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Abstract

Despite abundant distributed system verification work,
weakly consistent distributed systems have been overlooked
as formal verification targets. Verification methodologies
starting from the code level face scalability challenges when
verifying weakly consistent distributed systems as these sys-
tems employ a wide variety of similar semantics and designs,
potentially leading to redundant verification work.

This paper presents our ongoing work to develop MOVER],
a top-down verification framework for weakly consistent dis-
tributed systems. It aims to reduce the effort needed to verify
this commonly overlooked class of safety-critical systems.
MovER!I is based on novel compositional and operational
models of sixteen different consistency semantics including
eventual consistency, four session guarantees, and causal
consistency. The implementation-agnostic semantic models
connect to templated distributed protocol models and further
to different verified implementations through refinement.

Verification of the safety of weakly consistent distributed
system protocols and implementations is made more prac-
tical by the flexibility of our templated distributed proto-
col models. Further, the compositionality of these semantic
models and templating of these protocol models enable the
framework to efficiently scale to support a range of weak
consistency semantics. These claims are evaluated through
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verification of primary-replica and gossip style protocol im-
plementations configurable to any of six different consis-
tency semantics.

CCS Concepts: « Software and its engineering — Dis-
tributed programming languages; Software verifica-
tion; « Theory of computation — Distributed comput-
ing models; Object oriented constructs.

Keywords: consistency semantics, formal verification, re-
finement, bisimulation, Rocq, Coq

1 Introduction

Ensuring the correctness of safety-critical systems is bur-
densome, and this challenge is exacerbated in distributed
systems due to their inherent complexity. As alternatives to
debugging and testing, formal verification approaches [20,
22, 30, 33, 35, 37, 47] have been proposed to mathematically
guarantee the correctness of distributed systems [29]. The
proposed approaches leverage modularity for proofs, sepa-
rate functional correctness and protocol safety proofs, gradu-
ally relax network assumptions, and extend logic for concur-
rency reasoning for distributed systems. As a demonstration
of these methodologies, strongly consistent distributed sys-
tems implementing linearizability [11, 16, 28, 32, 44, 49] are
used as common targets.

In this paper, we focus on verifying weakly consistent dis-
tributed systems that are more widely deployed than strongly
consistent distributed systems but are rarely studied for for-
mal verification. There is a wide spectrum of weakly con-
sistent distributed systems, which employ different seman-
tics suited to their application needs. While these systems
provide relaxed guarantees, ensuring their correctness is
nonetheless crucial.
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Figure 1. Overview of MOVERI.

Applying formal verification to this diverse domain can
lead to a significant amount of redundant work. The prob-
lem arises because most existing approaches focus on the
code-level details; this is natural as the ultimate goal of verifi-
cation is to guarantee the correctness of the implementation.
This bottom-up approach, however, leads to a proof structure
that closely mirrors the code, and despite modular designs,
the proof becomes difficult to port and reuse even for differ-
ent systems with similar semantics and properties [21, 26].
Consequently, when verifying different systems that exhibit
similar or the same characteristics, users must thoroughly
understand the theory and reasoning behind how each sys-
tem works, write a huge amount of verification code to model
each system, and prove desired properties for each system.

