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A B S T R A C T

During advanced surveillance missions, Unmanned Aerial Vehicles (UAVs) usually require the execution of
edge-assisted computer vision (CV) tasks. In multi-hop UAV networks, the successful transmission of these
tasks to the edge is severely challenged due to severe bandwidth constraints, and the possible node failures. To
address these critical challenges, we propose a novel A2-UAV framework that optimizes the number of correctly
executed tasks at the edge. In stark contrast with existing art, we take an application-aware approach and
formulate a novel Application-Aware Task Planning Problem (A2-TPP) to optimize routing, data pre-processing
and target assignment for each UAV. Our formulation explicitly takes into account (i) the relationship between
CV task accuracy and image compression for the classes of interest based on the available dataset, (ii) the target
positions, (iii) the current energy/position of the UAVs, and (iv) the possible node failures. We demonstrate
A2-TPP is NP-Hard and propose a polynomial-time algorithm to solve it efficiently. We extensively evaluate
A2-UAV through simulation and real-world experiments using a testbed composed by four DJI Mavic Air 2
UAVs. Results on image classification show that A2-UAV attains on average around 38% more accomplished
tasks w.r.t. the state of the art, with a 400% improvement in tasks-intensive scenarios. Moreover, we show
that our framework is able to reconfigure the network in case of nodes failure.

1. Introduction

Unmanned Aerial Vehicles (UAVs), commonly known as drones,
have received significant interest for their potential applications in
post-disaster scenarios, where human intervention is challenging or
inefficient, due to the vast or harsh area. The key advantage of Un-
manned Aerial Vehicles (UAVs) is the combined presence of advanced
sensor equipment (e.g., cameras, radars, and GPS), wireless multi-hop
networking and mobility in the same device, thus enabling critical
applications such as automatic target (e.g., object, person) detection
and tracking.

To perform their functions, modern UAVs necessarily depend on the
execution of computation-heavy CV tasks to analyze in real time the
images of the target area. These tasks usually rely on deep learning (DL)
framework using very deep neural networks (DNNs) such as ResNet [1]
and DenseNet [2], which are computationally prohibitive for UAVs [3].
To extend UAVs battery lifetime and keep task execution time within
acceptable levels, offloading the stream of tasks to neighboring edge
servers (e.g., the depot) is a feasible option [4–9]. Fig. 1 shows
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an example of edge-based task offloading in UAVs, where expensive
computational tasks are offloaded to an edge server through multi-
hop connection, without relying on any communication infrastructures
(e.g., cellular networking) that may often be disrupted in harsh envi-
ronments [10]. The result of the computation is eventually sent back
to the UAVs for control purposes.

Unfortunately, UAVs networks typically experience limited bandwidth
and frequent packet loss [11]. Prior work on UAV edge task offloading
— discussed in details in Section 2 — assumes a single-hop commu-
nication between the UAVs and the edge [12,13], or focuses only on
networking aspects on a multi-hop communication [14]. All fall short
in considering the specific task requirements, which ultimately limits
the number of correctly executed tasks. Existing work also rarely uses
a testbed to measure performance experimentally.

In stark contrast, we propose ⥳2-UAV, an Application-Aware (A2)
optimization framework which jointly optimizes UAV network deployment
and task accuracy. Our key intuition is that a different image compres-
sion will result in a different accuracy for the DNN model. Specifically,
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Fig. 1. Edge-based task offloading in UAVs networks.

compressed images have low impact on the network throughput but de-
crease the DNN accuracy. Conversely, uncompressed images are likely
to be classified more correctly but cause higher network overhead. To
better highlight this intuition, Fig. 2 shows an example of an original
and compressed (𝜔 = 20) images of Wildlife and Tools from the ImageNet
dataset [15]. Fig. 2.B shows how a hatchet at compression level 𝜔 = 5 is
less recognizable with respect to its original version (Fig. 2.A), due to
the low contrast with the background and the small object dimension.
On the other hand, Fig. 2.D shows how a jaguar at level 𝜔 = 20 is easily
distinguishable, thanks to its fur pattern and the higher contrast with
the background. We consider lossy compression algorithms for images
(e.g., JPEG algorithm [16]), as lossless algorithms do not usually meet
the requirements of real-time applications.

Trading-off network load and latency with task accuracy while aiming
at maximizing the target coverage is a daunting challenge. ⥳2-UAV con-
siders all these aspects and balances between images compression and
network coverage according to current network conditions and appli-
cation requirements. In Section 3.3 we show that different applications
have starkly different compression-accuracy relationships. Specifically,
⥳2-UAV maximizes the number of accomplished tasks at the edge,
producing a connected coverage formation for the UAVs of the squad
and a compression level assignment for the UAVs that satisfies the ap-
plication requirements. The connected coverage formation is designed
such that it jointly maximizes the number of covered targets, minimizes
network delay due to inefficient routes or channel contention, and
minimizes task miss-classification due to high input compression. We
show through simulation and real-world experiments with a testbed
that Greedy-Application-Aware Task Planning Problem (Greedy-A2-TPP)
attains on the average 38% more accomplished tasks than the state-of-
the-art networking-based approach, with a sharp increase (400% more
accomplished tasks) when the number of tasks to offload drastically
increases.

Handling node failures is a key requirement and major challenge in
UAVs networks. As UAVs have usually low computational power and
energy UAV networks can suffer from node failures, especially when
deployed in vast and harsh area. Node failures not only impact the
communication layers, but in the context of a multi-hop network a
failure can easily impact also the application layer: task-offloading
may be disrupted with severe consequences. Our framework introduces
an application-aware re-optimization scheme (see Section 5) aimed at
restoring connections and resuming task offloading.

This paper makes the following novel contributions:

• We design ⥳2-UAV — a novel application-aware framework that
optimizes the number of accomplished tasks at the edge by find-
ing the best network deployment and compression level assign-
ment for the considered application. We first design a Application
Aware Task Analyzer (A2-TA) to learn the requirements of the
tasks, and to map the possible data compression of the UAVs to
the expected task accuracy at the edge. Then, we define the A2-
TPP to assign the UAVs to the tasks. We prove the NP-hardness
of the problem and formulate a polynomial-time Greedy-A2-TPP
algorithm to solve it efficiently;

• We extend ⥳2-UAV to handle node failures by applying a cost-
efficient re-optimization scheme. Such adaptive ⥳2-UAV can sup-
port network failures as well as a more dynamic nature of targets,
i.e., targets may dynamically appear or change position. We
evaluate the adaptability of ⥳2-UAV showing minimal task loss
even in the face of environmental changes, such as node failures.

• We study the performance of ⥳2-UAV with extensive simulations.
We analyze six different critical applications for UAVs, includ-
ing Search-and-Rescue, Maritime and Wildlife monitoring. We
show how Greedy-A2-TPP accomplishes around 38% more tasks
with respect to existing network-based approaches, thanks to its
application-aware optimization; Whereas, the NP-hard version
(Opt-A2-TPP) attains on average 50% performance increase on
restricted problem instances.

• We implement ⥳2-UAV into a testbed and perform real-field experi-
ments. We consider four UAVs and a Jetson Nano board, mounting
a Raspberry PI for computation and communication. We execute
an image analysis application in which UAVs periodically acquire
images from on-board sensors, with different delay requirements.
We implement four state-of-the-art image classification models
(i.e., DenseNet [2], ResNet152, ResNet50 [1] and MobileNet-
V2 [17]), and one object detection model (YoloV4 [18]) which
are executed at the edge server on the Jetson Nano board, and we
let the UAVs offload tasks through WiFi connection. Experimental
results confirm the outstanding performance of ⥳2-UAV.

This paper extends our previous work [19] introducing an
application-aware recovery technique to re-optimize the network in
case of UAV failures or dynamic changes in the target points.

2. Related work

⥳2-UAV framework jointly optimizes the UAVs deployment and the
DL tasks offloading towards the edge. Moreover, ⥳2-UAV incorporates
a novel technique to tolerate UAV failures, and restore the network
operations.

Considering the multifaced contribution, we survey prior work ac-
cording each distinct contribution of our paper.

