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Abstract

Visual deprivation by dark rearing in kittens and monkeys delays visual pathway development and
prolongs the critical period. In contrast, receptive fields (RFs) in superior colliculus (SC) of Syrian
hamsters (Mesocricetus auratus) refine normally with spontaneous activity alone, requiring only brief
juvenile visual experience to maintain refined RFs in adulthood (Carrasco et al., 2005). Extending dark
rearing past puberty leads to lower GAD and GABA levels due to reduced BDNF-TrkB signaling,
resulting in RF re-enlargement (Carrasco et al., 2011; Mudd et al., 2019). Previous studies in kittens and
monkeys have reported that dark rearing is associated with changes in both GABA ligand and GABAA
receptor levels. Given the reduced GABA levels in SC of dark reared adult hamsters, we asked if dark
rearing also causes changes in GABA, receptor levels. We examined expression of GABA 4 receptor
subunits, their anchoring protein gephyrin, and the cation-chloride co-transporters KCC2 and NKCCI1 in
dark reared hamsters. Surprisingly, we found that dark rearing from birth until puberty had no effect on
the levels of any of these postsynaptic elements, revealing a new form of maladaptive, presynaptic only
inhibitory plasticity in which, rather than extending the critical period as seen in kittens and monkeys,
hamster receptive fields refine normally and then lose refinement in adulthood. These results suggest that
attempts to increase plasticity in adulthood for rehabilitation or recovery from injury should consider the
possibility of unintended negative consequences. In addition, our results demonstrate the interesting
finding that changes in neurotransmitter levels are not necessarily coordinated with changes in

postsynaptic components.
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Introduction

During brain development, synaptic connections are elaborated and then refined to a mature state under
the influence of neural activity. Activity due to sensory experience during an early “critical period” is
important for shaping some aspects of neural circuit development. In the visual pathway, although
spontaneous retinal activity is important for initial axon pruning (Kutsarova et al., 2017), it has long been
thought that early visual experience is essential to attain refined connectivity patterns during development
(Wiesel and Hubel, 1965; Maffei and Galli-Resta, 1990; Meister et al., 1991; Wong et al., 1993; Katz and
Shatz, 1996; Firth et al., 2005). Once critical periods have closed, plasticity is often limited or even
prevented, thus protecting refined circuits from destabilization (Hubel and Wiesel, 1970; Takesian and
Hensch, 2013; Hiibener and Bonhoeffer, 2014; Pallas, 2017; Hensch and Quinlan, 2018; Reh et al., 2020;
Ribic, 2020; Mitchell and Maurer, 2022).

In some mammals, dark rearing is reported to delay or prevent refinement, prolonging critical period
plasticity (Cynader and Mitchell, 1980; Mower et al., 1985; Mower, 1991; Lee and Nedivi, 2002;
Nakadate et al., 2012). In apparent contradiction to this common view, we have reported that spontaneous
activity is sufficient for refinement of receptive fields in both visual cortex (V1) and superior colliculus
(SC) of dark reared (DR) Syrian hamsters (Mesocricetus auratus), and early light exposure for 3-7 days is
necessary only to maintain the refinement into adulthood (Carrasco et al., 2005; Carrasco and Pallas,
2006; Balmer and Pallas, 2015; Mudd et al., 2019). Syrian hamster pups spend the first 3-4 weeks after
birth underground in the wild (Adler, 1948; Nowosielski-Slepowron and Park, 1987), so it would not be
beneficial to have the development of their visual function depend on light exposure. If early visual
experience continues to be unavailable, GABAergic lateral inhibition in SC and V1 declines and RFs
expand, but not until approximately two months of age (~puberty) (Carrasco et al., 2005; Balmer and
Pallas, 2015; Mudd et al., 2019). Pharmacological activation of TrkB receptors can mimic the effects of
early light exposure in DR hamsters, resulting in long-term maintenance of refined receptive fields and

visual acuity (Mudd et al., 2019), perhaps through promoting GABA synthesis (Zhang et al., 2018).
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Thus, hamsters, contrary to what has been found in cats and monkeys, need visual experience to maintain
refined receptive fields in adulthood, but not to refine them during development (Figure 1).

GABA\ receptors are pentameric, ionotrophic receptors consisting of five subunits grouped around a
central chloride ion pore. The functional characteristics of the receptor largely depend upon the subunit
composition (Sigel et al., 1990) and organization (Minier and Sigel, 2004). Of the many subunit
arrangements, alphal and alpha2 subunits have been linked to synaptic localization of GABAA4 receptors.
However, these two subunit types have different kinetics and are expressed at different points in
development. At birth, receptors containing the alpha2 subunit are widely expressed throughout the brain,
whereas alphal expression is initially low in major areas of the brain like the neocortex, the hippocampus,
and the cerebellum (Laurie et al., 1992; Fritschy et al., 1994; Dunning et al., 1999; Chen et al., 2001).
During the first several postnatal weeks, alphal expression increases, coinciding with a reduction in
alpha2 expression (Fritschy et al., 1994). This alpha2 to alphal switch in subunit expression underlies a
developmental decrease in inhibitory postsynaptic current (ipsc) decay time and an increase in ipsc
amplitude (Fritschy et al., 1994; Okada et al., 2000; Yu et al., 2006).

Our lab demonstrated previously that the expansion of RFs in SC of adult, DR hamsters is associated
with a loss of GABA immunoreactivity (Carrasco et al., 2011). Iontophoretic application of GABAA
agonists in vivo restored RFs to a normal adult size. In addition to a loss of GABA-immunoreactivity,
GABA\ agonists and antagonists were less effective in SC and V1 neurons of DR hamsters than in
normally reared (NR) hamsters (Carrasco et al., 2011).