A top-down verification approach, starting from an
implementation-agnostic model capturing the distributed
system semantics (e.g., Figure 2), can make the verifica-
tion more scalable [23, 30]. However, weakly consistent dis-
tributed semantics are diverse and their models have not
been extensively studied. Further, operational models are fa-
vorable for formal verification because they capture code-like
transitions, but most distributed system semantics are de-
fined using axiomatic definitions [5, 40, 45]. These axiomatic
definitions can be used as correctness properties which a
system must satisfy, but they may not clearly define how
a system satisfies these properties. The operational models
of the semantics can simplify verifying the properties that
are not apparent in the code because finding the matching
behavior in the code and the operational model (e.g., through
refinement) can lead to verifying the properties [22].
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To fill in these gaps, we propose MOVERI, a composi-
tional model-driven weakly consistent distributed system
verification framework (Figure 1). Semantic models (S-model)
of distributed systems are at the core of our verification. S-
models are operational models that capture the safety prop-
erties of weakly consistent distributed systems. S-models
capture the semantics, or safety-preserving behaviors, and
minimal states of distributed systems, while abstracting away
low-level implementation details such as network messages.
The S-models are proven to enforce the axiomatic definitions
and can be used to verify different system designs implement-
ing the same semantics. Although a model-based verification
was explored for linearizable semantics [23, 33] and causal
consistency [30] for the safety of a single semantics or pro-
tocol, the novelty of our S-models comes from their ability
to capture a wide variety of distributed weak consistency
semantics via composition and templating. These factors
play a critical role in modular verification and proof reuse.

Each S-model independently models a distributed system
and semantics and carries correctness proofs, and the S-
models compose to model a system with stronger semantics.
In this paper, we focus on six popular semantics: eventual
consistency (EC) [46], the four session guarantees (SG) [40]—
monotonic reads (MR), read-my-writes (RMW), monotonic
writes (MW), and write-follows-reads (WFR)—and causal
consistency (CC) [5]. The SG S-models are built on top of EC
S-model, and CC S-model is designed as a composition of the
four SG S-models. Properties verified for each S-model are
passed along to the composed model for free and S-models
can expand to different combinations of SGs, at no cost.

To verify the distributed system code, we connect the S-
model to more concrete protocol-level models (P-models)
through refinements. P-models include node and network-
level details. Similar to the composable S-model design, the
P-model employs a templated design: depending on the se-
mantics it observes, P-models are assembled to match the
S-model and the code-level implementation. We instantiate
the P-models to primary-replica-style [38, 41] and gossip-
style protocols [15]. Safety properties of P-models are proved
by reusing the proofs of S-models through refinement.

We use Rocq (formerly Coq) [43] to implement MOVERL.
Distributed system implementations in Go connect to
MovER! using Goose [4, 12], and we verify the primary-
replica and gossip style implementations that can be config-
ured to follow different consistency semantics.

We make the following contributions:

(1) novel, verified, compositional, operational models for
distributed weak consistency semantics with which top-
down verification is performed,;

(2) safety proof reuse techniques exploiting the composi-
tionality of S-models;



(3) an implementation of Movert which, through templat-
ing and composition, aims to support the formal verifi-
cation of a variety of distributed systems each enforcing
any of a variety of weak consistency semantics;

(4) verified distributed system code implementing EC, four
SGs, and CC using MOVERI.

2 Background and Motivation
2.1 Weakly Consistent Distributed Semantics

Distributed weak consistency semantics define how updates
propagate and become visible in a distributed system. They
allow the system to trade off consistency by returning old
data for better performance [14, 17, 31, 41]. Our target weak
consistency semantics are eventual consistency, four session
guarantees, and causal consistency, which are widely used
in industry and academia [1, 3, 13, 36, 41, 42, 45, 48].

Most such systems assume eventual consistency, which
guarantees minimal safety properties [7, 39, 46].

e Eventual consistency (EC): A user’s read returns any
version of the data written by prior writes.

Session guarantees (SGs) can be layered on top of EC and
they order reads and writes differently per user depending on
the individual user’s interactions with the system [40-42].

e Monotonic reads (MR): A read returns the same or a
later version of data than the user last read.

e Read-my-writes (RMW): A read returns the same or a
later version of data than the user last wrote.

e Monotonic writes (MW): A write by a user applies to a
node in the system after all prior writes by the same user
are applied to the node.

e Write-follows-reads (WFR): A write by a user applies
to a node in the system after all prior writes read by the
same user are applied to the node.

Finally, causal consistency, one of the strongest among
weak consistency semantics, enforces causality-preserving
ordering [5, 27, 30] of operations across the entire system.

e Causal consistency (CC): All users observe causally
related operations in a single, common order. That is, if a
user observes an operation, then it must also observe all
causally dependent operations.

