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Abstract

We revisit the naked transition metal cation (Ti+) and methanol reaction and

go beyond the standard Landau-Zener (LZ) picture when modeling the intersystem

crossing (ISC) rate between the lowest doublet and quartet states. We use both (i) un-

constrained Born–Oppenheimer molecular dynamics (BOMD) calculations with an ap-

proximate two-state method to estimate population transfer between spin diabats and
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(ii) constrained dynamics to explore energetically accessible portions of the NDOF − 1

crossing seam, whereNDOF is the total number of internal degrees of freedom. Whereas

previous LZ calculations (that necessarily relied on the Condon approximation to be

valid) fell short and predicted much slower crossing probabilities than shown in ex-

periment, we show that ISC can occur rapidly because the spin-orbit coupling (SOC)

between the doublet and quartet surfaces can vary by two orders of magnitude (depend-

ing on where in the seam the crossing occurs during dynamics) and the crossing region

is revisited multiple times during a dynamics run of a few hundred femtoseconds. We

further isolate the two important nuclear coordinates that tune the SOC and modulate

the transition, highlighting exactly how and why organometallic ISC can occur rapidly

for small systems with floppy internal nuclear vibrational modes.

Introduction

For transition metals with incompletely filled valence shells, electronic states of varying total

electron spin often lie close in energy. Subtle changes in the atom’s immediate environment,

e.g. a change in coordination or in the nature of a ligand, can cause a reordering of those

electronic states. Adiabatic pathways in transition-metal containing reactions are commonly

not spin-conserved, and facile ISC between states of differing multiplicity is critical to many

transition metal-mediated catalytic processes. Predictive understanding of such catalytic

processes is of obvious significance but far from currently achievable with most materials of

interest today. In fact, even for small transition metal-containing systems, representative

of isolated active sites, predictive understanding of the spin dynamics is usually not achiev-

able today, though such problems do represent a more practical goal than larger complexes

with multiple active sites. Significant experimental investigation into these phenomena in

ion-molecule reactions extends back to the 1980’s. Armentrout and co-workers conducted a

series of elegant experiments showing different reactivities of ground and excited spin states

of transition metal cations when accounting for differences in total energy and differentiated
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systems proceeding on a single spin surface or with crossing between spin surfaces.1–13 Weis-

shaar and co-workers attributed reactivity in suprathermal V+ + alkane reactions to ISC.14

Schwarz, Shaik, and co-workers subsequently popularized these concepts under the moniker

“two-state reactivity” or “multi-state reactivity,” detailing numerous instances of the gas-

phase phenomena and linking them to solution-phase mechanisms such as for enzymatic

oxidations by the P-450 cytochrome.15–24 While experimental investigation can determine

likely mechanistic aspects for a model system, general conclusions are difficult to reach.

Ideally, to start making progress, small systems should be studied using reliable quantum

chemical methods.

Unfortunately, theoretical efforts on transition-metal bimolecular reactions have lagged.

As early as 1988, calculations by Carter and Goddard implicitly recognized that transition

metal reactions may be enabled by accessing lower energy transition states on potential

surfaces of differing multiplicity.25 With modern methods, a description of small systems

including many electronic states along a single reaction coordinate is readily achievable but

probing reactive dynamics (either direct dynamics or trajectory calculations) remain difficult:

one requires (i) an accurate description of all relevant portions of the potential energy surface

and (ii) an accurate treatment of ISCs. Both of these requirements have proven challenging.

An ideal comparison to experimentally-determined kinetics (e.g. reaction rate coefficients

and product branching fractions) requires chemical accuracy (i.e. errors in the calculated

energies of less than 1 kcal mol-1, 0.05 eV) in the rate-determining portions of the potential

surface. Errors of just 0.1 eV in a rate-limiting transition state energy can cause order-of-

magnitude error in the resulting rate coefficient. Thus, such an ideal comparison is infeasible.

After all, by necessity, the only affordable electronic structure approach is usually density

functional theory (DFT)—for which bond dissociation energies of diatomic molecules with 1st

row transition metal atoms calculated using common functionals with a triple-zeta basis set

have 2σ uncertainties of greater than 1 eV.26–28 Coupled cluster calculations like CCSD(T)

can reduce the uncertainty of single-reference methods, but this method is not currently
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tractable for very large molecules–and in any event, ground-state spin crossovers are difficult

to treat with coupled cluster methods.29–32 In principle, we would like to explore potential

energy surfaces with robust multi-reference methods, but this is an exceptionally expensive

task for even very small systems.

Moreover, even with an accurate surface, running nonadiabatic dynamics pose a fur-

ther challenge. Both LZ surface hopping algorithms and Tully’s fewest-switches hopping

algorithm have seen use in recent years, with the latter having a firmer theoretical founda-

tion.33 In either case, transition probabilities rely on nonadiabatic coupling elements, which

rely on the accuracy and completeness of the surface (in addition, for some multi-reference

approaches, nonadiabatic couplings remain very difficult to compute.34) At the end of the

day—given the realistic constraints on the possible level of electronic structure—in order

to model spin-crossovers (even for small metallic systems), it is still unclear what level of

approximation is sufficient and then again most efficient.