The incomplete development of RF properties in V1 of visually deprived cats has been associated
with a failure in developmental maturation of NMDA and GABA receptors (Carmignoto and Vicini,
1992; Chen et al., 2000; Chen et al., 2001; Erisir and Harris, 2003). Although a failure to maintain refined
RFs is a different phenomenon than a failure to refine them during a critical period, the mechanism(s)
could be similar or convergent. We thus tested the hypothesis that maintenance of refined RFs in
adulthood depends on the stability of mature receptors and other postsynaptic signaling components. This
hypothesis predicts that the detrimental, post-critical period receptive field plasticity observed in DR adult
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hamsters results from a deprivation-induced failure to maintain these postsynaptic proteins in their mature
state. Contrary to this hypothesis, we find, using Western blot assays of synaptosomes, that the quantity,
subunit composition, and localization of GABAA, receptors in SC of adult dark reared hamsters with re-
expanded RFs resemble those seen in normally reared subjects. Furthermore, levels of the synaptic
scaffolding proteins gephyrin and PSD-95 are normal, as are the adult expression levels of cation-chloride
co-transporters (KCC2/NKCC) in DR subjects. These findings suggest that, although a change in
effectiveness of GABAA4 receptors was reported previously using pharmacological agents (Carrasco et al.,
2011; Balmer and Pallas, 2015), the loss of RF refinement in adulthood is mediated primarily by
reductions in GABA expression in the presynaptic terminals rather than by significant postsynaptic
alterations. This result is at odds with the common view that presynaptic changes in the ligand must
occur together with corresponding postsynaptic changes in receptor levels (Fisher-Lavie and Ziv, 2013;
Sudhof, 2018 ; Sanderson et al., 2020). Taken together, our results rule out several hypotheses about the
mechanistic basis of refined RF maintenance throughout adulthood and provide insights into regulation of
critical period plasticity that could help to understand the regulation of GABAergic signaling at the
synaptic level. Similar research in diurnal animals that have photopic vision as do humans could help to
provide insight on treatment and therapeutic modalities in adults facing issues with plasticity in

adulthood.

Materials and Methods

Subjects

A total of 42 adult Syrian hamsters (Cricetidae: Mesocricetus auratus) (aged P90-P100) of both sexes
were bred within our animal facility and used as subjects in this study. Syrian hamsters are an altricial
rodent species that is ideal for studying the developing visual system due to their robust and well-
characterized visual responses, short gestation time, and large litters (Chalupa, 1981; Huck et al., 1988;

Pratt and Lisk, 1989; Razak et al., 2003; Carrasco et al., 2005). Sexual maturity in this species occurs
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between postnatal days (P)56 and P60 (Diamond and Yanagimachi, 1970; Fitzgerald and Zucker, 1976).
Breeding females were singly housed. Male breeders were introduced and supervised until intromission
was observed, after which they were removed. Weanlings and adult males were housed in single sex
social groups of up to 5 adults per cage and adult females were housed with female siblings or
individually in standard rodent cages. Running wheels were not provided because they have been shown
to alter the timing of visual cortical plasticity (Baroncelli et al., 2010; Tognini et al., 2012; Kalogeraki et
al., 2014) but a variety of other enrichment items were available. All subjects were provided with ad

libitum access to rodent chow and water.

Treatment groups

Animals used in this study were bred in-house to control sensory experiences throughout development.
Dams of DR subjects were transferred into total darkness 1-3 days before parturition. An antechamber
and light-impenetrable black curtain separated the dark housing room from the hallway, ensuring that any
accidental openings of the hallway doors did not expose the animals to light. Dark reared animals were
housed inside light-tight stackable cages with a standard HVAC filtration system consistent with the other
animal rooms in the facility. During general animal husbandry purposes, the hamsters were exposed to
dim red light at a wavelength not visible to Syrian hamsters (Huhman and Albers, 1994). NR hamsters

were maintained in a standard 12/12 light cycle room from before birth into adulthood.

Western blotting

Animals were euthanized with Euthasol at >150 mg/kg IP prior to tissue collection. Brains were
immediately extracted and frozen in 2-methylbutane on dry ice, then stored at -80°C or immediately
dissected for preparation of lysates. In order to analyze differences in protein levels between NR and DR
hamsters, we used immunoblotting (Western blots). Western blots can detect protein levels at a 1-3 ng
resolution (Coorssen et al., 2002; Ghosh et al., 2014), allowing high resolution quantification of proteins.
Note that normal levels of synaptic GABA concentration have been estimated to be between 1.5-3 mM

6
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(Coorssen et al., 2002; Tretter et al., 2008; Ghosh et al., 2014). GAPDH or B-actin were used as loading
controls to normalize for any differences in the amount of lysate pipetted into each gel lane.