2.1. Routing in UAV networks

In the last years, networks of UAVs have been increasingly used
in several scenarios to offload users’ tasks and data to mobile edge
servers [20] or enhance ground user connectivity, acting like aerial
base stations [21]. Considering the novelty of such networks, sev-
eral communication issues have been identified and only partially
addressed [22]. In particular, in the context of aerial communication
and networking several routing protocols have been proposed [23–27]
but, to date, a de facto standard does not exist.

In fact, upon on the operative scenarios, different algorithms may
have better performance. For example, a geographical scheme [28] may
be preferable in case of a single edge and with a good area coverage
(i.e., the drones are almost always connected). Instead, in case of a
few drones in a vast area a controlled mobility scheme is preferable
to deliver packets [29].

2.2. Network restoration in UAVs networks

Several studies have explored the utilization of Unmanned Aerial
Vehicles (UAVs) for network restoration, showcasing the potential of
drones in addressing node failures [30–32]. Park et al. [31] leveraged
drones for network restoration, demonstrating how UAVs can recon-
nect a stationary ad hoc network severely damaged in a post-disaster
scenario. Similarly, Zear et al. [32] propose UAV-NetRest in which they
employ UAVs to assist Network Partition Detection and Connectivity
Restoration. Such work highlights the versatility of aerial vehicles in
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Fig. 2. Examples of application-aware compression. A and C (B and D) represent the images before (after) processing.

mitigating the impact failures in wireless networks, but do not address
the possible failures of drones.

Recent effort have been made to optimize network restoration
strategies in UAV networks [33,34]. For example, Tian et al. [33]
proposed a more optimized approach, emphasizing cooperation among
UAVs to detect partitions or separated clusters due to the high node
and link dynamic. Similarly, Yin et al. [34] address network restoration
keeping into account also the load balance of the new topology and
possible delay constraint. However, these approaches do not target our
scenario, where a edge-assisted UAV network has the primary goal to
offload the collected data to the edge optimizing the application tasks.

2.3. Edge-assisted UAVs networks

Only very recently has the literature considered task offloading in
the context of edge-assisted DL-based applications [11,13]. Chuprov
et al. [11] show how the performance of the end-line ML systems
is affected by the quality of data and network. They consider packet
loss and limited bandwidth in a image classification task, and they
recommend to stop the system when packet loss reaches 2%–5%. In
Section 6.3 we show that our system enables the classification task
even with 15% of packet loss. Chen et al. [14] consider a hierarchical
offloading of computation tasks. Conversely from us, they focus on
the communication and routing of tasks toward a more computational
powerful device, without focusing on the specific task requirements.

Yang et al. [12] propose a hierarchical DL task execution framework,
in which only a few lower layers of a Convolutional Neural Network
(CNN) are on the UAVs, while the edge server contains the higher
layers of the model, which need more resources. However, a single-
hop high-performance 4G network is considered, while we focus on
the more challenging scenario of multi-hop connectivity toward the
edge. Recently, Callegaro et al. [13] proposed SeReMAS, a framework
where the application-, network- and telemetry-based features are used
to select and assign UAVs tasks to the most reliable edge servers.
However, a single-hop system is considered, and data compression is
not explored.

2.4. UAVs deployment algorithms

As one of the output of ⥳2-UAV is a connected coverage formation,
we mention also some prior art on UAVs deployment optimization [14,
35–39], which however does not consider task offloading. Natalizio
et al. [40] have considered the problem of minimizing networking
resources while maximizing the user experience (i.e., perceived qual-
ity) when filming sport events. Moreover, [4,5,41] optimize network
deployment under continuous or periodic connectivity constraints, but
they do not consider critical indicators such as task accuracy with delay
constraints, which are critical to the UAVs mission. Recently, Nguyen
proposed a Steiner-Tree-Based Algorithm (STBA) for target coverage
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Fig. 3. High-level overview of ⥳2-UAV.

and network connectivity [42], where Fermat points and the node-
weighted Steiner tree algorithm are used to find a tree such that most
of the targets are covered, and the UAVs are minimized. In Section 6,
we consider variants of [42] as performance benchmarks for ⥳2-UAV.

We conclude that our work is the first to address a task-offloading
problem keeping as primary goal the application, i.e., we optimize
the executed tasks at the edge. Existing work mostly focuses on the
network and communication aspects, which not always translate in a
good service for the final user.

Our work builds on a previous conference paper [19], and it con-
tributes to a practical problem, proposing a comprehensive framework
for edge-assisted UAV networks. With respect to the conference version,
we introduce the following contributions: we add a more extensive
discussion of related work in Section 2; we introduce a re-optimization
scheme to handle node failures and dynamic changes in the targets, in
Section 5; we extended the experimental section with a new real-field
test to evaluate our new adaptable algorithm in Section 6.3.1; we better
discuss model assumptions, including details on collision resolution
strategies for UAV networks, on the UAV energy consumption model,
and adopted the communication model in Section 3.1.

3. The ⥳𝛚-uav framework

In this section, we give an overview of ⥳2-UAV (Section 3.2) and
describe the two key components of ⥳2-UAV: A2-TA (Section 3.3) and
A2-TPP (Section 3.4).

Fig. 3 shows a high-level overview of ⥳2-UAV. The Application-
Aware Task Analyzer (A2-TA) at the edge server learns the relationship
between the image compression and the accuracy on a set of classes
of interest, and passes its output to the Application-Aware Task Plan-
ning Problem (A2-TPP) solver, which jointly optimizes UAVs positions,
routing policy, and data compression strategy to maximize the number
of correctly executed tasks per unit of time. The optimal network
deployment and image compression levels are sent to the UAVs network,
which moves to the targets, monitors them and streams tasks to the
edge through the multi-hop connection. In case of any node failures
or changes in the target points we apply the re-optimization technique
described in Section 5.

3.1. System model and assumptions

We assume one or more UAVs are deployed over an Area of Interest
(AoI), which contains several targets, e.g., the location of a vehicle,
person, or any entity of interest. Each UAVs is equipped at least with (i)
multimedia sensors (e.g., camera and microphone); (ii) a single radio
for communication; and (iii) a computational unit. The edge server
is equipped with low-latency hardware for DL computation. We do
not rely on any communication infrastructures (e.g., 5G) and assume
edge offloading is realized through multi-hop communication. A UAV
monitors a target by sampling data through its sensors and generates
a task to be executed at the edge. A task could be ‘‘car, bicycle, or bus
detection on a video camera frame every 10 frames’’. The task is then
sent to the edge server through a multi-hop connection, where a state-
of-the-art DL model is run to perform the task. We assume each task
has mission-driven constraints in terms of (i) minimum classification
accuracy given a specified DL model; (ii) maximum latency, defined as

Table 1
Table of symbols.

Notation Description

∱ A set of available UAVs of the fleet
∲ A set of targets to cover
𝜀 The edge server
𝜗com Drone’s communication radius
𝜗sens Drone’s sensing radius
𝜔
𝜛

Distance traveled by a drone
𝜚
𝜛

Drone’s overall energy consumption
𝜍𝜑
𝛻

𝜕ℵ
Amount of data transmitted through the link between
UAV 𝜕 and UAV ℵ

𝜍𝜑
ℶ

𝜕ℵ
Expected task accuracy at the edge, for each task

ℷ
𝜕,ℵ

Estimated channel data rate
𝜍ℸ
𝜛

Position vector assigned by the solver to drone
⊳
𝜛

Energy spent for each distance unit traveled at constant
speed

⊲
𝜛

Energy spent in a steady position
𝜍0
𝜛

𝜕ℵ
Drone 𝜛 monitors the target 𝜕 with a compression ℵ or not

1
𝜛

UAV initial energy
2(𝛻, 𝜔) A tuple with expected accuracy and data size of the frame

of the application scenario 𝛻, with compression level 𝜔

3 The final connected coverage formation returned by the
greedy algorithm

4best Best coverage found during an iteration
4par Partial coverage to enhance or join with 3

the time between the task generation and its successful execution. Thus,
a task is successfully executed if (i) promptly offloaded to the edge; and
(ii) correctly analyzed by the model within a deadline.