Interestingly, the composition of MR, RMW, MW, and WEFR is
known to be CC [9]. Leveraging this theory and the practice
that EC is the base assumption for most systems, we design
S-models that are compositional, by which we achieve reuse.

2.2 Motivation and Related Work

Table 1 summarizes efforts to verify executable distributed
system code. Chapar [30] and ADO [23] propose abstract
models similar to MOVERI to verify the safety of causally
consistent distributed systems and strongly consistent
distributed systems, respectively, in a top-down manner.

44

Project H Code Safety ‘ Model ‘ g[;i;l‘ ;]:rlliz:tiics ‘
MOVERI 16 weak (EC,
(this work) Go v v v SG, CC, egncA)
Chapar [30] OCaml v v X CcC

ADO [23] C v v X Strong

LiDO [33] OCaml v v X Byz/Strong
Verdi [47] OCaml v X N/A Strong
IronFleet [22] C# v X N/A Strong

Grove [35] Go v X N/A Strong
WormSpace [37] || C v X N/A Strong

Table 1. Comparison of MovERI and other works. MOVERI is
the only framework that uses model composition and verifies
multiple weak consistency semantics.

LiDO [33] extends ADO to verify the safety and liveness
of Byzantine consensus protocols. Each work targets differ-
ent semantics but their commonality is being able to use their
models in verifying a few different implementations satisfy-
ing the semantics. However, their models are limited to only
one semantics and the scope of applications is limited.

Verdi [47] does not employ models of distributed seman-
tics but uses different network models to simplify the verifi-
cation. IronFleet [22], Grove [35], and WormSpace [37] in-
troduce methodologies to modularize proofs and reasoning
which Movert also pursues. They verify distributed consen-
sus protocols to demonstrate their generality and applicabil-
ity. However, when it comes to verifying a wide spectrum of
distributed systems, they do not provide concrete reusable
proofs like the ones available in model-driven approaches.

Moverr uses model-driven verification for proof reuse
(Sections 4.2 and 5.3) and realizes wide applicability at the
same time by designing a model composition for a variety
of distributed semantics (Section 4.1).

Other than the work summarized in Table 1, EC is widely
studied and verified in the context of Conflict-free Replicated
Data Types (CRDT) [34]. Bouajjani et al. [8] proposed formal
specifications for model checking an optimistic replication
system under EC for CRDT. Gomes et al. [18] developed a
verification framework to check CRDT algorithms maintain
strong eventual consistency. While they analyze and specify
EC as a phenomenon under CRDTs, we propose S-models
for EC itself and beyond that connect to implementations.

3 Overview

As described in Section 1 and Figure 1, MOVERI consists of
multiple layers. The key difference from other layer-based
approaches [20, 22, 23, 37] is that we fill in the layers with
composable and templated models reusable for verification.

Layered Design Each S-model represents a distributed
consistency semantics. S-models encapsulate the distributed
system state as an object and the transitions as mutations to
the object. Individual S-models carry the safety properties
and proofs which can be reused to prove properties of com-
posed S-models and verify the P-models and the code. We
assume that all of our target semantics are built on top of



EC. The SG S-models are realized on top of the EC S-model,
and the CC S-model is composed of four SG S-models.

P-models reflect how distributed protocols implement the
distributed consistency semantics by concretizing how data
gets propagated on an asynchronous network. P-models are
modularly templatized such that they can be instantiated to
a protocol that follows any semantics in the S-model layer
and that is close to the implementation. The safety prop-
erties of the P-models are verified through refinement of
corresponding S-models.

Users are responsible for implementing and connecting
the code with the target P-model. We verify Go implementa-
tions of primary-replica style [38, 41] and gossip style [15]
protocols with our target semantics. The code is verified
through refinement of P-models and, transitively, S-models,
thereby reusing the safety proofs of the S-models.