Protein extraction was done as described by Shi et al. (1997) with a few modifications. Briefly,
individual left and right SC brain areas were excised and homogenized in a lysis buffer (10 mM
phosphate buffer, pH 7.0, 5 mM EGTA, 5 mM EDTA, 1 mM DTT) containing Halt protease inhibitor
(ThermoFisher Scientific). The lysate was centrifuged at 13,000 rpm at 4°C for 10 min, and the
supernatant was saved for the analysis of cytosolic proteins (cytosolic fraction). The resulting pellet was
resuspended in 2 mM HEPES buffer, pH 7.2. It was then centrifuged at 70,000 rpm at 4°C for 30 min.
The pellet thus obtained was resuspended in 0.5 mM HEPES, pH 7.3, containing 0.32 M sucrose and
centrifuged at 2,000 rpm for 8 min. Synaptosomes are present in the supernatant with this method. The
success of the synaptosome isolation protocol was confirmed by assessing the presence of Histone H3,
which should only be present in the cytosolic fractions and not in the synaptosome fractions (Figure 2).
Synaptic proteins were then quantified using the Pierce BCA Protein Assay Kit (ThermoFisher Scientific)
mixed with 2X sample buffer and heated for 15 min at 60 °C. Twenty ug of the synaptosome proteins
were loaded per well in pre-cast Bio-Rad gels and electrophoresis was carried out at 110 V for 90 min in a
Bio-Rad electrophoresis tank. Proteins were then transferred onto nitrocellulose membranes at 70 V for
75 min, blocked in BSA for 1 h, and probed with primary antibodies overnight. Primary antibodies used
in this study included: rabbit anti-GABAaRal (1:1000, Cat#: AGA-001, Alomone Labs); rabbit anti-
GABAAR@2 (1:1000, Cat#: ab72445, Abcam); rabbit anti- GABAaRaS (1:1000, Cat#: ab10098, Abcam);
rabbit anti-Gephyrin (1:1000, Cat#: ab32206, Abcam); mouse anti-PSD-95 (1:1000, Cat#: ab2723,
Abcam); mouse anti-KCC2 (1:1000, Cat#: 75-013, NeuroMab); rabbit anti-NKCC1 (1:1000, Cat#:
ab59791, Abcam); mouse anti-B-actin (1:1000, Cat#: A2228, Sigma-Aldrich) and mouse anti-GAPDH
(1:1000, Cat#: 600-GAPDH, PhosphoSolutions). Protein bands were labeled using either appropriate
fluorescent secondaries or appropriate HRP-conjugated secondary antibodies, then imaged on an Odyssey
CLx fluorescent imaging system (Li-Cor) or developed with enhanced chemiluminescent (ECL) substrate

in a Bio-Rad ChemiDoc Imager. All of the proteins studied here were analyzed and quantified as a ratio

7


https://doi.org/10.1101/2022.10.06.511220

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.06.511220; this version posted July 23, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

200  of the optical density of the protein of interest compared to the density of the loading control (either

201  GAPDH or B-actin). Note that GAPDH is found in the pre-and post-synaptic sites (Frederikse et al., 2016)
202  along with B-actin, and thus makes an effective control protein to measure relative densities.

203

204  Statistical Analysis

205 A Student’s #-test was used to compare parametric data with equal variance between treatment groups and
206  anormally distributed control data set. In the case of non-parametric data (data that were not normally
207  distributed and/or exhibited unequal variance), a Mann-Whitney Rank Sum (U) test was employed.

208  Descriptive statistics for these analyses are provided as mean =+ standard error of the mean (SEM) in the
209  text. Whiskers represent the 5th (lower) and 95th (upper) percentage of the data.

210
211 Results

212 The failure to maintain RF refinement in adult DR animals involves deficits in overall GABA expression
213 and GABAA receptor function (Carrasco et al., 2011), leading to a loss of lateral inhibition and thus

214 expansion of RFs after P60 (Carrasco et al., 2005; Balmer and Pallas, 2015; Mudd et al., 2019). Using
215  adult hamsters (postnatal day (P)90-P100), we explored several possible ways that dark rearing during a
216  critical period for RF refinement could affect levels of GABAA receptors and other postsynaptic proteins
217  associated with inhibitory synaptic function in adult SC. We used Western blotting on synaptosomes in
218  normal and dark reared animals to study postsynaptic proteins that might regulate synaptic plasticity.

219

220  Dark rearing does not affect the subunit composition of GABA 4 receptors in adult SC

221  Deprivation-induced decreases in both GABA and NMDA receptor levels in cat visual cortex have been
222 reported previously and were proposed to be involved in functional deficits (Carmignoto and Vicini,

223 1992; Chen et al., 2000; Chen et al., 2001). In DR hamsters, GAD and GABA immunoreactivity declines

224  (Carrasco et al., 2011; Otfinoski & Pallas, in prep.) and GABAAx receptors are less efficient when tested
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pharmacologically (Carrasco et al., 2011), thus we expected to see changes in levels of postsynaptic
GABAA proteins. However, in our previous study using Western blots on synaptosomes, no significant
changes in the level of the GABA4 receptor alphal subunit were observed (Mudd et al., 2019). These
results raised the question of whether subunit composition of GABAaRs might be altered by dark rearing
in a way that reduced their effectiveness without affecting alphal levels.

We reasoned that the developmental alpha2 to alphal switch, if reversed in adulthood, could underlie
the reduction in GABA 4 receptor function that was previously observed in studies of RF enlargement in
adult SC (Carrasco et al., 2011). We explored this possibility by examining the expression of each subunit
in synaptosomes of SC in normally reared and visually deprived adults. Hamsters in the experimental
group were dark reared from before birth. We used Western blotting for a high resolution, quantitative
assay of synaptic membrane-bound alphal and alpha2 GABA receptor expression in the synaptosome
fractions obtained from adult SC. We found that there were no significant differences in either the overall
levels of alpha2 protein, observed as a ratio of alpha2 to GAPDH (NR: 1.21 £0.052, n=8; DR: 1.33 +
0.185, n=8; U=26, n=8, p=0.574; Mann-Whitney Rank Sum Test) (Figure 3A), or in the ratio of
alphal/alpha2 expression, observed as a ratio of the normalized alpha 1 density (alpha 1/GAPDH ratio) to
normalized alpha 2 density (alpha 2/GAPDH ratio) in the SC of adult DR (1.651 + 0.277, n=5) compared
to adult NR hamsters (1.19+ 0.084, n=4) (T(7)=-1.436, n=4, p=0.194 Student’s t-test) (Figure 3B). This
was a surprising result considering our previous finding that dark rearing reduces the response to
pharmacological application of GABA agonists and antagonists (Carrasco et al., 2011). These findings
argue against a reversal of the normal developmental transition from alpha2 to alphal-dominant
expression as a cause of the deprivation-induced RF enlargement in adult SC, and they support the
interpretation that visual experience is not needed to maintain mature GABAAa receptor alphal/alpha2
subunit composition.

