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Instantaneous Polarimetry With Zak-OTFS

Nishant Mehrotra , Sandesh Rao Mattu , and Robert Calderbank

Abstract—Polarimetry, which is the ability to measure the scatter-
ing response of the environment across orthogonal polarizations, is
fundamental to enhancing wireless communication and radar system
performance. In this article, we use the Zak-OTFS modulation to
enable instantaneous polarimetry within a single transmission frame.
We transmit a Zak-OTFS carrier waveform and a spread carrier
waveform mutually unbiased to it simultaneously over orthogonal polar-
izations. The mutual unbiasedness of the two waveforms enables the
receiver to estimate the full polarimetric response of the scattering
environment from a single received frame. Unlike existing methods for
instantaneous polarimetry with computational complexity quadratic in
the time–bandwidth product, the proposed method enables instantaneous
polarimetry at near-linear complexity in the time–bandwidth product.
Via numerical simulations, we show ideal polarimetric target detection
and parameter estimation results with the proposed method, with
improvements in computational complexity and greater clutter resilience
over comparable baselines.

Index Terms—6G, integrated sensing and communication,
polarimetry, Zak-OTFS.

I. INTRODUCTION

Polarimetry is an important tool for enhancing the performance
of both wireless communication and radar systems. In wireless
communication, polarimetry provides a diversity gain [1], [2], [3],
[4], thereby improving the reliability of communication, as well as
a spatial multiplexing gain [5], [6], [7], [8], which increases the
capacity of the wireless link. Similarly, polarimetry increases the
waveform degrees of freedom in radar systems [9], [10], [11], [12],
[13], [14], [15], [16], [17], [18], providing more information about
the target and enabling improved detection of targets with small radar
cross section (RCS), such as drones.

Polarimetry is enabled in radar and communication systems by
transmitting and receiving on two orthogonal polarizations, e.g.,
on vertical and horizontal polarizations. The receiver estimates the
2 × 2 polarimetric scattering response of the wireless/radar channel
across all four combinations of transmit and receive polarizations. A
standard approach is to transmit polarized waveforms sequentially
across two frames [11], [12], [13], [14], [15]; see Fig. 1(a) for
an example with frequency modulated continuous wave (FMCW)
transmissions. From its measurements in each frame, the receiver
estimates 2 × 1 slices of the full 2 × 2 polarimetric scattering
response. Such an approach does not provide instantaneous estimates
of the scattering response within a single frame. Changes in the
scattering environment between the two frames (due to mobility) may
partially decorrelate the obtained estimates [12], [13], [14], [15], [16].
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Sequential polarimetry also prevents frame-by-frame processing and
increases the system latency, which is a critical factor for radar and
communication performance in highly dynamic environments. When
using continuous waveforms, such as FMCW and pulsed waveforms
[19], [20], [21], [22], the computational complexity of sequential
polarimetry is quadratic in the time–bandwidth product [23], [24],
[25].

To unlock the full benefits of polarimetry, it is crucial to estimate
the 2 × 2 polarimetric scattering response instantaneously within
a single transmission frame. Previous work [13], [14], [15] has
proposed transmitting mutually unbiased waveforms,1 i.e., waveforms
with small inner products, simultaneously across orthogonal polariza-
tions. Mutual unbiasedness ensures that the contribution of the other
waveform looks like noise to the receiver when it projects its measure-
ments onto the basis of one of the transmit waveforms. Projecting its
measurements onto the basis of each of the two transmit waveforms
provides the receiver with an estimate of different 2 × 1 slices of the
polarimetric scattering response, thus enabling full 2 × 2 polarimetric
scattering response estimation from a single received frame. Mutually
unbiased waveforms have been designed in prior work [13], [14], [15]
via phase-coding, i.e., by modulating a common carrier waveform,
e.g., a rectangular waveform, with mutually unbiased sequences, e.g.,
Zadoff–Chu sequences with distinct roots [13] or complementary
Golay pairs [14], [15]. While this approach offers excellent polari-
metric target detection and parameter estimation (detailed later in
Section IV), the computational complexity of polarimetry via phase-
coding remains quadratic in the time–bandwidth product [25], [27].
Moreover, we have shown in [25] that separate selection of sequences
and carrier waveforms, as done in phase-coding, may be suboptimal
from a radar waveform design perspective.