Despite these grounds for strong concern, there have been some successes. For the FeO++

H2 → Fe+ + H2O system, Harvey and co-workers calculated a full potential energy surface

using DFT along with empirical corrections to force the potential to more closely match

established values where known.35,36 Trajectories were propagated using the fewest-switches

surface hopping method, and transition probabilities dictated by SOCs calculated at sta-

tionary points and interpolated along the reaction coordinate. The trajectory results align

reasonably well with the experimental and statistical modeling results:37,38 concluding that

the entrance well crossing is efficient, that the reaction is instead transition state limited

on the quartet surface, and that the exit well crossing is inefficient with 85% of trajecto-

ries producing the 4Fe+ product at low energies. Such agreement between the trajectory

calculations and the statistical modeling is satisfying; indeed, the “big-picture” statistical

modeling results validate the microscopic trajectory results, which can provide detailed dy-

namical and mechanistic information. Notably, even for this relatively simple transition

metal reaction, a large amount of effort and intuition was required to generate a surface that
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could reproduce experimental results—but is was fortuitous that a functional was available

that well-reproduced the rate-limiting transition state energy. More recently, Guo and co-

workers calculated a global potential energy surface for the lowest energy singlet, triplet,

and quintet states of the Ta+ + CO2 and Nb+ + CO2 reactions.39–42 Their surfaces were fit

to points calculated using a DFT method (selected based on good agreement with CCSD(T)

and multi-reference configuration interaction (MRCI) calculations at a limited number of

stationary points) along with adjustments for long-range interactions based on simple elec-

trostatic potentials. SOCs were calculated using MRCI at selected points and generalized

(assumed to be constant) throughout the surface. The resulting trajectory calculations ef-

fectively replicates both kinetic and dynamic experimental results and shows reasonable

agreement with statistical modeling.43 Both of the efforts (i.e. of Harvey and co-workers and

Guo and co-workers) are successes, but the significant amount of chemical intuition required

to produce the surfaces along with the necessary computational approximations remind us

that experimental confirmation is needed for most theoretical predictions.

The study of the activation of methanol by a titanium cation, Ti++CH3OH, is a caution-

ary tale.44 Calculation of the complicated reaction coordinate identified a critical barrierless

post-rate determining transition state ISC point where the ground state quartet state crosses

with an excited state doublet along the major reaction pathway (C–O activation).45 A small

SOC constant was calculated at this point, and therefore, the crossing was deemed ineffi-

cient. An inaccessible crossing implied one of two things–either (i) there would be minimal

formation of the TiO+ + CH4 product on the ground state doublet surface (≈ 1%) as com-

pared to the TiOH+ +CH3 product on an excited quartet surface along the C–O activation

pathway (≈ 99%) or that (ii) the TiO+ + CH4 products would form via an endothermic

pathway on an excited quartet surface. Experimental results were at odds with both (i) and

(ii), showing a facile ISC and formation of ground state TiO+ (≈ 16% compared to TiOH+

formation at 600K) via the exothermic pathway because there was only a weak negative

temperature dependence. The calculation methods employed were crude compared to the
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approaches described above, but for what reason did they fail? Would calculation of a global

PES, similar to the effort of Guo and co-workers, but reliance on coupling constants cal-

culated at selected points have been more successful? More generally, given computational

costs, there is always a conundrum about whether to sample more points on inexpensive

surfaces or to sample fewer points on more expensive surfaces, and both approaches clearly

have merit. In this paper, we will take the former approach, and revisit the Ti+ + CH3OH

system with trajectory calculations that can more thoroughly explore the potential surface.

We employ a novel electronic SHAKE (E-SHAKE) algorithm that can statistically sample

the crossing seam and evaluate the propensity for a spin-crossover over a range of energet-

ically accessible geometries. We also run trajectory calculations starting at the transition

state and are biased toward products and obtain a rough estimate of the total rate of spin

transition. Overall, our results demonstrate that, by way of two concurrent calculations for

the different spin-states and for properly sampled dynamics, theory is roughly able to match

the corresponding dynamics of this small transition metal-containing complex. Overall, the

take-home points of this study are (i) that the magnitude of the SOC can and usually does

vary dramatically with geometry for small metallic clusters46 and (ii) spin crossovers can

therefore be much faster than one often anticipates, especially because multiple crossings

will frequently occur in small systems without a bath – where decoherence will inevitably be

slower.47,48

Methods

Computing SOC Between Two Ground State Solutions

At each geometry, we calculated two distinct sets of molecular orbitals corresponding to (i)

the quartet and (ii) the doublet spin-restricted DFT solutions. Using such different references

inevitably complicates the evaluation of SOC matrix elements because the orbitals do not

necessarily have an orthogonality condition. Nevertheless, this obstacle can be overcome by
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utilizing a singular value decomposition (SVD) to form two bi-orthogonal MO basis sets.49

See the appendix for more detail.

Now, for a pair of electron systems with spin quantum numbers S and S ′ (and 2S + 1

and 2S ′+1 degenerate states characterized by different ms values in the range of [−S, S] and

[−S ′, S ′]), one often seeks as an averaged SOC between two states, with the most obvious

approach being the root mean square:

VSOC =

√

1

SS ′

∑

ms

∑

m′

s

∣

∣

∣

〈

ΨS,ms

∣

∣

∣
ĤSO

∣

∣

∣
Ψ′

S′,m′

s

〉∣

∣

∣

2

(1)

This averaged quantity ignores the phases of the SOC matrix element, but should give a

reliable magnitude. For a one-electron operator, a non-vanishing coupling requires that

|S − S ′| equal 1 or 0, and similarly that |ms −m′

s| equal 1 or 0. For the problem at hand

in this paper, our focus is on ISC where |S − S ′| = 1, so let us now assume S ′ = S + 1

without loss of generality, and let us further define nα and nβ as the numbers of α and

β electrons in the high spin configuration (so that ms ≡ 1
2
(nα − nβ) = s). In terms of

doublet (S = 1/2, 2S +1 = 2) and quartet (S ′ = 3/2, 2S ′ +1 = 4) couplings, there are three

independent (complex) numbers among six terms in total, as shown in Fig. 1(a). For all

details regarding how these states are constructed and the matrix elements evaluated, see

the appendix.

Figure 1: (a) The six SOCs between the two doublet and four quartet states; (b) The
determinants diagrams by molecular orbital representations of the Ψ 1
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For our choice of spin-orbit (SO) operator, we use the one-electron Breit-Pauli (BP)

Hamiltonian50

ĤSO = −α
2
0

2

n
∑

i







N
∑

A

ZA
∣

∣

∣r⃗i − R⃗A

∣

∣

∣

3

(

r⃗i − R⃗A

)

× p⃗i






· s⃗i =

n
∑

i

L⃗i · s⃗i, (2)

where α0 is the fine structure constant; R⃗A and ZA are the Cartesian coordinates and nuclear

charge of A-th nucleus; r⃗i, p⃗i, and s⃗i are the coordinates, momentum, and spin of the i-th

electron, respectively; and n (N) labels the total number of electrons (nuclei).