GABA\ receptors can also be expressed extrasynaptically, where they can be activated by GABA
derived from synaptic spillover or non-neuronal sources. This low concentration GABA source generates
“tonic” inhibition (Farrant and Nusser, 2005). Alpha5 subunit-containing receptors are primarily

9
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expressed extrasynaptically and have been implicated in regulating the induction of synaptic plasticity for
LTP in hippocampus (Saab et al., 2010; Zurek et al., 2012; Zurek et al., 2014; Jacob, 2019). However,
alpha5 GABARs can relocate to the synapse and colocalize with gephyrin (Brady and Jacob, 2015). To
investigate the possible role of synaptic alpha5 levels in adult RF maintenance we quantified and
compared the alpha5/GAPDH ratios between NR (0.544 + 0.0520, n=8) and DR (0.471 + 0.0935, n=8)
adult hamsters (Figure 4A) using Western blotting. We found no significant differences in alpha5 protein
levels between groups (U (20) = 0.308, p = 0.878, Mann-Whitney Rank Sum test). We compared the ratio
of alphal/alpha5 between adult NR (1.027 = 0.0815, n=10) and DR (0.995 + 0.0926, n =9) hamsters and
found no differences between these groups (U (18) =35, p=0.438, Mann-Whitney Rank Sum test) (Figure
4B). Because we were only studying proteins from synaptosome preparations (i.e., GABAAx receptor
subunits localized in the synapses), these results suggest that the localization of alphal and alpha5

subunit-containing GABA receptors in SC is not being altered by early visual experience.

Dark rearing does not affect the normal location of GABA 4 receptors in adult SC

The regulation of GABA receptors at the synapse is pivotal for maintaining correct levels of inhibitory
synaptic transmission (Jacob et al., 2008). Impaired trafficking of GABAA receptors into and out of
synaptic membranes could affect their synaptic localization in SC and thus their overall response to
presynaptically released GABA. GABAA4 receptor trafficking is partially regulated by endocytosis — the
controlled removal of receptors from the postsynaptic membrane into the cytoplasm (see Lévi and Triller,
2006, for review). Endocytosed receptors are subsequently reinserted into the postsynaptic membrane or
undergo lysosomal degradation (Kittler et al., 2000). We reasoned that if internalization was dysregulated,
either by decreased receptor reinsertion or increased receptor degradation, it could negatively impact the
efficacy of GABA4 receptors at the synapse. We examined this possibility by comparing the ratio of
postsynaptic membrane-bound to cytosolic alphal subunit- containing receptors between our treatment
groups. No differences were observed in the postsynaptic membrane/cytosol ratio of alphal expressing
receptors between DR (0.768 + 0.044, n=7) and NR (0.778 £ 0.1, n=6) adult hamsters (U(11)= 20.00,

10
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p=0.945, Mann-Whitney Rank Sum test) (Figure 5SA). These results indicate that the overall trafficking of
alphal subunit-expressing synaptic GABA receptors is not affected by dark rearing.

We also examined the possibility that extrasynaptic alpha5 receptor internalization may be
dysregulated and thus responsible for changes in tonic GABA, inhibition (Davenport et al., 2021). There
were no significant differences in cytosolic membrane localization of alpha5 subunits between adult DR
(1.320 £ 0.198, n=8) and NR groups, however (1.753 £+ 0.449, n=6) (U(12)=19.00, p=0.573, Mann-
Whitney Rank Sum test) (Figure 5B). These results indicate that the internalization of extrasynaptic
alpha5 subunit-expressing GABA4 receptors is not responsible for the decreased efficacy of GABAA

receptors observed in RFs that fail to maintain refinement in adulthood after dark rearing.

Inhibitory and excitatory scaffolding proteins in SC are not affected by dark rearing

One factor influencing the accumulation and retention of GABA 4 receptors at postsynaptic sites is the
membrane scaffolding protein gephyrin (Kneussel et al., 1999; Sun et al., 2004; Jacob et al., 2005; Tretter
et al., 2008). Decreased expression of gephyrin results in less clustering (Essrich et al., 1998) and more
mobility of GABAA receptors at the synapse (Jacob et al., 2005). We surmised that decreased gephyrin
expression could be responsible for the weaker GABA 4 receptor signaling observed in neurons with RFs
that failed to maintain refinement in adulthood. We quantified and compared postsynaptic membrane-
bound gephyrin expression between DR and NR adults using Western blotting. Gephyrin levels in DR
adults (0.786 + 0.124, n=17) were similar to those in NR adults (0.736 £ 0.158, n=16) (U(111)=-0.247,
p=0.377, Mann-Whitney Rank Sum test) (Figure 6A). This indicates that maintenance of adult gephyrin
expression levels is not affected by dark rearing and suggests that if GABAAx receptor accumulation and
trafficking is being affected, then it is occurring independently of gephyrin levels.