In this article, we take an alternate approach to constructing
mutually unbiased waveforms for instantaneous polarimetry using
the Zak-OTFS (orthogonal time–frequency space) modulation [28],
[29], [30] in place of phase-coding. The carrier waveform in Zak-
OTFS, termed pulsone, is a pulse localized in the delay–Doppler
(DD) domain. We use a generalized discrete affine Fourier transform
[25], [31] to transform the pulsone into a spread waveform that is
mutually unbiased to the pulsone. Our approach has two advantages
over phase-coding. First, scattering response estimation with pulsones
and their unitary transformations is possible with colorblacknear-
linear computational complexity in the time–bandwidth product [25].
Second, unlike phase-coding, Zak-OTFS enables joint optimization
of sequences and carrier waveforms, which has been shown to
be optimal from a radar waveform design perspective in [25]. We
illustrate our proposed approach in Fig. 1(b) and describe it in more
detail in Section III.

Table I places our contributions in the context of prior work, which
is described in more detail in Section II. In addition to the advantages
in computational complexity and latency, our proposed approach
also improves upon the number of simultaneously detectable targets
and the Doppler resolution over the sequential approach based on
FMCW. Moreover, in Section IV we demonstrate that the proposed
approach achieves ideal polarimetric target detection and parameter

1The term “mutually unbiased” is from quantum information theory [26].
Formally, two d-length waveforms are mutually unbiased if their inner product
has magnitude 1/

√
d. Measurements from one waveform are “statistically

independent” to those from the other waveform with uniform probability 1/d.
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Fig. 1. Comparison of different approaches for polarimetry. (a) Sequential polarimetry with FMCW transmits polarized FMCW waveforms over two frames,
with each frame subdivided into two halves with an up-chirp and a down-chirp, respectively. The associated Doppler resolution is 2/T and the computational
complexity is O(B2T 2). (b) Instantaneous polarimetry with Zak-OTFS transmits a Zak-OTFS pulsone and a mutually unbiased spread waveform obtained via
a unitary transformation of the pulsone in a single frame. Compared with the sequential approach in (a), the proposed approach has 2× smaller latency, 2×
improved Doppler resolution of 1/T , and a computational complexity of only O(BT log T ).

TABLE I
COMPARISON OF DIFFERENT APPROACHES FOR POLARIMETRY; B

DENOTES SIGNALING BANDWIDTH AND T DENOTES FRAME INTERVAL

estimation2 and greater clutter resilience compared with the phase-
coded approach at smaller computational complexity.

Notation: x denotes a complex scalar, x denotes a vector with the
nth entry x[n], and X denotes a matrix with the (n,m)th entry X[n,m].
(·)∗ denotes complex conjugate, (·)> denotes transpose, (·)H denotes
complex conjugate transpose, and 〈x, y〉 =

P
n x[n]y∗[n] denotes the

inner product. Calligraphic font X denotes operators or sets, with
usage clear from context. ∅ denotes the empty set. Z denotes the
set of integers and ZN the set of integers modulo N. (a, b) denotes
the greatest common divisor of two integers a, b. (·)N denotes the
value modulo N and (·)−1

N
denotes the inverse modulo N. δ(·) denotes

the delta function, δ[·] denotes the Kronecker delta function, and IN
denotes the N × N identity matrix.

II. POLARIMETRY: PRELIMINARIES

As described in the Introduction, polarimetry is enabled in radar
and communication systems by transmitting and receiving on orthog-
onal polarizations, e.g., on vertical and horizontal polarizations, using
dual-polarized antennas. Let V and H, respectively, denote vertical
and horizontal polarizations. We now describe how to model the
polarimetric scattering response of a P-path wireless/radar channel.
In unipolarized systems, the channel gain of each path p ∈ {1, . . . , P}
is modeled by a complex scalar h(p). With dual-polarized transmit

2The results in this article serve as a proof-of-concept numerical demon-
stration of the concept; hardware demonstration will be pursued in future
work. Potential challenges include managing the peak-to-average power ratio
(PAPR) and over-the-air synchronization. With regards to the former, we note
that a natural advantage of the proposed framework is its low PAPR of only
5.6 dB; see [25, Section IV.2] and [31] for details. This reduction in PAPR
has also been experimentally demonstrated in [32] in the subterahertz band.

and receive antennas, the channel gain is modeled instead by a 2 ×
2 polarimetric scattering response [10], [11], [12], [13], [14], [15]

H(p) =

�
h(p)

HH h(p)
HV

h(p)
VH h(p)

VV

�
= CRXΣ

(p)CTX (1)

where CTX (resp. CRX) is a 2 × 2 matrix characterizing the polariza-
tion coupling at the transmitter (resp. receiver), and Σ(p) is a 2 × 2
matrix of polarimetric scattering coefficients of the pth path/target.3
Broadly stated, the goal in polarimetry is to estimate all the four
components of the polarimetric scattering response in (1) from the
measurements at the receiver. We now describe two approaches
for polarimetry from previous work, before outlining our proposed
approach in Section III.