Geometry Optimizations, Transition States, and the Reaction Path

All calculations were carried out with a (spin-pure) restricted DFT ansatz using the hybrid

functional B3LYP and the def2-TZVP basis set. To begin our analysis, we replicated pre-

vious calculations45 that isolated the transition state and stationary points along the major

reaction pathway of Ti+ and methanol; see Fig. 2. Of particular interest is the portion of the

reaction pathway between the transition state on the quartet surface (J) and the stationary

point that lies directly to the right hand side of the transition state, leading towards prod-

uct formation (K). To find this portion of the reaction pathway, we focused on the quartet

transition state (J) shown in Fig. 3. From this geometry, we found the nearest minima

by perturbing the nuclear geometry along the normal mode corresponding to the imaginary

frequency (see Fig. 3), followed by a standard geometry optimization to converge to the

local minimum (K) on the quartet surface. Thereafter, we computed the minimum energy

path between the two geometries via the freezing string method.51,52 The region between the

transition state (J) and the next minimum (K) is where the ground state quartet surface

crosses with the ground state doublet surface.
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Sampling the Seam

Whereas previous studies of the Ti+ + CH3OH system evaluated only a single SOC at a

given geometry, we sought to explore if and how the SOC changed with geometry over the

NDOF − 1 dimensional crossing seam between the doublet and quartet surfaces, NDOF being

the total number of internal degrees of freedom. For the 7-atom system under consideration

(and removing net translation and rotation) the crossing seam is a 14-dimensional manifold.

To sample such a seam, we employ a variation on the SHAKE algorithm,53,54 the standard

algorithm which is typically used to constrain molecular geometries (bond lengths and angles)

during dynamics. For our purposes, however, we impose a fixed gap (of zero) between

the electronic surfaces—this represents an electronic constraint and so we will label this

an electronic-SHAKE or E-SHAKE approach. We also employ the RATTLE extension to

SHAKE,55 which enhances SHAKE’s stability properties and enables us to use a thermostat

to sample the seam more efficiently. E-SHAKE has been implemented in INAQS,56 an

open-source software package for nonadiabatic QM/MM simulations that bridges the open-

source molecular dynamics package GROMACS57–59 and the electronic structure package

Q-Chem.60 The INAQS repository contains a modified GROMACS in order to run the E-

SHAKE dynamics. The essence of the algorithm is described below, but interested readers

should refer to ref. 61 for more details.

The main idea of E-SHAKE is to propagate molecular dynamics:

¨⃗
R = −M−1 · ∇⃗V

∣

∣

∣

R⃗
(3)

where (M)µi,νj = δijmi is the diagonal matrix of masses of each of the N atoms (i, j ∈

1 . . . N µ, ν ∈ {x, y, z}) and V (R⃗) is the a potential energy surface, while respecting con-
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straints of the form

0 = σ(t) = σ(R⃗(t)) (4)

0 = σ̇(t) =
˙⃗
R(t) · ∇⃗σ

∣

∣

∣

R⃗(t)
. (5)

Here, the constraint

σ(R⃗) = ED(R⃗)− EQ(R⃗), (6)

encodes the difference between the energy of the doublet, ED, and the quartet, EQ at the

geometry R⃗. Eq. 4 ensures that the system remains in the seam of intersection between

the doublet and quartet surfaces while Eq. 5 ensures that the velocity at each step is also

directed within the seam; for arbitrary σ, Eqs. 4 and 5 are generalizations of the SHAKE

and RATTLE conditions respectively.

Under the above constraints, the differential equation for our dynamics, Eq. 3, is modified

to include forces of constraint that depend on the Lagrange multipliers introduced to satisfy

Eqs. 4 and 5:

¨⃗
R = −M−1 · ∇⃗V

∣

∣

∣

R⃗
+M−1f(R⃗; g, k) (7)

where g and k are Lagrange multipliers.

We have implemented an algorithm to solve for the Lagrange multipliers so as to propa-

gate 7 while satisfying the constraint (Eq. 6) to arbitrary accuracy. For the purposes of this

investigation, we enforce a tolerance of
∣

∣

∣
σ(R⃗)

∣

∣

∣
< 4 × 10−5 a.u. ≈ 1meV. Using the above

algorithm and the crossing point geometry shown in Fig. 3 as a starting point, we sampled

initial velocities according to a Maxwell-Boltzmann distribution at 600K and thermostatted

using velocity rescaling with a stochastic term.62 The dynamics were run for 300 fs with a

time step of 0.2 fs. Of course, one should be cautious when interpreting the time reported in

Fig. 5 and 6 because such a time scale does not reflect any physically meaningful (observ-

able) dynamics, but rather reflect a statement about how rigorously we have explored and

10



sampled the seam provided the relevant thermal energy.

Molecular Dynamics and Two-State Approximate Population Trans-

fer

The ultimate means to model barrierless spin-crossover is to run brute-force, ab initio dy-

namical trajectories which automatically explore the relevant parts of the potential energy

surface landscape. To that end, it is most natural to start at the transition state when

the crossing occurs in the exit channel of the reaction.63 As such, we initialized a swarm of

38 trajectories beginning at the transition state on the quartet surface (J in Fig. 2) and

generated random velocities according to a Maxwell-Boltzmann distribution equivalent to

an instantaneous temperature of 600 Kelvin. Additionally, we insured the initial velocities

were directed towards products by projecting the velocity vector onto the normal mode cor-

responding to the imaginary frequency shown in 4 and rejecting any initial condition that

gave a negative dot product. During ab initio molecular dynamics we used geometric direct

minimization (GDM) for robust convergence to the SCF solution. However, since the solu-

tion found using GDM can be sensitive to the initial guess,64 we used the previous step’s

solution as the initial guess for the current step.

