
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. X, NO. X, XXXX 2025 1

Edge-V : Vehicular Edge Intelligence Through
Multi-Band Unlicensed Spectrum Access

Francesco Raviglione, Claudio Casetti, Senior Member, IEEE,
and Francesco Restuccia, Senior Member, IEEE

Abstract—Technological advances in the automotive field are

driving the development of smarter, greener, and more au-

tonomous vehicles. These vehicles will need to communicate

via Vehicle-to-Everything (V2X) wireless communications and

perform advanced Deep Learning (DL) tasks while handling large

data volumes with low latency and high reliability. Although 5G is

frequently viewed as a comprehensive solution for addressing the

demanding environment of next-generation autonomous vehicles

and of Vehicular Edge Intelligence (VEI), relying solely on

cellular networks poses challenges like spectrum congestion,

delays in edge offloading, and poor coverage in certain areas.

Current unlicensed spectrum technologies also fall short of

the VEI requirements. On this basis, we propose Edge-V , a

novel framework combining unlicensed spectrum technologies to

provide low-latency, high-throughput connectivity with reliable

task offloading. Edge-V uses a Dedicated Short-Range Commu-

nications (DSRC) link for exchanging standardized messages,

traditional Wi-Fi for connecting on-board devices and sensors,

and mmWave for high-speed, low-latency connectivity. With the

aim of optimally allocating tasks, an Offloading Manager module

is included, based on a system model which is mathematically

formulated, and used to propose a sample greedy strategy within

Edge-V . Our laboratory and field tests, thanks to an open and

low-cost Proof-of-Concept, show that Edge-V can reduce latency

by up to 65% when compared to cellular/cloud-based solutions.

Index Terms—Vehicular Edge Computing, Vehicular Edge

Intelligence, VEI, mmWave, Vehicular Networks, unlicensed

spectrum

I. INTRODUCTION

A
N essential step in making autonomous vehicles smarter
is making them more aware of their surroundings. In

addition to the exchange of standard-compliant messages for
safety and non-safety applications, future vehicles are expected
to share their on-board sensor data – coming from LiDARs,
radars and especially cameras – to enable technologies such
as advanced See-Through with high-quality video feedback, or
real-time sharing of high-definition maps among self-driven
vehicles for accurate localization [1], [2]. Furthermore, the
next generation of connected vehicles are expected to support
interactive entertainment systems for passengers based on
V2V communication [3]. These crucial applications have strin-
gent requirements, and they may need real-time multimedia
transmission and execution of complex DL tasks, such as
object detection or image segmentation starting from a raw
camera input. This requires the execution of computationally
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Fig. 1. Vehicular Edge Intelligence (VEI) will enable transforming applica-
tions such as “See-Through” vehicular vision, real-time exchange of 3D maps
and V2V entertainment.

expensive tasks, with strict latency requirements and the need
for high throughput links.

Due to the limited resources available on vehicles, when
compared to the computing power of Multi-Access Edge
Computing or cloud servers, task offloading is often looked
as a solution to enable complex applications while keeping
the on-board resource usage and energy consumption within
reasonable limits. This technique can be used to offload
computation to the infrastructure and/or to other vehicles that
provide free resources, and then receive a lightweight version
of the results, containing only the relevant information (e.g., a
vehicle can offload an entire frame from a camera output, and
receive back the list of detected objects and their position in
the frame). Task offloading requires ultra-low latency and very
high throughput, and thus it faces several challenges. These
challenges include the transmission of data from sensors, such
as LIDARs that can generate up to Terabytes per hour of
data [4]–[6], and the choice of a proper technology, or a
combination of them, to guarantee at the same time high
reliability, high throughput and low latency. Reliability is
indeed crucial to guarantee that a sufficient number of tasks
is properly executed and the results are properly delivered to
the vehicles.

With the aim of enabling the execution of such tasks, it
may become pivotal to deploy the intelligence at the edge
of vehicular networks (i.e., in the vehicles themselves and
at infrastructure edge nodes), giving birth to the concept of
Vehicular Edge Intelligence (VEI).

5G (and, in the future, 6G) is often considered as the
solution to the challenges brought by VEI, as its deployment
is progressing across Europe and North America. However,
relying solely on 5G for this kind of V2X use cases would sig-
nificantly stress already overloaded licensed spectrum bands,
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expected to support up to 64 billion subscribers by 2025 [7].
Furthermore, there is currently a lack of open frameworks
combining different technologies for V2X to enable prac-
tical VEI and task offloading. We thus propose Edge-V ,
the first open framework combining different technologies
(DSRC, mmWave and standard Wi-Fi) to enable VEI and
on-board AI/ML by leveraging only unlicensed spectrum
bands. Edge-V is designed to be open and it provides several
advantages over the usage of 5G only: (i) reduces the usage
of the expensive cellular spectrum; (ii) reduces task offloading
latency thanks to nearby vehicle offloading and V2V cooper-
ation; (iii) it could be crucial in areas where 5G coverage is
scarce or unavailable [8], which, at the time of writing, is often
the case in rural areas and small towns.

Additionally, VEI requirements cannot be guaranteed by
current vehicular technologies such as Cellular-V2X Mode
4 and IEEE 802.11p due to their limited peak data rates,
which are typically below 30 Mbit/s [9]. Although mmWave
vehicular networking has been proposed [9], [10], existing
work is mostly based on simulations. Furthermore, due to rel-
atively high path loss and potential blockages [11], mmWave
technology may experience connectivity issues. Therefore, it
is essential to integrate the capabilities of different wireless
technologies, with different characteristics, to concretely real-
ize the much-needed VEI.

Summary of novel contributions
• This paper introduces Edge-V , the first open framework

enabling practical Vehicular Edge Intelligence (VEI) ex-
clusively using unlicensed spectrum and combining the
strengths of mmWave, 5.9 GHz ITS DSRC and Wi-Fi.

• VEI includes an Offloading Manager (OM) which manages
task offloading based on a formulation of the system model,
i.e., the Vehicular Edge Intelligence Problem (VEIP). VEIP,
proven NP-Hard, prioritizes offloading tasks to nearby ve-
hicles, minimizing latency; to solve VEIP, we propose a
polynomial-time greedy algorithm (DG-VEIP).

• We present a full proof-of-concept using off-the-shelf hard-
ware and open-source software, including an enhanced
Local Dynamic Map (LDM) that integrates channel quality
and computational load data for VEI.

• Edge-V is evaluated via MATLAB simulations, laboratory
tests, and on-road experiments. Key results include: signif-
icantly reduced latency (up to 65% lower than cloud-only
methods) at the cost of a limited accuracy loss (18% mAP),
and sub-5 ms end-to-end latency, proving the effectiveness
of combined mmWave and sub-6 GHz connectivity. This
is the first open-source experimental testbed for VEI in
unlicensed spectrum.

• This work significantly extends the previous work presented
at VTC2023-Spring [12], by including: (i) a more compre-
hensive and detailed presentation of the background context,
motivations, and up-to-date related works; (ii) a refined
version of the POC, with a more complete description of
its innovations and a discussion on the use cases that can
be enabled by Edge-V ; (iii) a novel mathematical model of
the system, with its NP-hardness proof and the proposal of
a greedy scheme for optimizing offloading decisions; (iv)

a new evaluation through MATLAB simulation with real-
world traces [13]; and, finally (v) a practical experimental
validation obtained through field tests and on-road experi-
ments.

II. RELATED WORK

With the advent of dedicated access technologies like IEEE
802.11p and C-V2X, as referenced [14], V2X communications
have undergone extensive research in recent years. On the
contrary, VEI approaches are still at an early stage of devel-
opment, given the swift advancement of DL-based algorithms
and other use cases that are specifically tailored for vehicular
applications [15], [16].

As mentioned earlier, VEI is characterized by the critical
need of establishing high-bandwidth and low latency commu-
nication among vehicles, which can be potentially moving at
high speed. This makes both VEI and task offloading partic-
ularly challenging in vehicular scenarios. Indeed, both IEEE
802.11p and C-V2X may be unable to satisfy their stringent
requirements if employed alone [9]. Therefore, it becomes
crucial to combine different protocols and consider promising
high throughput technologies such as mmWave. Even though,
with the advent of IEEE 802.11ax, the throughput gain achiev-
able by mmWave may no longer be a decisive factor, the
latter still provides several advantages. These include spatial
reuse, as technologies working over the sub-6GHz spectrum
do not provide a much higher aggregated throughput in a given
location.

The application of mmWave to vehicular networks is cur-
rently being investigated by a number of research works.
Among them, some works focus on IEEE 802.11ad [17],
working in the 60 GHz unlicensed spectrum. This technology
uses beamforming and can provide ranges up to 100 to 200
m in Line-of-Sight conditions, and 30 to 40 m in Non-Line-
of-Sight conditions, guaranteeing very low delays and high
throughput, up to more than 1 Gbit/s [18]. Therefore, it appears
to be very promising for the application in vehicular networks,
although several challenges need to be faced, including beam
management, beam blockage recovery [19] and impacting
NLOS (Non-Line-of-Sight) conditions, that can reduce the
mmWave range by more than 30 times [20].

