
Article https://doi.org/10.1038/s41467-025-62620-1

Demonstration of a tunable non-Hermitian

nonlinear microwave dimer

Juan S. Salcedo-Gallo1, Michiel Burgelman2, Vincent P. Flynn 2,

Alexander S. Carney1, Majd Hamdan1, Tunmay Gerg2, Daniel C. Smallwood 1,

Lorenza Viola 2 & Mattias Fitzpatrick 1,2

Achieving and controlling non-reciprocity in engineeredphotonic structures is

of fundamental interest in science and engineering. Here, we introduce a

tunable, non-Hermitian, nonlinear microwave dimer designed to precisely

implement phase-non-reciprocal hopping dynamics between two spatially

separated cavities at room temperature. Our system incorporates simple

components such as three-dimensional microwave cavities, unidirectional

amplifiers, digital attenuators, and a digital phase shifter. By dividing the

energy transfer into forward andbackwardpaths, our platformenables precise

control over the amplitude and phase of the propagating signals in each

direction. Through a combination of theoretical and numerical analysis, we

model the dynamics of the system under different operating conditions,

including a parameter regime where the gain not only compensates for but

significantly exceeds the inherent loss. Our model quantitatively reproduces

the observedweak-drive transmission spectra, the amplitude and frequency of

self-sustained limit cycles, and the phase locking synchronization effect

between the limit cycle and an external microwave tone. Our results may have

implications in areas ranging from sensing and synthetic photonicmaterials to

neuromorphic computing andquantumnetworks,while providing new insight

into the interplay between non-Hermitian and nonlinear dynamics.

An isolated quantum system undergoes unitary dynamics, generated

by a Hermitian Hamiltonian. Since no system can be perfectly isolated

from its surrounding environment, however, non-Hermiticity appears

naturally in describing the non-unitary, irreversible evolutions that

real-world open systems undergo1. Non-Hermitian effective Hamilto-

nians have long been used tomodel a variety of open-system behavior

phenomenologically, from the decay of unstable states to anomalous

wave propagation and localization2,3, to gain-and-loss phenomena4–6

and parity-time (PT ) symmetry-breaking transitions7–12. Within a more

rigorous treatment in the framework of open quantum systems13, a

broad class of systems undergoing Markovian dissipation may be

accurately described by a Lindblad master equation14. A probability-

non-conserving evolution described by a non-Hermitian effective

Hamiltonian then arises in a semiclassical or a measurement-post-

selected regime, where quantum fluctuations and quantum jumps can

be neglected. Remarkably, as a sole consequence of quantum statis-

tics, effectively non-Hermitian dynamics may also arise for closed

systems of non-interacting bosons, despite their Hamiltonian remain-

ing Hermitian at the many-body level15–18.

Systems evolving under explicitly or even effectively non-

Hermitian dynamics can exhibit a wealth of distinctive features,

which are both of fundamental interest and can be harnessed for

practical applications. Notably, non-Hermiticity makes it possible for a

system to sustain non-reciprocal couplings, which offers new oppor-

tunities for realizing unidirectional, phase-dependent transport and

amplification16,19,20, andmay beultimately tracedback to the non-trivial
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topology of the underlying dynamical generator21,22. Likewise,

enhanced sensing modalities are being predicted to stem from both

non-reciprocity23 and uniquely non-Hermitian spectral singularities

associated with loss of diagonalizability and the emergence of excep-

tional points24. Renewed interest in non-Hermitian dynamics is driven

by the realization that, in connection with ideas from many-body and

topological physics, non-reciprocal interactions may underpin a range

of emergent phenomena of broad relevance to photonics, optics,

acoustics, and condensed-matter physics1,25,26. Representative exam-

ples include novel time-dependent27 or transient metastable

phases28,29, as well as exotic strongly-correlated phases of matter with

non-Hermitian topology30 or broken time-translation symmetry31,32.

By now, numerous experimental platforms have successfully

demonstrated non-Hermitian dynamics and the resulting non-

reciprocal transmission in the classical regime. In particular, opto-

mechanical oscillators coupled in a non-reciprocal, nonlinear regime

have revealedPT -symmetry-breaking phase transitions and limit-cycle

oscillations33–35, and the use of a parametrically driven nano-

optomechanical network has led to initial implementations of a para-

digmatic (effectively) non-Hermitian model described by a bosonic

Kitaev chain Hamiltonian36. Meanwhile, real-world acoustic experi-

ments have demonstrated loss-compensated, non-reciprocal scatter-

ing and self-oscillations as well37. Within circuit quantum

electrodynamics (QED) setups, existing approaches for breaking reci-

procity often rely on active cavities38 or complex schemes that require

magnetic-field-tunable components like Yttrium-Iron-Garnet (YIG)

spheres39,40. Circuit QED platforms have proven instrumental for rea-

lizing exotic topological lattices with complex connectivities and non-

Euclidean geometries41–44. While they are thus ideally positioned for

studies of strongly correlated photonic materials and synthetic gauge

fields, the above-mentioned schemes lack the degree of flexibility and

tunability that would be desirable for explicitly engineering non-

Hermiticity and non-reciprocal hopping dynamics in these systems.

