13). As-
sociation for Computing Machinery, New York, NY, USA, 309-324.
https://doi.org/10.1145/2517349.2522731

50

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

D. B. Terry, M. M. Theimer, Karin Petersen, A. J. Demers, M. J. Spreitzer,
and C. H. Hauser. 1995. Managing update conflicts in Bayou, a weakly
connected replicated storage system. SIGOPS Oper. Syst. Rev. 29, 5 (Dec.
1995), 172-182. https://doi.org/10.1145/224057.224070

The Rocq development team. 2025. The Rocq prover. https://rocq-
prover.org.

Robbert Van Renesse and Fred B Schneider. 2004. Chain Replication
for Supporting High Throughput and Availability.. In OSDI, Vol. 4.
91-104.

Paolo Viotti and Marko Vukoli¢. 2016. Consistency in Non-
Transactional Distributed Storage Systems. ACM Comput. Surv. 49, 1,
Article 19 (jun 2016), 34 pages. https://doi.org/10.1145/2926965
Werner Vogels. 2009. Eventually consistent. Commun. ACM 52, 1 (jan
2009), 40-44. https://doi.org/10.1145/1435417.1435432

James R. Wilcox, Doug Woos, Pavel Panchekha, Zachary Tatlock, Xi
Wang, Michael D. Ernst, and Thomas Anderson. 2015. Verdi: A Frame-
work for Implementing and Formally Verifying Distributed Systems. In
Proceedings of the 36th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation (Portland, OR, USA) (PLDI ’15). ACM,
New York, NY, USA, 357-368. https://doi.org/10.1145/2737924.2737958
Chenggang Wu, Jose Faleiro, Yihan Lin, and Joseph Hellerstein. 2018.
Anna: A KVS for Any Scale. In 2018 IEEE 34th International Conference
on Data Engineering (ICDE). 401-412. https://doi.org/10.1109/ICDE.
2018.00044

Maofan Yin, Dahlia Malkhi, Michael K. Reiter, Guy Golan Gueta, and
Ittai Abraham. 2019. HotStuff: BFT Consensus with Linearity and
Responsiveness. In Proceedings of the 2019 ACM Symposium on Prin-
ciples of Distributed Computing (Toronto ON, Canada) (PODC °19).
Association for Computing Machinery, New York, NY, USA, 347-356.
https://doi.org/10.1145/3293611.3331591

https://doi.org/10.1145/2987550.2987579
https://doi.org/10.1145/2987550.2987579
https://doi.org/10.1145/3357223.3362739
https://doi.org/10.1145/2500500
https://doi.org/10.1145/2500500
https://doi.org/10.1109/PDIS.1994.331722
https://doi.org/10.1109/PDIS.1994.331722
https://doi.org/10.1145/2517349.2522731
https://doi.org/10.1145/224057.224070
https://rocq-prover.org
https://rocq-prover.org
https://doi.org/10.1145/2926965
https://doi.org/10.1145/1435417.1435432
https://doi.org/10.1145/2737924.2737958
https://doi.org/10.1109/ICDE.2018.00044
https://doi.org/10.1109/ICDE.2018.00044
https://doi.org/10.1145/3293611.3331591

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Weakly Consistent Distributed Semantics
	2.2 Motivation and Related Work

	3 Overview
	4 S-model Layer
	4.1 From Eventual to Causal S-models and Beyond
	4.2 S-model Safety Proofs

	5 P-model Layer
	5.1 P-model Components
	5.2 P-model Template Properties
	5.3 Connecting P-models to S-models

	6 Code layer
	6.1 Go Implementation
	6.2 Connecting Code to P-models

	7 Discussion and Future Work
	8 Summary
	Acknowledgments
	References