PSD-95 is the primary glutamate (AMPA and NMDA) receptor scaffolding protein in CNS neurons
(Chen et al., 2015), and it functions like gephyrin does for GABAA receptors. Although it does not
directly impact GABA4 receptor function, PSD-95 has an influence on visual circuit plasticity. For
example, mice lacking PSD-95 have lifelong ocular dominance plasticity in primary visual cortex that
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results from an increase in the overall proportion of silent synapses, despite having normal inhibitory tone
(Funahashi et al., 2013; Huang et al., 2015). Thus, we examined whether the dark rearing-induced re-
enlargement of RFs could be mediated by a reduction in adult PSD-95 expression. We found that PSD-95
protein levels were not significantly different in DR (0.613+ 0.96, n=10) compared to NR adult hamsters
(0.486 +0.868, n=9) (U(31)=-0.978, p=0.270, Mann-Whitney Rank Sum test) (Figure 6B). These results
suggest that differences in PSD-95 levels do not underlie the re-enlargement of RFs in SC following dark

rearing from birth.

Cation-chloride co-transporters undergo their normal developmental switch in adult dark reared
subjects

Levels of inhibitory GABAergic signaling in neurons are dependent on the intracellular chloride (CI")
concentration. The K* Cl-co-transporter (KCC2) is responsible for regulating intracellular Cl-in mature
adult neurons with an outward K* current (Rivera et al., 1999) and also regulates the formation, function,
and plasticity of glutamatergic synapses (Li et al., 2007; Gauvain et al., 2011; Chevy et al., 2015). At the
beginning of postnatal life, GABAA receptor effects are excitatory because the Na™-K*-2CI™ co-
transporter 1 (NKCC1) that mediates CI™ uptake is dominant (Cherubini et al., 1991; Lee et al., 2005;
Cancedda et al., 2007). By the end of the second postnatal week in rats and mice NKCC1 is replaced by
KCC2 as the dominant cation-chloride co-transporter in the brain, shifting the resting membrane potential
and thus causing GABA 4 receptors to produce inhibitory PSPs (Rivera et al., 1999; Pfeffer et al., 2009;
Moore et al., 2019). In V1, the developmental switch from NKCC1 dominance to KCC2 dominance
occurs at the same time as a period of BDNF/TrkB mediated synaptic imbalance (Zhang et al., 2018). We
surmised that a shift in the ratio of KCC2:NKCC1 could underlie the reinstatement of RF size plasticity in
dark reared adults, leading to re-enlargement of RFs in SC. Examination of the expression of KCC2 and
NKCCI in adult SC neurons revealed no significant differences between our treatment groups, however.
KCC2 levels were not significantly different between NR (0.979 + 0.115, n=8) and DR groups of adult
hamsters (0.963 £ 0.154, n=8) (T(14)=0.082, p=0.936, t-test) (Figure 7A). The same was true of NKCC1
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levels (NR 1.050 +0.0419, n=8; DR 1.081 + 0.0814, n=8) (T(14)=-0.339, p=0.740, t-test) (Figure 7B),
and of the ratio of the two cation-chloride co-transporters within groups (T(8)=1.096, p=0.305, t-test)

(Figure 7C).

Discussion

The goal of this study was to examine potential postsynaptic mechanisms through which light exposure
during an early critical period ensures the long-term stability of visual receptive fields in the hamster
superior colliculus. Our previous results established a correlation between the maintenance of RF
refinement and levels of GABA immunoreactivity in SC (Carrasco et al., 2011; Mudd et al., 2019) and
V1 (Balmer and Pallas, 2015), but potential postsynaptic changes in GABAA receptor and related protein
levels had not been examined. We have reported here that at the high-resolution level of Western blot
protein quantification, visual deprivation-induced failure to maintain refined RFs in SC does not appear to
involve changes in GABAAR subunit composition, inhibitory or excitatory scaffolding protein expression,
or cation-Chloride co-transporter ratios. These results exclude several possible mechanisms that could
explain the reduced activation of GABAARs with GABA agonists reported in DR adult SC (Carrasco et
al., 2011), and support activity-dependent regulation of GABA expression as the primary mechanism
underlying TrkB-mediated maintenance of RF refinement (Mudd et al., 2019). The finding that a change
in GABA levels could affect RF refinement in adulthood has important implications for the treatment of
memory impairments or brain injury.

This study supports our previous research that provided substantial evidence of a novel, maladaptive
adult plasticity in which visually deprived hamsters refine SC RFs normally but fail to maintain them in
adulthood. Our research differs from these previous studies in suggesting that dark reared hamsters lose
visual refinement in adulthood and not, as in the case of monkeys, ferrets, and cats, during development
(Mower and Christen, 1985; Mower et al., 1986; Mower, 1991; Carmignoto and Vicini, 1992; Fagiolini et
al., 1994; Chen et al., 2000; Chen et al., 2001; Lee and Nedivi, 2002; Erisir and Harris, 2003). Some of