Assumptions The network is assumed unreliable: it can
reorder, drop, and duplicate messages. We assume a client can
interact with any server in the system, unlike the common
CC implementations and verifications which pin the client
to a dedicated server [19, 30, 31]. We use this more generic
assumption, because the semantics do not restrict client-to-
server mappings and clients often talk to multiple servers in
the same replicated system in practice [24]. To extend the
semantics across different servers, we assume nodes reliably
store their state despite a crash and eventually come back
up with the same state.

4 S-model Layer

An S-model abstractly captures minimum distributed sys-
tem states and actions — common to all such distributed
systems — for replicating a generic object and enforcing a
consistency semantics. Details, like an asynchronous net-
work, are abstracted away. It is represented as an object with
simple atomic read and write APIs where non-determinism
is abstracted and captured within API calls.

Weak consistency semantics can be partially ordered by
their strength [45]. This fact is leveraged to enable S-models
to be designed compositionally. Composition enables code
and proof reuse; this is vital for any framework that aims to
scalably verify a variety of correctness conditions.

4.1 From Eventual to Causal S-models and Beyond

Eventual Consistency (EC) S-model The EC S-model is
the base model for all S-models. All S-models maintain an
object with some read and write interface. The EC S-model
captures how read and write operations are performed while
updates are replicated across nodes in the system.

Figure 2a illustrates an EC S-model instantiated with an
object that contains a register and counter, and allowing sets
and gets to the prior and increments and reads of the latter.
It consists of op-set, the set of all update operations added to
the system, and vis-sets, visible subsets of op-set. Vis-sets are
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(a) EC S-model (b) Write (Cy (cf Read(R) or Read(C)
* Vs vis-set . Grow vs'es . Grow vs’es (e.g., vs2).
-.: set to (eg., wl). 2. Retum most relevant set
register (R) or 2. Add operation from one vs
inc. counter (C) to one vs (e.g., {R3} of vs, or
with timestamp 7. (e.g., {Cg4} tovs)). {C;5,Cy, Cst of vs)).

Figure 2. S-model for eventual consistency.

analogous to individual nodes in the system such that, if all
updates in the vis-set are applied, the result is the data state
of a node (i.e., a register value and counter value).

Write adds a new operation with a new timestamp to
op-set and at least one vis-set (Figure 2b). Updates are or-
dered using timestamps and a timestamp ordering relation.
The ordering relation is a strict partial order, allowing for
commutative writes (i.e., register set and counter increment)
to be unordered while non-commutative writes (i.e., regis-
ter sets) are ordered. EC permits updates to be applied at
a replica node regardless of timestamp. However, if non-
commutative updates are applied, their in-order evaluation
is enforced to ensure convergence. To reflect asynchronous
update propagation within a distributed system, vis-sets non-
deterministically grow by adding more operations from the
op-set when processing each write and read.

Read chooses one of the vis-sets and returns the most
relevant set [40] of operations for the read in the vis-set (Fig-
ure 2c). The most relevant set consists of minimal operations
responsible for the read. For example, the most relevant set
for a read of the register is the latest register set R; in the
vis-sets but no counter increments C;. The most relevant set
for a read of a counter is all the counter increments C; in
the vis-set but no register sets R;. The most relevant set al-
lows S-models to model the semantics independent of the
replicated object.

Session Guarantees (SG) S-models Session guarantees
(SGs)—Monotonic reads (MR), read-my-writes (RMW), mono-
tonic writes (MW), and writes-follow-reads (WFR)—are de-
fined based on individual user sessions; a user interacts with
the system and thereby creates dependencies for that user’s
future interactions. Specifically, for each SG, the dependen-
cies are either the user’s previously read or written updates,
which restrict either the user’s future read or write calls.
Each SG is independently and widely used in industry and
academia [1, 3, 13, 36, 41, 42, 48].