A. Sequential Polarimetry via FMCW
As described in the Introduction, a standard approach for

enabling polarimetry is to transmit polarized waveforms sequentially
across two frames. Fig. 1(a) illustrates sequential polarimetry using
FMCW waveforms [12], [19], [20], [21], [22] (chirps), although
the underlying approach is applicable to any waveform. In frame
interval T1 (resp. T2), the same waveform is transmitted in horizontal
(resp. vertical) polarization. From its measurements in frame interval
T1 (resp. T2), the receiver obtains maximum likelihood estimates
for h(p)

HH and h(p)
VH (resp. h(p)

VH and h(p)
VV ) by cross-correlating its

dual-polarized received signals and the transmitted waveform [12],
[19], [20], [21], [22].

In the specific case of sequential polarimetry via FMCW, it is
known from [23], [24], [25] that cross-correlation-based channel
estimation has computational complexity O(B2T 2), quadratic in the
time–bandwidth product BT. Localizing a single path/target with
FMCW requires subdividing each frame interval T1 or T2 into two
halves and transmitting a chirp with positive slope (“up-chirp”) and
a chirp with negative slope (“down-chirp”) in each half [23], [24],
yielding an effective Doppler resolution of 2/T . Localizing multiple
paths/targets with this approach4 results in multiple false (“ghost”)
targets [23], [24], degrading the detection performance. Moreover,

3Σ(p) = I2 for a line-of-sight path with no reflection.
4It is possible to localize multiple paths/targets by subdividing each frame

into four quarters with further degraded Doppler resolution of 4/T [23], [24].

Authorized licensed use limited to: Duke University. Downloaded on December 29,2025 at 11:49:26 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON RADAR SYSTEMS, VOL. 3, 2025 1415

the high sidelobes of FMCW make detecting weak targets in the
presence of stronger ones challenging [24], [25].

There are two primary drawbacks of the sequential approach
independent of the drawbacks due to the choice of waveform. First,
it requires the scattering environment to remain constant across two
frames. Second, it prevents frame-by-frame processing. We now
describe an approach for instantaneous polarimetry that overcomes
these two drawbacks.

B. Instantaneous Polarimetry via Phase-Coding
Instantaneous polarimetry overcomes the two drawbacks of

sequential polarimetry by transmitting mutually unbiased waveforms
simultaneously across both the polarizations. Fig. 1(b) illustrates the
main idea. In a single frame interval, unit-norm waveforms xV (t) and
xH(t) satisfying the property

ˇ̌ R
xH(t)x∗V (t − τ)e− j2πν(t−τ)dt

ˇ̌
� 1 are

transmitted in vertical and horizontal polarizations. The receiver esti-
mates all four components of the 2×2 matrix H(p) from (1) by cross-
correlating its dual-polarized received signals with the corresponding
transmitted waveform. For example, the receiver estimates h(p)

VH by
cross-correlating its received signal in vertical polarization with xH(t).

Mutually unbiased waveforms have been designed in previous
work [13], [14], [15] by phase coding a common carrier wave-
form with mutually unbiased discrete sequences, e.g., Zadoff–Chu
sequences with distinct roots. The primary drawback of phase-coding
is that the computational complexity of cross correlation remains
quadratic in the time–bandwidth product, O(B2T 2) [25], [27]. In
Section III, we describe how to design mutually unbiased waveforms
using the Zak-OTFS modulation to enable instantaneous polarimetry
with only O(BT log T ) computational complexity.

III. INSTANTANEOUS POLARIMETRY VIA ZAK-OTFS
We provide a brief overview of Zak-OTFS in the standard unipo-

larized setting in Section III-A, referring the interested reader to [28],
[29], and [30] for a more detailed description of Zak-OTFS. We then
extend the system model to polarimetry in Section III-B and detail
our proposed approach in Section III-C.