Collision avoidance. In this work we do not directly address collision
avoidance. When the UAVs transit from the base station to the assigned
targets and back, we assume they can adjust their height to avoid
obstacles. In fact, UAVs may directly integrate obstacle avoidance
systems [43] or they can adopt online collision avoidance mecha-
nisms [44].

Energy model. In our work, we employ a simple energy model to
keep the optimization linear and efficient. As shown in the Sections
Section 3.4, our model has the advantage to allow energy modes, by
simply setting the proper energy expenditure per unit distance traveled
by the UAVs. We note that one can easily integrate more complex and
non linear models, e.g., those proposed by Goss et al. [45]; or the
consumption model reported in existing work on multiple drones [8,
46,47].

Communication model. As mentioned, in the problem formulation we
utilize a simplified model considering a free-space line-of-sight commu-
nication, adopted for the sake of analytical tractability. In particular
we consider that each drone has 𝜗5 67 communication radius, using
an isotropic antenna with same radiation of signals in all directions.
Therefore, the communication range is uniform, and communication is
possible in all directions within 𝜗5 67. This model is also used for UAV-
to-Edge communication. We envision that this setting is suitable for
free-space line-of-sight communication, which are typically of aerial
communications, especially in scenarios where operations typically
occur in open areas with long distances. While such simplified commu-
nication range 𝜗5 67 is acceptable for such real-world conditions, more
sophisticated models can also be employed if necessary.
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Fig. 4. Main operations of the A2-TA module.

3.2. Overview of ⥳2-UAV

The ultimate goal of ⥳2-UAV is to maximize the number of correctly
executed tasks. To approach this challenging issue, and conversely from
existing work, ⥳2-UAV takes into account how the task success is affected
by the image compression. To this end, ⥳2-UAV jointly optimizes the
deployment of UAVs and the task offloading to maximize the number
of executed tasks. Each UAV is made up of two key modules. First,
the UAV Controller implements networking and data processing deci-
sions (next position, targets to cover, sampling process, and offloading
routes) received from the A2-TPP. Second, the Multimedia Data Pre-
Processing module samples data and creates tasks by pre-processing
collected multimedia data according to the A2-TPP solution.

3.3. Application-Aware Task Analyzer (A2-TA )

The A2-TA module determines the relationship between different
image compression levels and task accuracy so that UAVs can reduce
the amount of transmitted data and avoid network congestion, while
satisfying application requirements.

Fig. 4 shows the workflow of the A2-TA, which is executed before
network deployment, by using the datasets of the specific DL applica-
tion. The A2-TA iterates over the dataset items, creating a new dataset
of pairs (in, truth) for each of the considered compression levels (step
1 and step 2). Each pair is fed to the DL model, which outputs a
prediction for in (step 3). Finally, the predictions are compared with
the ground truth, and the model’s performances are averaged over all
the items according to their compression level (step 4). This process
allows to map each compression level to the average data size and
accuracy obtained with the model.

Formally, let us define the function: 2 ε ∳ ϑ ⨋  R2 mapping an
application scenario in the set ∳ and a compression level in the discrete
set ⨋ = {1, .., 100} a tuple in R2 representing the average accuracy
and data size. This function is learned through the A2-TA module
described beforehand. Each sampled image is compressed according the
compression level 𝜔 by the JPEG compression algorithm [16], and it is
fed into the DL model to estimate average accuracy and data size.

To give an example, we consider 5 scenarios: Maritime (Fire-
boat, Wreck, Lifeboat, Ocean liner, Speedboat), Search-and-Rescue
(SaR) (Fire truck, Ambulance, Police van, German shepherd, Pickup
truck) Wildlife (Kit fox, Polecat, Red wolf, Zebra, Jaguar), Tools
(Screwdriver, Power drill, Hatchet, Hammer, Chainsaw), Pets (Golden
retriever, Pomeranian, Guinea pig, Persian cat, Hamster). Fig. 5.a shows
the accuracy for the different scenarios as a function of the compres-
sion, while Fig. 5.b shows the accuracy for the same scenario when
different DL models are used. The figures highlight the need of the A2-
TA. For example, images of Tools have low accuracy, constraining the
compression at level 𝜔 = 8 to achieve at least 40% of accuracy, while
Wildlife can achieve the same accuracy with higher compression 𝜔 = 25.

3.4. A2-TPP MILP formulation

We formalize A2-TPP as a Mixed Integer Linear Programming
(MILP). Hereafter we denote the edge server as 𝜀, the set of targets to
monitor as ∲ , the set of available UAVs of the fleet as ∱ . The A2-TPP
solver outputs: (i) a connected coverage formation of UAVs, and (ii)
the compression level each drone must adopt to capture images when
inspecting a target (refer to Table 1 for all symbols).

Definition 3.1. A subset of UAVs 8 9 ∱ is deployed accord-
ing to a connected coverage formation, when some of the UAVs
in 8 are employed to inspect a subset of targets . 9 ∲ , while
being connected to the base station 𝜀, either directly or through a
multi-hop sequence of the other UAVs in 8 .

Definition 3.2. A task for a drone 𝜛 ϖ 8 covering a target , ϖ . ,
consists in delivering an image captured from the drone’s on-board
cameras to the base station 𝜀. It is said to be an accomplished task if
two conditions hold: (1) when received at 𝜀, the time since the task was
created is not superior to a threshold <; (2) when the captured image
reaches 𝜀, the DL model outputs a correct prediction for it.

We define the UAV sensing range and communication range as 𝜗sens
and 𝜗com, respectively. We denote with ℸ the position vector of the
entities involved, and to (ℸℏ

𝜛
, ℸ>𝜛) for the ℏ and > coordinates respectively.

In particular ℸ𝜛 is the position of UAV 𝜛, ϱ𝜛 ϖ ∱ at the beginning of
the mission; ℸ𝜕 to the position of the target 𝜕, ϱ𝜕 ϖ ∲ ; ℸ𝜀 the position
of the edge server. We denote with 𝜍ℸ𝜛 the position vector assigned by
the solver to drone 𝜛, ϱ𝜛 ϖ ∱ . We define the distance traveled for each
drone as 𝜔𝜛 = ⌋ℸ𝜛 ς 𝜍ℸ𝜛⌋, ϱ𝜛 ϖ ∱ .

To estimate energy consumption, we define ⊳𝜛 as the energy spent
for each distance unit traveled at constant speed, and ⊲𝜛 as the energy
spent in a steady position, for a given unit of time. The values of ⊳𝜛

and ⊲𝜛 are estimated through on-field experiments or from technical
specifications. The overall energy consumption for UAV 𝜛 is defined
as 𝜚𝜛 = 𝜔𝜛 ⋛ ⊳𝜛 + ⊲𝜛 ⋛ ⋆, ϱ𝜛 ϖ ∱ , where ⋆ is an upper-bound of the time
required, once reached the targets, to monitor the targets and complete
the mission. We constraint the reachable points according to the UAVs
initial energy 1𝜛, as follows:

𝜚𝜛 + ⌋ℸ𝜀 ς 𝜍ℸ𝜛⌋ ⋛ ⊳𝜛 ⨌ 1𝜛, ϱ𝜛 ϖ ∱ (1)

This constraint defines the positions that are reachable as they let
the UAVs with enough energy to come back to the edge-server for
recharging operations. We use the binary variables 𝜍0

𝜛

𝜕ℵ
ϖ {0, 1}, which

define if the drone 𝜛 monitors the target 𝜕 with compression level ℵ or
not. A target 𝜕 is monitored if an only if the UAV 𝜛 is close enough to
the target position ℸ𝜕. Formally we want to constraint 𝜍0

𝜛

𝜕,ℵ
= 1 ⥴

⌋ 𝜍ℸ𝜛 ς ℸ𝜕⌋ ⨌ 𝜗sens which becomes ϱ𝜛 ϖ ∱ , ϱ𝜕 ϖ ∲ , ϱℵ ϖ ⨋: :
𝜗sens ⨍ ⌋ 𝜍ℸ𝜛 ς ℸ𝜕⌋ ς.cost ⋛ (1 ς 𝜍0

𝜛

𝜕ℵ
)