In addition to mmWave, existing work has also proposed
Terahertz-based communications to establish high-bandwidth
links [9], [21]. Giordani et al. [22] analyzed the application
of mmWave to V2X scenarios, while Molina-Galan et al. [10]
propose to decouple the mmWave data and control plane in
vehicular scenarios, and suggest the use of sub-6 GHz C-V2X
Mode 4 as control plane to schedule the data transmission
over mmWave. As opposed to our proposal, these works
are fully simulation-based. Raviglione et al. [18] presented
one of the first field-test campaigns with mmWave applied
to Vehicle-to-Infrastructure (V2I) communications. However,
a VEI scenario is not considered and the focus is only on
wireless performance. The closest to our work is [9], where
Li et al. propose a combination of Software-Defined Networks
(SDN) and mmWave links, with backhauling based on IEEE
802.11ad and C-V2X, and DSRC to carry control plane
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signals. Edge-V focuses instead on unlicensed spectrum tech-
nologies, and does not involve cellular-based communications.

From the point of view of task offloading, instead, a
significant amount of work, e.g., [8], [23], [24] has focused
on developing algorithms for offloading tasks in the vehicular
edge. For instance, Tang et al. [25] proposed a cache enabled
task offloading system, focusing on offloading tasks to nearby
Road Side Units or base stations. Similarly, Higuchi et al. [26]
define virtual edge servers composed by vehicles, to which
jobs can be efficiently offloaded. This work is only evaluated
through simulations, without considering the limitations of real
hardware.

A key contribution of Edge-V is the combination of dif-
ferent unlicensed spectrum technologies to enable advanced
V2X use cases. As described in more detail in Section III,
VEI cannot be enabled by single technologies, and it becomes
thus fundamental to incorporate different technologies with
different characteristics. Some works in literature propose
systems that rely on a single technology, often considering
only cellular connectivity. For instance, both [27] and [28]
demonstrate the feasibility of real-time offloading with cellular
networks. Edge-V , on the contrary, improves offloading by
considering only unlicensed spectrum and overcoming the
limited bandwidth of DSRC with the integration of 60 GHz
mmWave, reducing dependence on the cellular network. Other
works, like [29] explore offloading with DSRC only, taking
traffic priority into account. A pure C-V2X alternative is
instead the cluster-based offloading scheme by Bute et al. [30],
which relies on PC5 sidelink transmissions to distribute tasks
among vehicles, together with infrastructured communications
to reach remote MEC servers. However, offloading to other
vehicles solely over DSRC or Sidelink C-V2X works well
only for smaller tasks that do not require a high bandwidth.
To this aim Edge-V also integrates mmWave, and facilitates
the connection of on-board devices thanks to internal standard
Wi-Fi.

Our work differs from existing literature as it does not focus
exclusively on a specific task offloading architecture, but it
aims at providing a complete, open and flexible framework
to test VEI and advanced automotive use cases in the field.
Indeed, Edge-V includes not only the Offloading Manager,
but several other modules such as an enhanced wireless stack,
for which we propose a novel container for Cooperative
Awareness Messages (CAMs) [31], that are disseminated with
a variable frequency between 1 Hz and 10 Hz depending on
the vehicle dynamics, to share VEI-critical information be-
tween road users. Concerning task offloading, we also present
our own solution and system model starting from the VEIP
problem, which is evaluated on both trace-driven simulations
as well as on-road experiments, and that can be integrated as
a task offloading solution in the Offloading Manager.

III. THE EDGE-V FRAMEWORK

The Edge-V framework, with its different modules, is
represented in Figure 2.

As can be seen, Edge-V is designed to be deployed, with
different modules, on both connected vehicles and infrastruc-
ture nodes (i.e., RSUs, with a connection to a MEC server or

cloud data center). Edge-V , as a key advancement, combines
computation and communication in unlicensed spectrum to de-
liver V2X and VEI capabilities to existing vehicular networks.

The core of Edge-V are its three radio interfaces. Two
of them are external for inter-vehicle communication (DRSC
and directional mmWave), and one of them is internal to the
vehicle (standard Wi-Fi). The latter comprises a Wi-Fi AP
bridged with the mmWave interface (the green line repre-
sented in Figure 2), to provide the on-board devices with
access to the Internet, through the RSU, or to centralized
infrastructure services. This enables seamless communication
between the on-board devices as well as between different
vehicles equipped with mmWave. These devices may include:
(i) cameras on-board of different vehicles, enabling use cases
such as See-Through with high quality video feedback, (ii)
laptops and smartphones for interactive entertainment, and (iii)
HMI devices for the reception of warnings, for the provision
of road signage information, and for displaying in real-time
the position of other road users and/or obstacles (e.g., through
the results of DL tasks offloaded to other nodes).

Additionally, the DRSC slot may also host an alternative
PC5 Sidelink C-V2X transceiver working in the unlicensed
5.9 GHz spectrum, as no change is required to the higher
layers of the ITS stack.

The aim of Edge-V is to combine these three radio tech-
nologies to realize use cases that would not be properly
supported by single technologies, but which can benefit from
the combined use of these technologies and their strengths.
mmWave is ideal for short-range, high-throughput task of-
floading and multimedia data exchange. DSRC, specifically
designed for automotive communications, is suited to safety-
critical and standardized messages as defined by ETSI C-ITS
standards, thanks to its longer range, but cannot provide data
rates higher than 30 Mbit/s [9]. Guaranteeing a level of
compliance and integration with standards, through technology
specifically designed for the automotive domain, is indeed
essential. IEEE 802.11ac/ax Wi-Fi operates in a typical Access
Point-client configuration within vehicles, and it is therefore
very well suited to connect onboard devices to Edge-V , being
a commonly supported technology (e.g., by smartphones,
unlike DSRC or mmWave).

Furthermore, the presence of the RSU enables data ex-
change between the on-board devices through the RSU it-
self, realizing, if needed, a mmWave V2I2V (Vehicle-to-
Infrastructure-to-Vehicle) relayed communication. This ap-
proach enables the exchange of data between vehicles even
in case of noticeable NLOS blockage or distances higher than
a few hundred meters. For instance, as shown in [18], [20],
mmWave can reach a range of just 30-40 m in NLOS. With
a step through an RSU that is in LOS with two vehicles, the
range can increase up to 200 to more than 400 m (double the
single LOS range measured in [18]).

Relayed communication is an approach that can help im-
proving Vehicle-to-Vehicle communications in presence of
NLOS and when far away nodes need to be reached. ETSI
has foreseen, for its C-ITS stack, different approaches to
perform multi-hop routing, thanks to information available at
the GeoNetworking layer. Specifically, both area forwarding
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(for dissemination of messages inside a target area) and non-
area forwarding (for dissemination of messages that still need
to reach a destination area) algorithm are foreseen and de-
scribed in [32]. There are also a number of works in literature
that investigate the applicability of multi-hop mmWave V2V
communications, such as [33]. These algorithms, however,
mostly focus on V2V communication.

On the contrary, Edge-V proposes not only an enhanced
stack supporting GeoNetworking with forwarding capabilities
for the exchange of DSRC messages, but also a forwarding
mechanism as part of the RSU, to increase the communication
range through mmWave infrastructure nodes. This mechanism
can exploit the information received through both dedicated
messages and standard-compliant messages, such as the ETSI
messages with the GeoNetworking layer.

The combination of the three radio interfaces enables sev-
eral demanding applications, including (i) DL-task offloading
such as object detection from a camera input, as detailed in
Section III-A, (ii) raw GNSS data and sensor data exchange
with sensors transmitting their data via Wi-Fi to Edge-V , and
both raw data being transmitted via mmWave, and standard-
compliant messages via DSRC, (iii) interactive entertainment
and See-Through, with multimedia streams being transmitted
by the on-board devices via Wi-Fi and mmWave, and safety
messages being broadcasted via DSRC, (iv) centralized and
decentralized automated maneuvers, in which safety-critical
maneuver management messages are exchanged via DSRC and
raw sensor information via mmWave.

It would be possible to argue that combined unlicensed
spectrum bands, despite providing several advantages, are also
affected by security considerations and possibly additional
interference. Nevertheless, Edge-V already considers these
challenges in three complementary ways. First, two of our
three radio interfaces (DSRC and internal Wi-Fi) either work
in the ITS band at 5.9 GHz, that is dedicated to vehicular
communications, or remain confined to the in-car environment,
while the 60 GHz mmWave link combines a short propagation
range with beamforming, which drastically limits interference.
Second, as described later, Edge-V includes an enhanced
wireless stack where security services can be implemented
“on top” of Edge-V (e.g., standardized ETSI C-ITS security).
Third, in the case of impaired links due to interference,
Edge-V can take them into account and try to offload to other
nodes, as explained in Section IV.

