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ABSTRACT: We show empirically that a phase-space non-Born−
Oppenheimer electronic Hamiltonian approach to quantum
chemistry (where the electronic Hamiltonian is parametrized by
both nuclear position and momentum, ĤPS(R,P)) is both a
practical and accurate means to recover vibrational circular
dichroism spectra. We further hypothesize that such a phase-
space approach may lead to very new dynamical physics beyond
spectroscopic circular dichroism, with potential implications for
understanding chiral induced spin selectivity (CISS), noting that
classical phase-space approaches conserve the total nuclear plus
electronic momentum, whereas classical Born−Oppenheimer
approaches do not (they conserve only the nuclear momentum).

1. INTRODUCTION: CHIRALITY AND CIRCULAR
DICHROISM

Molecular chirality occurs whenever a system lacks any
inversion or mirror symmetry. Such systems have long
fascinated chemists, going all the way back to the work of
Pasteur more than 150 years ago.1 Chirality continues to be a
target of cutting-edge research, with the 2021 Nobel Prize in
Chemistry being awarded for chiral synthesis2,3 and the current
explosion of interest in chiral-induced spin selectivity,4−6 the
e0ect whereby electronic conduction through a chiral medium
is found to be spin-polarized. One hypothesis for explaining
the chiral induced spin selectivity (CISS) e0ect is that coupled
nuclear-electronic motion transfers angular momentum from
“chiral phonons”7,8 to electronic spin degrees of freedom�

although this hypothesis is unconfirmed and many details
remain uncertain.9−11 Nevertheless, what is clear is that the
chirality of a molecular system can substantially a0ect
electronic properties in ways we still do not fully understand
and cannot control.

To date, the standard approach in the literature for
identifying and characterizing chiral molecules and materials
is to use circular dichroism (CD) spectroscopy, which
measures the di0erential absorption of molecular systems to
circularly polarized light. While nonchiral molecules respond
equivalently to both left and right circularly polarized light, the
response of chiral molecules is reversed based on the
enantiomer.12 In particular, because they lack inversion or
mirror symmetry, chiral molecules display di0erent magneto-
electronic responses, which leads to a small di0erence in

absorption when exposed to left-handed and right-handed
circularly polarized light. Over the last few decades, in order to
treat chirality in di0erent regimes, experimentalists have
designed various flavors of CD spectroscopy, electronic circular
dichroism (ECD),13 vibrational CD (VCD),14 magnetic CD
(MCD),15 magnetic vibrational CD (MVCD), X-ray magnetic
CD (XMCD), Raman optical activity (ROA), etc. E0ectively,
one can measure the di0erential absorption of molecules in
many wavelength regimes (from radio-wave to X-ray) and in
many environments (e.g., including or not including magnetic
fields, solvated and unsolvated).

In order to interpret the di0erent CD spectroscopies listed
above, the job of the theoretical chemist is usually to calculate
the rotatory strength , which is related to the di0erence in
left-handed vs right-handed absorption when averaged over all
incoming directions of light and molecular geometries.
Mathematically, this di0erence in molecular absorption can
be quantified using the product of an electronic transition
matrix element (μ) dotted into a magnetic transition matrix
element (m):

= ·Im( )
if fi (1)
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where i and f represent the initial and final states, before and
after absorption of a photon. One can find many review articles
discussing the strategies for calculating 16−21 as well as below
(Section 2.5). Historically, one of the diBculties encountered
when calculating the rotatory strength is that, because we are
limited to a finite basis, magnetic response properties will
naively depend on the choice of origin.

1.1. Vibrational Circular Dichroism and Magnetic
Field Perturbation Theory. It is crucial to emphasize that
calculating for each of the di0erent CD spectroscopies above
can require quite di0erent methodologies. In particular, relative
to the ECD signal, the calculation of a VCD signal can be
much less straightforward because, within Born−Oppenheimer
theory, the electronic contribution to the magnetic transition
dipole moment vanishes between any vibrational modes i and
f.22 To see why this is so, note that the BO Hamiltonian is
time-reversible, so that all nondegenerate eigenstates are also
time-reversible (with zero average electronic momentum, ⟨p̂⟩
= ⟨m̂⟩ = 0). This inability of standard BO theory to calculate
VCD spectra stimulated the original work of Nafie to go
beyond BO theory and construct the relevant nonzero matrix
elements between perturbatively corrected BO states.23 At
present, there are two main approaches:

(i) The first and less common approach invokes a sum over
excited states (SOS)24 in order to generate a
perturbatively correct mixed electronic-nuclear wave
function within a basis of BO wave functions.

(ii) The second and now more common approach was
formulated by Stephens and Buckingham, which
computes the orbital response to a magnetic field
perturbation (MFP),19,25 which formally recovers the
same sum over excited states but in a more tractable
manner.

For VCD (as for most vibrational problems), one quantifies
the electric dipole component of eq 1 by expanding the
ground-state electronic dipole in nuclear position and then
quantizing and taking matrix elements of the nuclear position
operator:

= + +

R
R RR( ) ( ) ...eq

A A
A A

eq

(2)

In principle, one would like to expand and evaluate the
magnetic transition moment, , in a similar fashion�but, as
just discussed, within the BO approximation, = 0 (and so

are all spatial derivatives of , = 0
R

). That being said, the

insight of Nafie and Stephens was that, as the nuclei move, that
motion induces electronic motion, which should allow an
expansion of the magnetic transition moment, , in terms of a
nuclear canonical momentum (where PA

eq = 0):

= +

P
P P( ) ...

A A
A A

eq

(3)

The success of the MFP approach is that one can map
P
to

a double response function calculation (see eq 90 below).
Now, in principle, one might ask: why intuitively should it be
more diBcult or involved to calculate a VCD spectrum relative

to an IR or ECD spectrum? Why does the calculation of
P

require a double perturbation in eq 90, whereas the calculation

of
R
requires only a single perturbation (see eq 59)? Just as IR

spectra can be interpreted by performing a Fourier transform
on the dipole−dipole correlation function, can we interpret
VCD spectra as evolving from dynamics on a non-BO surface?
In short, is there a non-BO approach that can put VCD theory
in a less esoteric framework?

In a sense, Nafie asked these questions long ago, which led
him to introduce nuclear velocity perturbation theory, whereby
one introduces gauges to the atomic orbitals26 in an attempt to
capture how electronic wave functions depend self-consistently
on nuclear velocity and fashion a more natural treatment of
VCD. Unfortunately, the need for multiple orbital response
calculations leads to an expensive algorithm, and so the nuclear
velocity perturbation (NVP) approach has not been studied in
as much detail over the years. Nevertheless, Nafie laid the
groundwork for future nonadiabatic methods designed to
recover VCD spectra. And recently, the community has taken
up the cause and shown progress with NVP.27,28 In this paper,
we will take a di0erent approach and show that VCD spectra
can easily be interpreted through a simple and intuitive phase-
space approach to electronic structure theory.