All SG S-models are built on the EC S-model which has
been augmented to become the dependent EC module that
selectively enforces given dependencies to the API calls and
with a client that keeps track of its own dependencies (Fig-
ure 3). Each SG S-model uses this augmented EC S-model to
restrict what dependencies a client should track and which



CC S-model (combination of all four SG S-models)
Individual SG (MR/RMW/MW/WEFR) S-models
Dependent EC module Client

deps
&)

EC S-model

Figure 3. Composed S-models for session guarantees and
causal consistency.

API calls should enforce the dependencies: e.g., MR S-model
restricts the client to track reads and enforces these depen-
dencies only for read, whereas MW S-model restricts the
client to track writes and enforces them only for write.

The client model represents the user session and remem-
bers the dependencies in a dependency set (deps). The client
interacts with the dependent EC module by calling the read
and write with dependencies. Asynchrony between the client
and the system is modeled in SG S-models through non-
deterministic failures of the API calls. The failure represents
timeouts due to message drops or extended delays. The failed
operations may or may not be processed by the dependent
EC module and any results are ignored by clients.

The dependent EC module sits atop the EC S-model and ex-
pands the read and write APIs to take user dependencies and
ensures that they are satisfied. Read and Write are serviced
using a vis-set of the EC S-model that satisfies all dependen-
cies. This also applies during the growing of vis-sets.

All of our SG S-models are designed with generality and
modularity in mind. The dependent EC module and the client
model are reused across the four different S-models.

Causal Consistency (CC) S-model The definition of
causal consistency (CC) commonly relies on Lamport’s hap-
pens before relations, but enforcing the four SG at the same
time also leads to CC [9]. That is, CC can be defined based
on SGs: a client sees the same or later version of data than
what it last read and wrote, and the client’s write applies
after all of its prior writes and the writes that it has seen.

We leverage this definition by composing the four SG S-
models to create the CC S-model (Figure 3). While each SG
S-model keeps track of either read or write dependencies and
enforces the dependencies during either read or write, the
CC S-model collects both read and write dependencies in the
client and passes them to both read and write. Our modular
and compositional CC S-model simplifies reasoning about
CC and differs from prior work that only models CC [19, 30].

Other Semantics Similar to how CC S-model is achieved,
MOoVERI can trivially model any semantics that combines
SGs (i.e., powerset of {MR, RMW, MW, WFR}; 2% = 16 cases);
PRAM consistency is one of them (i.e., {MR, RMW, MW}) [10].
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4.2 S-model Safety Proofs

To ensure that our operational S-models comply with
existing axiomatic definitions [45], we prove them safe
against these definitions. Existing definitions restrictively
define reads and writes as directly reading or writing an
object/memory-address and not on a set of updates (i.e., vis-
sets in our S-models). Thus, we expand the definitions to
account for this change.

Our modular and compositional S-models allow for proof
reuse (Figure 1). The proofs for the SG S-models reuse those
on the dependent EC module, client model, and the EC S-
model. Further, the proofs for the CC S-model also reuse the
proofs of individual SG S-models and the EC S-model. Such
reuse allowed us to reduce the proof efforts especially for CC
compared to prior work that directly verifies CC [19, 30].

5 P-model Layer

The P-model layer concretely captures distributed system
states and actions for replicating a generic object and enforc-
ing a consistency semantics. While capturing more detail
than the implementation-agnostic S-models, P-models tem-
plate states and functions which can be flexibly instantiated
to a range of protocols. The node states and functionality,
network message contents, and network assumptions are
all templated to allow for a wide variety of instantiations.
Still, for any instantiation that preserves the template proper-
ties, safety is verified through refinement. We exercise their
flexibility by instantiating the P-models to two widely used
replication protocol styles: primary-replica and gossip.

5.1 P-model Components

The P-model includes individual server and client nodes
which interact over the network following a templated pro-
tocol and semantics.

Server Nodes Each server node implementing a replica-
tion protocol has three main roles: maintaining the node’s
copy of the replicated object, propagating updates to other
nodes, and communicating with clients. Servers are divided
into three corresponding templated pieces: object manager
(OM), propagation manager (PM), and client manager (CM).