𝜗sens ⨌ ⌋ 𝜍ℸ𝜛 ς ℸ𝜕⌋ +.cost ⋛ 𝜍0
𝜛

𝜕ℵ

(2)

where .cost is a big constant used to model binary variables. In
particular, for big enough .cost the constraint is tight only when the
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Fig. 5. Accuracy as a function of JPEG compression level.

binary variable takes on a specific value; while it allows the constraint
to remain unrestricted when the binary variable takes on the opposite
value (i.e., the big constant makes the constraint useless [48]). Next,
we enforce that a target is covered by at most one UAV and that each
UAV can cover only one target:
⌈
𝜛ϖ∱

⌈
ℵϖ⨋

𝜍0
𝜛

𝜕ℵ
⨌ 1,ϱ𝜕 ϖ ∲ ,

⌈
𝜕ϖ∲

⌈
ℵϖ⨋

𝜍0
𝜛

𝜕ℵ
⨌ 1,ϱ𝜛 ϖ ∱ (3)

We introduce an extended node set ⨎ = ∱ φ {𝜀} and we consider
all the possible communication paths among nodes, i.e., all the edges
(𝜕, ℵ) ϱ𝜕, ℵ ϖ ⨎ . A binary variable 𝜍≨𝜕,ℵ ϖ {0, 1}, indicates if the nodes 𝜕 and
ℵ are too distant to communicate. The relation ⌋ 𝜍ℸ𝜕 ς 𝜍ℸℵ ⌋ ⨍ 𝜗com  𝜍≨𝜕ℵ = 0
is enforced as follows:

⌋ 𝜍ℸ𝜕 ς 𝜍ℸℵ ⌋ ⨌ 𝜗com +.5 6𝛻, ⋛ (1 ς 𝜍≨𝜕ℵ ), ϱ𝜕, ℵ ϖ ⨎ (4)

We define the data frame offloading as a network flow formulation.
We introduce a set of variables 𝜍𝜑

𝛻

𝜕ℵ
defining the amount of data trans-

mitted through the link between UAV 𝜕 and UAV ℵ. We define 𝜍𝜑
ℶ

𝜕ℵ
to

account for the expected task accuracy at the edge, for each task. We
impose that the edge does not generate any outgoing flow, for both
data and accuracy flows:
⌈
ℵϖ⨎

𝜍𝜑
𝛻

𝜀 ℵ ⨌ 0,
⌈
ℵϖ⨎

𝜍𝜑
ℶ

𝜀 ℵ ⨌ 0 (5)

Notice that, the accuracy flow 𝜍𝜑
ℶ

𝜕,ℵ
is a variable used solely within the

MILP formulation to track the potential accuracy at the edge. In fact,
we aim at maximizing the classical accuracy of machine learning tasks
performed at the edge with data collected from the targets.

We allow a flow only for between neighboring nodes:

𝜍𝜑
𝛻

𝜕ℵ
+ 𝜍𝜑

ℶ

𝜕ℵ
⨌ 𝜍≨𝜕ℵ ⋛. , ϱ𝜕, ℵ ϖ ∱ (6)

similarly to Eq. (2), . is a big constant number, used in MILP
constraints with binary variables [48]. It makes the inequalities unre-
stricted when the binary variable takes positive value: i.e., 𝜍𝜑

𝛻

𝜕ℵ
+ 𝜍𝜑

ℶ

𝜕ℵ
can

take any value up to the big enough . . While it restricts the value of
the two variables to 0 when 𝜍≨𝜕ℵ takes on the opposite value.

The maximum bandwidth allowed between two UAVs is constrained
to respect the estimated channel data rate ℷ𝜕,ℵ :⌈
ℵϖ⨎

𝜍𝜑
𝛻

𝜕ℵ
⨌ ℷ𝜕,ℵ , ϱ𝜕 ϖ ∱ (7)

We specify that a UAV can transmit only towards another UAV,
modeling a unicast communication:
⌈
ℵϖ⨎

𝜍≨𝜕ℵ ⨌ 1, ϱ𝜕 ϖ ∱ (8)

In particular, as the drone communicates towards the edge, this con-
straint also guarantees that the communication network results into a
tree rooted at the edge.

We impose flow conservation as follows:
⌈
𝐴ϖ⨎

𝜍𝜑
𝛻

𝜛𝐴
ς
⌈
𝐴ϖ⨎

𝜍𝜑
𝛻

𝐴𝜛
=
⌈
𝜕ϖ∲

⌈
ℵϖ⨋

𝐵𝜕,ℵ ⋛ 𝜍0
𝜛

𝜕ℵ
, ϱ𝜛 ϖ ∱ (9)

which imposes that, for each outgoing edge from 𝜛, the flow is
increased by expected data size of the target covered by the UAV 𝜛. The
expected data size is defined by the constant 𝐵𝜕,ℵ , which is estimated
at the beginning of the mission for each possible target 𝜕 and related
compression level ℵ, using 𝐶

2 ς 𝐷 𝐸 algorithm Section 3.3. We also
impose that the edge receives all the data produced by the covered
targets:
⌈
𝐴ϖ⨎

𝜍𝜑
𝛻

𝐴𝜀
=
⌈
𝜕ϖ∲

⌈
ℵϖ⨋

𝐵𝜕,ℵ ⋛ 𝜍0
𝐴

𝜕ℵ
(10)

To conclude, we constraint the accuracy of the targets at the edge-
server, as follows:
⌈
𝐴ϖ⨎

𝜍𝜑
ℶ

𝜛𝐴
ς
⌈
𝐴ϖ⨎

𝜍𝜑
ℶ

𝐴𝜛
=

⌈

,
𝜕

ℵ
ϖ∲ ∇

ℶ𝜕,ℵ ⋛ 𝜍0
𝜛

𝜕ℵ
, ϱ𝜛 ϖ ∱ (11)

which models the expected accuracy at the edge for each monitored
target. The variable ℶ𝜕,ℵ , representing the estimated accuracy, is esti-
mated at the beginning of the mission for each possible target 𝜕 and
related compression level ℵ, using 𝐶

2 ς 𝐷 𝐸 algorithm Section 3.3.
Objective Function: maximize covered targets, DL tasks accuracy,

and energy spent by the UAVs:

max ⊲ ⋛
⌈
ℵϖ⨎

𝜍𝜑
ℶ

𝜀 ℵ + ⊳ ⋛
⌈

𝜕ϖ∲ ,ℵϖ⨋,𝜛ϖ∱
𝜍0
𝜛

𝜕ℵ
ς 𝐹 ⋛

⌈
𝜛ϖ∱

𝜔𝜛 (12)

The term ⊲ prioritizes the maximization of the accuracy, while ⊳

weights the importance of covering the targets and 𝐹 minimized the
distance traveled by the UAVs.

3.5. Building the UAV network

At the end of the optimization process, the variables of the MILP
formulation can be used to construct the network and the flow. For
example, 𝜍ℸ𝜛 determine the UAVs position, while 𝜍0

𝜛

𝜕ℵ
ϖ {0, 1} determine

if the UAVs should cover the target and at which compression level,
variables 𝜍𝜑 define the communication flow. Notice that, the exact flying
paths are managed by the autonomous UAVs which use waypoint flight
and collision avoidance protocols, as discussed in Section 3.1.

Theorem 3.1. The A2-TPP problem is NP-Hard.
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Proof. We show that A2-TPP generalizes the Steiner tree problem with
minimum number of Steiner points and bounded edge-length STPMSPBEL, a
known NP-hard problem [49]. Given a set 𝐸 of 𝐺 terminal points in a 2-
dimensional plane, a positive constant 𝐻, and a non-negative integer 𝐼,
STPMSPBEL asks whether it exists a tree spanning a set of points 𝐸 9 2
s.t. each edge has a length less than 𝐻 and the number of Steiner points
(i.e., 2 ⟥𝐸 ) is less than or equal to 𝐼. Any instance of STPMSPBEL can
be reduced to an instance of our problem in polynomial time. The set
of points 𝐸 represents our target set ∲ φ {𝜀}, and 𝐼 defines the number
of available UAVs, with communication range equal to 𝐻. We consider
UAVs with unlimited batteries and one compression level (i.e, ⌋⨋⌋ = 1).
This problem instance finds a solution that maximizes the number of
connected targets with the edge server, moving the minimum number
of UAVs. If such a solution exists, and covers all the points in 𝐸 , then
it also exists a tree spanning a set of points 𝐸 9 2, where each edge
has length less than 𝐻 and the number of Steiner points is less then or
equal to 𝐼. The complexity of the above reduction is polynomial, thus
we derive that A2-TPP problem is at least as hard as the STPMSPBEL
problem [49]. ⋜

4. A polynomial time heuristic for A𝛚-TPP

We propose a greedy heuristic to solve A2-TPP in polynomial time.
We first introduce the algorithm, and then prove its polynomial time
complexity.