In addition to the wireless technologies, the main modules
and components of the framework can be summarized as
follows:
• Computing module. Each vehicle and RSU has computing

resources in terms of RAM, CPU and GPU. These resources
can be used to execute tasks and on-board services locally,
or can be exploited by other nodes to offload their tasks.

• Local Dynamic Map. Edge-V includes a standard-
compliant LDM [34], which has been enhanced to store
information about available resources on nearby vehicles
(and, possibly, infrastructure/edge nodes), together with
other VEI-specific information. These include computational
load and channel load metrics for each vehicle stored
in the map. Vehicles running Edge-V can exploit such
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Fig. 2. High-level overview of the Edge-V framework.

information to determine dangerous road conditions, or to
optimize decisions such as where to offload data. The LDM
is populated thanks to the exchange of standard-compliant
vehicular messages, exchanged through the DSRC link, and
it provides enhanced awareness to vehicles, also thanks
to the storage of both real-time and historical data. Other
than the direct reception via DSRC, the LDM can also
receive messages from other vehicles through both multi-
hop and from the RSU. This allows the Offloading Manager
to have situational awareness, letting it compute the number
of mmWave hops which may be needed to reach each node.
As the LDM is mainly updated with standard-compliant ve-
hicular messages, they are usually disseminated periodically
at frequencies high enough to provide a real-time view over
the road and other connected entities.

• Enhanced Wireless Stack. Each vehicle is equipped with a
standard compliant ITS wireless stack, i.e., an ETSI C-ITS
stack for Europe or an IEEE WAVE stack for the US. This
stack is enhanced to include an optional container in periodic
messages (e.g., CAMs or BSMs) for the transmission and
reception of channel and node load data. The broadcast
exchange of standard-compliant messages occurs through
the DSRC link. This stack should also support forward-
ing for multi-hop communication (e.g., area and non-area
GeoNetworking if an ETSI C-ITS stack is employed). To
guarantee QoS, the enhanced wireless stack may rely on
MAC-layer traffic prioritization, depending on the needs of
on-board services, that can request a given priority, and
on the channel load. More specifically, when considering
Wi-Fi-based technologies for DSRC and mmWave, 8 user
priorities can be set, following the IEEE 802.11D standard.
However, Edge-V is designed to support other kinds of pri-
oritization mechanisms, that can be implemented depending
on the selected versions of the radio technologies.

• Positioning Module. Positioning represents one of the
key enablers of vehicular networks. Each vehicle running
Edge-V is thus equipped with an external or embedded
GNSS receiver, providing localisation and kinematic data to
the ITS stack for the generation of standard-compliant mes-
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sages, which are in turn used to populate the LDMs of the
other vehicles. The positioning information is acted upon by
the Offloading Manager to perform the decision process. As
it represents a quite critical information for the performance
of most V2X algorithms (including task offloading), Real-
Time Kinematics (RTK) Global Navigation Satellite System
(GNSS) receivers can be used to reach lane-level accuracy,
and corrections can be received through the DSRC link
(using Radio Technical Commission for Maritime Services
Extended Messages – RTCMEM – [35]), via raw GNSS
data [13], or thanks to the mmWave link towards the RSU.
It should be mentioned that future connected vehicles are
likely all expected to integrate lane-level GNSS receivers, or
at least devices with an accuracy lower than 1 m. Therefore,
to consider a real-world scenario, a precise receiver has been
used to perform the on-road tests presented in Section VI.

• On-board Services. They represent the core on-board
services and applications running on the vehicle OBU.
They may include, for instance, collision avoidance, object
detection through task offloading, See-Through, automated
maneuver management, indication of nearby parking spots
and road works, and many more. As depicted in Figure 2,
these services can retrieve data from the enhanced LDM
when needed, including dynamic, node and channel load
and network data for each nearby connected vehicle. Addi-
tionally, they can also retrieve useful data from (i) the ITS
stack, (ii) the on-board devices and sensors, (iii) the high
capacity mmWave link, and (iv) the Offloading Manager
output. Furthermore, they can use the on-board computing
resources to perform computations.

• Offloading Manager (OM). This component represents the
core of Edge-V . It oversees selecting which are the best
vehicles to perform task offloading and to communicate
with, and deciding which is the best link to use. The decision
can be based on the information available in the LDM and
on mathematical optimization or AI-based algorithms. The
main information used by the OM includes the channel qual-
ity towards the destination vehicles, their distance from the
source, and their available computing resources. It should
be noted how the channel quality, for instance measured
via the received signal strength, already takes into account
the vehicle’s mobility and speed. Indeed, a vehicle that is
moving fast will be likely affected by a fast-varying channel
quality, and by a distance that increases or decreases quickly
and these are all factors that can be taken into account by
the OM algorithm. This component is also in charge of
managing the local computing resources and determining the
best route towards any destination in case multiple mmWave
hops are required. Indeed, when performing high-speed data
exchange between on-board devices, it can determine which
is the best route and provide it to the related On-Board Ser-
vices. Even though it is flexible enough to accommodate any
optimization algorithm, depending on the target scenario, we
propose in Section IV a system model, which can be used as
a baseline for the algorithm for task offloading and routing.

• Road Side Unit (RSU). As mentioned earlier, Edge-V can
be deployed on an RSU with a smaller and different set
of components. As for vehicles, the RSU is equipped with

two external interfaces, i.e., mmWave and DSRC, while it
does not include any internal Wi-Fi interface. The RSU
includes a Computing Module, and, optionally, a Central
VEI Manager, and it is connected to the Internet. Indeed,
the RSUs are used by Edge-V for connection to the broader
Internet, enabling further offloading of DL-based tasks to
cloud or MEC servers in case no vehicles have enough on-
board resources to reach the desired results. They can also
execute tasks locally, if needed, as they can host a Multi-
Access Edge Computing (MEC) server and use the internal
available resources (CPU, RAM and GPU). Furthermore,
a Central VEI Manager can be optionally deployed, to
centrally manage groups of vehicles in a centralized VEI
approach. It should be highlighted that this component is
optional, and Edge-V is designed to work independently
of a centralized unit.

A. An Edge-V Walk-Through
After describing the modules and components of Edge-V ,

this Section presents a brief walk-through, in five steps, of
the main operations performed by Edge-V , focusing on a
low-latency, DL-task offloading use case in a VEI scenario.
In our example, (1) multimedia sensors generate DL tasks
(e.g., object recognition from the output of a HD camera),
which are captured through the Wi-Fi interface. (2) At the
same time, Edge-V is receiving enhanced ITS messages
which are used to populate the enhanced LDM, thanks to
the enhanced wireless stack. (3) As DL tasks are being
generated, Edge-V checks the available on-board resources
thanks to the OM, which directly gathers this information
from the Computing Module. (4) If the on-board resources,
on the vehicle, are not enough, the OM selects the best
remote vehicles to offload the task to. If no vehicles with
enough resources and stable enough connection are available,
task offloading will occur in the MEC/cloud thanks to the
communication to one or more RSUs. To compute the needed
information, the OM uses the information available in the
LDM, solves an optimization problem and provides the results
to the On-board service which needs the results of the DL
task execution. (5) Finally, the On-board service can offload
the tasks thanks to the mmWave links.

The procedure herein described is represented in the flow
chart in Figure 3.

IV. EDGE-V : THE VEIP PROBLEM

To practically enable VEI, optimized task offloading to other
vehicles and infrastructure nodes with free resources should
be fully supported and integrated with DL-based and other
innovative use cases. For this reason, the OM can employ a
mathematical model of the whole system to perform optimal
decisions on where and how to offload tasks, at each time slot.
This problem is called Vehicular Edge Intelligence Problem
(VEIP).

The main features of our model for VEIP can be summa-
rized as follows: first, our model prioritizes offloading to other
vehicles to reduce the load on the remote edge or cloud servers.
Second, it retains generality and does not make any strong
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Fig. 3. Flow chart of the operations performed by Edge-V , focusing
on a DL-task offloading use case.

assumption on the underlying channel model, as opposed, for
instance, to [36] which focuses only on IEEE 802.11p. Third,
it considers the possibility of multi-hop routing via mmWave
thanks to graph modeling. Finally, it is worth mentioning
how energy constraints can be neglected, since a system like
Edge-V is expected to have negligible power consumption
when compared to the typical output capacity of a car battery.
For instance, our Proof-of-Concept, described in Section V,
has a maximum and worst-case power consumption of around
25 W [37]–[39] (less than halogen headlight bulbs), but it is
expected to have a much lower average consumption during
normal operations. Additionally, with dedicated hardware sup-
porting both DSRC and mmWave, the required power would
be even lower. Considering a fuel-powered car battery with a
capacity of 50 Ah, providing 12 V and considering a moderate
load on our Edge-V prototype, with a power consumption
of around 10 W, it would require around 60 hours to fully
consume the battery when the vehicle is turned off.