With the above challenge in mind, in this work we demonstrate a

highly tunable non-Hermitian device as a fundamental building block

toward realizing scalable synthetic photonic lattices.We construct this

building block using two coupled three-dimensional (3D) aluminum

cavities acting as classical harmonic oscillators at room temperature,

and forming a dimer system. Our key idea for engineering non-

reciprocal interactions in a way that can be precisely calibrated and

controlled is to combine a novel realization of non-Hermitian hopping

dynamics, obtained via the insertion of a digital phase shifter, with the

intrinsic nonlinearities stemming from amplifier saturation. This

effectively results in a closed-feedback network of active and passive

elements, which permits access to a regime where gain surpasses

inherent loss, forcing the onset of dynamical instability at the linear

level. Under these conditions, the system undergoes a supercritical

Hopf bifurcation45, and the nonlinear dynamics eventually result in a

self-sustained, stable limit cycle (LC).

Besides characterizing the stability phase diagram in the undriven

case, we explore the effects of frequency entrainment46 (a form of

synchronization) that the LC undergoes in the presence of an external

microwave tone. Phase-locking47 and synchronization phenomena

have long been recognized as hallmark features in understanding the

classical-to-quantum transition of various nonlinear oscillators48–52,

and they show significant promise for device applications, particularly

in injection-locking techniques53. Here, we systematically investigate

the interplay of gain, loss, non-reciprocity, and nonlinear saturation

through experiments, and quantitatively account for all the observed

effects using numerical simulations and analytical calculations based

on a proposed phenomenological model.

Results
Figure 1 a illustrates the 3Dmicrowave cavities used in our system, each

with four ports featuring adjustable coupling rates, tunable (identical)

resonance frequency, ωc, and fixed internal loss rates, κint. Figure 1b

presents an exploded viewof the cavities, showing the length-adjustable

couplers, each formed by the center conductor of a coaxial connector

that controls the input, output, and coupling rates, labeled as κin, κout,

and κc, respectively. The resonance frequency is tuned by adjusting a

post at the base of the device, with locking pins ensuring the stability of

all mechanically-tunable parameters after calibration.

As shown in Fig. 1c, cavity 1 is driven by a coherent signal with

strength ϵ and frequency ωd at an input rate κin. Hence, we define

ϵ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

κinPin=ℏωd

p

, where Pin is the input drive power (in watts), con-

verted from the corresponding value Pd (in dBm)

using Pin = 10
ðPd�30Þ=10.

Both cavities are coupled to unidirectional amplifiers with a

characteristic gain G0, followed by a digital attenuator with a dynamic

range of Γ ∈ [0, 50] dB, adding to the intrinsic insertion loss of the

passive components. A digital phase shifter is inserted to make the

relative phase, ϕ, of the reverse propagating path (cavity 2 → cavity 1)

tunable over [0, 2π), and the output is collected from cavity 2 at a rate

κout. In what follows, we characterize our system using the quantity

ΔG ≡ G0 − Γ, representing the net hopping gain. By utilizing a conver-

sion factor of 10ΔG/20, we adjust the intrinsic κc of each oscillator to

produce an effective, tunable hopping coefficient at low power given

by J0(ΔG) = 10ΔG/20κc.

Before describing the full nonlinear model of our system, we

present a linear model that accurately describes the essential features

of the dynamics in the low-power regime. This is achieved by con-

sidering the following semiclassical equations of motion (EOMs):

_α =A0α + ϵB, ð1Þ

input output

aa

c

locking pins

adjustable
couplers

adjustable 
post

microwave
cavity

b

Fig. 1 | Tunable, non-Hermitian, nonlinear microwave dimer. a Depiction of

individual cavities with a mechanically-adjustable resonance frequency and cou-

pling rates. b An exploded view of the cavity, showing how cavities are assembled

with locking pins to set experimental parameters after calibration. c Schematic of

the dimer system formed from two tunable microwave harmonic oscillators with

frequenciesωc/2π =6.027(5) GHzand internal quality factorsofQint=ωc/κint≈ 1488.

The oscillators are connected with a characteristic coupling strength of κc/

2π = 8.7(1) MHz. When the amplifier is in its normal operating regime, this coupling

is determined by a characteristic gain, G0 = 20.3(2) dB, and subsequently adjusted

through digital attenuation, Γ. On the return path (cavity 2 → cavity 1), a phase

shifter introduces a relative phase, ϕ, between the two coupling paths. We couple

photons into and out of the cavity at an average rate κin,out/2π = 4.0(2) MHz.
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where the state variables α � α1α2

� �T
represent complex amplitudes

of the cavity field, B � 10
� �T

accounts for the external drive on cavity

1, and the dynamical matrix A0 takes the form

A0 =
�iðωc � ωdÞ � κ0 �iJ0ðΔGÞe�iϕ

�iJ0ðΔGÞ �iðωc � ωdÞ � κ0

" #

: ð2Þ

In this way, tuning the phase ϕ takes the system from a regime where

the hopping dynamics is perfectly reciprocal (ϕ = 0), to one where the

couplings are skew-Hermitian (ϕ = π). Thus, phase non-reciprocity

occurs in our system when the relative phase of the hopping terms

differ, despite the hopping rates remaining equal. As a key difference

from existing non-reciprocal devices, our dynamical matrix A0 is non-

Hermitian but nonetheless normal (hence diagonalizable) throughout

the undriven parameter regime.