The OM is in charge of maintaining the node’s own copy
of the replicated object. This entails judging when and how
requests should be performed on the state to enforce the
consistency semantics (e.g., deferring reads to enforce MR or
writes to enforce MW) and actually executing the requests.
The PM ensures that server nodes in the system learn of
writes to achieve convergence. It propagates new writes that
are accepted by the OM, and depending on the protocol
it may also forward the writes from other server nodes to
others. Finally, the CM interacts with clients.

Figure 4 presents simplified pseudo-code capturing how
the server node executes using the managers. On the server
node receiving input, the managers are informed of this



function repl_node_step(Managers mgs, Message in)

1

2 mgs := inform(mgs, in)
3 outs := []

4 cont := true

5 while cont

6 mgs, outs', cont := act(mgs)

7 outs := append(outs, outs')

8 return mgs, outs
Figure 4. Simplified pseudo-code defining the behavior of
the templated server node model in the P-model layer.

input (line 2). The OM is then allowed to iteratively perform
actions (lines 5-7). An action is performing a read or write
request, or applying propagated updates to the replicated
state. For some input, zero or more actions can be performed;
the OM defers acting on input in order to enforce consistency
semantics (e.g., waiting for dependencies to arrive before
performing a read under MR). During each call to act(),
the PM and CM can generate messages to send based on the
action performed.

Types and functions Managers, Message, inform(), and
act() are templated such that they can be instantiated to
achieve a range of protocols. To model primary-replica, the
servers are instantiated such that only the OM of the primary
server receives clients’ write requests, and the propagation
managers of replica servers do not propagate data. Our gossip
model lifts these restrictions and treats all nodes equally: all
nodes can receive client requests and propagate data.

Client Node The client includes a session manager which
is the only templated piece in the client. The session man-
ager decides communication patterns (e.g., whether to retry
after timeout), keeps track of session state (e.g., dependen-
cies), and adds any additional metadata (e.g., request ids and
dependencies) to the API calls.

5.2 P-model Template Properties

The P-models templated design lowers the proof burden
required to verify a new protocol, so long as there exists
corresponding template arguments such that the instanti-
ated P-models express the protocol. Verification of the unin-
stantiated templated models is performed only once. Thus,
users verifying a new protocol need only verify that their
instantiated P-models satisfy a small set of properties. These
template properties are defined for each consistency and
relative to each node’s manager(s).

For example, to ensure that the safety property of EC is
enforced, the result of a read request produced by the OM
must be the expected value. Formally:

Lemma 5.1 (EC - Read Expected Value). Assume that there
exists a set of operations (each a write and timestamp pair) rep-
resenting all of the unique writes applied to the replica node’s
copy of the replicated object. If the OM produces a value to
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fulfill a read request, then this value must be the result of eval-
uating the read request on the object produced by evaluating
the set of operations (recursively on some initial object value
in timestamp order).

5.3 Connecting P-models to S-models

Assuming the set of template properties associated with a
given consistency, the templated models in the P-model layer
are verified by proving that each refines the corresponding
model of that consistency in the S-model layer. For example,
assuming the template properties of EC, we prove that the
distributed system model in the P-model layer, formed from a
collection of replica nodes, refines the EC S-model. Similarly,
assuming the template properties of MR, we prove that the
corresponding P-model refines the dependent EC module.

In the same way that some models of the S-model are
formed from a composition of others, so too are the proofs
of refinement from the P-models to the S-models. For exam-
ple, the previously described proof of refinement with the
dependent EC module reuses the proof of refinement with
the EC S-model. This is possible since the dependent EC
module is a composition containing the EC S-model. Further,
the template properties of the prior imply those of the latter.
Therefore, completing this proof requires only proving re-
finement with the other components of the dependent EC
module (e.g., client).