Among the related works proposing VEI models and al-
gorithms, it is worth mentioning again the one by Higuchi
et al. [26]. The authors define task completion probabilities
which are shared between vehicles. Tasks are then offloaded
based on deadlines. Although this represents a very valid ap-
proach, their model differs from VEIP, as our model attempts
to explicitly minimize the average task completion latency,
keeping the available resources as constraints, considering that,
in vehicular networks, most tasks are safety critical and should
be executed as soon as possible.

For each DL task, the OM needs to make three main
decisions: (i) which location tasks should be offloaded to, i.e.,
either other vehicles or the cloud/MEC; (ii) how many re-
sources should be reserved on the same vehicles (or requested
to the cloud/MEC); (iii) only if the tasks are splittable, which

fraction of each task should be assigned to each destination
node.

We define as sources all vehicles that may offload tasks to
other nodes, i.e., other vehicles or the MEC/cloud. Through
the shared knowledge built thanks to the DSRC link, each
source is supposed to be aware of the full mmWave network
topology. At a given time slot, several tasks may need to be
fulfilled by each source i.

We define as fi the number of computations needed for
the tasks of each source i with respect to a given reference
system (e.g., a given platform with a certain CPU and GPU).
Furthermore, we assume no constraints on the available RAM
and disk in the destination nodes.

Several input quantities are then defined, all referring to a
single time slot:

1) N = {1, ..., n, k}, |N | = ω, set of all the available n

connected nodes; beside the connected vehicles, k is a
special node modelling the access to the cloud (or to a
MEC server), which can be accessed from all the vehicles.

2) S → N, |S| = ε, set of all the source vehicles generating
(and possibly performing) tasks at a given rate.

3) E = {(w, z) : dwz < dlim ↑ RSSIwz ↓ RSSIlim} ↔
{w, k}, 1 ↗ w ↗ n, 1 ↗ z ↗ n, set of edges between
nodes, i.e., active mmWave links with a good-enough
signal. Furthermore, dlim is the distance limit above
which any mmWave link is considered unstable, while
RSSIlim is the RSSI limit below which any mmWave
is considered unstable. The RSSI also considers real-
time fluctuations in the wireless channel, due to weather
and blockage. Thanks to this, when a degraded channel
quality occurs due to weather or blockage, the RSSI will
decrease, and the OM will be able to select other nodes
for offloading, if available, mitigating as much as possible
the effect of channel quality variations.

4) G = (N , E), graph of the current network topology,
whose edges are represented by valid and stable mmWave
links.

5) C = {c1, ..., cω}, set of the currently available computa-
tional capacity of each node, in terms of computations
per second, with respect to a given reference system,
as defined for fi. The computational capacity is a func-
tion of the available CPU and GPU for each node j:
cj = ϑ(CPU j , GPU j).

6) Rij = {(i, h1, ..., hz, j) : (i, h1) ↘ E, (hz, j) ↘
E, (hi, hi+1) ↘ E, 1 ↗ i ↗ z ≃ 1}, set of all routes
from each source i to any possible destination j ↘ N in
the network.

7) L(i, j), latency of the route from source i to destination
j. Assuming a symmetric channel, the Round Trip Time
(RTT) can be represented by 2·L(i, j). This term depends
on the amount of data Dij which needs to be transmitted
from each source vehicle to each destination node, on the
MAC-layer priority of the traffic Pij , and on the average
wireless channel data rate bij . In turn, Dij depends on the
actual task fraction assignment to each destination node:
Dij = ϖ(ϱij), where ϖ maps the task fraction to each
destination node to the data which needs to be sent to
that node.
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8) oj , overhead time of each destination node j. This time
accounts for the overhead due to the message reception in
the target operating system, data encoding and decoding
and all the operations which do not depend on the size
of the actual task.

We also define a set of output quantities for each time slot,
coming from the solution to the optimization problem:

1) Y→ = {y11, ..., yij , ...yωω}, set of binary variables equal
to 1 if node j has been selected as destination node by
source node i, 0 otherwise.

2) A→
i = {ai1, ..., aiω}, set of optimal resource assignment

to each destination node in the network for the current
source i. All nodes j such that yij = 1 will be destination
nodes towards which the tasks are offloaded, and are
expected to have some resources assigned to perform the
tasks (aij ↓ amin, where amin is the minimum amount
of resources than can be reserved). Each aij is defined
in terms of computations per second.

3) T →
i = {ϱi1, ..., ϱiω}, set of optimal task subdivision to

each node in the network for the current source i. Each
ϱij represents the fraction of task fi assigned to the
destination node j. Each destination node j ↘ D should
have at least one non-zero ϱij , while each non-destination
node j should have all its ϱij = 0.

4) D → N , set of selected destination nodes to which the
tasks should be offloaded. Each node j that have at least
one yij = 1 is a destination node.

5) ς = |D|, cardinality of the set D, i.e., the total number
of destination nodes.

6) R→
ij , set of selected optimal routes from each source i to

the chosen destinations j.
The VEIP problem is then modelled as follows:

Find A→
i , 1 → i → ω (1a)

T →
i , 1 → i → ω (1b)

Y→
i , 1 → i → ω (1c)

D ↑ N : {1 → j → ε : yij = 1, 1 → i → ω} (1d)
R→

ij ↑ Rij , 1 → i → ω (1e)

such that:

minimize i, j
∑

i↑S

ω∑

j=1

{2 · L(i, j) + ϑij
aij

+ oj} ·
yij
ϖ

(1f)

subject to: ϖ =
∑

i↑S

ω∑

j=1

yij (1g)

∑

i

aij · yij → cj , ↓j (1h)

aij ↔ amin, ↓i, j (1i)
∑

j

yij ↔ 1, ↓i (1j)

∑

j

ϑij = fi, ↓i (1k)

ϑij → M · yij , ↓i, j (1l)
ϑij ↔ ϑmin · yij , ↓i, j (1m)

The selected destination nodes and routes from sources
to destinations are defined by the sets (1d) and (1e). The

objective function (1f), instead, aims at minimizing the overall
average latency and it is composed of multiple terms: (i)
the RTT of the path towards the destination node; (ii) the
computation latency, defined as the ratio between the number
of computations needed to fulfill tasks from source vehicle
i and the resources (number of computations per second)
assigned to the destination node j for the tasks of source node
i; (iii) the overhead time, as defined earlier.

Each term of the sum is divided by ς, that, as defined
by equality Constraint (1g), represents the total number of
destination nodes. This allows us to consider the minimization
of the average latency, and not of the sum of all the latency
values, that would penalize solutions that split more to achieve
a lower delay for each couple of nodes (i, j).

Constraint (1h) is the capacity constraint, ensuring that we
cannot assign to a destination node (i.e., a node j for which
at least one yij is 1) more capacity than its current avail-
ability, while Constraint (1j) forces each task to be executed.
Constraint (1i), instead, forces each destination node to be
assigned at least the minimum possible amount of resources
that can be reserved (amin). This also ensures the positivity of
aij , that appears at the denominator of the objective function.

Constraint (1k) forces each task from source i to be com-
pletely fulfilled by the selected destination nodes j. Finally,
Constraints (1l) and (1m) make each destination node j with
yij = 1 perform at least a fraction of task ϱij , and each non-
destination node j with yij = 0 perform no computations for
the current task fi. In our notation, M represents an upper
bound to the value of each ϱij , while ϱlim is a lower bound
to the value of each ϱij .

After formulating VEIP and its mathematical optimization
model, we demonstrate that it is NP-Hard and propose an
efficient, lightweight greedy solution that can be employed
by the OM thanks to the development of proper open source
software.

Finally, it should be noted that VEIP is a Mixed-Integer
Quadratically Constrained Program (MIQCP), since it can be
reduced to a problem with quadratic terms both in the objective
function and in the constraints [40].

Theorem 1. The proposed problem (VEIP) is NP-Hard.

Proof. We prove the result by showing that the Knapsack
problem (0/1 KP), which is known to be NP-hard [41], can
be reduced to an instance of VEIP.

To simplify and reduce the problem, we can make the
following assumptions:

1) one destination node only (e.g., the cloud) can be selected
for all the source nodes, thus, this allows us to remove
the double sum in the objective function and the j index;
furthermore, this allows us to remove Constraint (1g) and
ς from the objective function as it will always be ς = 1;

2) the problem is now supposed to be unsplittable (like in the
case of some scenarios, such as single frame inference),
enabling us to replace ϱij with fi and remove constraints
from (1k) to (1m);

3) task are allowed to be unfulfilled (this removes Constraint
(1j));
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4) the resource allocation for each source task ai is now
given as a positive number greater than amin, and it does
not represent anymore a decision variable.