4.1. Algorithm overview

Greedy-A2-TPP outputs a connected coverage formation — also re-
ferred to as coverage for brevity — for the UAVs, and a compression
level assignment for each covered target. Both coverage and compression
need to meet the criteria expressed in Eq. (12), that is, optimizing the
number of accomplished tasks. Our approach is to maximize the number
of inspected targets, producing a coverage of minimum congestion, and
minimizing task misclassification due to low frame resolution.

Specifically, a coverage 4 = (𝐽 , 𝐾 , 𝐿 ) is a Triangular Steiner
Tree [50] in which the set of nodes 𝐽 represents the positions UAVs
must reach to cover the target nodes in . , while staying connected
with the base station 𝜀 in a multi-hop manner. The set 𝐾 represents the
link between UAVs, thus the routes data streams must follow through
the network. The function 𝐿 maps each 𝜑 ϖ 𝐾 to a weight that
represents link’s bandwidth. In our implementation we estimate this
value empirically. It is assumed that at the base station, communication
happens through dedicated transceivers and does not require actual
coverage with a drone. Thus, at any time it holds ⌋𝐽 ⌋ ⨌ ⌋∱ ⌋ + 1.

4.2. Greedy-A2-TPP

Algorithm 1 returns a coverage formation 3 , merging partial cov-
erage formations 4par generated to cover targets using the minimum
deployment cost at each iteration. In the initialization phase, we let: 𝑀∲
be the set of covered targets, initially containing only the base station;
3 be the coverage archived so far; 4par be the partial coverage itera-
tively grown that is added to 3 when it cannot be further expanded;
5par be the cost of the partial coverage generated so far (line 1). The
while loop iterates until either all the targets are covered ∲ ς 𝑀∲ ⨏ ∂
or the number of UAVs used does not exceed the fleet size (line 2).
The variables ,best, 4best, 5best contain respectively the best target found
at each iteration, the coverage including that target and its cost. A for
loop over the uncovered targets ∲ ς 𝑀∲ allows to find the best target
to add, building new temporary coverage formations 4temp using the
targets already covered by 4par (namely the set ⨐(4par)) and adding to
them the candidate target ,. The coverage trees are computed solving
a Triangular Stainer Tree (TST) problem [50]. Then we evaluate the

Algorithm 1: Greedy A2-TPP
Input: ∱ : set of UAVs, ∲ : set of targets
Output: 3 a connected coverage formation

1 𝑀∲ , 3 , 4par, 5par  {𝜀}, {𝜀}, {𝜀}, 0
2 while ∲ ς 𝑀∲ ⨏ ∂ or ⌋𝐽

3
φ 𝐽par⌋ < ⌋∱ ⌋ do

3 ,best, 4best, 5best  ∂, ∂,−
4 for , ϖ ∲ ς 𝑀∲ do
5 4temp  TST({,} φ ⨐(4par), 𝜗com)
6 5temp  Cost

⊲
(4temp, 4par, 3 ,Compression(4temp))

7 if 5temp < 5best and ⌋𝐽temp⌋ ς 1 ⨌ ⌋∱ ⌋ ς ⌋𝐽
3
φ 𝐽par⌋ then

8 ,best, 4best, 5best  ,, 4temp, 5temp

9 if ,best = ∂ then
10 3  3 φ 4par

11 break
12 4los  TST({𝜀 , ,best}, 𝜗com)
13 5los  Cost

⊲
(4los, 4par, 3 ,Compression(4los))

14 if 5los < 5best ς 5par then
15 3  3 φ 4par

16 4par, 5par  4los, 5los

17 else
18 4par, 5par  4best, 5best

19 𝑀∲  𝑀∲ φ {,best}
20 𝐻, ⋛  Compression(3 )
21 return 3 , R

Algorithm 2: Compression
Input: a coverage formation 4

𝜕

Output: 𝐻 vector with compression levels for all targets in 4
𝜕
, 𝑁

vector with loss in accuracy due to all targets in 4
𝜕

1 sort , by 2(∳(,), ω).𝐵 ϱ, ϖ ⨐(4
𝜕
) in ascending order

2 𝑀⨐, 𝑁, 𝐻  ⨐(4
𝜕
), ⌉{, ⌉{

3 for , ϖ 𝑀⨐ do
4 𝐸  Shortest-Path(4

𝜕
, 𝜀 , ,)

5 𝐼  Bottleneck(4
𝜕
, 𝐸 )+(⌋⨐(4

𝜕
)⌋ ς ⌋𝑀⨐ ⌋)

6 𝐻(,)  ar g max
𝜔ϖ⨋ 2(∳(,), 𝜔).𝐵 ⨌ min{𝐼; 2(∳(,), ω).𝐵}

7 𝑁(,)  2(∳(,), ω).ℶ ς2(∳(,), 𝐻[,]).ℶ
8 𝐿

𝜕
(𝜑)  𝐿

𝜕
(𝜑) ς2(∳(,), 𝐻(,)).𝐵 ϱ𝜑 ϖ 𝐸

9 𝑀⨐  𝑀⨐ ς {,}
10 return 𝐻, 𝑁

cost of 4temp (lines 3–6). This cost combines the number of drones
needed for the coverage, and the loss in accuracy due to the channel
contention. We will talk in more detail about how this cost is computed
when describing Algorithm 2. Then we check if: (i) 4temp has a lower
cost than 4best (ii) and if 4temp can be covered with the remaining UAVs.
If both checks go through, then , becomes the best candidate ,best and
the associated candidate coverage 4temp with its cost 5temp are stored
into 4best and 5best respectively (lines 7–8). In case no target was set as a
best candidate, (i.e., ,best = ∂) the while loop breaks. This happens only
when the second condition at line 7 is not met for any target, that is
no coverage formations can stick to the remaining fleet size constraint.
Then, the cost paid to cover only ,best that is 5best ς 5par is compared to
the cost 5los of a new line-of-sight (los) branch 4los grown using only ,best
as target. If 4los costs less than the partial grown tree so far 4par, then
4par is merged with the final tree 3 . Then 4los becomes the new partial
connected coverage to grow. Otherwise growing 4par is still convenient,
so 4best becomes the new partial deployment including the new target
,best and 4los is discarded (lines 12–19). When the algorithm terminates
(line 20) the final coverage 3 along with all the compression levels
assigned to each target are returned.
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Fig. 6. Greedy-A2-TPP algorithm example.

4.3. Assignment of compression levels

Algorithm 2 determines the compression levels for each UAV in 8

inspecting targets in . . The rationale is to increase the compression
of data flowing from a target, based on the bandwidth assigned to it,
leaving more bandwidth to targets having more to send. The algorithm
iterates over the targets , covered by the candidate input tree, sorted
in ascending order based 2(∳(,), ω).𝐵, that is the load produced by the
target , according to the task analyzer A2-TA, belonging to the applica-
tion scenario ∳(,) and at the minimum compression level (denoted by
ω) (lines 1–3). At each iteration a bottleneck bandwidth 𝐼 for the target
is computed. This quantity is the bottleneck capacity on the path from
the source of flow ,, to the destination 𝜀. This value is influenced by
the number of targets , shares this path with. The bandwidth allocation
function can be thought as slight modification of the Depth First Search
(DFS) (line 5). To derive the maximum quantity of load that can be
transferred from the target , per unit time, we vary the compression
level while remaining subject to the flow constraint (line 6). We store
in the vector 𝐻 the compression level for each target. We store the
loss in accuracy for , subject to compression level 𝐻(,), comparing the
accuracy due to the best quality 2(∳(,), ω).ℶ (line 7). The weights of
the tree are updated considering the used bandwidth (line 8). Both the
compression levels and the loss for each target are returned.