A. Overview of Zak-OTFS
The Zak-OTFS carrier waveform is a pulse in the DD domain,

formally a quasi-periodic localized function termed the DD pulsone.5
The DD pulsone is characterized by a delay period τp and a Doppler
period νp, with τpνp = 1. The DD pulsone occupies infinite time and
bandwidth. For practical implementation, the DD pulsone is limited
to a time interval T and a bandwidth B via DD domain pulse shaping.
The DD pulsone defines an orthonormal basis within the delay and
Doppler periods with BT = MN basis elements at M = τp/1/B = Bτp
distinct locations along delay and N = νp/1/T = Tνp distinct locations
along Doppler.

The DD pulsone is converted into a TD waveform via the inverse
Zak transform [28], [29], [30]. After Nyquist sampling, the discrete
TD pulsone waveform is [28], [29], [30]

p(k0 ,l0) [n] =
1
√

N

X
d∈Z

e
j2π
N dl0δ [n − k0 − dM] (2)

where k0 ∈ ZM indexes the location of the pulsone as a multiple of
the delay resolution 1/B = τp/M, and l0 ∈ ZN indexes the location of
the pulsone as a multiple of the Doppler resolution 1/T = νp/N. The
discrete TD signal on mounting MN information symbols on the TD
pulsones in (2) is

x [n] =

M−1X
k0=0

N−1X
l0=0

X [k0, l0] p(k0 ,l0) [n] (3)

where X denotes the M × N array of information symbols.

5Termed “pulsone” due to its structure of a pulse train modulated by a tone
in the time domain (TD), see [29, Fig. 2] for an illustration.

After pulse shaping, the transmitted signal interacts with the
scattering environment and is matched filtered at the receiver. The
discrete TD received signal is given by [25], [28], and [31]

y [n] =
X

k,l∈ZMN

heff [k, l] x
�
(n − k)

MN

�
e

j2π
MN l(n−k) + w [n] (4)

where heff[k, l] denotes the effective channel6 that encompasses the
effects of the physical scattering environment and transmit and receive
pulse shaping/matched filtering [30, Eq. (7)], and w[n] denotes the
additive noise at the receiver. For a scattering environment with P
paths/targets, let hphy(τ, ν) =

PP
t=1 h(p)δ(τ − τt)δ(ν − νt) denote the

corresponding channel representation in the continuous DD domain.
The effective channel is given by samples of the continuous effective
channel, heff[k, l] = heff(τ = (kτp)/M, ν = (lνp)/N), where [28], [29],
[30]

heff (τ, ν) = wRX (τ, ν) ∗σ hphy (τ, ν) ∗σ wTX (τ, ν) . (5)

In (5), wTX (τ, ν) denotes the transmit pulse shaping filter, e.g.,
wTX (τ, ν) = (BT )1/2 sinc(Bτ) sinc(Tν) for sinc pulse shaping [33],
wRX (τ, ν) = e j2πντw∗

TX
(−τ,−ν) denotes the receiver matched filter, and

∗σ denotes twisted convolution.7
The effective channel is estimated at the receiver via the cross-

ambiguity function8 [24], [25], [31], [33]bheff [k, l] = Ay,x [k, l]

=

MN-1X
n=0

y [n] x∗
�
(n − k)

MN

�
e−

j2π
MN l(n−k) (6)

whose peaks in the absolute value indicate delay and Doppler bins
of potential targets in the scattering environment. It has been shown
in [24] and [25] that computing the cross-ambiguity function in Zak-
OTFS requires only O(BT log T ) complexity.

Accurate channel estimation is possible when the sequence x
satisfies the crystallization condition [28], [29], [30], [31], [33]. Let
S = {(k, l)

ˇ̌ˇ̌
Ax,x[k, l]

ˇ̌
= 1} denote the DD locations where the self-

ambiguity function of x is unimodular, and let C denote the maximum
DD support of the scattering environment.9 The crystallization con-
dition requires [

(k,l)∈S

(C + (k, l))

!
∩

 [
(k′ ,l′)∈S

(C + (k′, l′))

!
= ∅ (7)

where (k, l) , (k′, l′). In other words, translates of the channel support
by locations where the self-ambiguity function is unimodular must
not overlap for accurate channel estimation.