Under these assumptions, the problem now has only one set
of decision variables (yi, ⇐i), while the other values are known
input quantities. The problem can be thus rewritten as:

minimize i, j

ε∑

i=1

(2 · L(i) + fi

ai
+ o) · yi =

ε∑

i

ki · yi

(2a)

subject to:
ε∑

i

ai · yi ↗ c (2b)

This is an instance of an NP-Hard 0/1 KP problem, thus
also VEIP is NP-Hard.

A. DG-VEIP: A Greedy Solution to VEIP
As the VEIP problem proved to be NP-Hard, the OM can

employ an efficient Greedy Algorithm to solve it. We thus
propose a distributed VEIP algorithm, here referred to as
DG-VEIP. As an assumption, we consider the cloud/MEC
as always reachable and available. Furthermore, DG-VEIP
requires L(i, j) to be properly set depending on the scenario
and on the set of tasks, and it is designed to be executed
for each source vehicle i. Finally, we assume that connected
vehicles are equipped with lane-level accurate GNSS receivers,
as discussed earlier.

The algorithm pseudocode is reported in Algorithm 1.

Algorithm 1 Distributed Greedy VEIP Algorithm (DG-VEIP)
1: Define an empty list of vehicles V
2: Define the remaining task fraction to be assigned ωrem → fi
3: for n ↑ N : path between i and n exists in Rij do

4: if n ↓= k then

5: Compute dn
cn

6: else

7: dn
cn

→ ↔
8: end if

9: Add node to list V .
10: end for

11: Sort list V by ascending dn
cn

12: for v ↑ V and ωrem > 0 do

13: if cv > 0 then

14: Request all available capacity to the node: aiv → cv
15: if v ↓= k then

16: cv → 0
17: end if

18: Assign task fraction ωiv such that it is completed before or in a ti
time

19: ωrem → ωrem ↗ ωiv
20: end if

21: end for

At each time step ti, each source vehicle i generates a num-
ber of tasks to be executed. The number of total computations
needed fi is used to represent these tasks.

Thanks to the enhanced LDM, each vehicle can scan the
list of the N connected nodes (which can include the vehicle
itself at dn = 0), and add them to a new list V (line 9), which
is sorted in ascending order by the ratio of the distance and
the available node capacity (which can be referred to as cost).

The cloud (or MEC) node is artificially assigned the highest
ratio among all other nodes (ideally ⇒), so that it will be
selected last, only if needed (line 7). As mentioned earlier,
the distance already takes into account the mobility pattern
followed by the vehicles. Indeed, the speed of the vehicles
will directly affect how the distance evolves at each time step
ti for which DG-VEIP is executed, which in turn influences
each cost term. The algorithm then loops over all the nodes in
V (line 11) until all the fi computations have been offloaded
(or performed by itself or by the cloud). The variable ϱrem

represents the number of remaining computations which need
to be offloaded. If a node in V is found with free computation
resources (line 12), the source vehicle will require all its
capacity (line 13), to try to minimize the latency, and assign
a task fraction ϱiv such that the task is either completed in
a ti time, meeting the deadline of the next time frame, or
before that time, if the node has more computation resources
available (line 17). Finally, it should be mentioned that the
cloud is supposed with no hard resource limits, and it can
thus be always selected as last possibility when no other local
vehicles can be selected. DG-VEIP has been implemented
in a dedicated MATLAB function, which has been exploited
to evaluate its usage within Edge-V and which is going to
be become publicly available, on GitHub, under the GPLv2
license.

DG-VEIP represents a sample, yet effective, greedy algo-
rithm that can be integrated into the OM to provide solutions
with a limited complexity of O(n · log(n)). Indeed, the first
for loop has a complexity of O(n), and the second for loop
O(v) with v ↗ n (thus, at worst it will also run in O(n)). The
most complex operation from an algorithmic point of view
is instead sorting (line 11), that can be implemented to be
executed in O(n · log(n)). Combining the complexity of the
different phases, we get O(n) + O(n) + O(n · log(n)), with
the most significant term being O(n · log(n)). Therefore, the
overall algorithm complexity is O(n · log(n)).

It should be mentioned that DG-VEIP represents a base-
line algorithm to efficiently offload tasks in Edge-V . More
advanced versions can be easily implemented as part of the
OM, and they are currently being developed, including an
enhancement that considers the channel RSSI, in addition to
dn
cn

.
Finally, it should be mentioned that a simplified version of

DG-VEIP has been employed to demonstrate the effectiveness
of Edge-V in the field (Section VI-C2), as a possible Offload-
ing Manager algorithm implementation.

V. EDGE-V : PROTOTYPE DESIGN

Figure 4 provides a high-level overview of our Proof-of-
Concept. As can be seen, the Edge-V prototype is designed
to be deployed inside an RSU Road Side Unit (RSU) and
multiple OBUs. Specifically, we assembled three OBUs, to be
deployed on up to three vehicles, and one RSU, which we then
used to evaluate Edge-V on the field and in a laboratory envi-
ronment. As mentioned, Edge-V is characterized by its open-
ness. Therefore, all key features of our framework have been
implemented using low-cost, commercially-available hardware
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and with well-documented open source software components.
We selected three IEEE 802.11-based standard, i.e., IEEE
802.11ac for the 5 GHz Wi-Fi internal connectivity, IEEE
802.11p for the DSRC link, and IEEE 802.11ad for mmWave
at 60 GHz. It should be mentioned how a commercial C-V2X
module supporting Sidelink communication at 5.9 GHz could
be possibly employed instead of IEEE 802.11p, yielding a
similar performance with slightly higher network latency [42].
However, we focus on IEEE 802.11p due to the wider hard-
ware availability and being it the most deployed technology
in Europe.

IEEE 802.11p
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AIM

IEEE 
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over 
TCP

V2X services

CAMs

GNSS
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gpsfake container ssh
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Fig. 4. The proof-of-concept prototype of Edge-V .

A. Hardware Components
The prototype hinges upon customizable embedded PC

Engines APU2E4 hardware boards [37], equipped with a quad-
core AMD GX-412TC 1 GHz embedded CPU and 4 GB of
RAM, running the latest version of OpenWrt-V2X (21.02)
and with a maximum power consumption of around 12 W.
OpenWrt-V2X is a patched version of the OpenWrt embedded
Linux distribution, enabling IEEE 802.11p communication
and providing additional tools for automotive services [43].
This version of OpenWrt has been successfully evaluated in
past research works, together with 5.9 GHz-enabled UNEX
DHXA-222 wireless cards, in both static [44] and dynamic
scenarios [18].

Each board has been enhanced with the installation of:
• An Atheros AR5B22 mPCIe wireless module for the

IEEE 802.11p interface. This module relies on the same
chipset (AR9462) as the UNEX DHXA-222 cards, and it
is characterized by the same performance and maximum
selectable transmission power (18 dBm).

• A Compex WLE1216V5-23 Multi-User Multiple-Input
and Multiple-Output (MU-MIMO) 4x4 IEEE 802.11ac
mPCIe card, providing a relatively high maximum trans-
mission power (up to 29 dBm with MCS 0). As this mod-
ule requires a 5V additional power supply, we used mini
PCI express extender cards, which have been installed

in one of the APU2E4 miniPCIe slots and on which we
soldered a jumper cable. The cable has been soldered,
in particular, to the reserved pins of the extender cards
(45, 47, 49, 51), which can also be used to provide an
additional power supply to the Compex chips.

Each APU2 board (both OBUs and RSU) is connected to a
MikroTik wAP 60G [39], through one of the available Ethernet
ports. These devices are IEEE 802.11ad routers working in
the 60 GHz unlicensed spectrum and equipped with 6x6
planar phased antenna arrays, covering an angular range of
60 degrees. According to [18], they are able to reach up to
300 m with an RSSI higher than -70 dBm, in nearly ideal
Line-Of-Sight (LOS) conditions. Since these devices are still
unable to establish direct peer-to-peer links, we deployed an
additional MikroTik wAP 60Gx3 Access Point, to which all
the devices in the testbed are connected and acting as relay
node. This strategy makes the client devices appear as if they
are directly connected together. Finally, since the APU2 boards
do not embed a GPU for executing DL tasks, we interfaced
each board (except the RSU one) with an Nvidia Jetson Nano
Development Kit. The Nvidia Jetson Nano can be exploited
for GPU computation and can be easily connected to an APU2
board through a Gigabit Ethernet point-to-point link.

It should be mentioned how the Nvidia Jetson Nano employs
an ARM Cortex-A57 MPCore CPU, a GPU with a perfor-
mance up to 512 GFLOPS, and 4 GB of RAM. Due to the
available resources, with a model such as MobileNet v3 [45],
a Jetson Nano is typically able to perform inference on one
frame at a time.