4.4. Cost of a coverage

The cost of a connected coverage formation is parameterized by
⊲. This exogenous parameter weights the importance given to the
accuracy of the tasks. Notice that the importance given to task accuracy
opposes to the minimization of the number of UAVs employed. There-
fore the cost is a linear combination of the average loss in accuracy,
and the percentage of used UAVs to cover the new target in 4𝜕 which
was not present in the previous formation 4𝜕ς1, the cost is computed as
Cost⊲ :

⊲ ⋛

}
,ϖ⨐(4𝜕) 𝑁(,)
⌋⨐(4𝜕)⌋ + (1 ς ⊲) ⋛

⌋𝐽𝜕 ς 𝐽𝜕ς1⌋ ς 1
⌋∱ ⌋ ς ⌋𝐽3 φ 𝐽𝜕ς1⌋

(13)

4.5. Greedy-A2-TPP example execution

Fig. 6 shows an example of execution of Greedy-A2-TPP. The gray
triangle is the edge server 𝜀. The black dots and red squares repre-
sent the target and relay positions, respectively. Fig. 6-a shows three
temporary coverage 4temp, each covering a different target. The cost
of each of the coverage is compared (algo. 1, line 7). Say 4temp⌉𝜀 , ,3{
is the cheapest coverage among them, that is the tree covering 𝜀

and ,3. At the subsequent iteration shown in Fig. 6-b, two Triangular
Steiner Trees covering 𝜀, ,3 and a new target among the remaining
uncovered ones in ∲ ς 𝑀∲ (i.e., ,2 and ,1) are proposed. Say the tree
4temp⌉𝜀 , ,3, ,2{ is the cheapest coverage among them. In Fig. 6-c the cost
of 4temp⌉𝜀 , ,3, ,2{ is compared with a line of sight coverage 4los⌉𝜀 , ,2{.
The cheapest coverage among the two becomes the one to grow from
the subsequent iterations (algo. 1, line 14). Say the cheapest coverage
among them is 4temp⌉𝜀 , ,3, ,2{. In Fig. 6-d we see two grown versions of
the tree covering ,1, whereas in Fig. 6-e we see a line of sight coverage
of ,1. Say that comparing the cost of 4temp⌉𝜀 , ,3, ,2, ,1{, and 4los⌉𝜀 , ,1{,
the cheapest is the line-of-sight version. The tree 4los⌉𝜀 , ,1{ becomes
the new tree to grow from the subsequent iterations. 4temp⌉𝜀 , ,3, ,2{
is archived in 3 . There are no more targets to cover. 4los⌉𝜀 , ,1{ is
archived in 3 the algorithm stops returning 3 .

4.6. Properties of greedy-A2-TPP

Lemma 4.1. Computing the compression level assignment has polynomial
time complexity of 𝑂(⌋∱ ⌋2).

Proof (Proof Sketch). To measure the cost of a coverage tree 4𝜕, the set
of targets in the tree ⨐(4𝜕) is sorted by their expected transmission load
in ascending order. Sorting requires 𝑂(⌋∲ ⌋ log ⌋∲ ⌋) time complexity. The
for loop iterates over the targets in 4𝜕 first computing the bottleneck
bandwidth for ,, having approximately the cost of a Depth First Search
and Shortest Path, that is 𝑂(log ⌋𝐽𝜕⌋) for the tree. Iterating over the
compression levels to find the highest resolution to fit the bandwidth
has constant complexity ⌋⨋⌋ i.e., the cardinality of the discrete set of
possible compression levels. Iterating over the edges of the path 𝐸 to
update the residual bandwidth has cost 𝑂(log ⌋𝐽𝜕⌋). Other assignments
have evident constant complexity. By noticing that ⌋𝐽𝜕⌋ = 𝑂(⌋∱ ⌋) the
overall time complexity of computing the cost of a coverage tree is
𝑂(⌋∲ ⌋ log ⌋∱ ⌋). The complexity further simplifies by considering ⌋∲ ⌋ =
𝑂(⌋∱ ⌋), thus resulting in 𝑂(⌋∱ ⌋2). ⋜

Theorem 4.2 (Time Complexity of Greedy-A2-TPP ). Greedy-A2-TPP with
input ∲ targets sets has polynomial time complexity of 𝑂(⌋∱ ⌋6).

Proof (Proof Sketch). The while loop is executed, in the worst case,
until all the targets in ∲ are included in the final solution 3 . Within
the while loop, a for loop iterates over the set of uncovered targets.
For each of them a Triangular Steiner Tree ,temp is computed, and the
time complexity is bounded by 𝑂(⌋∲ ⌋4) [50]. The cost of each tree is
computed with complexity 𝑂(⌋∱ ⌋2) as shown in Lemma 4.1. Once the
best candidate target to cover has been chosen, the Triangular Steiner
Tree ,los of the shortest path towards the target and the relative cost 5los
are computed. The time complexity to find a stripe can be considered
constant in time. The overall time complexity of Greedy-A2-TPP is thus
given by: 𝑂(⌋∲ ⌋(⌋∲ ⌋(⌋∲ ⌋4 + ⌋∱ ⌋2) + ⌋∱ ⌋2)) = 𝑂(⌋∱ ⌋6). ⋜

5. Adaptive A𝛚-TPP

In this section we present adaptive A2-TPP, a seamless integration to
A2-TPP to ensure network’s resilience even in the face of unpredictable
events. This version of the protocol prioritizes adaptability to accom-
modate changing mission conditions, including variations in UAVs and
targets availability.

Specifically it is designed to handle UAVs failures and the addition
of new UAVs to the fleet. Given the inherent susceptibility of UAV
networks to node failures, caused by factors such as limited battery
or unpredictable adverse environmental conditions, the protocol is
designed to swiftly identify affected nodes and restore the network to
its original operational integrity.

Moreover, the protocol takes into account the dynamic nature of
targets, which may be added, removed, or change positions during
a mission. The adaptive A2-TPP ensures that the network remains
optimized and ready for evolving missions, guaranteeing resilience in
the face of unforeseen circumstances.
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Algorithm 3: Adaptive A2-TPP
Input: ∱

,
: sets with the available UAVs at time ,; 3

,ς1, 3,
the

connected coverage formation at time , ς 1 and , resp.; ∲
,
: set

of targets at time ,.
Output: 3 a new connected coverage formation

1 3
,
, 𝐻

,
 Greedy A2-TPP(∱

,
, ∲

,
)

2 ⨑  MinMatching(3
,
, 3

,ς1)

3 return 3
,
, 𝐻

,
,⨑

5.1. Algorithm overview

Adaptive A2-TPP is shown in Algorithm 3 and is triggered at time ,

when one of the following five events occurs: (i) UAV failure, a UAV of
the network fails; (ii) UAV provisioning a new UAV is added to the fleet
(iii) target removal a target has no more the need to be monitored; (iv)
target add a new target was added; (v) target move, a target changed its
position. We denote by 𝜑 the reference to the occurred event.

Let ∱, be the sets with the available UAVs at time ,. Let 3,ς1, 3,

be the connected coverage formations at time , ς 1 and , respectively,
and finally ∲, the sets of targets at time ,. Upon trigger event 𝜑 at
time ,. The algorithm computes a new connected coverage formation
and compression level assignment with the UAVs and targets available
at that time (line 1). Then the algorithm determines which UAVs,
formerly covering 3,ς1, have to move towards the new formation 3,

minimizing the worst migration time. Such cost represents the time for
the last UAV to connect to the new formation. We implement such
migration using a procedure called MIN-MATCHING. In particular, we
reduce our problem to what in the literature is known as the Bottleneck
Matching Problem (BMP) for bipartite graphs [51].