1.2. Phase-Space Electronic Hamiltonian Approaches
and an Outline of This Paper. The essence of our phase-
space electronic Hamiltonian approach is to avoid the Born−
Oppenheimer framework and directly parametrize the
electronic Hamiltonian by both position and momentum,
HPS(R,P). As a sidenote, the phrase “phase space” in quantum
mechanics has a long history dating back the early work of
Wigner, Weyl, and Moyal, who showed that quantum
dynamics can be performed exactly within a phase-space
formalism.29,30 Moreover, within the context of nonadiabatic
dynamics, there have been several attempts to map the
dynamics of a set of electronic states to a set of classical
equations31−33 and then use phase-space techniques to
simulate the trajectory-based quantum dynamics of a set of
nuclear degrees of freedom (as written about extensively by
Liu34). To di0erentiate our approach (which is really a choice
of electronic basis but not at all a method for nuclear quantum
dynamics) from the latter techniques (which seek nonadiabatic
solutions), henceforward we will consistently speak of “phase-
space electronic Hamiltonian” approaches (rather than just a
generic “phase-space” approach).

Recently, we proved that, if one runs classical nuclear
dynamics along the eigensurfaces of a properly constructed
phase-space electronic Hamiltonian, HPS(R, P), one indeed
conserves the total linear and angular momentum;35 by
contrast, for systems with odd numbers of electrons, classical
BO dynamics violates momentum conservation (unless a Berry
force is included36,37). Moreover, as argued originally by
Shenvi (based heuristically on earlier work of Micha38 and
more direct work of Berry on superadiabats39,40), nonadiabatic
surface hopping algorithms are most natural with phase-space
electronic Hamiltonian surfaces. Indeed, in the context of
intersystem crossing (ISC) and/or problems with spin
degeneracy,41 standard surface hopping must be adjusted
because momentum rescaling is not well-defined if the
rescaling direction is complex-valued. For these reasons,
phase-space electronic Hamiltonian methods represent a very
attractive tool to explore electron−phonon couplings,
especially in the context of problems with spin dependent
Hamiltonians. (Interestingly, among those chemists and
physicists seeking to build a non-Born−Oppenheimer frame-
work to nonadiabatic dynamics without any mapping
techniques, most of the focus nowadays is on exact
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factorization methods42−46
�which are also attractive methods

that conserve momentum47 but algorithmically require tools
even farther away from standard BO theory than simple phase-
space methods.)

With this background in mind, the goal of the present paper
is to directly validate a phase-space electronic structure
Hamiltonian approach by comparing against experimental
VCD spectra for a series of small rigid molecules. Note that, in
this manuscript, we will not propagate nonadiabatic trajectories
of any kind; in particular, although below we will motivate the
notion of a phase-space electronic Hamiltonian from the
perspective of semiclassical dynamics, there will be no surface
hopping results of any kind. Instead, our goal is to empirically
establish whether the eigenstates of the heuristic Hamiltonian
presented below (in eq 27) match up well with experimental
data. This article is structured as follows. In Section 2.1, we
review the approximations taken in the standard BO approach
to nonadiabatic theory. In Section 2.2, we review the basic
theory of phase-space electronic Hamiltonians, highlighting the
essential equations needed for momentum conservation. In
Section 2.3, we discuss a second derivative coupling we have
recently implemented. In Section 2.4, we discuss how to
construct normal modes in a phase-space framework. In
Section 2.5 we discuss the form of the rotational strength in
the phase-space framework. Finally, in Section 2.6, we define
the transition electric and magnetic dipole moments at our
level of theory. Thereafter, in Section 3, we present our results
which strongly validate phase-space electronic structure theory
(at least numerically). Lastly, in Section 4, we interpret our
findings and speculate on their implications for dynamics
beyond VCD theory.

Before concluding this introduction, a word about notation
is in order. Henceforward,

• Roman letters I, J, and K denote adiabatic states
• {μ, ν, λ, σ} index atomic orbitals {χμ,χν, χλ, χσ}
• {α, β, γ, δ} index the x,y,z Cartesian directions
• Greek letters {τ, κ, η, θ} index spin of molecular orbital

coeBcients
• A, B, ... index atomic centers
• Bold font indicates three-dimensional quantities (oper-

ators or c-numbers)
• Hats indicate operators (nuclear and electronic).
• RA and PA denote the three-dimensional position and

momentum for nucleus A, while R and P denote a 3N-
dimensional vector for all nuclear positions and
momenta.

• Adiabatic wave functions are denoted by ΦJ, with
corresponding nuclear wave function ΩJ.

• k indexes normal modes
• The charge of an electron is denoted −e (i.e., we fix e >

0).

2. THEORY: A PHASE-SPACE ELECTRONIC
HAMILTONIAN FRAMEWORK

2.1. Standard Born-Oppeneimer Approach to Non-
adiabatic Theory. To understand how phase-space electronic
Hamiltonians can be rationalized, consider the standard
quantum mechanical molecular Hamiltonian

= +H T H
tot nuc el (4)

where T̂nuc is the kinetic nuclear energy operator (that depends
on canonical momentum P) and Ĥel is the electronic

Hamiltonian (that depends on R). According to standard
Born−Oppenheimer theory, in order to model dynamics, one
first diagonalizes the electronic Hamiltonian Ĥel,

| = |H E R( )
K K Kel (5)

Second, one expresses the combined nuclear-electronic wave
function Ψ(r, R) in the basis of adiabatic states:

=r R r R R( , ) ( ; ) ( )
J

J J

(6)

In such a representation, using the fact that

=T
M Rnuc A 2

2
2

A
A

, it is straightforward to show that the

Hamiltonian takes the following form:

= | · |

+ | |

H
M

P i P i

E

d d

R

1

2
( ) ( )

( )

IJK

I IJ IJ JK JK K

k

KK K K

tot

(7)

where =P
i R

in the position basis. Note that, after an

adiabatic transformation of this kind, one has entangled the
electronic Hamiltonian and the nuclear kinetic energy.
Nevertheless, it is still common to write

= +H T H
tot nuc

ad

el

ad

(8)

where, if Û is the matrix of adiabatic eigenvectors expressed in
a diabatic basis, T̂nuc

ad = U† T̂nuc U and Ĥel
ad = U† Ĥel U.

Equation 7 is exact (without any approximation). Inevitably,
however, in order to simulate a real system, one is forced to
make approximations and the most common initial step is to
assume that all nuclear motion will be classical. In that vein, the
surface hopping48,49 view of nonadiabatic dynamics is that one
interprets dynamics following the Hamiltonian in eq 7 as
arising from two steps:

• Propagate classical motion along potential energy
surface K (as represented by the operator Ĥel

ad(R̂)).

• Hop probabilistically between potential energy surfaces,
J and K (as represented by the P̂·dJK operator).

This view of nonadiabatic motion, based on the separation
between the T̂nuc

ad and Ĥel
ad terms in eq 8, clearly depends

delicately on the choice of electronic basis. For the most part,
surface hopping is only well-defined in an adiabatic basis�
even though exact quantum dynamics has no preferred basis.50

Nevertheless, this surface hopping approach has been validated
for many Hamiltonians.