B. Extension to Polarimetry
The system model in (4) is extended to polarimetry as

y( j) [n] =
X

i∈{V ,H}

X
k,l∈ZMN

h( j,i)
eff [k, l] x(i) �(n − k)

MN

�
e

j2π
MN l(n−k)

+ w( j) [n] , i, j ∈ {V ,H} (8)

where x(i) denotes the signal transmitted by the i-polarized transmit
antenna, h( j,i)

eff [k, l] denotes the effective channel between the i-
polarized transmit antenna and the j-polarized receive antenna, and
w( j)[n] denotes the additive noise at the j-polarized receive antenna.
In (8), the polarimetric effective channel h( j,i)

eff [k, l] is defined similar
to (5) using the polarimetric continuous DD channel representation,
h( j,i)

phy (τ, ν) =
PP

t=1 h(p)
ji δ(τ − τt)δ(ν − νt), where h(p)

ji is the ( j, i)th entry
of the matrix H(p) in (1).

6The effective channel approximates the physical channel when all the paths
are resolvable in delay with bandwidth B and in Doppler with time T .

7a(τ, ν) ∗σ b(τ, ν) =
R

a(τ′, ν′)b(τ − τ′, ν − ν′)e j2πν′(τ−τ′)dτ′dν′.
8When y = x, the expression Ax,x[k, l] is called the self-ambiguity.
9e.g., C = [kmin, kmax] × [lmin, lmax] based on prior knowledge of the

minimum/maximum delay and Doppler spreads of the scattering environment.
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Fig. 2. Heatmaps of estimated channels for a four-target environment with two targets with equal h(p)
HH = 0.7 & h(p)

HV = h(p)
VH = h(p)

VV = 0, and two targets with
unequal h(p)

HV = h(p)
VH ∈ {0.3, 0.95} & h(p)

HH = h(p)
VV = 0. (a) and (d) Sequential polarimetry via FMCW detects two false targets (“ghost targets”) in addition to

the two true targets in the HH channel and fails to detect the lower energy target in the VH channel due to the high sidelobes of the waveform. (b) and (c)
and (e) and (f) Instantaneous polarimetry via mutually unbiased phase-coded and Zak-OTFS waveforms detects all four targets correctly in the HH and VH
channels.

C. Proposed Approach for Instantaneous Polarimetry
We enable instantaneous polarimetry at near-linear complexity by

designing mutually unbiased sequences via Zak-OTFS. To that end,
in the following we define the generalized discrete affine Fourier
transform (GDAFT) [25], [31], which maps pulsones in (2) to
mutually unbiased spread waveforms. We have used the GDAFT
to design radar waveform libraries in [25] and for spread carrier
communication in [31].

Definition 1 ([25], [31]): The generalized discrete affine Fourier
transform (GDAFT) of an MN-length sequence x is

Fax [n] =
1
√

MN

MN−1X
m=0

e
j2π
MN (An2+Bnm+Cm2)x [m]

where n ∈ {0, . . . ,MN − 1}, A, B,C are coprime to MN.
Theorem 1 ([25], [31]): The GDAFT in Definition 1 maps the

discrete time pulsone in (2) localized at (k0, l0) in the discrete DD
domain to the spread carrier sequence

c [n] = Fap(k0 ,l0) [n] =
e

j2π
MN (An2+Bnk0+Ck2

0)
√

MN
εN

�
CM
N

�
J

× e−
j2π
N (4CM)−1

N (Bn+l0+2Ck0)2

where εN = 1 if N ≡ 1 mod 4 & εN = j if N ≡ 3 mod 4, and (a/b)J
denotes the Jacobi symbol.

A useful consequence of Theorem 1 is that the output of the
GDAFT is mutually unbiased to the pulsone [25], [31]

Ac,p(k0 ,l0)
[k, l] =

C(k0 ,l0) [k, l]
√

MN
(9)

where C(k0 ,l0)[k, l] is a complex phase,
ˇ̌
C(k0 ,l0)[k, l]

ˇ̌
= 1, and

Ay,x[k, l] denotes the cross-ambiguity function as in (6). Moreover,
the GDAFT preserves the near-linear computational complexity of
cross-ambiguity-based channel estimation [25].

For instantaneous polarimetry, we transmit the pulsone and the
output of the GDAFT in orthogonal polarizations, e.g.,

x(H) [n] = p(k0 ,l0) [n] , x(V) [n] = c [n] . (10)

For accurate channel estimation, the GDAFT parameters A, B,C
in Theorem 1 are chosen such that c[n] satisfies the crystallization
condition in (7) for all four components of the polarimetric effective
channel h( j,i)

eff [k, l], for all i, j ∈ {V ,H}. For a detailed discussion on
GDAFT parameter selection, see Fig. 1 and the associated example
in [31, Section IV-C].