The key novelty compared to other work using refinement
proofs is that we reuse multiple pre-built components in a
compositional way to maximize the proof reuse. The top-
down approach from the S-model simplifies P-model proofs.

6 Code layer

Using MovER1, we verify distributed systems that implement
EC, four SGs, and CC under primary-replica style and gossip
style protocols. We implement them in Go and use Goose [4,
12] to connect the code to MovERI which is based on Rocq.

6.1 Go Implementation

The primary-replica and gossip style implementations follow
a design that combines Bayou [42] and COPS [31]. It uses
lists of committed and tentative updates like Bayou, and
inserts updates that propagate late into the lists. Ordering of
operations and dependency tracking are simplified by using
the COPS approach of using vector timestamps and ensuring
ordered delivery of updates from the same source node.
For the primary-replica style protocol, all write requests go
to one primary node and read requests can be serviced by any
node. The primary is in charge of propagating all updates.
Note that this implementation is not strongly consistent:
clients can see different versions of outdated data by reading
from replica nodes. For the gossip style protocol, all nodes
service reads and writes and propagate updates. The client
session state is maintained at the client program and clients



can communicate with any node unlike COPS. Due to the
dependency tracking using vector timestamps, clients only
need to maintain 8n bytes for dependencies where n is the
number of server nodes.

The verified code consists of functions (and types) which,
given the current node state and a received message, return
the updated node state and messages to send. We glue this
code to a trusted shim networking layer, which manages
calling into these verified functions, serializes and deserial-
izes messages, and interacts with the OS. Our consolidated
implementation is configurable to use one of the communica-
tion patterns (i.e., primary-replica or gossip) and consistency
semantics (i.e., EC, SG, or CC). Besides the glue code, our
trusted computing base includes Rocq, Goose, Go runtime,
0OS, and hardware.

6.2 Connecting Code to P-models

Using Goose, our Go implementation translates to Peren-
nial [12] that extends Iris [2, 25] which is implemented in
Rocq. We write a functional specification of our Go imple-
mentation in Rocq and prove bisimulation with the translated
code. The specification is then connected to the instantiated
P-models using refinement. The template of the P-model
layer enables us to obtain an instantiation almost identical
to the functional specification.

Once connected to the P-models, the code is proven to
transitively connect to the S-models through refinement,
guaranteeing the safety of the code.

7 Discussion and Future Work

Correctness of a system decomposes into a conjunction of
a safety property (nothing "bad" happens) and a liveness
property (something "good" eventually happens) [6]. This
paper has spoken solely about safety properties. We are in the
process of enabling Mover1 with the ability to verify liveness
properties of code following a similar approach to that used
for safety properties. Besides LiDO [33] and IronFleet [22],
prior works in Table 1 have not demonstrated support for
the verification of liveness properties. Further, because of
their focus on strong consistency, prior works have not fully
explored the liveness properties specific to weakly consistent
distributed systems.

The focus of MovERI has been on verifying EC, SG, and
CC for good reason. Weak consistency semantics are par-
tially ordered [45]. Our compositional approach to building
S-models necessitates creating new S-models from weaker to
stronger. Having started from EC (a very weak consistency
semantics), future work can and will expand MoVERtI to sup-
port any of a wide variety of stronger consistency semantics
not addressed by prior works.
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8 Summary

In this paper, we presented MOVERI, a compositional model-
driven verification framework for weakly consistent dis-
tributed systems. MOVERI employs a top-down verification
approach where operational models of distributed system
semantics embed safety proofs. The models capture 16 differ-
ent semantics including eventual consistency, session guar-
antees, and causal consistency. The semantic models are
designed to compose with each other to create stronger se-
mantics and reduce proof burdens. In addition to templating,
these characteristics of the framework enable it to scale to
support the verification of a variety of systems enforcing a
variety of consistency semantics. Distributed system proto-
cols and implementations can reuse the proofs to verify their
correctness through refinement. Using MovER1, we verify Go
implementations of primary-replica style and gossip style
systems exhibiting six different semantics.
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