2.2. Intuition behind a Phase-Space Approach.
Beginning with Shenvi′s seminal work,51 the original rationale
for a phase-space surface hopping formalism was that if one
were to partition the Hamiltonian slightly di0erently from eq 8,
one could go beyond BO theory by entangling nuclear and
electronic motion both through hops and along dynamics on
one surface. To that end, if one is prepared to run a classical
simulation, Shenvi proposed rediagonalizing the full Hamil-
tonian which is parametrized by both R and P:

= · | |

+ | |

H
M

i i

E

R P P d P d

R

( , )
1

2
( ) ( )

( )

IJK

IJ IJ JK JK I K

k

KK K K

Shenvi
A A

A
A

A
A

(9)
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=H ER P R P R P R P( , ) ( , ) ( , ) ( , )Shenvi Shenvi Shenvi Shenvi

(10)

Note that, in eq 9, we have used the mixed quantum-classical
representation to replace (R̂,P̂) with their classical counter-
parts (R,P). As shown in several papers,51,52 for some model
problems, dynamics along the phase-space adiabats in eq 10
can produce strong results. Unfortunately, there are several
problems:

• The algorithm is not stable. For instance, near a conical
intersection, where the derivative coupling diverges, the
phase-space adiabatic energies (i.e., the eigenvalues of
ĤShenvi) will also diverge.

• For problems with spin, the eigenstates in eq 5 have
some an arbitrary gauge (i.e., phase). The derivative
couplings in eq 9 are gauge-dependent, and thus the
algorithm is not well-defined.

• The algorithm in practice is quite expensive because, in

order to propagate E

R

Shenvi , one must di0erentiate the

deriative coupling�which is at least (if not much more)
costly than a second-derivative calculation.

For all of these reasons, Shenvi’s direct approach has never
been used for large or ab initio systems. Nevertheless, we have
argued35 that there is another, simpler phase-space approach
which should capture some of the key physics in eq 9 but
without any of the problems listed above. The basic idea of our
phase-space approach is rooted in the fact that every
calculation of the derivative coupling53,54 in an atomic orbital
basis can always be decomposed into two terms:

= = +I
R

J d d dIJ IJ IJ
A

A A ,ETF A

(11)

The first term on the right-hand of eq 11 is the electron
translation factor (ETF) term,53 which is defined by

= | |
i

k

jjjjj

y

{

zzzzz
d

R R
D

1

2
IJ
A ,ETF

A A (12)

where Dμν is the one-particle density matrix. (For a standard
Hartree−Fock or Kohn−Sham DFT calculation, with molec-
ular orbitals cμi, one defines Dμν = ∑i

norb cμicνi*.) In this
separation, it is crucial to emphasize that whereas d̃IJ diverges
near a conical intersections, dIJ

ETF is always small, even near a
conical intersection; more precisely, although the size of the
former depends on the inverse of the energy di0erence
between electronic states, the size of the latter does not.
Moreover, because the atomic orbital basis {χμ} is always
chosen to be real-valued, there is no phase problem in isolating
the term dIJ

ETF. Third, di0erentiating such a term is computa-
tionally trivial. For all of these reasons, it is clear that if one
were to approximate d by dETF in eq 9, the resulting phase-
space electronic Hamiltonian would appear to be much more
stable and tractable.

Now, in Section 1.2 above, we discussed briefly the fact that
standard BO dynamics along the surface EK(R) (generated by
eq 4) fails to conserve either linear or angular momentum. In
brief, because BO dynamics propagate nuclear dynamics along
translationally and rotationally invariant potential energy
surfaces, these dynamics conserve the nuclear linear and
angular momentum. At the same time, however, these
algorithms ignore the electronic linear and angular momentum

and do not conserve the total linear or angular momentum
(provided the electronic observables are nonzero). Previously,
in refs 35 and,55, we showed that, in order to conserve the
total linear and angular momentum along a phase-space
adiabat, one can construct a Hamiltonian of the following
form:

+ ·
†

H
P

M
H i

P

M
a a

2
PS

A

A

2

A

el

A

A

A

A

(13)

S S
A 1 A 1

(14)

provided the Γ operators in eq 14 are antisymmetric and
satisfy

+ =i p 0

A

A

(15)

= 0

B

B

A

(16)

+ + =i X l s 0

A

A

A

(17)

| | |[ ]| + =X
X

i
L, 0
e

B

B

A

B

A A

(18)

where pα
μν is the linear momentum in the atomic orbital basis,

and lαμν and sαμν are the angular momentum and spin matrices
in the atomic orbital basis (respectively). Several comments are
now in order.

(1) First, note that in eq 14, the S matrix is the overlap
matrix. If one had access to a localized, atom-centered
orthonormal basis, one could ignore this term entirely
(as S would be the identity). In conventional quantum
chemistry calculations, however, S is not the identity,
and including the S−1 factors in eq 14 is one means to
ensure that the final energy should involve contractions
of the Γμν matrices. Indeed, if one calculates the
expectation value for the operator ∑μν Γ̅μν

A aμ
†aν in a

state |Ψ⟩, one finds:

| |

= | |

=

†

†

a a

S a a S

D

A

A 1 1

A

(19)

where Dσλ is defined in eq 12.
(2) Second, the intuition behind eqs 15−18 is as follows.

Equations 15 and 17 are phase conventions that
mathematically encapsulate our requirement that elec-
tronic wave functions be functions of the electronic
coordinates relative to the nuclear coordinates. Thus, eq
15 stipulates that under translation of the nuclei, the
electronic wave function will also translate. Equation 17
stipulates that under rotation of the nuclei, the entire
electronic wave function will also rotate. Next, eq 16 is a
mathematical statement that the Γ couplings should
e0ectively be invariant to translations of the molecule,
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Γμν
Aα(R0 + Δ) = Γμν

Aα(R0). Equations 15−17 are closely
related to the transformation properties of the basis
states and derivative couplings under translations and
rotations, as discussed in refs 56 and 57, the main
di0erence being that those papers treat multielectron
basis functions rather than atomic orbitals. For example,
eqs 15 and 16 are closely related to eqs 172 and 179 of
ref 57 and eq 17 is related to eq 107 of ref 56.

In eq 18, the operator Γ̂Aγ can be any operator that
satisfies ⟨μ|Γ̂Aγ|ν⟩ = Γμν

Aγ. Note that the form of eq 18 is
slightly involved because, within usual quantum
chemistry calculations with atomic orbital basis
functions, one does not reorient a given atomic orbital
upon rotation. For instance, a px orbital is always in the
x-direction of the lab frame regardless of the orientation
of the molecule. Nevertheless, despite this annoyance,
the meaning of eq 18 is clear: the matrix elements must
transform correctly to rotations, so the total energy is
invariant. In other words, ifU is a rotation matrix, eq 18

dictates that =U UR R( ) ( )
U U
A

0
A

0 .
(3) Third, if one were to fix Γ

A as

= | |
i

k

jjjjj

y

{

zzzzzR R

1

2

A

A A (20)

in the spirit of eq 12, one can show that this definition of

Γ
A satisfies the translational requirements in eqs 15 and

16. However, such a definition does not satisfy eqs 17
and 18 for rotations. However, as demonstrated in ref 35
and recapitulated in Appendix F, one can satisfy all of
the necessary requirements by fixing

= +
A A A

(21)

where we refer to Γμν″
A as an electron rotational factor

(ERF). It should be noted that Γ
A in eq 21 does not

diverge (just like dIJ
A,ETF), and therefore this ansatz

remains a suitable candidate for an electronic-nuclear
momentum coupling term.