these previous studies looked only at early and/or adult ages in the animals, thereby missing the RF
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refinement that happens in between the two ages. Because diminished GABA release, contrary to what
we expected, did not elicit measurable changes in the levels of postsynaptic GABA receptors, scaffold
proteins, or chloride co-transporters, this study provides a valuable demonstration that changes in
neurotransmitter availability do not necessarily result in coordinated changes in postsynaptic receptors.
Maturation of GABAergic signaling in visual cortex, particularly of the fast-spiking, parvalbumin-
containing basket cells, is thought to open and then close the critical period for plasticity (Fagiolini et al.,
2004; Sale et al., 2010; Toyoizumi et al., 2013; Capogna et al., 2021). Combined pre- and postsynaptic
alteration of synaptic strength has been seen in other sensory deprivation paradigms, including in dark
reared and monocularly deprived visual cortex, although with an earlier time course (Carmignoto and
Vicini, 1992; Chen et al., 2000; Chen et al., 2001). However, the retinorecipient layers of the superior
colliculus have no basket cells and contain very few GABAergic parvalbumin neurons, and the plasticity
described here occurs after the critical period has closed, suggesting that SC may accomplish plasticity
through a different mechanism than visual cortex. On the other hand, previous studies found that, as in
visual cortex (Hanover et al., 1999; Huang et al., 1999; Viegi et al., 2002), deprivation-induced receptive
field plasticity in adult SC is mediated by the BDNF receptor TrkB (Mudd et al., 2019). Furthermore,
reduced GABA and GABA receptor efficacy in response to iontophoretically-applied GABAR agonists
and antagonists is observed in both SC and V1 of dark reared hamsters (Carrasco et al., 2011; Balmer and

Pallas, 2015), arguing for mechanistic elements in common.

Early visual experience is not necessary for maturation or maintenance of GABA 4 receptor subunit
composition at the synapse

GABAA receptors contain fast acting chloride (Cl) channels (Pfeiffer et al., 1982; Sigel and
Steinmann, 2012). The subunit composition of GABA receptors changes during development from an
alpha 2 to alpha 1 dominant condition (Laurie et al., 1992; Fritschy et al., 1994; Chen et al., 2001) and
also changes in some disease states (Levitt, 2005; Tyson and Anderson, 2014; Deidda et al., 2015;
Kimoto et al., 2015; Schmidt and Mirnics, 2015; Tang et al., 2021) in a way that affects receptor
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functional properties (Farrant and Nusser, 2005) and localization (Jacob et al., 2005). We studied synaptic
levels of the GABA 4 receptor alphal and alpha2 subunits to quantify their expression levels under normal
and DR conditions. The normalized expression levels of GABAAR alphal relative to GABAAR alpha2
levels were not altered in DR hamsters when compared to those of NR hamsters, arguing that the altered
inhibitory synaptic efficacy that we previously observed was not caused by an immature GABAAR
subunit composition at the synapse.

An increase or decrease in the level of any receptor subunit is best understood in context, because
different conclusions would be drawn if subunits changed independently or in concert. Thus, we also
analyzed the alphal/alpha2 ratios in individual animals. We did not find any change in alphal/alpha2
ratios in NR compared to DR adult hamsters. These results suggest that early visual experience is not
necessary for maturation or maintenance of mature synaptic GABAAR subunit composition in adulthood.
Thus, the failure to maintain refined RFs in adult DR hamsters cannot be explained by a return to a

juvenile type of GABAAR subunit composition.

Level and localization of the extrasynaptic GABA 4R subunit alpha 5 does not change with dark
rearing

GABAAR subunit alpha 5 is predominantly an extrasynaptic membrane receptor subunit that regulates
tonic inhibition. It is important in neuronal circuit development, learning, and memory (Brady and Jacob,
2015), has been implicated in regulating the induction of synaptic plasticity in hippocampus (Saab et al.,
2010; Zurek et al., 2012; Zurek et al., 2014), and can relocate to the synaptic region in learning and
memory deficits (Brady and Jacob, 2015). Because the excitation/inhibition (E/I) balance could be
affected if alpha5 subunit levels changed or if they moved into the synapse, we compared its expression
between NR and DR cases. We did not see any significant changes in the overall levels of GABAAR
alpha5 subunits, or in the alphal/alpha$ ratio, suggesting that dark rearing-induced RF enlargement is not

caused by changes in the GABAR subunit alpha 5 levels or localization in the synapse.
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Dark rearing does not affect the rate of internalization of GABA 4R subunits at the synapse

Because clathrin-dependent endocytosis is likely important for regulating inhibitory signaling and
synaptic plasticity (Kittler et al., 2000), we explored the internalization of GABAA4 receptor alphal and
alpha5 subunits by comparing their synaptic vs. extrasynaptic location in normally reared and dark reared
subjects. We did not observe a significant change in location of either subunit type as assayed by the ratio
of synaptosome-bound to cytosolic fractions. This implies that a lack of visual experience does not affect
the trafficking of the GABAAR subunits between the synaptic membrane and the cytosol or the
phosphorylation events that maintain the balance between internalization and postsynaptic membrane

insertion of the receptor subunits.

Early visual experience is not necessary to maintain scaffolding protein levels at the synapse

Another finding of this work is that the expression levels of the postsynaptic scaffold proteins PSD-
95 and gephyrin were not altered in adulthood following lifelong lack of light exposure, suggesting that
any changes in inhibitory function are probably not caused by a significant change in scaffolding protein
expression. At any rate, the clustering of GABAARS at inhibitory synapses in SC may happen in a
gephyrin-independent manner (Kneussel et al., 2001), or total gephyrin expression may not be as
important as the formation of gephyrin nanodomains within inhibitory synapses (Pennacchietti et al.,
2017). Future studies with additional techniques would be required to determine if changes in receptor

clustering may be occurring and what role gephyrin or PSD-95 may have in mediating any such effects.

Early light exposure is not necessary for maturation of the cation-chloride co-transporters

We investigated the status of the chloride transporters KCC2 and NKCC1 due to their role in maintaining
chloride balance inside of the neurons and thus in setting the reversal potential. The cation-chloride co-
transporters could have reverted to their early developmental state, leading to a lower threshold for
excitation in dark reared animals, possibly explaining the RF expansion we observed. However, we did
not observe any changes in the cation-chloride co-transporters in dark-reared compared to normally

16


https://doi.org/10.1101/2022.10.06.511220

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.06.511220; this version posted July 23, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

433  reared adult hamsters, suggesting that the RF enlargement was not caused by alterations in the cation-
434  chloride co-transporters.