B. Software Components

The European ETSI ITS-G5 set of standards has been
taken as reference for the implementation of the enhanced
wireless stack. Therefore, CAM messages are used to pe-
riodically broadcast, via IEEE 802.11p, vehicle information
such as speed, acceleration, position and heading. However,
there are currently no standardized messages for the exchange
of channel-related and load-related metrics, as required by
Edge-V . This data is of utmost importance to enable the next
generation edge intelligence use cases, which require, at the
same time, offloading and local computation to reduce latency.
Hence, we designed an additional, ETSI-compliant, optional
container (the Channel and Node Status Container) that can be
inserted inside standard CAM messages, enhancing them with
the information needed to enable VEI and task offloading.
Our proposed container has been defined by upgrading the
standard CAM specifications, written in the ASN.1 description
language [31]. Starting from the ASN.1 definition, it was then
possible to generate the code for the encoding and decoding
functions thanks to the asn1c tool [46].

The supplementary container1 comprises various informa-
tion, including (i) the load on CPU, GPU, and RAM of the
OBU, (ii) available disk space, (iii) RSSI and data rate of both
V2X-dedicated (e.g., DSRC) and additional (e.g., mmWave)

1The ASN.1 file is available here: https://github.com/francescoraves483/
EnhancedCAMs-asn1
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links, (iv) IP addresses of on-board services, and (v) MAC
addresses of on-board devices.

In addition to the definition of enhanced CAMs, we de-
veloped a new software module called Open Cooperative
Awareness (CA) Basic Service (OCABS)2 to implement the
ETSI CA Basic Service. It includes an implementation of
GeoNetworking [32], Basic Transport Protocol [47] and the
Facilities Layer for the transmission of both standard and
our enhanced CAMs. OCABS needs GNSS data as input,
in order to properly encode and broadcast the CAMs. This
data can come either from pre-recorded traces (which are then
replayed in a container thanks to tools like gpsfake), or
from a USB GNSS receiver, thanks to the default Linux GNSS
daemon gpsd. Furthermore, we developed a novel Automotive
Integrated Map (AIM)3 to realize the Edge-V LDM. AIM can
receive and decode enhanced CAMs, and store the information
contained in the Channel and Node Status Container into the
local database, and V2X services can request the needed infor-
mation (including the VEI-specific data) through a JSON-over-
TCP interface. AIM is designed to be updated following the
ETSI standards, that foresee a CAM transmission frequency
between 1 Hz and 10 Hz, depending on the vehicle dynamics
and kinematics. This helps reducing the load on the channel
when kinematics are slowly evolving, increasing the frequency
when more frequent updates are needed due to rapidly chang-
ing dynamics, and guaranteeing proper update rates for use
cases such as task offloading. Finally, a novel lightweight
protocol, encapsulated inside UDP, has been defined to transfer
with low latency CPU, GPU and RAM usage of the Nvidia
Jetson Nano to OCABS. This custom protocol, called Extra
Device Communication Protocol (EDCP) is based on a client-
server paradigm. Each Nvidia Jetson Nano runs a server as a
service, waiting for requests from OCABS (acting as EDCP
client). Every time a request is received, it is parsed and a
reply is immediately generated, containing the resource usage
information. This reply is then sent to the EDCP client (i.e.,
OCABS) running on the APU2 board, and the information
within is used to populate enhanced CAMs.

VI. EDGE-V : PERFORMANCE EVALUATION

Thanks to our prototype, it was possible to evaluate
Edge-V both in a laboratory environment and on the road
with two real vehicles and one RSU. Two significant use
cases have been investigated: (i) direct data exchange between
vehicles with high throughput and low latency; (ii) DL-based
object detection in a VEI scenario. Before presenting the
results of the tests with our prototype, we have also evaluated
Edge-V through trace-based simulations, considering an OM
implementing DG-VEIP.

A. Simulation with Vehicular Traces

An ad-hoc MATLAB simulator, integrating a function with
DG-VEIP, has been developed to simulate a vehicular com-
munication system starting from the SAMARCANDA dataset

2https://github.com/francescoraves483/OCABS-project
3https://github.com/francescoraves483/AIM-AutomotiveIntegratedMap

[13]. This dataset, in its CSV version, comprises the traces
of 19 real vehicles travelling in an area near Turin, Italy. All
vehicles are equipped with Edge-V and are supposed to be
able to reach the cloud through a proper deployment of RSUs
in the simulated scenario. As baselines for comparison, we
consider both the case in which only a remote cloud node
is leveraged (i.e., the same cloud node to which vehicles can
send their tasks when no neighboring vehicles are available),
and the case of a nearby MEC server satisfying the requests
from vehicles.

The following simulation parameters have been used, to
analyze a high-load scenario in which vehicles are busy
performing other local tasks in addition to the tasks to offload:

• total simulation time: 1124 s, corresponding to the length
in time of the shortest trace in SAMARCANDA;

• task generation and DG-VEIP execution periodicity: 1 s;
• mmWave V2V latency L(i, j) = 0.7ms, consistently

with the results of [18];
• overhead time oj ⇑ 0, i.e., considered to be negligible;
• mmWave cloud latency L(i, k): Generalized Extreme

Value latency distribution with φ = 6.89932 ms,
µ = 64.5928ms and ε = 0.11209, obtained from several
measurements from our laboratory towards a real cloud
Amazon AWS virtual machine;

• MEC latency L(i, k), when a MEC server is considered
instead of a cloud node for the baselines: Logistic latency
distribution with µ = 10.8047 ms and φ = 1.1361 ms,
obtained from real measurements towards a MEC server
located less than 1 km away;

• dlim = 140, consistently with the Edge-V road tests
described later;

• S = N\{k}, i.e., each vehicle has been considered as
both a source and possible destination node;

• each source always offloads its own tasks, without ful-
filling them by itself;

• cloud capacity ck = 45 computations
s

• MEC server capacity, when a MEC server is con-
sidered instead of a cloud node for the baselines,
ck = 45 computations

s
• varying task size fi = [0.1, 0.5, 1, 10, 20, ..., 60];
• maximum task deadline: 1 s.
Figure 5 plots the comparison of our DG-VEIP algorithm

with respect to (i) a cloud-only baseline, (ii) a MEC server-
only baseline, and (iii) a solution gathered through the Gurobi
solver, with different values of task size fi and by assigning a
random remaining capacity to each vehicle at each time frame
between 0 and a maximum capacity value.

The Gurobi solution has been obtained as a baseline to show
what can be achieved through a nearly optimal solution, that,
however, requires significantly more time to be computed.
Additionally, running a solver like Gurobi on an embedded
OBU of a vehicle would be hardly feasible as they are not
designed for execution on small embedded operating systems.

It should be noted how the Gurobi baseline does not
represent the optimal solution, as the solver was stopped after
1 second of computations for each time frame. On the one
hand, the choice of a 1 second time limit was necessary to
gather our results in a reasonable time, as computing the
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Fig. 5. Average end-to-end latency of the DG-VEIP as a function of (a) task
size, (b) maximum On-Board Unit computational capacity. Plot (c) shows
the total number of task fractions offloaded to cloud due to unavailability of
neighboring vehicles.

optimal solution of a complex MIQCP problem could require
a very long amount of time for each time step. On the other
hand, this time already exceeds the requirements of real-time
vehicular networks, in which latency may be required to be
as low as 100 ms, and in which the minimum standardized
message periodicity for CAMs is 1 second [31]. Additionally,
experiments show it already yields results not too far from
the optimal and a fair baseline for DG-VEIP: on an instance
with fi = 20, raising the limit to 5, 10, 20 s improves average
latency by only 24.4%, 29.8%, 30.8%, with gains plateauing
after around 20 seconds.

When compared to a cloud-only baseline, our VEI solution
is much more effective when large tasks are being offloaded,
such as images for object detection. This is due to the larger
tasks being splitted with a higher probability, depending on the
available neighboring vehicle capacity. These tasks can thus
be more efficiently splitted and sent to nearby vehicles, that
will be able to execute the task fractions in parallel and then
send back the results with the low latency guaranteed by V2V.

For instance, a set of tasks of size fi = 50 can be executed

within the deadline by Edge-V , as opposed to a cloud-
only approach when cloud capacity is 45 computations/s.
Although the results could be improved with more advanced
optimization techniques, it should be noted that the obtained
trend should retain generality, with large tasks benefiting more
from local offloading than smaller tasks. Furthermore, the
results show how an increase in the maximum local vehicle
capacity can lead to an improved overall latency in a VEI
approach.

When considering instead a MEC server-only baseline, the
advantages of leveraging computing resources located nearby
the end user are clearly expressed by a 9% decrease of the
end-to-end latency with respect to the cloud-only baseline.
However, DG-VEIP appears to outperform MEC-only cases
for large tasks.