In Eq. (2), we have introduced the parameter κ0 to describe the

total intra-cavity dissipation rate. Experimental observations suggest

that κ0 is also influenced by J0(ΔG). This influence can be explained by

the increase in state amplitudes within the cavities, αi, which leads to

the amplifiers introducing and amplifying existing incoherent noise

over a finite bandwidth determined by the inherent linewidth of the

cavities. Since this amplified noise competes directly with the intrinsic

dissipation of each cavity, the overall effective dissipation rate is

reduced. We model this process phenomenologically as:

κ0 � κ0ðΔGÞ= 2 ðκint + κin=out + κcÞ � J0ðΔGÞ: ð3Þ

Generally, Eq. (1) admits a unique stable equilibrium point when

maxRe ½σðA0Þ�<0, where σ(A0) ≡ σ(A0(ΔG, ϕ)) denotes the eigenvalue

spectrum of A0 as a function of the tunable parameters. Thus, a

necessary and sufficient condition for dynamical stability is that

J0ðΔGÞ
κ0ðΔGÞ

sinðϕ=2Þ< 1: ð4Þ

The associated stability phase boundary as a function of ϕ and ΔG is

illustrated in Fig. 2a. FromEq. (4),wecan immediately see that forϕ≠0

and sufficiently high ΔG, it is possible that J0(ΔG) can balance and

exceed κ0(ΔG), resulting in the onset of instability. This condition

selects two relevant regions, namely,

RegionI : 0≤ J0ðΔGÞ≤ κ0ðΔGÞ, ð5Þ

RegionII : κ0ðΔGÞ< J0ðΔGÞ: ð6Þ

Region I is always stable, while Region II is only stable for those ϕ

satisfying Eq. (4). Physically, in the gain-dominated (Region II) unstable

regime, the field amplitudes ∣αi∣
2 diverge, pushing the amplifiers into

saturation and reducing the gain in a power-dependent fashion.

While the linear model captures the correct asymptotic behavior

in the stable, loss-dominated (Region I) regime, to obtain a description

of the dynamical behavior valid in both the above regions, we must

allow the hopping function to depend nonlinearly upon ∣αi∣
2. We

account for such a dependence through the following continuous

piecewise function:

JðΔG; jαij2Þ
κc10

ΔG=20
=

1 if jαij2 ≤ jαsatj2,
bG +ℏωc jαsat j2κc

bG +ℏωc jαi j2κc
if jαij2 > jαsatj2,

8

<

:

ð7Þ

where bG = 8.6 mW and ∣αsat∣
2 is the saturation threshold of the

amplifier, which is determined by ∣αsat∣
2 = Psat/ℏωcκc, with Psat = 0.9981

mW derived from experimental characterization (see Supplementary

Information Sec. VI). Note that for sufficiently low ∣αi∣
2, Eq. (7)

consistently recovers the hopping coefficient for the linear model,

namely J0(ΔG). However, as ∣αi∣
2 exceeds ∣αsat∣

2, J(ΔG, ∣αi∣
2) becomes

monotonically reduced, illustrating the saturation effect that drives

the nonlinear behavior of the system.

As we will further discuss in the next section, transmission

experiments (Fig. 2b,d) show that peak-splitting at ϕ = 0 is first

resolved at a significantly lowerΔG than the one atwhich instability sets

in for ϕ = π. However, Eq. (2) indicates that the two normal modes

become spectrally resolvable, namely when their splitting equals the

peak linewidth, only at ΔG ≃ 4.78 dB, so it predicts that the resolvable

splitting and the instability threshold should coincide. This suggests an

additional coherent hopping effect that is stronger at ϕ = 0, allowing

for earlier mode splitting (see also Supplementary Information,

Sec. IB). We make this intuition precise by directly modifying the off-

diagonal hopping coefficients via a phase-dependent function,

f ðϕÞ= iJc cos ϕ
2

� �

eiϕ=2, where Jc/2π = 11.5 MHz represents the strength

of this additional coherent hopping. While a complete explanation of

the origin of f(ϕ) is lacking, and its proposed ϕ-dependence is phe-

nomenological, we believe it stems from constructive interference

between the twomodes. The incorporation of f(ϕ) accurately captures

the frequency splitting observed in Fig. 2b–e without altering the

stability characteristics of the system in Fig. 2a.

At this point, we have already introduced all of the terms required

to define the final form of our EOMs:

_α =Aðjα1j2, jα2j2Þα + ϵB, ð8Þ

with the full dynamical matrix being given by

Aðjα1j2, jα2j2Þ

=
�iðωc � ωdÞ � κ1ðΔG; jα1j2Þ ½�iJðΔG; jα2j2Þ � f ðϕÞ�e�iϕ

�iJðΔG; jαj21 Þ � f ðϕÞ �iðωc � ωdÞ � κ2ðΔG; jα2j2Þ

" #

,
ð9Þ

where κ1(2) = 2(κint,1(2) + κin(out) + κc) − J(ΔG, ∣α1(2)∣
2), and J(ΔG, ∣α1(2)∣

2) is

defined in Eq.(7). In the linear limit of small ∣αi∣
2,A(∣α1∣

2, ∣α2∣
2) reduces to

A0 as described in Eq.(2), up to the phase-dependent correction

introduced via f(ϕ). By explicitly solving the dynamics defined by Eqs.

(8) and (9), we can directly reproduce and capture the main features

observed in our experiments, such as weak-drive transmission

(Fig. 2b–g), undriven LC solutions (Figs. 2a and 3), as well as the phase

locking synchronization phenomena (Fig. 4). We provide an in-depth

discussion in the sections that follow.