Thus, at the end of the day, using a standard electronic
Hamiltonian with a one-electron operator ĥ and a two electron
operator π̂, the most naive phase-space electronic Hamiltonian
(as encoded by the Hamiltonian in eq 13 above) postulates
that the molecular energy for a system at positions and
momenta (R,P) is of the form:

= +

+

i

k

jjjjjj

y

{

zzzzzz
E

P

M
D h i

P

M

G

R P( , )
2

A

A

A A

A

A

A

PS

2

(22)

Here, Gνμσλ represents the two-electron density matrix in an
atomic orbital basis.

2.3. Including a Second-Derivative Coupling. Unfortu-
nately, we have found that the energy expression in eq 22 is not
stable as far as generating VCD spectra, especially for large
basis sets. After some bench-marking, our tentative hypothesis
is that problems arise if the nuclear kinetic energy

P

M
i D

P

M2
A

A

A A

A

A

A

2

is not positive definite (as it must be). To that end, given the
form of the exact Hamiltonian in eq 7 in an adiabatic
representation, we posit that a second-order term is
appropriate.

At this point, let us consider the simplest possible system: a
single electron interacting with a host of nuclei. In such a
situation, second-quantization becomes trivial and equivalent
to first quantization, and we hypothesize that one can write
down a meaningful analogue of eq 7 in second-quantization as
follows:

= +
†

H T a a HPS

nuc

el

(23)

=T S T S
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(24)

=T
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i S iP P
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A

A
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(25)

where we fix Γ̃ to be the solution to

+ =S S
1

2

A A A

(26)

Note that, just as in eq 9, eq 25 expresses the kinetic energy
in product form and posits that the function PA − Γ̃μλ

A

represents a kinetic momentum operator; intuitively, the Γ̃μλ
A

captures how electrons are dragged by a nucleus whenever that
nucleus moves�because each nucleus carries a basis function
along for the ride. Unfortunately, however, this operator only
makes sense for a one electron problem. After all, if one inserts
eq 25 into eq 24 and then into eq 23, one will find that ĤPS

contains a term proportional to
· †

S a a
A M

P P

2

1A A

A

, and it is

easy to show that for any wave function, ⟨Sμν
−1 aμ

† aν⟩= Ne, where
Ne is the number of electrons. Thus, eqs 23-25 cannot be a
meaningful Hamiltonian for a many-electron system where Ne
≠1. Nevertheless, we can now identify one plausible many-
body Hamiltonian that (i) reduces to product form for the case
of a single electron, (ii) maintains angular and linear
momentum conservation and (iii) has a positive definite
kinetic energy (See Appendix E). Namely, we can make the
ansatz that a reasonable semiclassical phase-space electronic
Hamiltonian is

= +
· ·

+
† †

H H
M

i
P

M
a a

M
a a

P P

2
PS el

A A

A A

A

A

A A

A

A

(27)

= S S
A A1 1

(28)

= S S S
A A A2 1 1

(29)

where Γ̃μν is defined in eq 26 and we show how to solve this
equation in In Appendix E. Note that our explicit form for Γ is
defined in Appendix F (following ref 35). Equations 27−29
represent the final form of our proposed phase-space electronic
Hamiltonian. Just as in eq 22 above, one can easily write down
the final energy for this Hamiltonian:
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Note that, according to ref 35, Γ acts like an e0ective vector
potential (which generates an e0ective magnetic field), so that
the canonical momentum (P) is not equal to the kinetic
momentum except at (Π = P = 0), and even then, the

derivatives
P

A A

. In particular,
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2.4. The Harmonic Approximation and Normal
Modes for Phase-Space Electronic Hamiltonians. The
basis of eigenvectors from the phase-space electronic
Hamiltonian in eq 28,

| = |H ER P R P( , ) ( , )J J J
PS

PS
PS PS

(32)

gives a new basis for expansion of the total nuclear-electronic
wave function,

| = | |t tR P R P R P R P( ) d d ( , , ) , ; ,
J

J Jtot
PS

(33)

where |R,P⟩ is a coherent nuclear state. Evaluating ΩJ(R, P, t)
and diagonalizing a quantum Hamiltonian would appear to be
diBcult both numerically and conceptually given the fact that
the coherent basis {|R,P⟩} is overcomplete. That being said, to
the zeroth order, however, the first and most important step is
usually to make a one-state approximation and extract
vibrational energies. And in that vein, one usually begins by
expanding the potential surfaces to second order and
generating normal modes and vibrational frequencies.

2.4.1. Approach to Normal Modes in a Born−Oppen-
heimer Representation. Before addressing how to construct
phase-space normal modes, let us review for the usual notation
for a Born−Oppenheimer expansion. One defines V(R) =
EG(R) (the lowest eigenvalue of Ĥel in eq 4) and expands to
second order in displacements from equilibrium:
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If now one regards the quantities {RAα} as operators (rather
than scalars), i.e., one quantizes these operators, the vibrational
Hamiltonian is then defined as

= · +
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V

R R

BO
2

in matrix form) is

the Hessian matrix. Normal modes are generated by shifting to
relative coordinates (setting Req = 0), ignoring the equilibrium
energy (C-number), and converting to mass-weighted
coordinates given by

= MR R BO
1/2

(37)

= MP P BO
1/2

(38)

where we define MBO as the diagonal matrix of nuclear masses,
which eliminates the masses in the kinetic energy. This leaves

= +
† †

H P P R K R
1

2

1

2
vib (39)

where K″ = MBO
−1/2KMBO

−1/2. Finally, one diagonalizes the
resulting Hamiltonian K″ and the result is a series of
uncoupled mass-weighted normal-mode oscillators.

2.4.2. Approach to Normal Modes in a Phase-Space
Representation. The procedure above can be largely replicated
in a phase-space picture. One expands the lowest eigenvalue of
our phase-space electronic Hamiltonian EPS(R,P) in eq 30 to
second order (in both R and P), requantizes them (in the spirit
of a Weyl transform), and then one finds:
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where = ( )W
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2
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A B

, = ( )K
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2
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, and

= ( )Y
E
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2
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A B

. See Appendix C for explicit forms of

WAα,Bβ, KAα,Bβ, and YAα,Bβ. Note that, in the results presented
below, we do not invoke any spin degrees of freedom, which

implies that Y = 0 and Peq = 0 and simplifies the
diagonalization procedure (see Appendix C). Shifting to
relative positional coordinates and ignoring equilibrium energy,
the total vibrational Hamiltonian is of the form

= +
† †

H P WP R KR
1

2

1

2
vib (41)
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Unfortunately, unlike in the BO representation, W is not
diagonal by construction. Thus, in order to find the normal
modes which diagonalize our separable phase-space electronic
Hamiltonian, we first need to find the unitary transformation
which diagonalizes W = U ΔU†(where Δ ≈MBO

−1 for small
perturbations to the uncoupled momentum Hessian). Taking
the coordinate transformation R = U R′, P = U P′, eq 41 can
then be written as

= +
† † †

H U UP P R K R
1

2

1

2
vib (42)

eq 42 is diagonal in momenta but with new e0ective masses.
Thus, if we again change to mass-weighted coordinates R′ =
Δ1/2R″, P′ = Δ−1/2P″, we find

= +

= +

† † †

† †
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1

2

1

2
(43)