Following dynamics along the quartet surface, we computed the energy of the doublet

and the SOCs between the two states at each geometry. Energies and couplings in hand,

we built the following reduced two-state electronic Hamiltonian dependent on time via the

change in nuclear coordinate.

Helec(R⃗) =







ED(R⃗) ṼSOC(R⃗)

ṼSOC(R⃗) EQ(R⃗)






(8)

Given our interest in exploring ISCs from a quartet and ending on doublet, in Figs. 6, 7,

8, and 11 below, we will include the density of states of the doublet (i.e. two) and report
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ṼSOC =
√
2 VSOC from Eq. 1.

In order to estimate the spin-branching, we propagated the time-dependent Schrodinger

equation (TDSE) using the Hamiltonian above (Eq. 8). For these simulations we initialized

the corresponding two-state wavefunction at time zero to be

ψ =







CD

CQ






=







0

1






, (9)

where the complex coefficient of the doublet state (CD) is zero and the quartet state (CQ) is

unity.

Results

Transition State and Reaction Path Near Crossing Along Dominant

Reaction Pathway

The potential energy surface for the two dominant pathways is shown in Fig. 2. The

reactants (H), entrance well (I), and transition state (J) of the quartet surface are lower in

energy than the corresponding geometries for the doublet (A, B and C). Fig. 4 shows the

normal mode of the imaginary frequency at the transition state on the quartet surface (J).

The nuclear displacement of this normal mode shows a change in the distance between the

carbon and the oxygen. After the transition state (J), there is a crossing point (CP) between

the two spin states and thereafter the doublet has a lower energy. We have characterized

the potential energy surface in this region (between J and K in Fig. 3) using the freezing

string method. As suggested by Zhang et. al.,45 in order for the adiabatic product (G) to

be formed, the system must readily undergo ISC in this region. A SOC calculation at the

point where the two surfaces cross (as dictated by the freezing string calculation) reveals a

significant spin orbit coupling magnitude (89.8 cm-1). Note that, previous calculations by
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Figure 2: The C-O activation reaction pathway with relevant transition states and interme-
diates for the doublet and quartet surfaces. Note that, between transition states J on the
quartet and intermediate D on the doublet, there is a crossing point (CP) where there is a
change in the spin of the ground state.

Zhang et. al. found the SOC at the crossing point along the intrinsic reaction coordinate

to be small (9.2 cm-1) (with a CASSCF ansatz) which corresponds to only a 1% crossing

probability.45

Inevitably, one must question: why have we found such a different magnitude of SOC?

One might conjecture that this results from a difference in electronic structure approach –

which is certainly possible. For example, in our own experience with this problem, the SOC

between states can depend very strongly on the choice of active space. That being said, it

is also important to emphasize that ref. 45 evaluated the SOC at the (hopefully unique)

minimum energy crossing point, whereas we have evaluated the coupling at the crossing

point that is conjectured by the freezing string method (with 20 nodes) which might be

more physically meaningful dynamically. Most importantly, it is crucial to emphasize that

(i) the seam is 14-dimensional and therefore the dynamical implications of a curve-crossing

can only be assessed by sampling the relevant space; we will follow this approach in the
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next section. Beyond seam sampling, (ii) the most rigorous approach for understanding

barrierless ISC (that can explore significantly more of the potential energy surface) is to run

ab initio dynamics starting from the correct initial coordinates or to evaluate equilibrium

reaction rates by starting dynamics from the transition state and following each trajectory;

these nonadiabatic dynamics are difficult but progress in this vein will be reported in the

dynamics section below.
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Figure 3: The relative potential energy surfaces of the quartet (blue) and the doublet (red)
along the minimum energy pathway from the quartet transition state (J) and the quartet
intermediate (K) corresponding to the labels in Fig. 2. The nuclear configuration at the
crossing point (CP) is shown.

Seam Sampling: SOC Inside the Seam

In Fig. 5, we plot the magnitude of the SOC between the spin diabats (quartet and doublet)

as a function of the fictitious seam-sampling time described above. The electronic energy

of the doublet and quartet state (they are necessarily degenerate in the seam) are shown

in Fig. 6. Over the course of 300 fs, one observes that the SOC varies by two orders of

magnitude, descending as low as 1.7 cm-1 and reaching as high as 94.8 cm-1 over the course

14



Figure 4: The transition state geometry (J) with the normal mode displacement vector
corresponding to the imaginary frequency is plotted in green. Nuclear displacement in this
direction pushes the reaction toward intermediate (K).

of the trajectory. Fig. 5 also shows clear oscillations of the SOC magnitude that has a

period of approximately 45 fs. Such an oscillatory SOC calls into question the validity of

the Condon approximation (which assumes constant SOC). If the Condon approximation is

insufficient, then to better understand the resulting ISC, we need to gain intuition regarding

the underlying reason for such fluctuations in the coupling. We address the impact of

accounting for or excluding such a nuclear dependence in the next section when directly

running dynamics.

To that end, the first item of interest is to note that the magnitude of the SOC is reason-

ably correlated with the relative potential energy of the electronic states. To demonstrate

such a correlation, in Fig. 7, we provide a scatter plot of the magnitude of the SOC ver-

sus the relative potential energy. For these simulations, our initial point (as chosen by the

freezing string method) was quite high in energy (approx. 0.48 eV above the minimum

crossing point), and the relative energy decreased rapidly during seam sampling. (For these

simulations, the zero of electronic energy is taken as the minimum energy sampled.) From
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the data in Fig. 7, we find that there are two distinct regions of configuration space with

effectively different couplings; those regions are highlighted by R1 (low-energy region) and

R2 (high-energy region). Clearly, one would like to understand why these two regions give

such different SOC values. Ultimately, SOC is a matter of conservation of angular momen-

tum. Put simply, if the spin of an electron is to flip during ISC, then the Hamiltonian

(which now includes the SO operator Eq. 2) must conserve angular momentum by changing

the electronic orbital. That being said, in this work we assess what nuclear coordinates

modulate the coupling magnitude in these two regimes with the understanding that these

coordinates control the electronic orbitals and their capacity to undergo ISC and conserve

angular momentum in line with El-Sayed’s rule.65

To that end, we have plotted (unshown) the dependence of the SOC on many different

possible reaction coordinates. After a great deal of analysis, our assessment is that the main

determinants of the SOC are two nuclear coordinates: (i) the the distance from the oxygen’s

H atom to the C–Ti–O plane and (ii) the C–Ti–O angle (respectively, ζ and θ in Fig.