Weak-drive transmission spectra
To probe the steady-state S21, we drive the system at an input power of

Pd=− 30dBmandsweep thedrive frequencyωd/2πover the range 5.98

to 6.09 GHz using a scalar network analyzer. Numerically, we compute

S21 as the ratio of the steady-state output power from cavity 2 and the

input drive power in cavity 1. Hence,

S21ðωd ,ΔG,ϕÞ=
Pout

Pin

=
ℏωd ∣α

eq
2 ∣

2
κout

ℏωdϵ
2=κin

= κinκout

∣αeq
2 ∣

2

ϵ2
,

where αeq
2 is the DC-component of the unique asymptotic solution

α2(t). Note that the dependence on ΔG and ϕ is implicitly contained in

the solutions for αeq
2 . Moreover, to directly compare numerical

solutions to experimental results, the conversion to dB is accom-

plished via S21 [dB] = 10log10ðS21Þ.
Figure 2b–g present the experimental and numerical S21 data for

the two special phases, ϕ = 0 and ϕ = π, for which, as noted, the

hopping amplitudes are Hermitian and skew-Hermitian, respectively.

Specifically, Fig. 2b–c depict the experimental and numerical S21
spectra for ϕ = 0 across various ΔG values. At low ΔG, the S21 spectra
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Fig. 2 | Stability phase diagram and transmission spectra (S21) for our tunable

non-Hermitian nonlinear microwave dimer. a Stability phase diagram depicting

the vacuum-stable and unstable regimes determined by the dynamicalmatrix in Eq.

(2) or Eq. (9). b(d), Experimental, and c(e) numerical simulations for S21 as a func-

tion of net gain, ΔG, for ϕ = 0(π). In both cases, data are plotted with the same

colorbar for direct comparison. Numerical simulations (squares) and experimental

measurements (circles) of maximum transmission, Smax
21 , are shown in (f) and (g). A

comparison of the experimental full width at half maximum (FWHM) with

corresponding numerical results for ϕ = π is included in (g), showing a dramatic

reduction in linewidth as ΔG increases. Smax
21 and FWHM are extracted from single-

or double-Lorentzian fits to the spectra in b-c and d-e, with error bars indicating

one standard deviation from the fit covariance matrix. FWHM is shown on a loga-

rithmic scale to highlight the sharp transition to sub-MHz linewidths above

threshold. Experimental and numerical results in (b)–(g) consider an input drive

power of Pd = − 30 dBm. The dashed line at ΔG = 4.78 in a-g denotes the onset of

instability at ϕ = π.
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show a single, very broad peak, indicating that the two modes are

decoupled due to the high effective loss in the hopping path. As ΔG

increases, two distinct peaks emerge and move further apart,

demonstrating enhanced coupling and symmetric energy distribution

between the two modes. The increasing separation of the peaks and

higher S21 magnitudes (indicated by brighter colors at higher ΔG in

Fig. 2b–c) confirm the successful experimental implementation of

reciprocal hopping with tunable rates, as predicted by the dynamical

matrix in Eq. (9) at ϕ = 0. Additionally, the excellent agreement

between experimental results and numerical simulations presented in

Fig. 2b–c validates the accuracy of our model by capturing the S21
characteristics when the coupling coefficients in both paths are engi-

neered to be nominally equal.

Figure 2d–e show the experimental and numerical S21 spectra at

ϕ =π. At lowΔG values, we observe aminimal S21 signal, again indicating

that the two modes are essentially decoupled. As ΔG increases to

intermediate levels, the signal response increases, but the transmission

spectra differ significantly from the typical frequency splitting seen in

symmetrically coupled modes. Instead of two peaks in frequency, we

observe a singlepeak centered atωc/2π.WhenΔG≃4.78dBandbeyond,

the amplitude of the peak at ωd ≃ ωc suddenly and dramatically increa-

ses, followed by asymptotic saturation, while its linewidth sharply nar-

rows (Fig. 2g), consistent with the onset of a stable LC.

Since the scalar network analyzer performs homodyne detection

at the drive frequency, the experimental S21 measurements effectively

collect the steady-state transmission amplitude at ωd/2π. We account

for this effect into our numerical framework to generate the data

presented in Fig. 2 by breaking down the time-domain signal into its

frequency components and extracting the DC component, as descri-

bed in theMethods section.Overall, the tunable S21behavior highlights

a fundamental difference in the system dynamics when the hopping

coefficients have equal magnitude but opposite signs, yielding a skew-

Hermitian dynamical matrix in Eq. (9), which is realized when ϕ = π.

Furthermore, Fig. 2f shows Smax
21 atϕ =0,where both experimental

(solid circles) and numerical (open squares) data display a monotonic

increasewithΔG. This trenddemonstrates the reduction of intra-cavity

dissipation rates in the system as ΔG increases, which is captured by

Eq. (3). Similarly, Fig. 2g presents Smax
21 and FWHM at ϕ = π. Here, near

ΔG ≈ 4.78 dB, Smax
21 suddenly increases and saturates, while the FWHM

sharply decreases due to amplifier saturation. This behavior indicates

that the system has transitioned into a dynamically unstable regime,

which we analyze in detail next.