1

2

1

2
(44)

vib
1/2 1/2

which is of the same form as the standard quadratic expansion
in the BO representation (eq 39). If k″ are the eigenvectors of
K″, the nuclear normal modes in our original Cartesian
coordinates are then simply

= Uk k
1/2 (45)

After diagonalization, we write the final form for the
Hamiltonian in normal coordinates as the sum of independent
harmonic oscillators:

= +H w Q
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2
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2
k

k

k kvib

2 2 2

(46)

2.5. Rotatory Strength in Phase-Space Framework. If
the interaction between an electromagnetic field with a

molecular system is given by = · ·H E B
int ext ext

, then
when averaged over all incoming light directions, the
di0erential absorbance to circularly polarized light of chiral
vibrations is given by the rotatory strength:58

= [ | | · | | ]Im Gg Ge Ge Gg (47)

The magnetic moment and electric moment μ each
contains an electronic component and a nuclear component.
Ignoring spin contributions, these operators are given as
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Note that in eqs 48−51, we use the standard r, p, R, P
coordinates to express the magnetic and electric moments.
These expressions ignore the fact that formally these operators
are dressed under a diabatic-to-adiabatic transformation and,
e.g., convert a canonical momentum P to a kinetic momentum
Π. Nevertheless, one expects these dressings to be small and so
they are ignored at this level of treatment. For instance,
following eq 31, it follows that

= ·
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(52)

where the subscript R indicates that nuclear coordinates are
kept constant, D[P] is the momentum derivative of the density
matrix, and we assume Γ is small. With this caveat in mind, let
us evaluate μ. For a transition between product nuclear-
electronic wave functions (in the spirit of the BO
approximation), we can evaluate

| | = | | | | + | |

| |

Gg Ge Gg G
e

G Ge Gg
n

Ge

Gg G Ge

(53)

If one neglects the dependence of μG on R (and evaluates μG at
Req), then eq 53 vanishes by the orthogonality of ΩGg and ΩGe.
In order to obtain a nonzero rotatory strength, one must
expand in nuclear coordinates around R = Req. Doing so and
invoking the harmonic approximation yields the following
expression for the transition electric dipole moment:
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Here, the element
kA , quantifies the displacement of nucleus

A in direction α for the kth vibrational mode and is defined as

= = =
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(55)

where Qk and k are, respectively, the mass-weighted position
modes and mass-weighted momentum modes from eq 46. This

completes our treatment of
R
.

Next, we turn to | |Gg Ge . At the equilibrium geometry

(R = Req) and equilibrium momentum (P = 0),
| | |

G

e

G R ,0eq
= 0, since e is a purely imaginary Hermitian

operator and ΦG can be chosen real for a time-reversible
ground state. Furthermore, n also clearly vanishes if P = 0.
We conclude that m vanishes for all nuclear geometries unless
P ≠ 0, and thus expand m in the canonical momentum P:
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(56)

Plugging eqs 54 and 56 into eq 47, we find the rotational
strength for the kth mode to be
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2.6. Evaluating m and μ within Generalized Hartree−
Fock Theory. Phase-space approaches break the time
reversibility of the electronic Hamiltonian and therefore
necessitate complex wave functions whenever the nuclear
momentum is nonzero. In that vein, the simplest applicable
electronic structure method is generalized Hartree−Fock
(GHF) theory, where the ansatz of the wave function is a
Slater determinant where the orbitals are allowed to be
complex-valued. (In the present paper, we ignore all spin-
couplings, so that the orbitals do still keep sz as a good
quantum number.) Moreover, as discussed in Section 2.2
above, for nondegenerate electronic wave functions without
fine structure, Peq = 0, so that the zeroth-order magnetic
moment remains zero. With this information, we can evaluate

and μ within GHF theory.
Inserting the definition for e given in eq 48 allows us to

directly calculate
P

as (dropping the “G″ for notational

simplicity):
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The components of
R

are similarly given as
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Finally, components of
P

are given as
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Note that at Peq = 0,
D

P
A

is imaginary Hermitian, whereas

the matrix rβ,μν is real symmetric, and thus = 0
P

. Expressions

for calculating
D

R
A

and
D

P
A

through a coupled-perturbed

Hartree−Fock (CPHF) phase-space approach are given in
Appendix B.

3. NUMERICAL RESULTS

The theory above has been implemented within a devel-
opmental version of the Q-Chem electronic structure pack-

age.59 To benchmark the rotational strength expression from
eq 57 above, we have modeled a set of small rigid chiral
molecules: S-d2-oxirane (Chart 1a), R-d2-cyclopropane (Chart

1b), and S-propylene-oxide (Charta 1c). These molecules have
been previously characterized quite sensitively by Nafie and
others,60−62 so that we can directly compare our results vs
experimental data (with the caveat that the latter are not in the
gas phase). As far as the gauge origin in concerned, all of our
calculations are run with a distributed origin gauge, whereas
the MFP calculations are run with a common origin and
GIAOs. For more details, see Appendix A.

3.1. VCD Spectra. In Figures 1−3, we plot as calculated
for the normal modes of each molecule vs an MFP calculation

Chart 1

Figure 1. Experimental61 rotational strength of S-d2-oxirane vs
theoretical results using either Γ coupling or MFP. Experimental
conditions reported in Table 3. All theoretical calculations are in
vacuum (GHF/aug-cc-pvqz). All frequencies listed on the x-axis are
the experimental values. For this problem, phase-space methods
would appear to outperform MFP methods.

Figure 2. Experimental60 rotational strength of R-d2-cyclopropane vs
theoretical results using either Γ coupling or MFP. Experimental
conditions reported in Table 4. All theoretical calculations are in
vacuum (GHF/aug-cc-pvqz). All frequencies listed on the x-axis are
the experimental values. For this problem, phase-space methods
would appear to outperform MFP methods.
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and vs experiment. Note that these data were gathered using
the phase-space electronic Hamiltonian in eq 28 (which
includes a second-derivative term). Although not shown, if one
were to use the Hamiltonian in eq 22 (without a second-
derivative coupling term), the answers would be terrible�
mostly because the normal modes are nonphysical (and very
di0erent from the standard normal modes). As we highlighted
above, it seems that in order to retrieve meaningful normal
modes with a phase-space electronic Hamiltonian, the kinetic
energy must be positive (which is not true without the second
derivative). A visualization of a phase-space normal mode for
the molecule 1a (relative to a standard normal mode) is given
in Figure 4.

Let us now turn to the rotatory strengths. As shown in
Figures 1−3, both our data and the MFP data recover the
experimental data reasonably well, although we submit that
phase-space methods perform better for Figures 1 and 2
(especially for large frequencies). This finding is interesting
insofar as our method only includes the nondiverging portion
of the electronic momentum coupling (as compared with
MFP). Neither MFP nor our phase approach recovers the
exact experimental data perfectly, for which one can propose a
slew of explanations. First, on the experimental side, the data

are acquired in solution, and furthermore some of the data
arise between closely spaced vibrations (in the presence of
mode degeneracy, ascertaining the strength of a VCD signal for
a particular mode can be diBcult). Second, on the theoretical
side, we note that we have used a GHF calculation and entirely
ignored direct electron−electron correlation.63 We have also
sampled only a single nuclear geometry per molecule, and we
have ignored all anharmonic e0ects.63−66

Notwithstanding all of these limitations, the rough accuracy
of the data presented in Figure 1−3 highlights the fact that
even a crude phase-space approach can recover some very
sensitive optical signals. For the raw data behind these graphs,
see the tables in Appendix G.