435

436 A GABA-BDNF feedback loop maintains inhibitory networks, thereby maintaining RF refinement in
437  adulthood

438 GABA-GABAAXR interaction is known to regulate various downstream signaling pathways, and a
439  major regulator of GABA itself is BDNF-TrkB signaling triggered by NMDA receptor activity (Marini et
440  al., 1998). Our data are consistent with previous studies suggesting a positive feedback loop between the
441  BDNF-TrkB pathway and GABA expression, in which GABA facilitates BDNF expression, and BDNF
442  facilitates the production of GABA by GAD (Sanchez-Huertas and Rico, 2010) and its synaptic release
443 (Huang et al., 1999; Morales et al., 2002; Gianfranceschi et al., 2003; Jovanovic et al., 2004; Kuczewski
444 etal., 2008; Porcher et al., 2011; Hanno-lijima et al., 2015), maintaining RF size and visual acuity

445  through GABAergic lateral inhibition (Mudd et al., 2019). Signaling via the MAPK cascade and the
446  transcription factor cAMP-responsive element-binding protein (CREB) appears to play a substantial role
447  in this process (Obrietan et al., 2002; Sanchez-Huertas and Rico, 2010). BDNF-TrkB interaction leads to
448  dimerization and auto-phosphorylation of TrkB, thereby triggering MAPK, PLC gamma, and PI3K

449  pathways (Yoshii and Constantine-Paton, 2007). These pathways in turn lead to the activation of

450  downstream effectors and mediators to initiate a CREB-dependent transcription process that can lead to
451  an increase in GABAAR levels as well as more BDNF production (Huang and Reichardt, 2003; Yoshii
452 and Constantine-Paton, 2007; Porcher et al., 2011; Esvald et al., 2020). In addition, an increase in the
453  transmembrane localization of GABAARSs is mediated by BDNF-dependent inhibition of receptor

454  internalization in addition to ongoing reinsertion of the receptor into the postsynaptic membrane (Porcher
455  etal., 2011). This positive feedback regulation is critical in developing neurons and hence constituted a
456  major motivation for the work reported here. In this study however, neither the GABAAR subunit

457  composition at the synapse nor subunit composition in the extrasynaptic regions was affected by dark
458  rearing. Chloride transport proteins (KCC2, NKCC2) also remained at normal levels. One possibility is
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that GABA expression levels alone are the key factor in RF re-enlargement in hamster SC (Carrasco et
al., 2011; Mudd et al., 2019). If so, it would suggest that this type of delayed plasticity resulting from a
lack of early visual experience occurs through a different mechanism than described in other types of
plasticity resulting from dark rearing (Mower et al., 1985; Chen et al., 2000; Chen et al., 2001).

It is possible that changes in GABA4R signaling occurred that are not reflected here in the expression
levels of postsynaptic receptor composition, scaffolding molecules, or ion transporters, or that we missed
some transient changes in GABAR signaling-associated proteins that cause GABAAR functional
changes. In the future, it would be interesting to study protein localization and interactions with
immunohistochemistry, or to study the properties of synaptic and extrasynaptic responses in the SC with
patch clamp experiments, and the subcellular dynamics of associated proteins involved. This might
improve the understanding of the molecular processes active in this deprivation-induced, maladaptive
plasticity in the SC.

Suggested alternative explanations include that the changes leading to RF expansion and thus the
visual acuity deficits take place earlier than the time point that we studied and return to normal by P90.
The width of the synaptic cleft decreases during development (Li and Cline, 2010), thus, another
interesting possibility is that dark rearing from birth gradually increases the width of the synaptic cleft in
adulthood while keeping the postsynaptic signaling components in place. Alternatively, the synapses may
be present but silent due to the presynaptic loss of GABA (Carrasco et al., 2011). It is also possible that
other scaffolding proteins and their partners are involved. Potential candidates include gephyrin binding
partners such as GABAAR beta2 and beta3 subunits (Kowalczyk et al., 2013), the scaffold protein radixin
that binds GABAAR alpha5 subunit to the actin cytoskeleton (Loebrich et al., 2006) and regulates
synaptic GABAAR density (Hausrat et al., 2015), or gephyrin post-translational modification events that
influence inhibitory synaptic plasticity by affecting postsynaptic scaffolding (Zacchi et al., 2014). More
recently, distinct spectrin isoforms have been shown to affect synaptic inhibition by selectively targeting
specific GABAR subunits, including al and a2, to particular regions of the neuron (Smalley et al.,
2023).
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In summary, our results argue that visual experience is not necessary to maintain mature levels and
composition of several postsynaptic proteins that are essential for retino-SC synaptic communication.
Unlike many previous dark rearing studies in which both GABA and GABAA receptors were found to be
downregulated (Carmignoto and Vicini, 1992; Chen et al., 2000; Chen et al., 2001; Kilman et al., 2002;
Nahmani and Turrigiano, 2014), we report here that in the SC, GABAAR levels, subunit composition, and
localization in adulthood are unaffected by dark rearing. The scaffold proteins gephyrin and PSD-95, and
the chloride transporters KCC2 and NKCC2 are also not affected by dark rearing. This novel,
experience-dependent form of adult plasticity may involve an as yet unidentified postsynaptic
mechanism, or only a reduction in GABA release (Carrasco et al., 2005; Carrasco and Pallas, 2006;
Carrasco et al., 2011), thereby challenging the common view that presynaptic changes in ligand
availability are always associated with matching postsynaptic changes in their receptors. Either possibility
is encouraging with respect to understanding this form of adult plasticity and might help adults with

memory impairments, traumatic brain injury, or inhibition-associated neurological disorders.
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Figure legends:

Figure 1: Differences in the visual refinement of hamster visual pathways depending on exposure to
light during the critical period of heightened neural plasticity. Animals exposed to light during postnatal
development gradually improve RF refinement in SC and V1 and maintain it throughout life (as indicated
by the blue line). Animals that do not experience postnatal light also show RF refinement by P60, but the

refinement progressively declines in adulthood (as indicated by the orange line).