Undriven, self-sustained, limit cycles
So far, we have explored the dynamics of our system under the influ-

enceof a (weak) coherent external drive applied to cavity 1, specifically

at two phases, ϕ = 0 and ϕ = π. However, the system hosts a self-

sustained LC in the unstable regime. The stability condition in Eq. (4),

which is depicted in Fig. 2a, determines the existence of this LC, in the

absence of external driving. Figure 3 presents the experimental,

Fig. 3 | Phase diagram of the amplitude and frequency of the LC solutions

without external driving. a–c Power emitted from the LC extracted experimen-

tally (a), numerically (b), and analytically (c). d–f Frequency detuning of the LC

relative to ωc, δωLC, extracted experimentally (d), numerically (e), and analytically

(f). The contour in each plot represents the stability phase boundary from the

dynamical matrix in Eq. (9), also corresponding to ∣α2∣
2 = ∣αsat∣

2 for the analytical

solution in Eq. (10), which is depicted in (c) and (f). Numerical and analytical

amplitudes in the vacuum-stable phase in (b)–(c) are set at -44dBm, corresponding

to the baseline amplitude observed experimentally in a, and this same threshold is

used to white out the corresponding region in (d). The vertical dashed line in all

plots marks the value of net gain ΔG = 4.78 dB at which the phase ϕ = π becomes

unstable. In the experimental data, we removed an outlier near ϕ = 5.287 rads.,

corresponding to the set value on the digital phase shifter moving from 2π → 0.
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numerical, and analytical results for the amplitude (a-c) and frequency

(d-f) of these LC solutions. Each subplot includes the onset of

instability for comparison, with the red dashed line indicating the

lowest ΔG value where instability occurs at ϕ = π.

Figure 3a presents the experimentally measured amplitude of the

LC, obtained from the emission spectra formultiple values ofϕ andΔG

(see Supplementary Information Sec. IIE). In regions where the system

is dynamically stable, Fig. 3a shows a nominally constant baseline,

indicating the absence of a self-sustained emission signal. However, as

the systementers theunstable regime, a distinctpeak emerges, seeded

by thermal noise at room temperature. The limit cycle arises from a

dynamical instability of the zero-amplitude state and does not require

external driving. Once the linear stability condition is violated, small

fluctuations are amplified by the system’s effective net gain, resulting

in a self-sustained steady-state oscillation that is accurately captured

without the need to explicitly model noise. This manifests as a sharp

increase in amplitude and an ultra-narrow linewidth, on the order of

kHz. Notably, the transition into the unstable regime is marked by a

sudden increase in the intensity of the emitted light (or LC amplitude),

indicating that the system has undergone a supercritical Hopf

bifurcation45.

We perform numerical simulations to determine the amplitude of

the LC solutions, as shown in Fig. 3b. In our numerical simulations, we

time-evolve the EOMs with ϵ = 0 in Eq. (8) and ωd = ωc in Eq. (9). This

allows us to calculate the steady-state intensity of the emitted light

from cavity 2 (/ jαeq
2 j2). Additionally, we derive an analytical

expression for the LC-amplitude.Wedo this by transforming the EOMs

into the normal mode basis, excluding the eigenvalue corresponding

to the stable normal mode and solving for the amplitude ∣αi∣
2 that

yields non-trivial solutions. We obtain the following expression for the

amplitude of the LC, nLC, (see theMethods section for a summary, and

the Supplementary Information, Sec. II for a full derivation):

nLC � jα1ðtÞj2 � jα2ðtÞj2

=
10ΔG=20 1 + sin ϕ

2

� �� �

κ2
cℏωcjαsatj2 + κcbG

� �

� 2bG κc + κin=out + κint

� �

2κcωcℏ κc + κin=out + κint

� � , 8t:

ð10Þ

In addition to characterizing the amplitude of the self-sustainedmode,

we also investigate the tunable frequency response. Figure 3d–f

displays experimental, numerical, and analytical data that describe the

frequency of the LC solutions for a range of ΔG and ϕ values.

Specifically, Fig. 3d presents the experimentally measured frequency

of the LC, identified as the frequency at which the emission spectra

exhibit its highest amplitude (see Supplementary Information Sec. IIE).

We calculate the difference δωLC ≡ ωc − ωLC. We see that δωLC shifts

monotonicallywith changes inϕ, and it is anti-symmetric aroundϕ=π.

Specifically, δωLC/2π is positive for ϕ < π and negative for ϕ > π, thus

demonstrating remarkable tunability over a ~60MHz frequency range.

Importantly, δωLC shows negligible dependence on ΔG, which aligns

with our numerical and analytic solutions, as discussed next.

Fig. 4 | Synchronization of the LCmode and an external drive. Experimental (a)

and numerical (b) contours representing regions containing a distinct LC away

from ωc/2π as a function of drive power. For the experimental and numerical data

presented in (a) and (b), we applied an external drive atωd/2π =ωc/2π = 6.027 GHz.

Note that in the LC region of a and b, ifϕ = π, thenωc =ωd =ωLC, whereas forϕ ≠ π,

we haveωc =ωd ≠ωLC. Experimental (c) and numerical (f) power of the drive peak as

a function of the drive frequency for the panels presented in (d)–(e) and (g)–(h)

depicted as blue and red dashed lines for Pd = 0 and 4 dBm, respectively.

Experimental (d–e) and numerical (g–h) emission from the dimer at ϕ = π and

ΔG = 8.4 dB as an external drive is swept from low to high frequency around ωc/2π

for Pd = 0 dBm (d, g), and for Pd = 4 dBm (e, h) drive strengths, showingmixing and

phase locking synchronization with the external drive. In both experimental and

numerical simulations, the LC synchronizes in a larger range in frequency as Pd

increases, consistent with the expansion of synchronized regions shown in c and

f, which explains the trend observed in the vicinity of ϕ = π for the contours

depicted in (a)–(b), respectively.
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To numerically determine δωLC/2π, we perform a Fourier analysis

of the time-domain solutions to Eq. (8), and extract the dominant

frequency from the spectra, as discussed in the Methods section.