Before concluding this paper, a few words are appropriate
regarding the non-BO part of the W term in eq 40. Note that
the concept of e0ective masses is very old and has been
standardized in just about all spectroscopy books. Here,
however, we have found that, with a phase-space electronic
Hamiltonian, we must replace the diagonal inverse mass tensor
with a nondiagonal “inverse mass” tensor (which must be
diagonalized in order to recover spectra, see Section 2.4). One
can ask: For such a non-diagonal tensor, what is the meaning
of the on-diagonal elements? How close do the values resemble
the inverse masses of the nuclei?

To that end, in Tables 1 and 2, we list both the inverse of
the eigenvalues of W and the inverse of the diagonal elements

Figure 3. Experimental62 rotational strength of S-propylene-oxide vs
theoretical results using either Γ coupling or MFP. Experimental
conditions reported in Table 5. All theoretical calculations are in
vacuum (GHF/aug-cc-pvqz). All frequencies listed on the x-axis are
the experimental values. For this problem, phase-space methods
would appear to underperform MFP methods.

Figure 4. Oxirane 3256 cm−1 H Sym stretch mode (3291 cm−1 BO),
according to both a BO and phase-space Hessian (where we plot the
spatial components of the phase-space mode).

Table 1. Inverses of the Eigenvalues of W in eq 40a

Inverses of the Eigenvalues of W (amu)

S-d2-oxirane R-d2-cyclopropane S-propylene-oxide

1.0309 2.0338 16.041

1.0307 2.0335 16.0249

1.0164 2.0224 16.0151

1.0166 2.022 12.0318

1.0195 2.0246 12.0534

1.0199 2.0246 12.0344

2.0369 1.0281 12.0366

2.0367 1.028 12.0503

2.0226 1.0274 12.0488

2.0228 1.027 12.0425

2.0257 1.013 12.0442

2.0261 1.014 12.0434

16.0382 1.0169 1.0109

16.0237 1.0193 1.0302

16.013 1.0189 1.0297

12.0599 1.0181 1.0292

12.0415 1.0186 1.0285

12.0528 1.0184 1.0132

12.045 12.0266 1.0137

12.048 12.0265 1.0264

12.0466 12.0315 1.026

12.0355 1.0155

12.0462 1.0166

12.042 1.0216

12.042 1.021

12.0444 1.0207

12.0444 1.0203

1.0191

1.0193

1.0193

aThese data represent one estimate of a dressed “e0ective mass”.
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ofW. In some sense, these values must correspond to “e0ective
masses” insofar as they have units of mass, but these masses
depend on direction and the eigenvectors ofW are delocalized.
While we cannot easily make any clear conclusions regarding
the values of these masses, there is one obvious conclusion
from this data: namely, all of the masses are larger than the raw
masses (usually by 10−2 amu). In this regard, experimentalists
have pointed out that, for diatomics,68,69 according to high-
resolution spectroscopy, when constructing Ĥvib, the masses of
nuclei should be set to the mass of the atom (which includes
nucleus plus electrons). For a carbon atom with 6 electrons,
one would therefore expect an increased carbon mass of 6/
1822.9 ≈ 0.003 amu. For the molecules considered hitherto,
we predict even larger masses (∼10-fold, see Table 1)�
although a clear interpretation of these masses is diBcult, since
we also have o0-diagonal components of W and these
molecules are not as small as diatomics.

4. DISCUSSION AND CONCLUSIONS

We have presented a phase-space electronic structure approach
for calculating VCD signals within GHF theory and compared
our results against experiment for three model test cases. Our
results demonstrate fairly conclusively that such a phase-space
approach�which entirely avoids the BO approximation�is
valid and can yield insight into nuclear-electronic coupling that
is not available within a BO approximation. Our implementa-
tion in a developmental version of QChem59 is currently quite

slow, but, in principle, there is no reason such a phase-space
approach should be much slower than standard electronic
structure approaches, with the main caveat being the need for
complex-valued (rather than real-valued) multiplication.

Interestingly, one finds that our results in Figures 1−3 are
comparable with the results of the standard VCD technique,
magnetic field perturbation theory. In fact, for Figures 1 and 2,
one can easily argue that phase-space approaches outperform
MFP theory; though the opposite can be argued for Figure 3.
While MFP theory is reviewed below (in Appendix D), it is
worth mentioning that MFP is formally a higher-order level
calculation than phase-space approaches because the latter
accounts only for how electronic orbitals are dragged by nuclei
(i.e., the ETF component of the derivative coupling in eq 11),
whereas the former includes the entire orbital response (i.e.,

one calculates ,
R

I

A

the entire derivative coupling). Thus,

one would imagine that MFP theory would match better with
Shenvi’s phase-space formalism (in eq 9) than would ours.

Thus one must wonder: on the one hand, does the simple
phase-space electronic structure Hamiltonian in eq 27 perform
so well in Figures 1−3 because the relevant molecules are
adiabatically very stable and far from any avoided crossing to
another electronic state, but we would not recover such strong
results for a more mixed-valence compound? Or, on the other
hand, because we argued above that Shenvi’s phase-space
approach would face limitations near a conical intersection, is it
possible that MFP theory will become less accurate near a
crossing while our phase-space approach will remain stable? Or
perhaps, of course, neither approach will be stable. Ultimately,
this thought experiment is a strong reason to run future VCD
calculations for more interesting molecules where there is
already some ground-state mixing present at equilibrium. This
simple thought experiment is one strong reason for us to
develop a more rigorous derivation of eq 27 in the future,
perhaps using Wigner−Weyl transformations.

Looking forward, in the future we should also confront
another key question that inevitably arises in any VCD
calculation, namely, the dependence on the chosen origin for
the perturbative magnetic field. More details about the choice
of origin are given in Appendix A, but the take home-points are
as follows:

• On the one hand, the choice of origin should not a0ect
MFP theory in the limit of an infinite (complete) basis.
For an incomplete basis, one usually runs MFP
calculations with GIAOs (which automatically eliminate
origin dependence). Indeed, the MFP data in Figures
1−3 were generated with GIAOs.

• On the other hand, phase-space electronic Hamiltonian
calculations using the formalism in Section 2.5 are
sensitive to the choice of gauge origin (no matter how
big the basis). For this reason, in order to mitigate the
dependence on the gauge origin, we ran the phase-space
electronic Hamiltonian calculations with a distributed
origin gauge. That being said, we still found that we
required a large basis for the calculations to match the
experiment.