8(a)). Fig. 8(b) shows the magnitude of the SOC versus the ζ coordinate. Clearly, the value

of this nuclear coordinate is correlated and partly determinative of the values of the SOC,

especially in the R1 region. Note that the oscillations in the coupling seen in the time-series

data (Fig. 5) loosely correlates with the ζ parameter shown in R1.

Next, we turn to the C–Ti–O angle, θ, which is plotted by the color of the point in

Fig. 8(b). Clearly, the value of θ dictates a clear difference between the R1 and R2 regions.

R1 corresponds to low-energy, large C–Ti–O angles where the molecule is more planar.

Meanwhile, R2 includes high-energy and small C–Ti–O angle configurations. At large

enough C–Ti–O angles (greater than 160 degrees) this correlation breaks down, and VSOC

clearly depends weakly on some other nuclear coordinates, but nevertheless, the dependence

of VSOC on ζ and θ is clear from Fig. 8(b).
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Figure 5: The magnitude of the SOC between the quartet and doublet state during seam
sampling at 600K. Note that the magnitude is highly oscillatory and spans between 1.7 cm-1

and 94.8 cm-1 during the 300 fs.
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Figure 6: The relative electronic energy of the degenerate doublet and quartet during seam
sampling at 600K. The initial configuration has higher energy (0.48 eV) relative to the lowest
energy configuration sampled later in the dynamics.
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Figure 7: The SOC versus the electronic energy of the degenerate doublet and quartet states
during seam sampling at 600K. Notice that the sampling data is separated by two regions:
a region where the SOC is smaller with lower energy (R1) and a region where the SOC is
larger with higher energy (R2).

Dynamics: Population Transfer Along BOMD Trajectory

Finally, we turn to physically meaningful dynamics. In Fig. 9(a), we report the electronic

energy for the doublet and quartet along a sample trajectory run over a total of 300 fs

starting at the quartet transition state (and with momentum toward products). In Fig.

9(b) and 9(c), we report the corresponding population of the doublet and the SOC between

states, respectively. All crossing points are indicated by a large yellow dot. Interestingly,

we find that these resulting dynamics pass through the crossing region multiple times over

the span of the short trajectory (seven times in 300 fs in Fig. 9). Each crossing point in

Fig. 9(a) has a sufficient SOC to cause a change in the doublet amplitude, but it is also

true that using constant coupling (as determined by an average of all reactive trajectories)

shows a similar transfer to the doublet state in Fig. 9(b). Clearly, the effect of such coherent

dynamics cannot represented by a simple LZ curve crossing problem; with multiple crossings,

the change in populations can become quite large and require explicit dynamics to solve.
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Now, the results in Fig. 9 reflect only a single trajectory, and in order to gain more

confidence, we should really sample a swarm of trajectories. To that end, we have run

38 such ab initio trajectories. In Fig. 10, we plot the final population in the doublet

state at the end of the 300 fs for each of the 38 BOMD trajectories. While many of the

trajectories resulted in significant population transfer to the doublet (revisiting the crossing

region many times), some of the trajectories do not have a large doublet population after

300 fs. For some of these trajectories, there is no such population simply because the

surfaces do not cross. In fact, of the 38 trajectories we sampled (each with a positive dot

product along the imaginary normal mode that heads toward the crossing point), ten (10)

trajectories reverted back to the reactant well (I), as shown by the grey data in Fig. 10.

Including only reactive trajectories, the average population transfer at 300 fs is 9.0%. Clearly

this data again reflects the important notion that potential energy surfaces and transition

states are multidimensional and complex, and one-dimensional, LZ inspired theories will

have limitations when the crossing region is barrierless and large portions of the potential

energy surface in the crossing region are explored.

Finally, let us return to the large fluctuations in SOC as found during seam-sampling

dynamics in Fig. 5, which strongly suggested the limitation of a Condon approximation if the

coupling is evaluated only at a single geometry. As we noted in the previous section, one must

be careful not to confuse constrained seam-sampling dynamics with physical unconstrained

dynamics. That being said, to study the utility of seam sampling more generally as far

as simulating reactive dynamics, in Fig. 11, we plot a histogram of the SOC for all 38

trajectories when sampling either (i) the entire trajectory (reactive or non-reactive) or (ii)

those regions of configuration space where the energy gap is less than 10 meV (which mimics

the sampling space). We find that the average SOC where the gap is small (70.4 cm-1) is

similar to the SOC averaged in time during reactive trajectories (64.9 cm-1) with the former

being more localized (standard deviation 14.2 cm-1) in the seam vs. 22.2 cm-1 overall).

Interestingly, the average SOC for non-reactive trajectories is even larger (101.4 cm-1) with
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a correspondingly large standard deviation of 25.5 cm-1. For comparison, we also plot the

distribution of the SOC during the seam sampling shown in Fig. 5, showing the bimodal

distribution for regions R1 and R2 from Figs. 7 and 8. Overall, the conclusion from this

data is that, for an accurate prediction of ISC dynamics, one should really sample many

different nuclear geometries (as the SOC varies strongly).