On obtaining the received signals per (8), the receiver computes
the cross-ambiguity function per (6) between y( j) and x(i) to estimate
the effective channel h( j,i)

eff [k, l], for all i, j ∈ {V ,H}. We now show how
mutual unbiasedness per (9) enables accurate estimation of all four
polarimetric effective channels h( j,i)

eff [k, l]. Without loss of generality,
we prove the result for the example considered in (10).

The estimate of h( j,i)
eff [k, l] from (6) and (8) is given bybh( j,i)

eff [k, l] = Ay( j) ,x(i) [k, l]

=

MN-1X
n=0

y( j) [n]
�
x(i)�∗ �(n − k)

MN

�
e−

j2π
MN l(n−k)

=
X

i′∈{V ,H}

X
k′ ,l′

h( j,i′)
eff

�
k′, l′

�MN-1X
n=0

x(i′) �(n − k′)MN

�
× e

j2π
MN l′(n−k′) �x(i)�∗ �(n − k)

MN

�
e−

j2π
MN l(n−k)

+ Aw( j) ,x(i) [k, l] . (11)

For additive noise w( j) uncorrelated with the transmitted signals
x(i), we have Aw( j) ,x(i) [k, l] = 0, for all k, l. On further making the
substitution n′ = (n − k′)MN we obtain

bh( j,i)
eff [k, l] =

X
i′∈{V ,H}

X
k′ ,l′

h( j,i′)
eff

�
k′, l′

�MN-1X
n′=0

x(i′) �n′� e
j2π
MN l′n′
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Fig. 3. Histograms for single polarimetric target detection under the target present and target absent hypotheses. (a)–(c) Unipolarization is insufficient for
detecting polarimetric targets. (d) Dual-polarized FMCW is not optimal for polarimetric target detection due to high waveform sidelobes & false target
detections [cf. Fig. 2(a) and (d)]. (e) and (f) Dual-polarized phase-coded and Zak-OTFS waveforms are optimal for polarimetric target detection [cf. Fig. 2(b)
and (c) and 2(e) and (f)].

×
�
x(i)�∗ h�n′ − (k − k′)MN

�
MN

i
e−

j2π
MN l(n′−(k-k′))

=
X

i′∈{V ,H}

X
k′ ,l′

h( j,i′)
eff

�
k′, l′

�
e

j2π
MN l′(k−k′)

× Ax(i′) ,x(i)

�
(k − k′)MN , (l − l′)MN

�
=

X
i′∈{V ,H}

h( j,i′)
eff [k, l] ∗σ Ax(i′) ,x(i) [k, l] (12)

where ∗σ denotes discrete twisted convolution [28], [29], [30], [33].
The expression in (12) is the sum of two termsbh( j,i)

eff [k, l] = h( j,i)
eff [k, l] ∗σ Ax(i) ,x(i) [k, l]

+ h( j,ī)
eff [k, l] ∗σ Ax(ī) ,x(i) [k, l] (13)

where ī denotes a polarization different from i in the set {V ,H}. Since
each sequence x(i) satisfies the crystallization condition in (7), the first
term is simply h( j,i)

eff [k, l]. To simplify the second term, we substitute
(9) to obtain

bh( j,i)
eff [k, l] = h( j,i)

eff [k, l] + h( j,ī)
eff [k, l] ∗σ

C [k, l]
√

MN
≈ h( j,i)

eff [k, l] (14)

where C[k, l] is a phase term similar to that in (9). Since the second
term is the twisted convolution of the effective channel h( j,ī)

eff [k, l] with
a constant amplitude term, it simply raises the noise floor of the
channel estimate. Computing each cross-ambiguity term only incurs
O(BT log T ) complexity,10 and the overall complexity remains near-
linear in BT.

10The complexity reduction from quadratic to near-linear is due to the sym-
metry of the Zak-OTFS carrier waveform. Specifically, the cross-ambiguity
function computation with Zak-OTFS carrier waveforms reduces to an fast
Fourier transform (FFT) calculation. For more details, see [25].