Analytically, we derive an expression for δωLC, revealing that this

quantity is independent of ΔG, and entirely determined by ϕ:

δωLC � Jc cos
ϕ

2

	 


+
2 κin=out + κint + κc

� �

cos ϕ
2

� �

1 + sin ϕ
2

� � : ð11Þ

Figure 3e–f present numerical and theoretical calculations of δωLC for

various ϕ and ΔG values. These results accurately reproduce the key

experimental observations, including the monotonic tuning of δωLC

with ϕ over a wide frequency range and a 4π-periodicity. This

mechanism enables precise control over the frequency of the self-

sustained mode by tuning the relative phase between the hopping

paths. Overall, the remarkable agreement between our experimental,

numerical, and analytical results demonstrates the effectiveness of our

model in explaining the key characteristics of the self-sustained

emission process observed in the unstable, gain-dominated regime.

Synchronization dynamics
To further probe the nonlinear dynamics of our device, we now

examine a particular synchronization effect, namely, the frequency

entrainment phenomenon or phase locking between the LC and an

external microwave tone46,47. In our experiments and simulations,

shown in Fig. 4a–b, we employ a fixed microwave tone set at ωd = ωc,

and vary the drive power, Pd, from 0 to 16 dBm. We then analyze the

spectra to identify regions of the phase diagram with at least two

distinct peaks, indicating the coexistence of self-oscillation and

external drive. These regions define the contours in Fig. 4a–b. From

here,weobserve that increasing thedrivepowerprogressively reduces

the area where LC solutions exist. This is more pronounced when the

LC frequency is close to the drive frequency, which occurs whenϕ = π.

Everywhere else, the dynamics converge to a unique stable equilibrium

point, where no self-sustained oscillatory behavior occurs. Moreover,

we observe a slight asymmetry in the experimental contours of Fig. 4a,

which we attribute to minor experimental imperfections not captured

by the model, as discussed further in the Methods section.

To better understand the interaction between the LC mode and

the external drive, we perform experiments and numerical simulations

sweeping an external tone aroundωc/2π at fixed drive powers (0 and 4

dBm), keeping the dimer set at ϕ = π and ΔG = 8.4 dB, as shown in

Fig. 4c–h. As shown in d-e and g-h, when ωd/2π is below ωc/2π, the

measured spectra show three distinct peaks: the drive-response peak

at ωd/2π (left), a central peak at ωc/2π from the LC, and a higher har-

monic at higher frequencies created by nonlinear wave mixing. As the

drive frequency approaches the LC frequency, a pronounced line-

pulling effect causes all peaks to coalesce into a single resonance.

Moreover, we can see from Fig. 4c, f that in this synchronization win-

dow, the power of the drive peak increases and then saturates, further

confirming the onset of synchronization. This convergence and line-

pulling is a clear signature of a frequency entrainment effect46, and

phase locking47, where the LC, with its time-dependence composed of

generated higher-order harmonics, coalesces into a single frequency

corresponding to that of the external drive. In our setup, phase locking

is evidenced by the progressive shift of the dominant spectral peak

toward the drive frequency and themerging of harmonics into a single

tone, distinct from suppression of natural dynamics, which would

result in a stationary peak fading with increasing drive power (see

Supplementary Information Sec. III). Furthermore, the synchronization

window around ωc/2π expands with increased drive power, as evident

from Fig. 4c, f, hence explaining the observed widening of the gap

around ϕ = π in Fig. 4a–b. At higher drive frequencies, the self-

oscillation reappears as a distinct resonance, accompanied by

asymmetric higher harmonics, mirroring the behavior observed for

drive frequencies below ωc/2π.

Discussion
We have presented a tunable platform for investigating phase-non-

reciprocal hopping dynamics between two spatially separated micro-

wave oscillators. We explored uncharted parameter regimes where

coupling significantly exceeds inherent losses at roomtemperature, by

utilizing low-loss passive components and high-gain unidirectional

amplifiers. We investigate the transmission behavior, LC, and syn-

chronization phenomena that emerge when non-reciprocal amplifiers

provide enough gain to compensate for loss in the hopping paths and

to exceed the total loss in the system. The remarkable quantitative

agreement between numerical, analytical, and experimental results

demonstrates the effectiveness of our model in adequately describing

the dynamics of the system.

Our platform holds significant potential across various fields in

science and engineering, by facilitating tunable non-Hermitian and

nonlinear dynamics. The ability to finely control the self-sustained LC

frequency with phase opens new possibilities for cavity-magnonic and

optomechanical systems38,54–56, as well as low-cost signal generators.

Future characterization of the phase noise, output power, and line-

width, alongside comparisons with established microwave sources,

could clarify whether the intrinsic phase-locking dynamics in the

unstable regime contribute to phase noise suppression, enabling

compact, frequency-tunable emitters with potentially enhanced

spectral stability. Additionally, the observed frequency entrainment

offers valuable insights for sensing applications57, since the LC fre-

quency shows enhanced sensitivity to the drive frequency at the onset

of synchronization. Also promising for sensing is the non-Hermitian

nature of our dimer: while, as noted, the undriven dynamics is normal,

the combination of external drive and nonlinearity renders the line-

arized dynamics around the displaced steady state non-normal,

enabling the exploration of exceptional points – including in a non-

linear regime, where the sensitivity may potentially be enhanced

without sacrificing the signal-to-noise ratio as is typical of linear

exceptional-point-based sensors58–61. In turn, the sigmoid-like trans-

missionprofileweobserve (Fig. 2g) offers opportunities for generating

nonlinearities in analog neural networks across radio-to-optical

frequencies62–64.