Discussion, Future Work, and Conclusions

In conclusion, we have used a novel E-SHAKE algorithm to achieve seam sampling for Ti++

CH3OH ISC scattering, and we have found clear evidence that the SOC varies strongly with

position, and we have further identified the relative nuclear coordinates that modulate that

coupling, namely the C-Ti-O angle and the distance ζ as shown in Fig. 8(a). Furthermore,

we have run ab initio BOMD simulations that offer insight into the nature of the ISC

dynamics, specifically the possibility of revisiting of a crossing region numerous times in a

300 fs dynamics run. Thus, we posit that the Ti+ + CH3OH reaction dynamics cannot be

easily modeled by a traditional one-dimensional LZ theory. Returning to the basic theme

of the introduction, we hypothesize that, there may not be a substitute for brute-force

numerical simulations if we seek to understand ISC in small organometallic systems with

barrierless ISC events. That being said, given the computational cost of running dynamics

and incorporating the nuclear coordinate dependence of SOC for nonadiabatic dynamics,

and in light of the success of Guo and coworkers using a generalized SOC (averaged over

select points as in the Ta++CO2 reaction) while running dynamics,39 it is also possible that

using an average SOC during dynamics (or potentially within a sophisticated transition state

theory) may not lead to substantial discrepancies (which is supported by our findings in Fig.

9(b)). As we highlighted in the introduction, there is always a tension between the desire

for more sampling versus more accurate potential energy surfaces, and there is no clear best

approach for all cases.
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Looking forward, one can certainly improve on the present calculations. For instance, we

have employed the hybrid functional B3LYP and the def2-TZVP basis set for the calculations

in this work, but the limitations of DFT are well known, and one can always improve results

with CASSCF/MRCI. Using a cheaper electronic structure methods in this work afforded

us the opportunity to run long-time dynamics, but it may be worth the cost in the future

to verify the results. Perhaps more interestingly, we have invoked a two-state treatment

of the doublet and quartet states above, but in reality there is a 6 state crossing and the

diabatic couplings have signs and phases (that are ignored in Eq. 1). One must wonder

whether significant information is lost when treating the crossing only as a two-state one;

indeed, given the recent focus on spin dynamics in electron, transfer66,67 understanding the

distribution of ms values on the outgoing double channels would be of great theoretical (if

not practical) interest.

For future progress, however, the most immediate need is to go beyond BOMD. Note

that, in this article, we have estimated population transfer to the doublet state in a crude

fashion with no feedback to the nuclear dynamics; we always propagate according to the

quartet potential energy surface. Looking forward, if we want to go beyond transition state

theory47,68,69 a more reliable and meaningful approach is to match the nuclear forces with

the instantaneous electronic state and account for non-BO (nonadiabatic) effects. To that

end, one can imagine running Ehrenfest, fewest-switches surface hopping dynamics,70–72 or

ab initio multiple spawning.73–75 Given the small number of exit channels for this reaction,

we must still expect that trajectories will revisit a crossing region several times,76–78 but

the details of the ISC event (and the branching ratios) may well be different with more

accurate forces. In general, running nonadiabatic trajectories for ISC trajectories can be

quite difficult for several reasons; (i) with degenerate spin states, the choice of hopping

states is not well-defined for the surface hopping algorithm; (ii) the derivative couplings are

complex-valued and therefore momentum hops or spawning momenta79 are not well-defined

either; (iii) the usual BO dynamics do not conserve linear or angular momentum;80 (iv)
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conical intersection seams in molecules with odd numbers of electrons and spin-orbit coupling

are high dimensional and difficult to calculate accurately.81–85 Despite these limitations,

developing new techniques for ISC nonadiabatic dynamics, especially so-called phase space

surface hopping techniques,86–88 is an active area of research in our group and we hope to

report results in the future.

Despite all of the limitations above, our seam sampling and dynamics results can largely

explain the relative branching ratios found for the Ti+ + CH3OH reaction between the two

major products TiO+ + CH4 and TiOH+ + CH3, highlighting the failures of a simple LZ

treatment (especially if one invokes the Condon approximation and evaluates the SOC at a

single nuclear configuration) and emphasize the need for new, robust nonadiabatic dynamics

methodologies. Looking forward, the E-SHAKE methodology here is available in the current

INAQS,56 and in the future, we believe a simple approach of (i) sampling the seam and then

(ii) spawning trajectories from the seam (or if relevant from a nearby transition state) should

offer a reasonable fast path forward for explaining a slew of organometallic reactions (starting

with those mentioned in the introduction).

Doublet

Quartet

0 50 100 150 200 250 300

0.0

0.5

1.0

1.5

2.0

2.5

Time (fs)

E
le
c
tr
o
n
ic
E
n
e
rg
y
(e
V
)

(a)

V

SOC(R


)

〈VSOC(R)〉Reactive

0 50 100 150 200 250 300
0

10

20

30

40

Time (fs)

D
o
u
b
le
t
P
o
p
u
la
ti
o
n
(%

)

(b)

0 50 100 150 200 250 300
0

20

40

60

80

100

Time (fs)

S
p
in
-
O
rb
it
C
o
u
p
lin
g
(c
m

-
1
)

(c)

Figure 9: (a) Potential energy surface of the doublet (red) and quartet (blue) along a sample
BOMD trajectory confined to the quartet surface. (b) The population transfer to the doublet
as dictated by integrating the time-dependent Schrodinger equation using the reduced two-
state Hamiltonian in Eq. 8 coupled with the instantaneous SOC (black) or constant SOC
as determined by the average SOC of all reactive trajectories (red). (c) The spin-orbit
coupling along the trajectory. As expected, large changes in the doublet population occur
in regions where the surfaces cross, but perhaps unexpectedly, crossings occur quite often
and repeatedly.
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Figure 10: A histogram of the population on the doublet state (according to the wavefunction
analysis of ψ in Eq. 9 evolving according to the Hamiltonian in Eq. 8) at the end of the 38
BOMD trajectories. Note that 10 trajectories were nonreactive and returned to the input
well, (I). Of the reactive trajectories (in green) that reached points J and K, the average
population (dashed black line) being 9.0% at the end of the 300 fs.
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Details on calculating SOC matrix elements between two spin states with different MOs.
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(39) Liu, Y.; Ončák, M.; Meyer, J.; Ard, S. G.; Shuman, N. S.; Viggiano, A. A.; Guo, H.