We recall that BMP takes a bipartite graph 𝑃 = (𝐽0, 𝐽1, 𝐾), and
a non-negative edge cost function 5(𝜑) > 0, ϱ𝜑 ϖ 𝐾, and finds a
perfect matching . ϖ .ℸ where .ℸ is the set of subsets of 𝐾 of
cardinality ⌋𝐽0⌋ = ⌋𝐽1⌋, of minimal cost, i.e., min.ϖ.ℸ

max𝜑ϖ. 5(𝜑).
In our MIN-MATCHING reduction, nodes in 𝐽0 and 𝐽1 are the nodes
of the connected formations 3,ς1 and 3, respectively, representing
the position of UAVs in the formation. In both the sets, the nodes
representing the position of spare UAVs (i.e., UAVs that are not used
for granting connectivity) are modeled as duplicated nodes of the base
station. The bipartite graph is complete and the cost function of the
edges 5((𝜛, 𝑄)) > 0, ϱ 𝜑 ε (𝜛, 𝑄) ϖ 𝐾 represents the time to fly from
position 𝜛 to 𝑄.

This reduction allows to minimize the effort needed to migrate
from one connected formation to another. The output of the matching
algorithm is a map ⨑ from every UAV in the formation 3,ς1 to the
new 3, with the least effort in terms of travel time for the fleet (line
2). The UAVs on 3,ς1 efficiently migrate towards 3, according to the
map ⨑ and compression level 𝐻,.

6. Performance evaluation

We extensively evaluate ⥳2-UAV through simulation (Section 6.2) as
well as real-world experiments (Section 6.3).

6.1. Evaluation setup

Application. We consider a monitoring application where UAVs
need to perform image classification or object detection tasks on target
locations by sampling images at a given frame rate (e.g., 24 frames per
second (fps)). We adopt (i) ResNet-50, a CNN with 50 layers [1]; (ii)
ResNet-152, an extended version with 152 layers [1]; (iii) DenseNet [2],
which consists of a Dense Convolutional Network (i.e., each layer
is connected to all the other layers in a feed-forward fashion); (iv)
MobileNet-V2 [17], a new neural architecture for mobile devices; (v)

Fig. 7. Accomplished tasks (%), < = 0.1sec

YoloV4, the state-of-the-art model for object detection. All the models
were trained on the ImageNet database [15].

Scenarios. To emulate common scenarios for UAVs, we use the five
scenarios described in Section 3.3, i.e., Maritime, Search-and-Rescue,
Wildlife, Tools, Pets. We also design an Urban reconnaissance scenario
including various objects, such as wreck, fireboat, ambulance, police van,
revolver, crate, packet, backpack, mountain bike, motor scooter. To ensure
repeatability of our experiments, we let the UAVs sample images from
a labeled subset of ImageNet. Where not otherwise stated, each target
location generates 500 tasks (images) uniformly sampled among these
classes.

Metrics. We measure the Percentage of Accomplished Tasks, defined
as the ratio between the number of successfully completed tasks (ac-
cording to Definition 3.2) and the number of the generated tasks. The
accomplishment of a task is influenced by its deadline <. In order
to study the performance of A2-TPP at varying application scenar-
ios, we let < vary: low values represent delay critical applications
(e.g., intrusion detection), whereas high values, delay tolerant ones
(e.g., agriculture). We also measure Computational Time, that is the time
required by the algorithms to output a connected coverage formation
and compression levels for the targets.

Comparison. We evaluate ⥳2-UAV through real-field experiments
and simulation, considering both the optimal solution Opt-A2-TPP and
the greedy algorithm Greedy-A2-TPP, against STBA [42]. STBA is a
state-of-the-art networking-based approach that is the closest to our
work. STBA covers a set of targets while providing network con-
nectivity to the edge server. To find a connected tree, STBA uses a
node-weighted Steiner tree algorithm, which computes a set of Fermat
points to place relays, and then computes a tree among the targets
and the edge-server, minimizing the needed UAVs. To allow for a fair
comparison, we enhance STBA with data compression in three vari-
ants: 1) H-STBA, which does not compress data, but uses the Highest
available quality for collected data (𝜔 = 1); 2) M-STBA which uses the
Medium compression (𝜔 = 50); and 3) L-STBA which uses an extreme
compression (𝜔 = 100) resulting in the Lowest data quality.

6.2. Simulation results

We used the NS-3 network simulator [52], setting most of pa-
rameters in line with the devices used in our real-field experiments
(e.g., WiFi interface 802.11n at 2.4 GHz), and testbed measured values
(UAVs transmission range is 167, sensing radius 17, and maximum
speed 5 m+s). The simulated area is a square of 500 ϑ 5007, with an
edge-server positioned in the center of the bottom border. The number
of targets varies from 4 to 50, and the number of UAVs from 4 to 50.
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Fig. 8. Accomplished tasks (%) at increasing of <.

Fig. 9. Accomplished tasks (%) with 6 Targets, < = 0.1sec.

Fig. 10. Accomplished tasks (%), 4 targets, < = 0.1sec.

Fig. 11. Accomplished tasks (%), increasing targets.

Fig. 12. Computational time (s).

6.2.1. Multiple scenarios
Figs. 7 illustrate the efficacy of our solution for different scenarios,

reporting also the theoretical upper bound (blue dotted line). In the
most challenging scenario, i.e., Tools, with a strict task deadline (< =
0.1sec) and DenseNet-201 DL model, Opt-A2-TPPcompletes 41% of
tasks, with an improvement of 52% respect the best STBA variant,
i.e., H-STBA, which completes less than 27% of tasks. The theoretical
upper-bound for DenseNet-201 in the same scenario is 60%, meaning
that under ideal network conditions of zero latency and no compres-
sion, the DL model would correctly classify only 60% of the tasks
(Fig. 5.a show the complexity of predicting tools images, even for
un-compressed images). In the case of Pets and Maritime, Opt-A2-TPP
reaches the highest percentage of accomplished tasks — 65% and
70% respectively — where the upper-bounds are 90% and 88%. The
improvement with respect to the best STBA variant, i.e., M-STBA, is
55% and 50%. Pets require a compression level lower than 𝜔 = 50
(see Fig. 5.a) to achieve satisfactory performance, forcing both Opt-A2-
TPP and Greedy-A2-TPP to select a medium compression level, more
similarly to M-STBA. In Wildlife and Search-and-Rescue (SaR), the gap
between both the A2-TPP versions and STBA variants increases sig-
nificantly. Opt-A2-TPP and Greedy-A2-TPP complete respectively 60%,
63% and 49% and 54% of tasks, against 39% and 37% of M-STBA.
The motivation behind this sharp improvement is the use of the A2-
TA, which understands that even high compressed images can achieve
satisfactory performance. Therefore, both our solutions can achieve
high accuracy with low network usage, executing the tasks within their
deadline < = 0.1 seconds. Greedy-A2-TPP completes 20% and 31% more
tasks than M-STBA.

6.2.2. Urban scenario
Fig. 8 shows the performance in the Urban scenario as a function

of task deadline < ϖ {0.06, 0.07, 0.08, 0.09, 0.1}, when DenseNet-201 is
employed.

Opt-A2-TPP accomplishes tasks up to 72% in the case of < = 0.1sec,
while the best variant M-STBA achieves only 48% of tasks at the same
<. Opt-A2-TPPaccomplishes 58% more tasks than M-STBA with the
tightest deadline, as it adapts the compression of images to meet the
latency constraint. The plot also confirms the performance of Opt-A2-
TPP that outperforms the network-based approaches (i.e., M-STBA)
up to 45 ς 50%. Greedy-A2-TPPfollows the Opt-A2-TPPtrend always
remaining widely above the performance of STBA solutions. Fig. 9
shows the percentage of accomplished tasks as function of the number
of UAVs, with 6 targets randomly distributed in the area. We employ
DenseNet-201, which achieves a maximum accuracy of 80%, and set
< = 0.1s. Both Opt-A2-TPP and Greedy-A2-TPP outperform the STBA
variants, as they cover all the targets with only 8 UAVs. Conversely,
the STBA variants require at least 10 UAVs to cover all the targets, and
achieve lower performance. Opt-A2-TPP covers 15 ς 20% more targets
than STBA algorithms, in all the scenarios, completing 69% of tasks
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(using 10 UAVs), while the best variant M-STBA accomplishes only 42%
of tasks with the same number of UAVs. We can notice how Greedy-A2-
TPP performs better as quickly as the number of UAVs grows, reaching
similar performance of Opt-A2-TPP.