IV. NUMERICAL RESULTS

We now qualitatively and quantitatively compare the performance
of the proposed approach from Section III with sequential polarimetry
via FMCW (Section II-A) and instantaneous polarimetry via phase-
coding (Section II-B). We also compare against unipolarized systems.
Our initial results are limited to target detection and estimation in
the presence of noise; extensions to clutter are briefly pursued in
Section IV-C.

We simulate a monostatic polarimetric radar with frame trans-
missions of bandwidth B = 930 kHz and time T = 1.2 ms. For
FMCW transmissions, in each frame we simulate up-chirps and
down-chirps occupying bandwidth B and time T/2 each as described
in Section II-A sampled at fs = 2B. For phase-coded transmissions,
we consider a rectangular carrier waveform with BT chips of length
1/B sampled at fs = 2B, which is modulated by Zadoff–Chu sequences
of roots u ∈ {101, 107}. For Zak-OTFS, we consider a delay period
of τp = 33.33 µs and a Doppler period of νp = 30 kHz, which
correspond to M = 31 and N = 37 resolvable locations along delay
and Doppler, respectively. We assume sinc pulse shaping [33]. Unless
noted otherwise, we add white Gaussian noise w( j) to the received
signals in (8).

A. Polarimetric Channel Estimation (Qualitative)
Fig. 2 qualitatively shows comparison of the performance of

polarimetric channel estimation via the cross-ambiguity function11 in
(6) for a four-target scattering environment. We simulate two targets

11For our implementation on a CPU cluster with 36 cores and 64-GB
memory, the median time for cross-ambiguity computation with frame size
M = 31, N = 37 is 2.4363 s for FMCW with median absolute deviation
0.081 s, 2.3445 s for phase-coded with median absolute deviation 0.0868 s,
and 0.0012 s for Zak-OTFS with median absolute deviation 45.044 µs,
consistent with the computational complexity analysis in Section III.
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Fig. 4. Single target detection and estimation performance. (a) ROC curve showing ideal target detection with dual-polarized Zak-OTFS and phase-coded
waveforms. The performance degrades with FMCW and/or unipolarized waveforms. (b) and (c) RMSE for delay and Doppler estimation, normalized by the
corresponding delay and Doppler resolutions of 1/B and 1/T . (b) Delay RMSE is similar for dual-polarized Zak-OTFS, phase-coded and FMCW systems at high
SNR, with significant improvements over unipolarized waveforms. (c) Doppler RMSE is similar for dual-polarized Zak-OTFS and phase-coded waveforms
at high SNR, with ∼ 1.5× improvement over FMCW due to no loss in Doppler resolution. Significant improvements with dual-polarized versus unipolarized
waveforms.

with equal h(p)
HH = 0.7 & h(p)

HV = h(p)
VH = h(p)

VV = 0, and two targets with
unequal h(p)

HV = h(p)
VH ∈ {0.3, 0.95} & h(p)

HH = h(p)
VV = 0. We observe that

polarimetry via FMCW detects false targets in the HH channel and
fails to detect the low energy target in the VH channel due to high
sidelobes of the waveform. In contrast, polarimetry via phase-coding
and Zak-OTFS achieves ideal target detection with minimal sidelobes
around the target locations.

B. Target Detection and Parameter Estimation (Quantitative)
We now quantify the performance of target detection and parameter

(delay and Doppler) estimation. We consider a single target and
model the entries of the 2 × 2 matrix H(p) as h(p)

HH = aσe jφ, h(p)
HV =

h(p)
VH = a(1 − σ2)1/2e jδ, and h(p)

VV = bσe jγ, where a, b ∼ Bernoulli(0.5)
are i.i.d. symmetric Bernoulli random variables, σ ∼ U(0, 1) is a
standard uniform random variable, and φ, δ, γ ∼ U(0, 2π) are i.i.d.
uniform random variables in [0, 2π). The delay and Doppler of the
target are drawn uniformly at random according to τt ∼ U(0, τp/4),
νt ∼ U(−νp/8, νp/8). We generate 4 × 104 Monte Carlo instances with
signal-to-noise ratio (SNR) ranging from −20 to 20 dB.

1) Target Detection: As the detection criteria, we compare the
absolute value of the estimated channel at the DD bin corresponding
to the target’s location (representing the target present hypothesis)
with the root-mean-squared value of the channel values at all the
locations other than the target’s location (representing the target
absent hypothesis).