Figure 5(c) illustrates the total number of task fractions
offloaded to the cloud during the whole simulation time.
These fractions, which may represent entire tasks, have been
offloaded to the cloud due to the absence of nearby connected
vehicles with enough free resources. This trend proves how,
for larger tasks, splitting is more efficient and leads to a
stabilization in the number of task fractions offloaded to the
cloud for task sizes greater than 30 computations per second,
further justifying the behaviour observed in Figure 5(a).

Finally, it is worth noticing how DG-VEIP takes signifi-
cantly less time to provide a solution that, even if it leads to a
worse average latency than the Gurobi baseline, lets vehicles
complete the tasks within a given deadline up to a task size of
50. Indeed, Gurobi takes 1 full second to compute the solution
depicted in the plot, that would already be enough to miss the
deadline if deployed on vehicles instead of DG-VEIP.

B. Laboratory tests

1) Vehicular Data Exchange use case: The first use case
generalizes several automotive applications requiring a low-
latency direct exchange of data, such as video streaming, See-
Through, and online gaming. We employed our prototype,
in which two laptops (i.e., on-board devices that need to
exchange data) are associated with the IEEE 802.11ac access
point generated by the respective APU2 boards. We performed
several latency and throughput tests to evaluate the perfor-
mance of our framework, through the prototype hardware.

The tests have been performed with the LTNT measurement
framework software [48]. Thanks to LTNT, it was possible
to reliably measure RTT and throughput between two OBU
boards (i.e., between two vehicles in a static scenario, with
the aim of performing a baseline assessment). The results are
depicted in Figure 6.

The plots show the Cumulative Distribution Function (CDF)
for both throughput and RTT, directly measured between
two APU boards. The top plots depict the results of direct
mmWave Vehicle-to-Vehicle communication, while the bottom
plots illustrate the results of a longer-range V2I2V scenario,
where the RSU acts as a message relay between the boards. As
can be seen, the overall RTT always remains below 5 ms, with
an average of around 1.4 ms for the direct communication case
(V2V) and 3.7 ms for the relayed communication (V2I2V).
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Fig. 6. CDFs of the mmWave latency and throughput during a one-day-long
test. (a) V2V throughput (b) V2V latency (b) V2I2V throughput (through
RSU) (d) V2I2V latency.

This proves that mmWave is suitable for a very low-latency
high-throughput scenario, as it reaches more than 500 Mbit/s
when using both TCP and UDP. This value, despite it could
actually increase without the extra step through the mmWave
AP, further highlights the benefits that mmWave technology
could bring to the next generation of automotive applications.

2) Object detection and task offloading use case: The
second use case showcases a DL task offloading application
enabled by Edge-V , considering three OBUs and one RSU
connected to the cloud, i.e., to the Amazon AWS Virtual
Machine through the laboratory network. It should be recalled
how task offloading can be beneficial both to avoid expen-
sive hardware OP, and to make vehicles able to manage a
significant number of tasks in parallel, which could exhaust
the resources available on-board. The less safety critical tasks
(but still with strict latency and throughput requirements) can
be thus offloaded to other vehicles (or, if needed, to the
infrastructure) that provide free resources.

With the aim of testing DL task offloading, an object
detection service based on the Microsoft Common Objects in
Context (COCO) dataset [49] has been developed. This system
has been integrated as an on-board service in Edge-V and it
enables a vehicle, each time, to offload either to other vehicles
or the cloud. The OBUs implement the vehicular edge, while
a Virtual Machine (a t2.2xlarge Amazon AWS instance with
8 virtual CPUs and 32 GB of RAM) has been adopted to
implement the cloud. The latter can be reached thanks to the
RSU, either connected to our laboratory network, concerning
the indoor tests, or to the T-Mobile network thanks to an
LTE link, concerning the outdoor tests. The OBUs rely on
a less accurate, but less computationally expensive, object
detection model, namely Faster R-CNN Large, with MobileNet
V3 backbone [45] and executed on the Jetson Nano boards.
On the other hand, the cloud employs YOLOX-s [50], more
computationally demanding but also more accurate.

Due to the available resources on the RSU itself, the latter
has has not been considered as an offloading edge node,
i.e., offloading occurs on the cloud through the RSU itself.

However, it is important to note that a more capable RSU
could indeed be considered as a node for offloading tasks and
hosting a MEC server.

In addition to the object detection system, we realized
an implementation of the Offloading Manager. Notably, we
developed two components. The first is an Object Detection
Offloading Manager, running on one OBU. It includes a full
COCO dataset to emulate frames coming from an on-board
camera, on which object detection needs to be performed.
As the aim is to implement an Offloading Manager based on
the VEIP model, the decisions need to be taken to minimize
the overall average latency. Therefore, this component will
select the best destinations for each offloaded task through
the information available within AIM, including available
resources on the target, distance from the target and RSSI
of the mmWave channel to the target. Offloading is performed
to the cloud through the RSU only if no vehicles near enough
or with enough free resources are available. To this aim, the
Object Detection Offloading Manager implements a simplified
version of DG-VEIP, in which offloading to another vehicle
occurs only if it is within a certain mmWave RSSI and
distance (i.e., if the mmWave link can guarantee a stable
connectivity and a low L(i, j)) and if it has enough resources
available (i.e., if it satisfies the VEIP Constraint (1h) in the
case of one destination node only). The second component
is instead an Object Detection Offloading Worker, running on
the other OBUs and on the cloud. This component represents
the implementation of a V2X on-board service waiting for
frames from other nodes, on which object detection should
be performed. When frames are received from the Object
Detection Offloading Manager, it performs the inference, and
then returns the detection results to the sending node, in a
JSON format.

The results of a test session on the full COCO dataset
(i.e., 5000 images, in the selected version – 2017 Val images
[49]) are shown in Figure 7 (with 95% confidence intervals).
The plots depict the average end-to-end task offloading and
object detection latency, and the mean average precision, as a
function of the frame offloading frequency, which has been
varied from one image every 1.6 s (i.e., 0.625 Hz) to 10
images per second (i.e, 10 Hz). A cloud-only approach has
been considered as a baseline. With the aim of providing
comparable results, we measured the time needed by the cloud
to perform inference on the Nvidia Jetson Nano model and
assigned that computing time to each actual inference on
the Nvidia boards, for each image, instead of considering
the embedded board computing times. This is technically
sound, as actual vehicles are expected to provide much better
computation power.

As can be seen in Figure 7(a), offloading to nearby vehicles
leads to a noticeably reduced overall latency. This comes with
a minor loss in terms of precision, as depicted in Figure 7(b).
Indeed, offloading to nearby vehicles can help to reduce the
end-to-end latency of more than 150 ms, up to 5 Hz. The
best result is achieved at 1.67 Hz, with up to 286 ms latency
saving, corresponding to a 59% improvement with respect to
a cloud-only baseline. Despite a slight decrease in precision
from 0.403 to approximately 0.328, the reduction in latency
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is considerably more significant, showing the advantages of
Edge-V .
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Fig. 7. (a) End-to-end processing and network latency and (b) Overall mean
average precision accuracy of the object detection, as a function of the image
generation frequency.

In addition, it is possible to notice how the latency of
Edge-V stays around 200 ms under 5 Hz, and then raises
noticeably when the frame frequency changes to 10 Hz,
with a slight increase already observable over 3 Hz. This
also corresponds to a small accuracy increase. This behavior
arises as each OBU is limited by the resources available
in each Nvidia Jetson Nano. Indeed, as stated earlier, each
Nvidia board can only perform inference on one frame at a
time. The Offloading Manager may find that no vehicle is
available for offloading when the frequency is high enough,
thus automatically sending that frame to the cloud, which
causes a higher latency but provides slightly better accuracy.
This behaviour becomes more noticeable as the frequency is
increased to 10 Hz as frames are more likely to be offloaded
to the cloud.

Finally, a slight latency decrease can be observed in the
cloud-only case, when the frame frequency is increased from 2
to 3 Hz. This is solely due to the network architecture between
the test location and the Amazon AWS Virtual Machine, which
seems to perform better when data is exchanged more often.

C. Road tests
The road tests, with two real vehicles and one RSU, have

been performed on a straight stretch of road near Scarborough,
Maine, USA, allowing us to test the effect of distance on
the mmWave links up to 240 m, under real environmental
conditions.

We equipped the two vehicles with the needed OBU hard-
ware and a GNSS receiver (with 10 Hz update rate) and
set up a fixed RSU, as depicted in Figure 8. The chosen
GNSS receiver, equipped with a U-blox chipset, offers a
high update rate and precise localization. This ensures that
Edge-V can depend on accurate positioning data, circum-
venting the problems of low positioning accuracy that could
adversely affect the performance of algorithms like DG-VEIP.

Fig. 8. Road tests experimental setup.

Indeed, testing the effect of different positioning accuracies
on the performance of the framework would require many
vehicles to get relevant results in the field, and it is thus outside
the scope of this paper.