6.2.3. Robustness to channel errors
In Fig. 10 we plot the percentage of accomplished tasks by varying

the probability of channel error 𝑅 ϖ {0, 0.05, 0.1, 0.15}, in a setting
with 20 UAVs and 4 targets. Both Opt-A2-TPP and Greedy-A2-TPP
are the most robust algorithms, increasing their improvement with
respect to STBA variants. Opt-A2-TPPcompletes up to 170% more tasks
than the other approaches. On the other hand, M-STBA and H-STBA
experience severe delays and drastic performance reduction due to
frequent TCP re-transmissions, which introduce additional data in the
network, further overloading communication links.

6.2.4. Scalability
Fig. 11 investigates the percentage of accomplished tasks in a sce-

nario with 50 UAVs, varying the number of targets from 10 to 50. We
do not include the Opt-A2-TPP when the targets are more than 20, due
to prohibitive computational time. This result underlies the huge ben-
efit introduced by the polynomial time solution Greedy-A2-TPP, which
scales gracefully when the problem instance grows in complexity. The
figure shows that Greedy-A2-TPP has near optimal performance with
10 targets, accomplishing 63% of the tasks, while L-STBA accomplishes
only 38% of them. All the algorithms have a slightly decreasing trend
as the number of targets increases, as the UAVs have to offload more
tasks with possible network congestion and missed deadlines. The STBA
variants quickly drop their performance due to congestion and long
delays, while Greedy-A2-TPP is able to keep satisfactory performance
around 50%, trading off compression and accuracy to cover all targets
and offload their data. With 50 targets Greedy-A2-TPP accomplished
5 times the tasks of the best STBA variant. Finally, in Fig. 12 we
investigate the computational time. We restrict the time to a maximum
of 5 h (18000 s), and we consider no solutions after that time. We
consider a general STBA instance without compression levels, as they
do not affect the execution time. While Opt-A2-TPP has very huge
computational times even with 10 targets, Greedy-A2-TPPis 15x faster
than the STBA solutions.

6.3. Experimental testbed results

We evaluate the performance through an experimental testbed. The
testbed is composed of 4 UAVs and an edge server with dedicated GPU.
In the experiments, we consider up to 4 targets placed at a maximum
distance of 15 meters from the edge, as shown in Fig. 13. The red
triangles represent target locations, while the black and white circle
indicates the edge-server location.

We run 10 experiments for each scenario and we average the results.
Each UAV includes a DJI Mavic Air 2 drone, mounting a Raspberry PI 4
model B and a powerbank, as shown in Fig. 14. The on-board Raspberry
PI, powered by the power bank is used to generate and pre-process
tasks, and to offload them to the edge according to the optimization
plan. For repeatability and to emulate different scenarios, we sample
images from the ImageNet dataset [53].

The edge server is a Jetson Nano board, used to run the DL models
and execute tasks. It mounts a Raspberry PI for computation and
communication. TCP links are established for reliable connectivity.
Considering the limited capabilities of the edge server, we execute
only ResNet-50 and MobileNet-V2 on the Jetson Nano, which have
approximately 0.03 s of inference time [54]. For DensNet-201, ResNet-
152, and YoloV4, we used a laptop with an NVIDIA RTX-2060 Graphics
Processing Unit (GPU). Table 2 reports the experimental settings in the
Urban scenario.

The first set of experiments evaluates the impact of increasing the
number of targets (from 1 to 4), with MobileNet-V2. Fig. 15 shows

Fig. 13. Scenario.

Fig. 14. UAV implementation.

Fig. 15. Accomplished Tasks (%) at increasing targets, MobileNet-V2, < = 0.4s.

Fig. 16. Accomplished Tasks (%) at increasing of <, using 3 targets and MobileNet-V2.
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Table 2
Experimental setting.
Field Value

Time 9:00–18:30 a.m.
Temperature +4–15 ⋝C
Wind Speed 0.0 to 4.3 m/s
Field Size 65 ϑ 35 (m)
Nr. Of UAVs 4
UAVs Autonomy 18.5 km
Nr. Of Targets Variable (from 1 to 4)
Humidity 60%–77%
AMSL 2 m

Table 3
Percentage of completed tasks, < = 0.3 s.
DL Model Opt-A2-TPP Greedy-A2-TPP L-STBA M-STBA H-STBA

ResNet50 66.64 62.88 25.42 36.14 21.86
ResNet152 67.89 65.27 29.93 37.96 24.70
DenseNet201 70.17 68.33 32.92 41.87 26.99
MobileNet-v2 69.29 57.36 18.37 38.94 21.91
YoloV4 59.32 51.3 15.22 31.52 17.18

the percentage of accomplished tasks at the edge-server with a task
deadline of < = 0.4sec. The plot shows that the Opt-A2-TPP finds the
best trade-off between accuracy and data compression. It completes
more than 67% of the tasks, independently of the number of targets.
This is close to the maximum performance achievable with the DL
model (i.e., 78%), represented by the blue horizontal line. Greedy-A2-
TPPinstead reaches up to 57% accomplished task, with a 20% average
improvement over the best STBA version (M-STBA). Conversely, the
best STBA variant (i.e., M-STBA) does not complete more than 46%
of tasks, independently of the number of targets. In particular, with 2
targets, all STBA variants perform very poorly, completing less than
30% of tasks. The superiority of ⥳2-UAV in both the approaches (Opt
and Greedy) is confirmed by results on the percentage of accomplished
tasks by varying the deadline < ϖ [0.1, 0.5] (see Fig. 16). Opt-A2-
TPP reaches an improvement over the percentage of executed tasks
with respect to M-STBA up to 76% when < = 0.3sec. The Greedy-
A2-TPP approach instead improves M-STBA results (when <=0.3 s)
around 50% upholding our intuition. We investigated the performance
of Greedy-A2-TPP and Opt-A2-TPP also when other DL models are
applied. Table 3 summarizes the results in the case of < = 0.3sec and
4 targets, for ResNet50, MobileNet-V2 (executed on the Jetson Nano)
and ResNet152, DenseNet201 and YoloV4 (executed on a laptop with
a dedicated GPU). The results show that both our solutions outperform
all STBA variants independently of the applied model. In particular,
with DenseNet201 Opt-A2-TPP has the best performance.

6.3.1. Adaptive A2-TPP
To test Adaptive A2-TPP we chose to use the same scenario shown

in Fig. 13 described in the previous section. To evaluate the impact of
a UAV failure event, we measure the impact over the tasks executed per
second. The failure event affects one of the four UAVs, thus, the entire
network must reorganize in order to communicate again with the base
station. For a fair comparison, we applied Algorithm 3 also to STBA,
in order to compare the results even though it does not encompass a
recovery mechanism.

In Fig. 17 shows the variation of executed tasks over time for all
the considered algorithms. When a UAV failure event happens (ver-
tical red bar in the figure), communication is dropped and so tasks
executions. As the figure shows, our algorithm enables faster recovery
when compared to the other approaches. In particular adaptive A2-TPP
rebuilds the configuration 5 s earlier with respect to the second best
L-STBA. The average time needed to compute the new topology for
our solution is 0.00224 ± 0.00043 s and is 0.00653 ± 0.00012 s for
all STBA variants. We recall that a reduced computation time enables
swift service restoration upon heterogeneous events during mission.

7. Conclusions

Our paper proposes a novel framework called ⥳2-UAV to optimize
the offloading and execution of computational intense CV tasks in
multi-hop UAVs networks. ⥳2-UAV is an application-aware optimization
framework for reliable and effective offloading. For the first time, we
considered the accuracy and delay requirements of the specific CV task,
to jointly optimize task assignment and offloading. Our framework also
incorporates a re-optimization scheme to handle any node failures or
changes in the target points. Through extensive simulation and real
testbed experiments, we demonstrated that ⥳2-UAV is able to deal with
different network conditions and node failures, maximizing the applica-
tion performance at the edge. ⥳2-UAV outperforms existing approaches,
getting and average improvement w.r.t. the state-of-the-art algorithm
of 38%. We share datasets and code with the research community to
allow reproducibility.
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Fig. 17. Task execution ratio during mission. The vertical red line represents the UAV failure event.
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