Furthermore, as mentioned, the dimer building block presented

here can serve as a tunable edge in synthetic photonicmaterials, which

can be extended to higher degrees of connectivity and enable non-

planar geometries39,43,65. Although the current system operates in a

classical regime, its components can be adapted to cryogenic envir-

onments using parametric amplifiers66–69 andYIG-based phase shifters,

with promising implications for quantum information processing70–72.

For example, one may envision that the coupling method introduced

heremay be useful in the context of novel implementations of driven-

dissipative cat qubits73,74.

Although the coupling thatwe introducedhere is realized through

a network of passive and active circuit elements, the dynamics are well

captured by a two-mode coupled-mode model with phase-tunable

non-reciprocal coupling. This phenomenological approach avoids

unnecessary complexity while preserving generality and predictive

power, and it reproduces the experimental behavior with excellent

accuracy. Further characterization of cross-correlations between

scattering elements across multiple phases and drive configurations,

including simultaneous cavity driving, also represents a promising

direction to deepen our understanding of the phase-nonreciprocal

interaction between the coupled oscillators. Theoretically, we expect

that a Lindbladmaster equation encompassing a novel combination of

phase-dependent correlated loss and gain mechanisms will be needed

to microscopically describe the system in a fully quantum Markovian

regime. We leave this promising step to future investigation.
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Methods
Full device description
Our setup includes a tracking generator (SignalHound TG124A), syn-

chronized with a spectrum analyzer (SignalHound SA124B), which

serves as a scalar network analyzer and is utilized for collecting the

data displayed in Fig. 2. Our dimer comprises two microwave cavities

withmechanically tunable frequency and coupling rates. Each cavity is

directly connected to an amplifier (Minicircuits CMA-83LN+), followed

by a digital attenuator (Vaunix LDA-5018V) for tunable gain control. A

phase shifter (Vaunix LPS-802) modifies the phase for the hopping

path from cavity 2 to cavity 1. SMA coaxial pins (Minicircuits SM-

SM50+) bridge connections between components where necessary. A

50 Ω terminator is connected to the driving port for LC experiments

without an external drive. When a drive of precise strength and fre-

quency is required, as shown in Fig. 4, an external signal generator

(SignalCore SC5511A) is utilized.

Calibration of ΔG and ϕ

The tunable parameters, namely, symmetric net gain in hopping, ΔG,

and relative phase,ϕ, weuse in the theoreticalmodel are not quantities

directly adjustable experimentally. Instead, they are inferred from

actual experimental parameters, namely, the settings of the twodigital

attenuators Γ1→2 and Γ2→1 expressed in dB and the setting of the phase

shifter ϕexp expressed in degrees. The calibration, or mapping, from

ðΓ1!2, Γ2!1,ϕexpÞ7!ðΔG,ϕÞ is achievedusing a lookup table, referred to

as the hash map, which was constructed from a series of calibrations.

This hash map establishes the relationship between the experimental

and model parameters, ensuring consistent ΔG for arbitrary ϕ (see

Supplementary Information, Sec. VII).

Weak-drive transmission experiments
The experimental results shown in Fig. 2b–g were obtained using the

following procedure. First, we calibrate our operational ϕ = 0 by

identifying the actual phase set on the device,ϕexp, thatmakes the two

peaks in Fig. 2b symmetric at the largestΔG = 8.4 dB value. Because the

attenuator introduces phase shifts at different values of attenuation, Γ,

we then iteratively adjust ϕexp to preserve this symmetry for all ΔG

values displayed in Fig. 2b,f. At ϕ = π, the primary goal was to update

ϕexp to align the frequency of Smax
21 at ωc/2π for different Γ. We then

iteratively adjusted the digital attenuators to ensure a consistent ΔG

value for all the data displayed in Fig. 2d,g. These additional phase

offsets are mainly influenced by the inherent phase shift from

increasing attenuation in the digital devices and by phase shifts due to

amplifier saturation. These effects are challenging to characterize and

control, thus requiring additional manual calibration. The spurious

feature near ωd/2π ≃ 6.01 GHz in Fig. 2d arises from limit-cycle emis-

sion leaking into the scalar network analyzer during homodyne

detection, not from a separate cavity mode, as confirmed by simula-

tions in Fig. 2e. To extract the peak transmission (Smax
21 ) and linewidth

(FWHM) in Fig. 2f–g, wefit each spectrumusing double Lorentzians for

ϕ = 0 and a single Lorentzian for ϕ = π. Above threshold, increased

uncertainties in Smax
21 and FWHM arise due to spectral narrowing and

the development of Fano-like asymmetries atϕ = π. The log-scale plot

in Fig. 2g highlights these effectsmore clearly.Minor deviations in Smax
21

at low ΔG are also visible, possibly due to slightly lower attenuation

than expected.

Experimental characterization of the limit cycle
We used our hash-map for the LC characterization to ensure accurate

ΔG across all ϕ values (Supplementary Information). The output port

of cavity 2 is connected to a spectrum analyzer, and the emission

spectrum is recorded for ΔG values ranging from 4.0 to 8.4 dB and ϕ

from 0 to 2π, with the previously determined ðϕexp ! ϕ=0Þ as the

reference phase. A 50 Ω terminator is connected to the input port of

cavity 1 tomaintain the loading of the cavity during data collection. For

each recorded emission spectrum, we extracted the highest amplitude

and its corresponding frequency, identifying the LC amplitude and

frequency for each ΔG and ϕ, as shown in Fig. 3a and d, respectively

(for more details see Supplementary Information Sec. IIE).