Multistate Dynamics and Kinetics of CO2 Activation by Ta+ in the Gas Phase: In-

sights into Single-Atom Catalysis. Journal of the American Chemical Society 2024,

146, 14182–14193.

(40) Liu, Y.; Oncák, M.; Meyer, J.; Ard, S. G.; Shuman, N. S.; Viggiano, A. A.; Guo, H.

Intersystem Crossing Control of the Nb++ CO2→ NbO++ CO Reaction. The Journal

of Physical Chemistry A 2024, 128, 6943–6953.

(41) Jiang, B.; Guo, H. Permutation invariant polynomial neural network approach to fitting

potential energy surfaces. The Journal of chemical physics 2013, 139, 054112.

(42) Li, J.; Jiang, B.; Guo, H. Permutation invariant polynomial neural network approach

to fitting potential energy surfaces. II. Four-atom systems. The Journal of chemical

physics 2013, 139, 204103.

(43) Huber, M. E.; Lewis, T. W.; Meta, M.; Ard, S. G.; Liu, Y.; Sweeny, B. C.; Guo, H.;
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Calculating SOC Between Two Spin States with Differ-

ent MOs

Within the representation of canonical molecular orbitals (MOs), ψ, the the BP SO operator

(Eq. 2) requires matrix elements of the “scaled” angular momentum integral of the form:

L⃗pq = i
α2
0

2

〈

ψp

∣

∣

∣

∣

∣

∣

∣

N
∑

A

ZA
∣

∣

∣
r⃗ − R⃗A

∣

∣

∣

3

(

r⃗ − R⃗A

)

×∇

∣

∣

∣

∣

∣

∣

∣

ψq

〉

. (S1)

which is pure imaginary due to the momentum operator, where p and q label occupied or-

bitals. From these Cartesian components, one can define the corresponding ladder operators

L±
pq and L

0
pq as

L±
pq = Lx

pq ± iLy
pq, L0

pq = Lz
pq, (S2)

and then Eq. 2 can be reformed into

ĤSO =
1

2

∑

pq

(

L+
pqÔ

1,−1
pq − L−

pqÔ
1,1
pq + L0

pqÔ
1,0
pq

)

, (S3)

where the triplet spin-tensor operators are1

Ô1,−1
pq = a

†
pβaqα,

Ô1,0
pq =

1√
2

(

a†pαaqα − a
†
pβaqβ

)

,

Ô1,1
pq = −a†pαaqβ, (S4)

in second quantization. a† and a are the creation and annihilation operators, respectively,

and α and β refer to the electron spin (up and down). The calculations in this paper are

restricted (α and β orbitals have the same spatial component), but the method described
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below is general and can be used in the unrestricted case as well.

When the two electronic states are constructed from the same set of MOs, the summation

in Eq. S3 reduces to a sum over singly occupied orbitals because of the orthogonality

condition for the MOs; however, if the two states are solved separately through self-consistent

procedure, this conclusion does not hold. Nevertheless, a brute sum over orbitals approach

can be circumvented by utilizing a singular value decomposition (SVD) to form two bi-

orthogonal MO basis sets.2 Namely, we construct the MO overlap matrices

C
α,†
o

SC
′α
o
= S

α
oo

= U
α
d
α
V

α,†,

C
β,†
o
SC

′β
o
= S

β
oo

= U
β
d
β
V

β,†, (S5)

for the α and β electrons, respectively. Here S is the AO overlap matrix, and C
α/β
o and

C
′α/β
o are the α/β occupied MO coefficients of the two states, respectively. S

α
oo

has dimen-

sionality nα × n′
α where nα and n′

α are the number of α spins for the two states, respec-

tively. The singular values d
α usually includes nα

core
= min(nα, n

′
α) non-zero elements and

n0 = |nα − n′
α| =

∣

∣nβ − n′
β

∣

∣ zeros. In such a case, Uα and the first nα
core

columns of Vα

correspond to the non-zero singular values while the last n0 columns of V
α would yield

null space. Similarly, Sβ
oo

has dimension nβ × n′
β, where U

β is divided into two blocks with

nβ
core

= min(nβ, n
′
β) and n0 columns, respectively, and V

β has nβ
core

columns in total. Hence

the two bi-orthogonal orbital coefficient matrices can be represented as

C̃
α
o
= C

α
o
U

α,

C̃
′α
o
= C

′α
o
V

α = C
′α
o
(Vα

nα
core

,Vα
n0
); (S6)

C̃
β
o
= C

β
o
U

β = C
β
o
(Uβ

nβ
core

,Uβ
n0
),

C̃
′β
o
= C

′β
o
V

β. (S7)
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SOC matrix element between ΨS,S and ΨS+1,S+1

In practice, if one seeks a Slater determinant with a given spin multiplicity S, a quantum

chemistry software package usually returns a self-consistent optimized state with the largest

ms value; such states are represented by the first two determinants in Fig. 1(b). The SOC

between two such electronic states ΨS,S and Ψ′
S+1,S+1 is given by

V soc
S,S;S+1,S+1 = vsoc+ Λ

∏

d
α
cored

β
core, vsoc+ = C̃

β,†
n0
L

+
C̃

′α
n0
. (S8)

Here, the determinants of the overlap matrices are replaced by the products of non-zero

singular values, with the phase Λ = det(Uα) det(Vα) det
(

U
β
)

det
(

V
β
)

= ±1. The one-

electron SOC, vsoc+ , is evaluated from the null space orbitals in Eqs. (S6) and (S7) together

with the spin-orbit operator in Eq. (S3), where L+ is the angular momentum integrals in

atomic orbital (AO) representation defined by Eqs. (S1) and (S2). Note that, of all of the

terms in Eq. (S3), only the L+ component (which multiplies Ô1,−1) survives because the ket

state has an extra α electron compared to the bra state; the other two terms in Eq. (S3)

vanish. Note also that, for the coupling between ΨS,−S and Ψ′
S+1,−(S+1), the result is also

straightforward; one can flip all spins (up to down and down to up) so that the analogue of