With this background in mind, if we seek to improve our
phase-space approach, one means to address this dependence
on origin is to implement the formalism above and evaluate the
electronic energy using GIAOs (that eliminate any gauge
dependence for EPS) and to perform the substitution:

Table 2. Inverse Diagonal Elements of W in eq 40a

Inverse Diagonal Elements of W

S-d2-oxirane R-d2-cyclopropane S-propylene-oxide

C 12.0470 H 1.0214 C 12.0411

C 12.0492 H 1.0171 C 12.0369

C 12.0497 H 1.0233 C 12.0409

C 12.0470 C 12.0369 C 12.0470

C 12.0492 C 12.0372 C 12.0483

C 12.0497 C 12.0382 C 12.0460

H 1.0217 H 1.0182 H 1.0249

H 1.0263 H 1.0203 H 1.0189

H 1.0189 H 1.0233 H 1.0215

H 1.0217 H 1.0182 H 1.0189

H 1.0263 H 1.0203 H 1.0229

H 1.0189 H 1.0233 H 1.0252

O 16.0235 C 12.0374 H 1.0202

O 16.0129 C 12.0367 H 1.0194

O 16.0380 C 12.0382 H 1.0287

D 2.0279 H 1.0182 C 12.0420

D 2.0324 H 1.0203 C 12.0411

D 2.0251 H 1.0233 C 12.0396

D 2.0279 C 12.0369 H 1.0194

D 2.0324 C 12.0372 H 1.0237

D 2.0251 C 12.0382 H 1.0160

D 2.0244 H 1.0196

D 2.0265 H 1.0214

D 2.0295 H 1.0182

D 2.0276 H 1.0184

D 2.0233 H 1.0171

D 2.0295 H 1.0261

O 16.0250

O 16.0358

O 16.0198
aThese data are another estimate of a dressed “e0ective mass”.
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Because EPS is invariant to gauge origin by construction, the
resulting VCD signal must then be independent of origin as
well. Ideally, such an approach should also converge easily for
smaller basis sets, although this remains to be proven. Clearly,
implementing such a formalism is one of our most immediate
goals in the near term.

Finally, let us turn to the implications of the present results
insofar as the future of phase-space electronic structure
Hamiltonians. We can imagine two important avenues. First,
the presence of the extra terms in a phase-space electronic
Hamiltonian (eq 27), compared with a BO electronic
Hamiltonian (eq 4) should have consequences for dynamics
and not just for spectroscopy. Most importantly, we imagine
that consequences may well arise in the context of electron
transfer with spin degrees of freedom. As discussed in Section
1.2, normal BO dynamics do not conserve the total angular or
linear momentum of a composite system of nuclei and
electrons (and potentially spins). In the context of electron
transfer, however, one can easily imagine a paradox: When an
electron moves from donor to acceptor, there must be some
change in electronic momentum, which must be balanced by
another form of momentum (for total momentum conserva-
tion). In the context of linear momentum, that extra electronic
linear momentum must be balanced by nuclear linear
momentum; in the context of angular momentum, however,
that extra electronic angular momentum can be balanced by
either spin or nuclear angular momentum. Thus, there is the
possibility that the current phase-space electronic structure
picture will lead to spin-dependent electron transfer dynamics
and function as one potential framework for understanding
recent experiments in CISS.4−6,9,10 Note that, in Sections 2.4
and 2.5 above (and Appendix D below), we have consistently
used the fact that, at equilibrium, Peq = Ṙeq = 0, but this is
guaranteed to be true only in the absence of SOC; thus, in the
presence of SOC, one can indeed anticipate new and exciting
physics.

Second, because the phase-space electronic structure
Hamiltonian depends on nuclear momentum (or really
velocity), one must wonder if the current formalism will
o0er a new approach toward modeling superconductivity. After
all, it has been well-documented that, for many super-
conductors,70,71 the critical temperature depends sensitively
on phonons and, in particular, the mass of the nuclear isotope.
Furthermore, intuitively, the extra term in the kinetic energy in
eq 25 reflects the energetic consequences of the fact that,
whenever a nuclear charge moves, that charge carries an
orbital. Thus, whenever a nucleus is attracted to and moves
toward an electron, by default, that motion induces a slight
attraction between the electron carried by the nucleus and the
electron to which the nucleus is attracted. This state of a0airs
would seem to capture some of the essence of super-
conductivity, and further work in this vein would appear
appropriate. One must wonder if, e.g., the presence of extra
terms in a phase-space electronic Hamiltonian can strongly
change the nature of the electron−electron correlation
problem and, e.g., induce Cooper pairing.72

Overall, phase-space electronic Hamiltonians would appear
to be a very promising technique for future explorations in
quantum chemistry, quantum dynamics, and beyond.

■ APPENDIX A. DEPENDENCE ON THE GAUGE
ORIGIN

Quite generally, CD spectra (and we find especially VCD

spectra) can depend sensitively on where one chooses the

origin of the magnetic field operator in eqs 48 and 49. In the

interest of transparency, note that our naive phase-space

method will su0er from a magnetic origin problem as well; this

stands in contrast to MFP, SOS, and NVP calculations, where

one can show that given an infinite basis, the rotational

strength will be gauge-invariant. To explain why this is so, we

will now review the Stephens original work on the gauge

dependence of the rotational strength73 and comment on its

implications for phase-space methods.

To begin our discussion, consider how changes under the

origin transformation = + Y . Unsurprisingly, trans-

forms much like angular momentum.

= ×

= + ×
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m
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B (62)

Calculating
P
A

as before, we find

= + +
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A
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In the first step, we have used the equivalent of Ehrenfest’s

theorem highlighted by Nafie in the context of BO theory,

namely the fact that ⟨p̂⟩ = m (d⟨r⟩̂/dt), which allows us to

write

=

=

=

p r
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r

P
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P t
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m

M R
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e

e

e

A A

A A A A
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(see Section 3 of ref 35).

Note, however, that in the context of a phase-space

electronic Hamiltonian with a Γ coupling, this condition is

only approximately satisfied.35 That being said, if we invoke

Nafie’s approximation and we insert eq 63 into eq 57 for the

rotational strength, we find
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Note that when Y is some constant vector, =
k k :

= +

= + · ×
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Now, the theory above is exact provided that Nafie’s
relationship in eq 66 holds. More generally, however, such a
relationship holds only in an infinite (complete) basis.
Therefore, to the extent that one always seeks to reduce
dependence on basis, in the literature, one usually uses a
distributed gauge origin (DO), rather than a common, fixed
origin (CO). Here, one imagines looping over all atoms and
shifting the origin to match up with the atom under
consideration. Thus, in eq 63 above, if one is considering
atom A, one chooses Y = RA, and calculates
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Thereafter, if one again invokes Nafie’s theorem, as in eq 66,
one can immediately simply the second term and repeat the
above procedure above to find

= + R
R R

k k k k

CO DO
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(70)

where
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The second term in eq 70 (coined the L·P term by Stephens73)
is well-known. The explicit gauge origin dependence is hidden

in k

DO and, in practice, evaluating this expression often gives
much better results for an incomplete basis than simply picking
the gauge origin as the center of nuclear charge. Indeed, we
have found that, without this expression, our results can be
very sensitive to the origin. Thus, all data gathered in this paper
(for Figures 1−3) used eq 70.