Sketch of the analytical analysis for the undriven limit cycle
When the system is not driven, ϵ = 0, the relevant asymptotic behavior

of the system can be solved for exactly. In Sec. II of the Supplementary

Information, we achieve this by introducing the normal modes

amplitudes β± � ± eiϕ=2α1 � α2

� �

=
ffiffiffi

2
p

, and working towards a suitable

normal form for the EOMs of β+, in polar coordinates β+ = iR+ e
iθ+ ,

while assuming β− ≡ 0, ∀t.

The radial EOM for _R + , which is decoupled from that of _θ+ , allows

for a unique stable equilibrium point R+ = RLC, when R+ = 0 becomes

unstable.Wedescribe this supercriticalHopf bifurcation explicitly, and

obtain the exact expression for nLC =R
2
LC in Eq. (10). The uniqueness of

RLC is a straightforward consequence of the monotonicity of

R+ 7!JðR2
+ =2;ΔGÞ, with J as defined in Eq. (7), allowing applying its

inverse on ðjαsatj2,1Þ 3 RLC. Since jαsatj2 >0, and JðR2
+ =2;ΔGÞ is per-

fectly constant for R2
+ < jαsatj2, the bifurcation described is technically

no longer local, since for the LC amplitude RLC, we have that

RLC > jαsatj2, immediately after R+ = 0 becomes unstable.

Next, we additionally derive an explicit expression for the LC

linewidth by linearizing the radial EOM around R+ = RLC. Lastly, the

expression for the LC frequency in Eq. (11) is obtained by substituting

R+ = RLC in the angular EOM for _θ+ . This yields insight into the physical

reason for δωLC not depending on ΔG.

Synchronization experiments
To investigate the synchronization dynamics between a self-sustained

mode and an external drive, we connect the input port of the dimer to

an external local oscillator (SignalCore SC5511A), which allows us to

generate signals of precise frequency and power. Initially, we set the

external drive to ωd = ωc and record the emission spectra for different

ΔG andϕ, adjusting thedrivepower,Pd, from0 to 16dBm. Ineach case,

we identify regions where the spectrum displays two or more distinct

peaks, indicating the coexistence of the drive and LC tones. These

regions define the contours in Fig. 4a.We acknowledge the asymmetry

observed in the contours of Fig. 4a and attribute it to minor experi-

mental imperfections, such as slight mismatches in resonance condi-

tions, parasitic phase shifts under amplifier saturation, or minor

hysteresis in the phase tuning, whichmay cause the limit cycle to latch

earlier on one side of ϕ = π (Supplementary Information Sec. III).

Next, we focus on characterizing the gap widening around ϕ = π.

We set the dimer parameters to ΔG = 8.4 dB and ϕ = π, which effec-

tively fixes the LC frequency to ωc/2π. We then sweep ωd/2π over an 8

MHz span around ωc/2π at constant drive strengths of 0 and 4 dBm.

The resulting spectra are displayed in Fig. 4c–d, respectively.

Time-domain numerical analysis
All simulated data in Figs. 2-4 are obtained using the Dormand-Prince

method75 to solve Eq. (8). To systematically analyze the time-domain

traces, we applied the fast Fourier transform expressed as

y½k� �
PN�1

n =0x½n�e�2πikn=N , whereN = 1 × 105 is the total number of time

samples. This transformation allows us to break down our time-

domain signal into its frequency components. Hence, to numerically

calculate S21, we focus specifically on the DC component of the

resulting spectra when the system is driven at ωd/2π. This DC com-

ponent represents the average signal value over a given time interval

and accurately represents the experimental homodyne detection,

which measures the output signal at the drive frequency ωd/2π.

Extending this analysis, we can also determine the frequency of

the LC, δωnum
LC =2π, by extracting the dominant frequency in the com-

puted spectra, f ðkmaxÞ, namely, δωLC=2π = 2πf ðkmaxÞ, where

kmax = argmaxk jy½k�j, and f ðkmaxÞ=
kmax

NΔt . Here, f ðkmaxÞ defines the
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dominant frequency in the transformed spectra corresponding to the

index kmax, and Δt denotes the sampling interval. Numerical results in

Figs. 2-4 were achieved by time-evolving the system in the range 0 ≤ t ≤

10000/κc, under initial conditions set as α(0) = [107, 0, 107, 0]. We

excluded the initial 20% of the data to ignore transient effects, and

whenever ∣α2∣
2 < 0.001%∣αsat∣

2, to avoid spurious sampling effects from

numerical traces corresponding to the vacuum solution. We convert

the photon numbers to absolute power using P[W] = ℏωc∣α2∣
2κout, and

then calculate the amplitude in dBm using the conversion

10log10 P=1 mW
� �

. We also refer to the Supplementary Information

Sec. ID for more details regarding the numerical parameters used in

simulations.

Data availability
All data that support the findings of this study are publicly available in

the GitHub repository listed below and archived in Zenodo to ensure

reproducibility76.

Code availability
The code that supports the findings of this study are available at

https://www.github.com/jussalcedoga-dartmouth/nh_nl_dynamics_

dimer76.
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