Eq. (S8) is still valid but with the matrix L
− (instead of L+):

V soc
S,−S;S+1,−(S+1) = vsoc− Λ

∏

d
α
cored

β
core, vsoc− = C̃

β,†
n0
L

−
C̃

′α
n0
. (S9)

SOC matrix element between ΨS,S and ΨS+1,S

Next, let us address the coupling between states ΨS,S and Ψ′
S+1,S; this matrix element is

more tricky to compute, as the latter is not a Slater determinant. To form the Ψ′
S+1,S

wavefunction, we consider the Ψ′
S+1,S+1 Slater determinant, isolate the (2S+2) α orbitals

in this determinant with least overlap to the β orbitals in the same determinant, and then

finally flip each orbital appropriate (and with the appropriate sign, see Fig. 1(b) ) so as
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to achieve a wavefunction with ms number S (i.e. so that Ψ′
S,S and Ψ′

S+1,S have the same

number of both α and β orbitals). Mathematically, in general, the relevant orbitals are found

by constructing the α-β overlap matrix between the α and β orbitals for the Ψ′
S+1,S+1 Slater

determinant, C′α
o SC

′β
o , and then taking the SVD of this matrix: C

′α
o SC

′β
o = Ũd̃Ṽ. As a

function of the original AO basis, the desired orbitals are then of the form:

C̃
′′α
o = C

′α
o Ũ,

C̃
′′β
o = C

′β
o Ṽ. (S10)

Note that the C
′α
o matrix has (n′

α − n′
β) more columns than the C

′β
o matrix. Note also that

this SVD is unnecessary for the case of a restricted calculation (as we have done above), in

which case C
′α
o SC

′β
o is nearly the identity matrix (with only a few extra columns of zero),

and the core α and β orbitals are identical, so that identifying the α orbitals with no β

counterpart is trivial.

The process above has identified which orbitals we will flip when building the low-spin

state. For instance, in the case of the high-spin quartet, we will construct a linear combi-

nation of three Slater determinants by flipping the spins of three different orbitals (one at

a time); again, see 1(b). Let us index each orbital to be flipped by the index k, and let us

denote Ψ̃
(k)
S+1 as the Slater determinant with orbital k flipped from up to down (with MO co-

efficient matrices C̃
′′α(k)
o and C̃

′′β(k)
o ). In order to construct the SOC matrix element between

ΨS,S and Ψ̃
(k)
S+1, we line up the α orbitals between these two different Slater determinants and

then perform another SVD procedure so as to generate the biorthogonal (or corresponding)

orbitals:

C
α,†
o SC̃

′′α(k)
o = S

′α(k)
oo = U

′α(k)
d
′α(k)

V
′α(k)†. (S11)
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We repeat this procedure for the β orbitals:

C
β,†
o SC̃

′′β(k)
o = S

′β(k)
oo = U

′β(k)
d
′β(k)

V
′β(k)†, (S12)

Finally, the effective one-electron SOC between ΨS,S and Ψ̃
(k)
S+1 reads:

vsocz(k) =
(−1)k

2
Λ′(k)

(

(

C
α
oU

′α(k)
n0

)†
L

z
(

C̃
′′α
o V

′α(k)
n0

)

d′β(k)n0
−

(

C
β
oU

′β(k)
n0

)†
L

z
(

C̃
′′β
o V

′β(k)
n0

)

d′α(k)n0

)

,

(S13)

where Λ′(k) = det
(

U
′α(k)

)

det
(

V
′α(k)

)

det
(

U
′β(k)

)

det
(

V
′β(k)

)

gives the phase of the overlap

matrices. Note that we require a phase (−1)k (i.e. a phase depending on identity of the

flipped electron) in order to generate the correct overall low-spin many-body state. The final

SOC value betweenΨS,S and ΨS+1,S is then:

V soc
S,S;S+1,S =

1
√

n′
α − n′

β

∑

k

(

vsocz(k)

∏

d
′α(k)
core d

′β(k)
core

)

, (S14)

where the coefficient is from the average of the determinants. Note that, for the corresponding

states constructed by flipping every electron spin (i.e. the time reversal states), we find that:

V soc
S,−S;S+1,−S = −V soc

S,S;S+1,S. (S15)

SOC matrix element between ΨS,S and ΨS+1,S−1

There is still one piece left for coupling between ΨS,S and ΨS+1,S−1 states. Here we would

flip two electrons from α to β for the latter state, based on the transformed orbitals in Eq.

(S10); and then we have the SVD equations

C
α,†
o SC̃

′′α(k)
o = S

′′α(k)
oo = U

′′α(k)
d
′′α(k)

V
′′α(k)†,

C
β,†
o SC̃

′′β(k)
o = S

′′β(k)
oo = U

′′β(k)
d
′′β(k)

V
′′β(k)†, (S16)
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for each s, which labels the left (unflipped) singly occupied α-orbital among the last (n′
α−n′

β)

columns. It leads to the one-orbital SOCs

v′′soc±(k) = (−1)kΛ′′(k)
(

C
α
oU

′′α(k)
n0

)†
L

±
(

C̃
′′β
o V

′′β(k)
n0

)

, (S17)

with phase factor Λ′′(k) = det
(

U
′′α(k)

)

det
(

V
′′α(k)

)

det
(

U
′′β(k)

)

det
(

V
′′β(k)

)

, and finally the

total SOCs

V soc
S,S;S+1,S−1 =

1
√

n′
α − n′

β

∑

k

v′′soc−(k)

∏

d
′′α(k)
core d

′′β(k)
core ,

V soc
S,−S;S+1,−S+1 =

1
√

n′
α − n′

β

∑

k

v′′soc+(k)

∏

d
′′α(k)
core d

′′β(k)
core (S18)

of ΨS,S and ΨS+1,S−1 and of its image states ΨS,−S and ΨS+1,−S+1, respectively.
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