Additionally, we employed one laptop inside each vehicle,
connected to the internal IEEE 802.11ac Access Point, to act
as on-board device connected to Edge-V , similarly to the
laboratory test setup.

The primary objective of the road tests was to assess our
POC in real-world conditions, where environmental factors are
expected to affect communication.

1) Vehicular Data Exchange use case: With the aim of
testing the vehicular data exchange use case, as described in
Section VI-B1, we developed specialized Python scripts that
can output synchronized network performance (i.e., latency
and throughput) and relative distance information, thanks to
the reception of data from the GNSS receiver. These scripts
make use of both the LaTe latency measurement tool [51] and
iPerf 3.

One vehicle (Vehicle 1) was then moving along the road,
and one vehicle (Vehicle 2) was parked off the road, while
the RSU was placed 32.6 meters in front of Vehicle 2. We
measured the effect of distance on the capability of Edge-V to
provide a high-throughput, ultra low-latency communication
between two on-board devices. As mentioned earlier, the lap-
tops located in two different vehicles can directly communicate
thanks to the IEEE 802.11ac access points located inside
each vehicle, and to the mmWave links established between
the different nodes (i.e., vehicles and RSU). We focused our
analysis on the UDP throughput, as UDP appears to be more
suitable than TCP to vehicular scenarios, and on the RTT with
a UDP payload of 524 B. Both a direct V2V communication,
and communication through the RSU (realizing a V2I2V
communication) have been tested. The first scenario (V2V)
has been realized by mounting the mmWave AP on Vehicle 1,
while the second scenario (V2I2V) was configured by moving
the mmWave AP from Vehicle 1 (which was consequently
equipped with a client) to the RSU installation. The V2I2V
communication reflects now a real relayed communication
thanks to the AP being now directly connected to the RSU
APU board.

The most significant results are depicted in Figure 9. As can
be seen, the obtained throughput and RTT results are in line
with the laboratory measurements, considering the addition of
two IEEE 802.11ac links between the devices (one inside each
vehicle), besides the mmWave communication. The results
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cles; each point corresponds to a one-minute-long test, with 95% confidence
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Average UDP throughput.

show how Edge-V can yield a very stable RTT, on average
lower than 5 ms, up to a distance of 110 m. Then, the V2V
communication starts to experience an increased instability
when the distance becomes greater than 130 m, even though
the RTT mostly remains lower than 10 ms. These values are
very good, as they are compatible with the requirements of
even the most demanding automotive applications. Indeed,
ETSI defines a maximum end-to-end latency of 50 ms for
safety applications [13], [52], [53], which was reduced to 10
ms by the 5G-CARMEN project [54] for highly automated
centralized maneuver management.

The relayed V2I2V communication, through the RSU, can
instead provide stable values up to around 220 m. Then, 230
m represents a limit distance, since the RSU is placed 32 m
ahead of Vehicle 2. The RTT below 100 m is overall slightly
higher, but the results show how a V2I2V communication can
effectively provide an extended range mmWave communica-
tion, thanks to the deployment of one or more RSUs.

Similar considerations hold for the measured throughput,
which is always above, on average, 270 Mbit/s, thanks to
the combination of IEEE 802.11ac and mmWave. Combining
these values with the ones measured indoor without the IEEE
802.11ac links (i.e, more than 500 Mbit/s), it is possible
to prove how the overlying mmWave network can provide
enough bandwidth to accommodate multiple on-board devices
on each vehicle.

The results also indicate that a distance between 130 and
150 m can be considered a safe threshold for stable and high
quality communication. Indeed, the measured values become
less stable when the relative distance between the two vehicles,
in a direct V2V communication, becomes greater than 130 m.
Furthermore, the slight reduction in throughput for relatively
short distances is likely due to the angle between the mmWave
devices. Indeed, our devices have a limited angular range
(i.e., 60 degrees) and, for shorter distances, the effect of
slightly different angles in the device placement becomes more
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Fig. 10. Average end-to-end object detection latency as a function of vehicle
distance and task generation frequency.

evident.
Finally, it should be highlighted that all the RTT and

throughput values have been collected while the vehicles are
exchanging enhanced CAMs through the 5.9 GHz DSRC link
to populate their LDMs. However, both the internal Wi-Fi
and mmWave were unaffected thanks to the usage of different
unlicensed spectrum bands.

2) Object detection and task offloading use case: Con-
cerning the DL task offloading use case, we considered the
same setup as depicted in Figure 8, with two vehicles (i.e.,
two OBUs) and one RSU. We employed the same object
detection service developed for the laboratory tests. As shown,
the Object Detection Offloading Manager was deployed on
Vehicle 1, moving along the road, while the Object Detection
Offloading Worker has been launched on Vehicle 2, parked off
the road.

The most significant results are reported in Figure 10,
showing the average end-to-end latency experienced by the
Offloading Manager in Edge-V as a function of the relative
distance between the two vehicles. All the measurements are
gathered with Vehicle 1 offloading frames either to Vehicle 2 or
to the cloud, and compared to a cloud-only offloading baseline,
in which frames are offloaded to the cloud via the RSU. As
mentioned earlier, the Object Detection Offloading Manager
implements a modified and simplified version of DG-VEIP,
with a distance limit of 140 m (to guarantee a stable mmWave
connectivity, in accordance with the previous road tests) and
an RSSI limit of -65 dBm. The last limit comes from the IEEE
802.11ad field test results presented in [18].

As can be seen, the latency reduction with respect to the
exclusive usage of cloud is significant, as long as Vehicle 2
is available and offloading occurs locally. In particular, the
maximum latency improvement was observed to be around
65% for the 1 Hz case (at around 130 m) and 52% for the
2 Hz case (at around 110 m). Moreover, it can be noticed how,
when the distance is increased over 140 m, the performance
decreases since no vehicular edge offloading is performed and
the cloud is used. Despite the latency increase, after some
tuning of the distance limit, Edge-V still continues to provide
a reliable service, even when no vehicles are available or under
no stable V2V mmWave coverage.

The plot in Figure 10 also shows a slightly lower (up to few
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tens of milliseconds) average latency when offloading frames
at 1 Hz. This can be explained by the fact that the resources
on Vehicle 2 are more often busy when new frames need to
be offloaded at 2 Hz, thus causing slightly more frames to
be offloaded to the cloud. On the other hand, the difference
in the cloud case is due to the network architecture with the
Amazon AWS Virtual Machine mentioned earlier, that seems
to perform better for higher frequency data exchange. Finally,
it is worth mentioning how the same considerations reported
for Figure 6 also apply here to explain the slightly higher
latency, on average, when the distance between the vehicles is
relatively short.

D. Considerations on scalabilty
It should be highlighted how the laboratory and field tests

involved a limited number of vehicles and devices due to, on
the one hand, the complexity of setting up a laboratory tests
with a very large number of devices, and, on the other hand,
the unavailability at present time of comprehensive simulation
platforms supporting both DSRC and 60 GHz mmWave sce-
nario. However, the results retain significance as they show the
performance of Edge-V in an easily reproducible scenario,
that represents a baseline for deployment also at a larger scale.
In addition, we plan to extend the ms-van3t simulator [42] to
include Edge-V and mmWave as future work.

When deployed at a much larger scale, for instance con-
sidering a city-scale deployment, Edge-V can still provide a
fairly good performance, thanks to (i) mmWave employing
beamforming to reduce interference that would more signifi-
cantly affect an omnidirectional V2X communication, and that
can potentially handle a few hundreds of devices with proper
device selection and beamforming optimization algorithms
[55], combined with narrow mmWave beams [4], (ii) DSRC
reacting to an increased channel load with techniques such
as the Decentralized Congestion Control (DCC) [56] and (iii)
the larger number of connected vehicles enabling offloading
to more nearby nodes, making it less likely to rely on the
infrastructure, that would incur an increased communication
latency.

VII. CONCLUDING REMARKS

We have proposed Edge-V , a framework exploiting the
combination of unlicensed spectrum technologies, together
with an embedded smart offloading service, to provide full-
fledged Vehicular Edge Intelligence (VEI). We have presented
a detailed description of Edge-V , modeled the Vehicular
Edge Intelligence Problem (VEIP) and demonstrated that it is
NP-Hard. We have developed a distributed greedy algorithm
(DG-VEIP) to efficiently solve the VEIP, and have evaluated
its performance on an open vehicular dataset [13]. We have
developed a proof-of-concept testbed for Edge-V , based on
open-source software and low-cost customizable hardware.
Our road and laboratory tests proved how Edge-V can provide
very low latency and high throughput. We have also shown
how local distributed offloading with Edge-V can outclass
cloud-based approaches on a real-life object detection system.
Finally, we hope our paper will inform ongoing standardization

efforts, both for the next generation of Wi-Fi-based V2X
technologies and in the definition of the new versions of
CAMs, thanks to the openness of both Edge-V and the POC
we developed.
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