Fig. 3 shows plots of the histograms corresponding to the
two hypotheses for all the considered systems. Overlapping his-
tograms indicates poor target detectability. The histograms overlap
significantly in the unipolarized systems [Fig. 3(a)–(c)], since a
single polarization is insufficient for estimating the full polarimetric
scattering response. Polarimetry via FMCW also has significantly
overlapping histograms [Fig. 3(d)] due to false detections and high
sidelobes of the waveform. Polarimetry via phase-coding and Zak-
OTFS has minimal overlap between the histograms [Fig. 3(e) and
(f)], indicating their optimality.

Fig. 4(a) shows plots of the receiver operating characteristic (ROC)
curve for all the considered systems. Consistent with the findings
from Fig. 3, we observe that polarimetry with phase-coded and Zak-
OTFS waveforms achieves ideal target detection performance, with
performance significantly degrading with FMCW and/or unipolarized
transmissions.

2) Parameter Estimation: For parameter estimation, we first
detect peaks in the estimated channel following the procedure out-
lined in [33], which closely mimics the operation of a 2-D constant
false alarm rate detector from radar signal processing [21]. We
threshold the energy of each channel location by the mean noise

Fig. 5. Instantaneous polarimetry via Zak-OTFS exhibits greater resilience
to clutter when compared with competing methods.

energy outside the region of interest ROI = [−∆τ, τp/4 + ∆τ]×[−νp/8 −
∆ν, νp/8 + ∆ν] (∆τ and ∆ν are guard widths to account for spread due
to pulse shaping), scaled by an appropriate factor to achieve 10−6

false alarm rate [21]. After thresholding, the DD location with the
maximum channel energy is the estimated target location.

To fuse the target parameter estimates obtained across multiple
polarimetric components, we compute their weighted average using
entropy-based weights, w( j,i) = 1 − H(bh( j,i)

eff )/log2(MN) for all i, j ∈ {V ,H},
where H(h) = −

P
k,l

�
|h[k,l]|2/

P
k′ ,l′ |h[k′ ,l′]|2

�
log2

�
|h[k,l]|2/

P
k′ ,l′ |h[k′ ,l′]|2

�
denotes the entropy [34] of a DD channel h. Intuitively, such
entropy-based weighting prioritizes parameter estimates obtained
from polarimetric components with large variation in channel ampli-
tudes (indicating the presence of targets) as opposed to those with
little variation in channel amplitudes (indicating noise and the absence
of any target). For illustration, consider the extreme case with no
targets. Due to mutual unbiasedness, the estimated channel per (14)
in this case has a constant energy level of 1/MN and an entropy
of log2(MN), for which the chosen weight is w( j,i) = 0, i.e., such
components are not allowed to bias our estimates.

Fig. 4(b) and (c) shows plots of the root-mean-squared
error (RMSE) for delay and Doppler estimation for all
the considered systems. The RMSE for delay estimation
is similar for polarimetry with FMCW, phase-coding and
Zak-OTFS at high SNRs. The Doppler RMSE matches for
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polarimetry with phase-coding and Zak-OTFS, with ∼1.5×
improvement over FMCW, consistent with the explanation in
Section II-A. Unipolarized systems have significantly poorer delay
and Doppler RMSE. Note that the RMSEs do not improve beyond a
certain threshold due to the inherent resolution limits of the chosen
waveforms. Future work will design optimal approaches achieving
theoretical bounds, e.g., the Cramér–Rao bound [35].

C. Target Detection in Constant-γ Clutter
Fig. 5 shows plots of the detection ROC curve for single-target

detection in constant-γ clutter for all dual-polarized systems. For a
metropolitan terrain and a carrier frequency of fc = 4 GHz, we obtain
the clutter parameter value γ = −1.99 dB from [36]. Fig. 5 shows that
instantaneous polarimetry via Zak-OTFS exhibits greater resilience
to clutter when compared with methods based on phase-coded and
FMCW transmissions.

V. CONCLUSION

In this article, we proposed an alternate approach for instantaneous
polarimetry using the Zak-OTFS modulation. We designed a spread
carrier waveform mutually unbiased to the Zak-OTFS carrier wave-
form and proposed to simultaneously transmit both waveforms over
orthogonal polarizations. Unlike existing methods with computational
complexity quadratic in the time–bandwidth product, the proposed
method enables instantaneous polarimetry at near-linear complexity
and greater clutter resilience. Future work will pursue experimental
evaluation and applications to integrated sensing and communication.
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