■ APPENDIX B. NUCLEAR MOMENTUM CPSCF

In this section, we will present the equations needed to solve
for the orbital response derivatives for the Hamiltonian given

in eq 28 (i.e., how to calculate
R

,
P

in eq 59, eq 58, and the

elements of W, K, Y in eqs 80, 79, and 81). Before embarking
on such a derivation, we note that we use the following
notation below for molecular orbitals:

• Roman letters a and b denote virtual molecular orbitals
• Roman letters i and j denote occupied molecular orbitals
• Roman letters p, q, and n denote all molecular orbitals

To begin our derivation, we suppose that there exists a
unitary transformation of the orbital coeBcients which
transforms the orbital coeBcients from their current value to
a di0erent value, as determined some small perturbation in the
variable of interest X. This unitary transformation can be
written as

=
[ ] [ ]
c c Uq
X

n

n

n nq
X

orb

(72)

As shown by ref 74, U[X] can be determined by di0erentiating
the Fock equation, with respect to X and retaining the first-
order terms. Rather than solve for the entire U[X], because only
the occupied virtual block is ultimately relevant,74 we opt to
u s e t h e a n t i s y mm e t r i z e d o c c u p i e d v i r t u a l

=
[ ] [ ] [ ]†

U U U( )
X X X1

2
. Carrying out the CPSCF procedure

yields the matrix equation

=
[ ] [ ]

AU B
X X (73)

where A is independent of the perturbation and is given as
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The form of B[X] does depend on the perturbation, but can
generally be written as

= + +
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(75)

where bar matrices indicate the derivative contains only the
explicit and atomic orbital derivative contributions (i.e., no
MO coeBcient derivatives). If the atomic orbitals have no
explicit dependence on the variable of interest (i.e., X = PAα),
this result simplifies to

=
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(76)

Solving these equations corresponds to finding the solutions
to the matrix equation
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Finally, using the identity that Uja
[X]*+ Uaj

[X]+S̅aj
[X] = 0, density

derivatives are calculated as
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■ APPENDIX C. COMPUTING K, W, AND Y IN EQ 40:
EXPANDING THE GHF PHASE-SPACE
HAMILTONIAN ENERGY TO SECOND ORDER

In this section of the Appendix, we will evaluate the matrices
K, W, and Y in eq 40. Quite generally, the energy of a GHF
wave function is given by the eq 30. Carrying out the Hartree−
Fock derivatives in the standard fashion (and noting that
overlap momentum derivatives vanish S[P] = 0), yields the
relatively simple expressions:
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Here,( )E

R R
eq

2

A B

is the regular BO Hessian expression.

Note that, for systems with formal time-reversal symmetry
and without degeneracy or near degeneracy in the ground
state, we expect that the minimum energy of the phase-space

electronic Hamiltonian will occur at P = 0. In such a case, the
electronic wave function will be real-valued. Furthermore, note
that any real function must also have real derivatives, thus, the
density derivatives must also be real and Dμν

[R] must be
symmetric (since Dμν

[R] = ∑icμi
[R]cνi + cμicνi

R = Dνμ
[R]). At the same

time, it is clear that Γ and Γ[R] are antisymmetric (as seen in

Appendix F). Thus, according to eq 79, we find that E

P R

2

PS

A B

should always be zero.
As a sidenote, exploring degenerate ground states when

these simplifications would no longer hold will be extremely
interesting in the future.

■ APPENDIX D. MAGNETIC FIELD PERTURBATION
EQUIVALENCE

In this section of the Appendix, for the sake of completeness,
we review MFP for the reader and show why a phase-space
electronic Hamiltonian approach to a VCD spectra is
equivalent to MFP19

�if one were to include the entire
derivative coupling (see eq 11), instead of Γ in the equations

for
P

. Let us begin by considering the perturbative expansion

of our BO wave function using the derivative coupling as our

perturbation, =

·

H i
M

P
. According to pertrubation theory,

the perturbed electronic ground state can be written down as a
sum over all other electronic states n:
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Viewed as a Taylor expansion, eq 82 implies that
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P
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(83)

Next, if we insert our pertubative wave function into eq 56
and keep the first-order terms (keeping in mind that the
zeroth-order terms vanish),
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where Hellman-Feynman was invoked in the third step, and, in

the fourth step, we used the fact that L̂e is Hermitian and

purely imaginary.
Next, we consider the Hamiltonian under some constant

perturbative magnetic field. This perturbation can be written as
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According to first-order Rayleigh perturbation theory, the

first-order wave function |ΦG⟩ becomes
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Viewed as a Taylor expansion, eq 85 implies that
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Next, if we perturb the Hamiltonian by a nuclear coordinate

perturbation, = ·( )H R R( )
H

RA
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A

, we find one

more relevant expression:
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or, in other words,
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Taking the inner product of eqs 88 and 85, we find
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From eqs 84 and 89, it follows that
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which is the basis for the MFP VCD expression.19

■ APPENDIX E. ON THE CALCULATION OF Γ̃ AND A
PROOF THAT THE KINETIC ENERGY (EQ 25) IS
POSITIVE DEFINITE

In this section, we will begin by showing how to evaluate Γ̃ in
eq 26 above. Starting from eq 26, we compute the unitary
transformation which diagonalizes the overlap matrix S (U†SU
= s) and

+ =

= +

† † †

† †

s U U U U s U U

U s s U U U

1

2
( ( ) ( ) ) ( )

2 (( ) ( ) )( )
A A1

(91)

Next, let us show that eq 30 is positive-definite in
momentum P. For simplicity, let us suppose we have a single
nuclear degree of freedom. According to eq 30, the nuclear
kinetic energy is of the following form:

= +T
M

P i S S D P S D
1

2
( Tr(( ) ) Tr(( ) ))nuc

2 2

(92)

Note that, in this expression, Γ, S, and D are all matrices. Now,
let DS = S1/2DS1/2, and ΓS = iℏS1/2 Γ̃S−1/2. Note that ΓS

† = i
ℏS−1/2Γ̃S1/2 and that DS

2 = DS. Under this transformation,
⟨Tnuc⟩ can be rewritten as
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Since both terms in this expression are squared scalars, the
entire quantity must be positive definite.

■ APPENDIX F. EXPLICIT DEFINITIONS OF Γ FROM
REFERENCE 55

For the sake of concreteness, we will here repeat the exact
definitions of Γ′ and Γ″ from ref 55. First, as far as Γ′ is
concerned, we set

= +

i
p

1

2
( )A

BA CA (94)

just as in eq 12 above. Here and below, μ indexes an orbital
centered on atom B, ν indexes an orbital centered on atom C,
and pμν

α is the α-component of the electronic momentum.
Intuitively, the electronic momentum operator emerges
because we must take into account the fact that any nuclear
displacement moves the electrons as well.

As far as the definition of Γ″ is concerned, we set

= ×X K J( )A A
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1 A
(95)
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(98)

Here, Jμν is the atomic orbital centered electronic angular
momentum, L̂(A) is the electronic momentum around atom A,
ζA

μν is a weighting factor to maintain semilocality of Γ″ (we set
the parameter w = 0.3),55 I is the 3 × 3 identity matrix, and the
matrix Kμν is e0ectively the negative of a locality weighted
massless moment of inertia in the vicinity of the χμ and χν

orbitals.
Obviously, Γ′ and Γ″ are anti-Hermitian. Moreover, if there

is no spin−orbit coupling and we ignore the spin “s”̂ term in eq
98, these matrices are also purely real and anti-symmetric.

■ APPENDIX G. DATA TABLES

Table 3 lists the experimental rotational strength of S-d2-
oxirane, compared with ab initio calculations; Table 4 lists the
experimental rotational strength of R-d2-cyclopropane,

60

compared with ab initio calculations; and Table 5 describes
the experimental62 rotational strength of S-propylene-oxide,
compared with ab initio calculations.
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