Figure 2. Histone H3 expression in the synaptosomal and cytosolic lysates. Western blot showing
histone H3 (15 kDa) bands in the synaptosomal and cytosolic fractions of SC. GAPDH was used as a
loading control. The presence of histone H3 in the cytosolic fraction and its absence in the synaptosomal

fraction shows an effective synaptosomal separation occurred in these experiments.

Figure 3. GABAA02 receptor subunit levels in SC are not affected by early dark rearing. (A) Image:
Individual Western blots of normally reared (NR) and dark-reared (DR) treatment groups generated using
20 ug of SC protein per lane. GAPDH was used as a loading control. Plot: Boxplot showing the
normalized GABAAR02 expression level in normally reared vs. dark reared hamsters. (B) Image:
Individual Western blots of SC tissue from NR and DR animals comparing GABAsRal and GABAaR02
expression with corresponding GAPDH expression. Plot: Boxplot showing the ratio of normalized values
of GABAARa1/GAPDH to the normalized values of GABAARa2/GAPDH. Boxes in each individual
boxplot show the median and 25™ and 75™ percentiles of the data (whiskers show 5% and 95% levels).
Individual data points obtained from each animal within a group are shown as dots. For Western blots in
this and the following figures, lanes presented together are from the same gel, and each measured protein
was normalized against GAPDH (unless stated otherwise) as a loading control. Taken together, these
results reveal that the levels and ratio of synaptic GABAaRa2 receptor subunits and their ratio with
GABAARalsubunits are similar in normal and dark reared adult SC.
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Figure 4. GABAA05 receptor subunit levels in SC are not affected by early dark rearing. A and B
Images: Representative Western blots of NR and DR treatment groups as in Figure 3. All lanes presented
together are from the same gel(s), and each gel was run with GAPDH as a loading control. (A) Plot:
Boxplot showing normalized GABAaRaS expression levels compared between normal and dark reared
hamsters. (B) Plot: Boxplot showing the ratio of normalized (against GAPDH levels) GABAARal:
GABAAR®S5 expression ratios. Boxes in each individual boxplot show the median and 25" and 75™
percentiles of the data, with whiskers at 5 and 95%. Individual data points in each group are shown as
dots. These results show that the levels of synaptic GABAaa5 receptor subunits and their ratio with

GABAAR«1 subunits are similar in normal and dark reared adult SC.

Figure 5. Internalization of GABA4 receptors in SC is not affected by early dark rearing. (A) Adult
levels of the cytosolic vs. the synaptic membrane-attached ratio of the synaptically-targeted GABAaRal
and (B) the synaptically-targeted GABAaRa5 subunits were not affected by early light deprivation.
Images: Representative Western blots represent bands of cytoplasmic and membrane bound receptor
subunit proteins, each from the same animal, measured as a ratio against GAPDH and compared between
NR and DR groups. Plots: Boxplot showing the ratio of normalized (against GAPDH) values of cytosol:
membrane ratios of each subunit. Boxes in each individual boxplot show the median and 25" and 75™
percentile of the data, with whiskers indicating 5 and 95%. Individual data points obtained in each group
are shown as dots. These results show that the internalization of synaptic GABAsRal and GABAsRaS5

subunits is similar in normal and dark reared adult SC.

Figure 6. Gephyrin and PSD-95 expression in SC are not affected by dark rearing. Images: (A)
Gephyrin and (B) PSD-95 expression was similar between adult NR and DR groups (upper panels).
Plots: Boxplot showing the ratio of normalized values of gephyrin vs. GAPDH (A) or B-actin (B) . Boxes
in each individual boxplot show the median and 25™ and 75" percentiles of the data, with whiskers at 5
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and 95%. Individual data points obtained in each group are shown as dots. These results show that the

levels and ratio of the scaffold proteins are similar in normal and dark reared adult SC.

Figure 7. Cation-chloride co-transporter expression in SC is not affected by early dark rearing.
Images: Example Western blots of NR and DR samples labeled for cation-chloride co-transporters (A)
KCC2 (140 kDa) and (B) NKCC1 (150 kDa) compared to the GAPDH loading control and (C) a
comparison of the within subject ratio of KCC2:NKCC1 in NR and DR adult hamsters. Plots: Boxplots
showing the levels of KCC2 and NKCCI1 proteins, normalized against GAPDH (A and B, respectively)
and comparison of normalized values of KCC2/GAPDH to that of NKCC1/GAPDH (C). Boxes in each
boxplot show the median, 25" and 75 percentiles of the data. Whiskers are at 5 and 95% percentiles.
Individual data points obtained in each group are shown as dots. These results show that the number and

ratio of cation chloride co-transporters are similar in normal and dark reared adult SC.
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Figure3: Alpha2 andal/a2 ratio.
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Figure 5: Endocytosis of GABA, receptors
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Figure 6: Gephyrin and PSD-95
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Normalized Density

Figure 7: Adult cation-chloride co-transporters
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